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ABSTRACT 
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The powering unit usually represents a significant component of the implantable biomedical 

sensor system since the integrated circuits (ICs) inside for monitoring different physiological functions 

consume a great amount of power. One method to reduce the volume of the powering unit is to minimize 

the power supply voltage of the entire system. On the other hand, with the development of the deep sub-

micron CMOS technologies, the minimum channel length for a single transistor has been scaled down 

aggressively which facilitates the reduction of the chip area as well. Unfortunately, as an inevitable part of 

analytic systems, analog circuits such as the potentiostat are not amenable to either low-voltage 

operations or short channel transistor scheme. To date, several proposed low-voltage design techniques 

have not been adopted by mainstream analog circuits for reasons such as insufficient transconductance, 

limited dynamic range, etc. 

Operational amplifiers (OpAmps) are the most fundamental circuit blocks among all analog 

circuits. They are also employed extensively inside the implantable biosensor systems. This work first 

aims to develop a general purpose high performance low-voltage low-power OpAmp. The proposed 

OpAmp adopts the bulk-driven low-voltage design technique. An innovative low-voltage bulk-driven 

amplifier with enhanced effective transconductance is developed in an n-well digital CMOS process 

operating under 1-V power supply. The proposed circuit employs auxiliary bulk-driven input differential 

pairs to achieve the input transconductance comparable with the traditional gate-driven amplifiers, 

without consuming a large amount of current. The prototype measurement results show significant 

improvements in the open loop gain (AO) and the unity-gain bandwidth (UGBW) compared to other 

works.  

A 1-V potentiostat circuit for an implantable electrochemical sensor is then proposed by 

employing this bulk-driven amplifier. To the best of the author’s knowledge, this circuit represents the 

first reported low-voltage potentiostat system. This 1-V potentiostat possesses high linearity which is 
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comparable or even better than the conventional potentiostat designs thanks to this transconductance 

enhanced bulk-driven amplifier. The current consumption of the overall potentiostat is maintained around 

22 microampere. The area for the core layout of the integrated circuit chip is 0.13 mm
2
 for a 0.35 

micrometer process. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivations 

Patients can benefit greatly from monitoring of physiological factors such as pH level in tissues 

[1], glucose [2] and lactose [3] in bloodstreams, etc. Invasive medical devices such as small lancets are 

used to collect substances from human body for test and diagnostic purposes. These devices not only 

increase the risk of infection, but also perform very simple discrete measurements in the human body 

which are not sufficient under some situations such as monitoring of diabetic patients.   

Recent developments in biomedical sensors and CMOS processing technologies have led to the 

realization of minimally invasive monitoring devices such as implantable biosensors for continuous 

monitoring of the patients with reduced risk of infection. A continuous monitoring system is a significant 

improvement over the discrete measurement devices and allows the doctors to examine in real time the 

medical data from patients anytime and anywhere via the internet. This method of monitoring enables the 

doctors to perform necessary actions according to the need of the patients. The gathered data from 

frequent monitoring also helps the hospitals to efficiently record the medical history of the patients for 

future references. Fig. 1.1 illustrates a typical implantable wireless biosensor system network. 

 Fig. 1.2 depicts a detailed implantable biosensor system platform integrating biosensors with 

integrated circuits (ICs) designed to be deployed inside the human body (i.e. under the skin). The sensor 

electronics can be implanted using standard CMOS technologies. CMOS technologies have advantages 

such as small volume and reliable operation which are both vital for implantable biomedical applications. 

Biosensors on this platform include glucose sensor, lactate sensor, oxygen sensor and pH sensor, etc. 
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Fig. 1.1 Implantable biosensor system network. 
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Fig. 1.2 Implantable biosensor system (inside blue rectangle). 
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Usually, these electrochemical or electrocatalytic sensors generate electrical analog signals which 

correspond to the presence of a particular target substance. Readout electronics including potentiostats 

accurately deliver these signals to the signal processor unit (SPU). Data is then transmitted outside via a 

transmitter to a smart phone. Peripheral ICs such as powering units, input signal processing block, etc. are 

also employed to realize this scheme on a system-on-a-chip (SoC) platform.  

