1,294 research outputs found

    Low-Voltage High-Linearity Wideband Current Differencing Transconductance Amplifier and Its Application on Current-Mode Active Filter

    Get PDF
    A low-voltage high-linearity wideband current differencing transconductance amplifier (CDTA) is presented in this paper. The CDTA consists of a current differencing circuit and a cross-coupling transconductance circuit. The PSPICE simulations of the proposed CDTA show a good performance: -3dB frequency bandwith is about 900 MHz, low power consumption is 2.48 mW, input current linear range is ±100 µA and low current-input resistance is less than 20 Ω, high current-output resistance is more than 3 MΩ. PSpice simulations for a current-mode universal filter and a proposed high-order filter are also conducted, and the results verify the validity of the proposed CDTA

    0.5V 3rd-order Tunable gm-C Filter

    Get PDF
    This paper proposes a 3rd-order gm-C filter that operates with the extremely low voltage supply of 0.5V. The employed transconductor is capable for operating in an extremely low voltage power supply environment. A benefit offered by the employed transconductor is that the filter’s cut-off frequency can be tuned, through a dc control current, for relatively large ranges. The filter structure was designed using normal threshold transistors of a triple-well 0.13μm CMOS process and is operated under a 0.5V supply voltage; its behavior has been evaluated through simulation results by utilizing the Analog Design Environment of the Cadence software

    DESIGN OF TWO STAGE BULK-DRIVEN OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) WITH A HIGH GAIN FOR LOW VOLTAGE APPLICATION

    Get PDF
    An Operational Transconductance Amplifier (further abbreviated as OTA) is a voltage controlled current source used to produce an output current proportional to the input voltage. A schematic architecture for a 180nm OTA is presented in this thesis with the goal of improving the open-loop gain for a 0.9V supply voltage with a rail-to-rail bulk-driven input stage. Results show an open loop gain 97.14 dB with a power consumption of 3.33uW. An OTA with over 90 dB open loop gain and lower power consumption is highly suitable for low-voltage applications. The slew rate of the OTA is 0.05V/uS with a unity-gain bandwidth of 8.4MHz. A 10uA ideal bias current reference is utilized for the design. The phase margin is around 49.2 degrees. The threshold voltage for a 180nm N-channel Metal Oxide Semiconductor (also known as NMOS) device is around 400mV which restricts the low voltage applications in most amplifier circuits. The fourth terminal (bulk) of the MOS device is utilized to optimize the voltage headroom (Vds). The bulk terminal uses a much lesser source to drain voltage than the gate-driven transistors, and the transistors remain ON with an input voltage as low as 0.1V. A bulk-driven input stage ensures the amplification in the subthreshold region (input signal less than the threshold voltage of the MOS device). However, even with the bulk input MOS device, a rail-to-rail input stage is employed to improve the dynamic range for the input signal from 0V to 0.9V with a supply voltage of 0.9V. The fluctuation in open loop gain concerning the change in input signal in the published research is because of the constant instability in the intrinsic transconductance of the input devices. A possible solution is presented in this thesis by adding a second dominant pole to the circuit (i.e., second stage for the OTA), which reduces the dependency of intrinsic transconductance (bulk-driven device) on the total open loop gain of the amplifier. Thus, a significant gain of 97.14 dB with minimal fluctuations is achieved. Furthermore, adding a second stage improves the gain by distributing the dependency of the gain due to the first stage to both poles in the circuit. Hence, the problem of fluctuating transconductance of the input stage is resolved by the constant intrinsic transconductance of the MOS near the second pole (M19). To improve the gain, a folded cascoded amplifier connected with the input stage results in a better impedance (in the first stage) known as the gain stage. In the second stage, a large PMOS common source amplifier gives a good output current compared to the input stage to enhance the output swing and drive a purely capacitive load of 0.5pF. Furthermore, a miller capacitance is used to compensate for the frequency between the first and the second stage and improving the unity-gain bandwidth. An additional biasing circuit in the second stage amplifies the current output of the first stage and thus improving the slew rate of the entire device. In addition, the biasing circuit resolves the biasing issues for the second-stage common-source amplifier. It improves the output swing of the device to obtain a clean/undistorted output waveform. All the simulations are carried out in the LTSpice simulation tool to test the waveforms and bode plot for open loop gain and phase margin (49.2 degrees) at different processes (slow, typical, and fast), input voltages (0-0.9V), supply voltage (0.8V, 0.9V, 1.0V) and temperatures (-10 to 100 degree C)