The current development of the implantable biosensor system focuses on miniature size and light 

weight for easy integration and biological safety [4]. On one hand, the development of deep sub-micron 

CMOS processes brings down the overall chip area greatly; On the other hand, since powering units 

usually consume a substantial part of the overall system, minimizing the power source on chip is also 

capable of reducing the chip area. This can be achieved by developing more efficient wireless powering 

methods or developing ICs with low-voltage and low-power operations. Compared to a battery-charged 

system, wireless powering does not have the issue of replacing the power source every once in a while, 

and is thus considered to be noninvasive with minimal or no risk of infection [4][5]. Both inductive 

coupling (i.e. inductive link) and optical coupling (i.e. solar cells) have been adopted as wireless 

powering methods as previously reported in literatures [4][6].  

Nevertheless, from circuit designers’ point of view, developing ICs using short-channel 

transistors with low-voltage and low-power operations is an appealing and efficient method to reduce the 

SoC chip area. Fortunately, the power supply voltage downscales in a similar fashion with the reduction 

of transistor channel length over the years. Otherwise the robustness and reliability of devices will 

deteriorate due to hot electron effect and time-dependent dielectric breakdown (TDDB) [7]. However, 

unlike the shrinkage of the power supply voltage (VDD), the threshold voltage (VT) reduces much less 

aggressively to maintain on/off characteristics of the MOS transistors [8].  Fig. 1.3 shows the trend of the 

power supply voltage (VDD) and the threshold voltage (VT) versus the transistor minimum channel length 

(Leffective) for the past 30 years [9][10]. 
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Fig. 1.3 Transistor power supply voltage and threshold voltage change with the effective channel length 

[9][10]. 

 

Thanks to the VDD scaling, the power consumption of digital circuits decreases almost 

quadratically according to Eq.(1.1), 
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2
Digital DD L clkP V C f     (1.1) 

where CL is the load capacitance, fclk is the clock frequency. Although the reduced VDD will slow down the 

circuit speed, the smaller technology node compensates that to some extent.  

However, compared to their digital counterparts, analog circuits such as amplifiers benefit much 

less from the scaling of CMOS technologies. The short channel devices typically yield worse offset, 

larger leakage current and smaller output impedance (ro) compared to the long channel devices. Thus 

usually long channel transistors are extensively employed in analog designs, so as the work proposed in 

this dissertation. In addition, the low-voltage operation further complicates the designs of analog circuits. 



 

5 

Inherently, all low-voltage analog circuits suffer from inferior signal-to-noise ratio (SNR) due to the 

limited signal swing. For example, with half of the signal swing of an OpAmp, quadratically increasing 

its current consumption is a common solution to maintain the same SNR. Both of these limitations 

indicate that the volume reduction of the implantable biosensor system mainly depends on its analog 

components.  

Analog circuits without employing any low-voltage design techniques limit their power supplies 

to the turn-on voltage of MOSFET (VGS) plus the required signal swing [11][12][13]. For a 0.35 µm long 

channel CMOS process, a |VGS| of ~0.9 V is quite normal for a standard VT PMOS biased in strong 

inversion. A general purpose gate-driven OpAmp design using this process operates at least under 1.8 V 

in order to achieve necessary signal swing. Thus OpAmp working under 1 V in a similar long channel 

process is considered to be low-voltage operation.  

Research efforts have been encouraged to develop low-voltage analog circuit design techniques in 

standard long channel CMOS processes, in order to avoid the analog circuits on the SoC be the limiting 

factor of the overall power supply voltage.  In this work, efforts have been focused on the development of 

an innovative low-voltage and low-power potentiostat circuit inside a biosensor system as shown in Fig. 

1.2. Amplifiers are extensively employed in many potentiostat structures [4][14]-[16] and are considered 

as the fundamental circuit blocks among the entire analog ICs. Thus the development of a low-voltage 

and low-power amplifier is clearly the first step towards bringing down the supply voltage of the 

potentiostat and subsequently, of the entire system.   

1.2 Research Goals 

The purpose of this research is to develop a low-voltage and low-power potentiostat for the 

electrochemical sensors which will be used in an implantable biosensor system as shown in Fig. 1.2. A 

general purpose low-voltage (i.e. 1 V) low-power amplifier is implemented at first in a standard long 
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channel CMOS process to achieve comparable performance with amplifiers operating under nominal VDD. 

The 1-V potentiostat is then designed including the proposed low-voltage low-power amplifier. The 

proposed design demonstrates high linearity and stability as evidenced by the measurement results.  

1.3 Original Contributions 

A low-voltage general purpose amplifier including novel bulk-driven input differential pairs is 

presented and analyzed in this work. The effective input transconductance Gm_in_eff of this amplifier is 

significantly improved without greatly increasing the power consumption. This enhanced Gm_in_eff is 

comparable to traditional gate-driven amplifiers. As a result, the circuit performance such as the circuit 

bandwidth and the open loop gain also benefit from this improvement.  

The amplifier is then employed as the core of an electrochemical biosensor potentiostat which 

belongs to an implantable biomedical sensor system. The proposed potentiostat features a very low-

voltage, low-power and high-linearity operation. 

1.4 Overview of the Dissertation 

In Chapter 1, an implantable biosensor system and the corresponding circuit composations are 

introduced. This is followed by a discussion on the importance of the low-voltage and low-power 

operation for an implantable biosensor system. A low-voltage potentiostat is set to be the research goal of 

this dissertation. In Chapter 2, various types of biosensors are introduced, which is followed by the 

discussion of different topologies of the potentiostat. In Chapter 3, several low-voltage design techniques 

to obtain low-voltage operations are compared. Following the selection of the appropriate bulk-driven 

technique, problems associated with several recent bulk-driven circuit works are discussed. To provide 

novel bulk-driven circuit design techniques for solving these problems, the details for the 

implementations of the bulk-driven OpAmp are presented in Chapter 4. The subsequent design of the 
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potentiostat is treated in Chapter 5. Simulations and measurements of the proposed bulk-driven OpAmp 

and the potentiostat are shown in Chapter 6. In the end, conclusions and future work are presented in 

Chapter 7. 
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CHAPTER 2  

LITERATURE REVIEW: BIOSENSORS AND 

POTENTIOSTAT SYSTEM 

In this chapter, different types of biomedical sensors and their working principles are introduced 

in Section 2.1. Among them, the amperometric sensors and their fabrication methodologies are explained 

in detail. The equivalent circuit models of these sensors for improvement of the design of the potentiostat 

system are presented. In Section 2.2, previous literatures on popular potentiostat topologies are reviewed 

and their performances are compared. Finally, the effects of the low-voltage and low-power operation of 

the potentiostat system are discussed in Section 2.3. 

2.1 Introduction to Biomedical Sensors 

Micro-fabricated electrochemical sensors are widely used inside the biomedical sensing system. 

They are generally categorized as conductivity/capacitance, potentiometric, amperometric and 

voltammetric sensors [17]. Each of these sensors is developed to detect the presence of one particular 

electrolyte and its concentration.  

The conductivity/capacitance sensors are utilized to measure the conductance of the specific 

analyte. Albeit a very straightforward sensing method these sensors employ, the detection is often 

interfered by the Faradaic current (IF) and the effect of the double layer formed at each electrode surface. 

IF measures the rate of Faradaic process, which originates from either oxidation or reduction occurring at 
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the surface of electrode. Potentiometric sensor, on the other hand, is capable of accurately measuring the 

change of potential at the electrode-electrolyte interface when a redox reaction occurs at the electrode 

surface (half-cell reaction [17]), which can be used to determine the concentration of the analyte. 