    Low-Voltage Bulk-Driven Amplifier Design and Its Application in Implantable Biomedical Sensors

    Get PDF
    The powering unit usually represents a significant component of the implantable biomedical sensor system since the integrated circuits (ICs) inside for monitoring different physiological functions consume a great amount of power. One method to reduce the volume of the powering unit is to minimize the power supply voltage of the entire system. On the other hand, with the development of the deep sub-micron CMOS technologies, the minimum channel length for a single transistor has been scaled down aggressively which facilitates the reduction of the chip area as well. Unfortunately, as an inevitable part of analytic systems, analog circuits such as the potentiostat are not amenable to either low-voltage operations or short channel transistor scheme. To date, several proposed low-voltage design techniques have not been adopted by mainstream analog circuits for reasons such as insufficient transconductance, limited dynamic range, etc. Operational amplifiers (OpAmps) are the most fundamental circuit blocks among all analog circuits. They are also employed extensively inside the implantable biosensor systems. This work first aims to develop a general purpose high performance low-voltage low-power OpAmp. The proposed OpAmp adopts the bulk-driven low-voltage design technique. An innovative low-voltage bulk-driven amplifier with enhanced effective transconductance is developed in an n-well digital CMOS process operating under 1-V power supply. The proposed circuit employs auxiliary bulk-driven input differential pairs to achieve the input transconductance comparable with the traditional gate-driven amplifiers, without consuming a large amount of current. The prototype measurement results show significant improvements in the open loop gain (AO) and the unity-gain bandwidth (UGBW) compared to other works. A 1-V potentiostat circuit for an implantable electrochemical sensor is then proposed by employing this bulk-driven amplifier. To the best of the author’s knowledge, this circuit represents the first reported low-voltage potentiostat system. This 1-V potentiostat possesses high linearity which is comparable or even better than the conventional potentiostat designs thanks to this transconductance enhanced bulk-driven amplifier. The current consumption of the overall potentiostat is maintained around 22 microampere. The area for the core layout of the integrated circuit chip is 0.13 mm2 for a 0.35 micrometer process

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    Utilizing Unconventional CMOS Techniques for Low Voltage Low Power Analog Circuits Design for Biomedical Applications