Unfortunately, the interferences from other ions and the long-response time of these sensors (due to the 

employment of the electrometer with high input impedance) limit their usage for biomedical purpose [17].  

Voltammetric and amperometric sensors are based on the relationship between the concentrations 

of the analyte and the corresponding Faradic current (IF) and potential (Ei). The value of the Faradaic 

current depends on the concentrations of the analyte of interest. This concentration cannot be accurately 

characterized until the Faradic current reaches a limit set by the potential Ei across the electrochemical 

cell. This limiting current has a linear relationship with the analyte concentration under the conditions 

such that potential Ei does not increase beyond a specific required value (i.e. to avoid unrelated Faradaic 

processes associated with other substances). These two types of the sensors are quite widely used because 

of their effectiveness and well established fundamentals [17]. For an amperometric sensor, IF is usually 

measured by fixing the potential Ei between electrodes. While for a voltammetric sensor, Ei is varied in 

different fashions, such as linear or cyclic, when Faradic current is quantified. Amperometric sensor is 

considered in [17] as a subclass of the voltammetric sensor, but can be more easily managed and designed, 

since other Faradaic or non-Faradaic currents can be generated if the potential Ei varies too much. 

Therefore, amperometric sensors are used throughout this work which requires a fixed Ei. 

To develop amperometric sensors, at least two micro-fabricated electrodes are required: a 

working electrode (WE) and a reference electrode (RE) which are configured as shown in Fig. 2.1 (a). 

The working electrode is defined as the electrode at which the oxidation or the reduction reaction of 

interest takes place. The materials of this electrode can be Au, Hg, C, Pt and Ag etc. depending on the 

analyte of detection. The reference electrode is deployed to provide a stable reference to ensure that the 

potential Ei between these two electrodes is constant and within the requirement, irrespective of the 
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continuous transient Faradaic reaction inside the electrochemical cell. The reference electrode is mostly 

made of Ag/AgCl for biomedical applications. In the two electrode system, the RE is also responsible for 

electrically balancing the charges generated/replaced at the surface of the working electrode, without 

affecting its reaction. A potentiostat system is used to work in conjunction by controlling these two 

electrodes and effectively carrying out the Faradaic current from reduction or oxidation.  

It is very difficult for a potentiostat system to control an electrode by supplying a constant voltage 

and a varying current at the same time. Therefore, modern amperometric-based sensing methodologies 

typically employ a three-electrode sensor system, where the aforementioned reference electrode is divided 

into two separate electrodes: the reference electrode (RE) and the counter electrode (CE). As shown in 

Fig. 2.1 (b), a potentiostat system controls the RE to act as a reference node to maintain sufficient 

potential Ei with respect to the WE and draws no currents, while the CE generates the opposite current 

occurring at the surface of the WE in order to keep the charges neutral. This three-electrode 

electrochemical cell can also be modeled by physical resistors and capacitors as shown in Fig. 2.2. 

Here, the value of resistors RWE, RRE and RCE represent the Faradic resistances of the working, 

reference and counter electrodes, respectively, while the value of resistors RS1 and RS2 represent the 

solution (analyte) resistances. The resistance of RWE can be calculated in Eq.(2.1) as, 

 
i

WE

F

E
R

I
  (2.1) 

The resistance of RCE is much smaller than that of RWE since the size of the counter electrode is 

normally developed to be much smaller than that of the working electrode. The resistances of RS2 and RS1 

are even more negligible compared to the rest. The value of capacitors CWE and CCE correspond to the 

electrode double-layer capacitances. They are proportional to the surface areas of each electrode. 
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Potentiostat System

Ei
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current
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current

WE RE CE  

Fig. 2.1 (a) Two-electrode sensor system; (b) Three-electrode sensor system. 
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Fig. 2.2  Equivalent circuit model of a three-electrode electrochemical cell. 

 

2.2 Comparisons of the Existing Potentiostat Structures    

The purpose of the potentiostats for the voltammetric/amperometric biosensor systems is to 

generate adequate potential difference Ei between the working and the reference electrodes such that a 

specific analyte can be detected in the solution. It also should be able to accurately deliver sensor current 

(i.e. Faradaic current) through the counter electrode to the signal processing unit (SPU) so that the output 

signal of the system can be a reflection of the analyte concentrations.  

2.2.1 Existing Configurations of the Potentiostats 

The potentiostats for either voltammetric or amperometric biosensor systems inherently have 

similar configurations since they both measure the relationship between the potential Ei and the Faradaic 
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current IF. Voltammetric potentiostats may need more dynamic range and involves more complicated 

designs. Several previously reported potentiostat utilized switched-capacitor circuitries for high-speed and 

high-accuracy detection [18]-[21]. However, in biomedical applications, system stability, power 

consumption and accuracy are the top priorities compared to the operating speed [22], which is why more 

recent and popular potentiostats have adopted only continuous OpAmps due to their simple structures and 

pure analog operations [23]-[36]. 

2.2.1.1 General Potentiostat Topologies 

There are primarily two different configurations [37] of potentiostats, namely, 1) grounded WE or 

RE and 2) grounded CE. Fig. 2.3(a) illustrates a potentiostat with grounded WE configuration where 

grounded RE will result in a similar topology while Fig. 2.3 (b) represents a potentiostat with grounded 

CE configuration [37]. Under both circumstances, the potential between WE and RE (VWR) is equal to Ei.  

It should be noticed that the potential Ei can be either positive as shown in the following potentiostats, or 

negative, which can be easily converted from the positive Ei potentiostat topologies. 

 

Ei

WE

RE

CE

R

R
R

WE

RE

CE

-Ei

R

IF

 

Fig. 2.3 (a) Potentiostat with grounded WE configuration; (b) Potentiostat with grounded CE 

configuration. 
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The circuitry in Fig. 2.3 (a) involves only one amplifier which results in low power consumption, 

small area and low noise. This circuit topology has been widely used in previous literatures compared to 

the circuitry in Fig. 2.3 (b). However, the grounded CE configuration in Fig. 2.3 (b) has better protection 

of the working electrode by shielding it from any ground noise or external electromagnetic interference 

(EMI), despite the fact that it employs several more active and passive components (i.e. more power 

consumption) and feedback loops [37]. 

2.2.1.2 Potentiostat Topologies in Previous Literatures 

Ahmadi et al. proposed current-mirror-based potentiostats as shown in Fig. 2.4 (a) and (b) which 

are based on grounded WE configuration [14]. The transistor M2 can simply mirror the sensor current (i.e. 

Faradaic current IF) flowing through the transistor M1. The topology shields WE by connecting it to a true 

AC ground potential. However, the circuit in Fig. 2.4 (a) is essentially a two-stage control amplifier (i.e. 

OTA A1 and common-source stage with the transistor M1) which leads to two low-frequency poles (p1 

and p2) existing inside the feedback loop. The design can be more difficult considering that the sensor 

current varies in magnitudes. As a result, the impedance at the output of OTA A1 cannot be too high in 

order to place its pole at higher frequencies. This design limitation could compromise the linearity and the 

power consumption of the overall system. Another similar work [26] proposed by the same authors 

managed to increase the open loop gain of the OTA to a degree by using partial positive feedback OTA 

but at the expense of additional current required for the operation. Further limitations of the partial 

positive feedback circuit are discussed in the following chapter. The circuit in Fig. 2.4 (b), on the other 

hand, uses the transistor M1 as the source follower to eliminate the two low-frequency pole problem to 

some extent. However, it seriously limits the signal swing even under a nominal power supply voltage.  

Haider et al. presented another potentiostat structure [4] based on the grounded CE configuration. 

Fig. 2.5 reveals its topology. It employs more amplifier blocks than the one in Fig. 2.3 (b), hence more lo-  
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Fig. 2.4 (a) and (b) Current-mirror-based potentiostats in [14]. 