    Get PDF
    Tato disertační práce se zabývá navržením nízkonapěťových, nízkopříkonových analogových obvodů, které používají nekonvenční techniky CMOS. Lékařská zařízení na bateriové napájení, jako systémy pro dlouhodobý fyziologický monitoring, přenosné systémy, implantovatelné systémy a systémy vhodné na nošení, musí být male a lehké. Kromě toho je nutné, aby byly tyto systémy vybaveny baterií s dlouhou životností. Z tohoto důvodu převládají v biomedicínských aplikacích tohoto typu nízkopříkonové integrované obvody. Nekonvenční techniky jako např. využití transistorů s řízeným substrátem (Bulk-Driven “BD”), s plovoucím hradlem (Floating-Gate “FG”), s kvazi plovoucím hradlem (Quasi-Floating-Gate “QFG”), s řízeným substrátem s plovoucím hradlem (Bulk-Driven Floating-Gate “BD-FG”) a s řízeným substrátem s kvazi plovoucím hradlem (Bulk-Driven Quasi-Floating-Gate “BD-QFG”), se v nedávné době ukázaly jako efektivní prostředek ke zjednodušení obvodového zapojení a ke snížení velikosti napájecího napětí směrem k prahovému napětí u tranzistorů MOS (MOST). V práci jsou podrobně představeny nejdůležitější charakteristiky nekonvenčních technik CMOS. Tyto techniky byly použity pro vytvoření nízko napěťových a nízko výkonových CMOS struktur u některých aktivních prvků, např. Operational Transconductance Amplifier (OTA) založené na BD, FG, QFG, a BD-QFG techniky; Tunable Transconductor založený na BD MOST; Current Conveyor Transconductance Amplifier (CCTA) založený na BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) založený na BD MOST; Winner Take All (WTA) and Loser Take All (LTA) založený na BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) založený na BD-QFG technice. Za účelem ověření funkčnosti výše zmíněných struktur, byly tyto struktury použity v několika aplikacích. Výkon navržených aktivních prvků a příkladech aplikací je ověřován prostřednictvím simulačních programů PSpice či Cadence za použití technologie 0.18 m CMOS.This doctoral thesis deals with designing ultra-low-voltage (LV) low-power (LP) analog circuits utilizing the unconventional CMOS techniques. Battery powered medical devices such as; long term physiological monitoring, portable, implantable, and wearable systems need to be small and lightweight. Besides, long life battery is essential need for these devices. Thus, low-power integrated circuits are always paramount in such biomedical applications. Recently, unconventional CMOS techniques i.e. Bulk-Driven (BD), Floating-Gate (FG), Quasi-Floating-Gate (QFG), Bulk-Driven Floating-Gate (BD-FG) and Bulk-Driven Quasi-Floating-Gate (BD-QFG) MOS transistors (MOSTs) have revealed as effective devices to reduce the circuit complexity and push the voltage supply of the circuit towards threshold voltage of the MOST. In this work, the most important features of the unconventional CMOS techniques are discussed in details. These techniques have been utilized to perform ultra-LV LP CMOS structures of several active elements i.e. Operational Transconductance Amplifier (OTA) based on BD, FG, QFG, and BD-QFG techniques; Tunable Transconductor based on BD MOST; Current Conveyor Transconductance Amplifier (CCTA) based on BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) based on BD MOST; Winner Take All (WTA) and Loser Take All (LTA) based on BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) based on BD-QFG technique. Moreover, to verify the workability of the proposed structures, they were employed in several applications. The performance of the proposed active elements and their applications were investigated through PSpice or Cadence simulation program using 0.18 m CMOS technology.

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    A 0.3 V rail-to-rail ultra-low-power OTA with improved bandwidth and slew rate

    Get PDF
    In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier

    A 0.3V Rail-to-Rail Three-Stage OTA With High DC Gain and Improved Robustness to PVT Variations

    Get PDF
    This paper presents a novel 0.3V rail-to-rail body-driven three-stage operational transconductance amplifier (OTA). The proposed OTA architecture allows achieving high DC gain in spite of the bulk-driven input. This is due to the doubled body transconductance at the first and third stages, and to a high gain, gate-driven second stage. The bias current in each branch of the OTA is accurately set through gate-driven or bulk-driven current mirrors, thus guaranteeing an outstanding stability of main OTA performance parameters to PVT variations. In the first stage, the input signals drive the bulk terminals of both NMOS and PMOS transistors in a complementary fashion, allowing a rail-to-rail input common mode range (ICMR). The second stage is a gate-driven, complementary pseudo-differential stage with an high DC gain and a local CMFB. The third stage implements the differential-to-single-ended conversion through a body-driven complementary pseudo-differential pair and a gate-driven current mirror. Thanks to the adoption of two fully differential stages with common mode feedback (CMFB) loop, the common-mode rejection ratio (CMRR) in typical conditions is greatly improved with respect to other ultra-low-voltage (ULV) bulk-driven OTAs. The OTA has been fabricated in a commercial 130nm CMOS process from STMicroelectronics. Its area is about 0.002 mm2 , and power consumption is less than 35nW at the supply-voltage of 0.3V. With a load capacitance of 35pF, the OTA exhibits a DC gain and a unity-gain frequency of about 85dB and 10kHz, respectively
    corecore