 

-op gain and better linearity. The power consumption of this circuit is relatively high due to the 

involvement of four amplifiers. In addition, the feedback loop inside this circuit is relatively hard to 

maintain stability.  

Martin et al. proposed a fully differential (FD) potentiostat [33], which substantially increased the 

dynamic range compared to the previously reported single ended (SE) versions. This is particularly 

important for detecting chemical substances which require high potential Ei, such as Bromide (Br-) or 

Lead, etc. It is also very suitable for voltammetric sensors demanding high dynamic range. The fully 

differential potentiostat (shown in Fig. 2.6) can provide high precision and stable voltage reference 

between the electrodes, although typically more than one amplifier are employed in the design. Besides, 

to provide the required potential Ei, two voltage regulators are needed to provide adequate drive 

capability. 

2.2.2 Existing Methods for Sensor Current Measurement  

How to precisely deliver the sensor current externally or convert it to easy-to-process signals is 
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Fig. 2.5 Grounded CE based potentiostat presented in [4]. 
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Fig. 2.6 Fully differential potentiostat in [33]. 

 

also very crucial in designing the overall potentiostat system. Several methods have been proposed up to 

date. The most common one involves connecting a trans-impedance amplifier (TIA) to the WE or the CE 

instead of directly grounding it. 

In Fig. 2.7, either WE or CE is held at virtual ground, and the sensor current is converted to a 
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voltage signal. Either a large resistor can be used for the conversion [28] or a switched capacitor circuits 

can be arranged in order to save chip layout area [18]. The voltage signal normally requires a power 

hungry analog-to-digital converter (ADC) [23] to process the data which is not amenable to implantable 

biosensor systems. Although this configuration is very simple to implement and is capable of detecting 

very small sensor current, it poses a number of problems as mentioned in [14] and [33], such as 

unshielded and noisy WE, elevated input impedance of TIA at high frequencies and limited dynamic 

range, etc.  

Another method to handle the sensor current is to convert it into a frequency signal without any 

help of ADCs but with the employment of a current-to-frequency (I-F) converter [4][14]. The topologies 

in these works are revealed in Fig. 2.8 and Fig. 2.9. Both of these I-F converters operate in similar 

manners. The circuit takes in IF and the mirrored current charges the integrating capacitor CINT until the 

voltage across it exceeds a specific fixed voltage (i.e. VDD- VT,Schmitt_trigger in Fig. 2.8 or Vref in Fig. 2.9).  

Then another current path turns on (PMOS M5 in Fig. 2.8 or NMOS M4 and current source IREF in Fig. 

2.9 ) to discharge the CINT. The charging rate or the integrating time τ is proportional to the mirrored 

current of IF and the discharging rate is relatively fast in both cases. The period of the output data T can be 

expressed in Eq.(2.2) as, 

WE/CE

Rf

IF
Vout=IF·Rf

ADC Digital 

Output

 

Fig. 2.7 Sensor current measurement circuit using TIA. 
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TSchmitt trigger ref

F

C
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I
 (2.2) 

where VTschmitt_trigger is the Schmitt trigger threshold voltage in Fig. 2.8 and Vref is the reference voltage in 

Fig. 2.9. 
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Fig. 2.8 Current to frequency (I-F) converter utilized in [4]. 
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Fig. 2.9 Current to frequency (I-F) converter utilized in [14]. 



 

18 

2.2.3 Discussions on Previous Structures 

Table 2.1 summarizes the performance of each work discussed in the previous section. These 

works feature different potentiostat topologies and consequently different design complexities and current 

consumptions. In the potentiostat design, the selections of structures mostly depend on the requirements 

of linearity, power consumption and chip area for the specific applications. Apparently, for an 

implantable biosensor system, lower power consumption and smaller chip areas are top priorities. Most of 

the potentiostats reported in the literatures tried to limit power consumption by either reducing the 

number of active or passive components or designing circuit bandwidth no more than what is required. 

However, even more power can be saved if the power supply voltage can be reduced without much 

degradation of the circuit performance. 

2.2.4 Impacts of the Low-Voltage Operations on Potentiostats 

The low-voltage operation of the potentiostat system seems to be an unexplored research area in 

recent years. Several concerns prevent researchers from designing potentiostats using the low-voltage 

circuit design techniques.  

 

Table 2.1 Comparisons of the Potentiostats Performance in Previous Literatures 

 Process 
Supply 

voltage 

Potentiostat 

power 

consumption  

Linearity 

Detected 

sensor 

current 

Range 

Topology 

[4] 
0.35 µm n-

well CMOS 
1.5 V 

400 µW 

(Including 

SPU) 

R
2
= 0.999 

200 nA->2 

µA 
SE 

[14] 
0.18 µm n-

well CMOS 
1.8 V 32.4 µW R

2
= 0.9984 

1 nA -> 

1µA 
SE 

[26] 

(Simulation) 

0.18 µm n-

well CMOS 
1.8 V 80 µW N/A 

1nA-

>200nA 
SE 

[33] 
0.18 µm n-

well CMOS 
1.8 V 15840 µW R

2
= 0.98 N/A FD 

[36] 
0.18 µm n-

well CMOS 
1.8 V 307 µW N/A 

10nA -> 

10µA 
SE 
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1) A fixed potential Ei is mandatory between WE and RE for the amperometric biosensors. It is 

noted in [32] and [33] that for detecting most water-based heavy metal ions, this Ei is required to 

be between 0 V to |1.5 V|. Although for the O2 or H2O2 based biomedical sensors such as glucose, 

lactate and glutamate, etc., the absolute value of Ei about 0.5 V to 0.7 V is usually sufficient for 

accurate detections. This potential decides the required voltage dynamic range of the potentiostat 

which limits the scaling of the overall power supply voltages.  

2) Like other analog circuits, potentiostats with reduced power supplies suffer from gain 

degradations, either because of the insufficient transconductance or the limited use of stacked 

transistors. Low gain inevitably leads to poor linearity, which hurts the accuracy of the analyte 

detection. On the other hand, circuit techniques to boost the amplifier gain usually complicate the 

design and generate more poles and zeros in the overall feedback loop inside the potentiostat 

which introduce noise and cause instability. 

However, the overall sensor system still benefits greatly from the reduction of the power supply 

voltages. As mentioned previously, the overall power source volume can be reduced given that current 

consumption is still maintained at a low level. Considering either on-chip solar cell or inductive link is 

employed as a power source, this power supply reduction can scale down the size of an implantable 

sensor system and makes it easier and safer to be deployed inside the human body. Since every 

potentiostat topology presented above and in past literatures employs amplifiers, therefore, developing a 

high performance low-voltage and low-power amplifier is clearly the first step towards the full 

implementation of a low-voltage and low-power potentiostat circuit. 
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CHAPTER 3  

LOW-VOLATGE ANALOG CIRCUITS 

In this chapter, various low-voltage analog circuit design techniques are introduced and compared 

in Section 3.1. Among them, the bulk-driven low-voltage design technique is discussed in Section 3.2. 

The advantages and disadvantages of this technique are also presented. In Section 3.3, bulk-driven 

amplifiers reported in previous literatures which target to increase the effective input transconductance 

(Gm_in_eff) are reviewed. Their performances are also compared. 

3.1 Comparisons of the Low-Voltage Design Techniques 

Potentiostats or generally speaking all analog circuits require operating voltages in the vicinity of 

the gate-to-source voltage (VGS) to keep the transistors in strong inversion and provide necessary signal 

swing as discussed in the previous chapter. Since amplifiers are widely involved in any potentiostat 

system designs, the minimum power supply for an amplifier design has been specifically discussed in 

[38]. For example, powering of a push-pull output stage demands at least the sum of NMOS and PMOS 

threshold voltages (i.e. VDD+|VSS|> VTN+|VTP|), without using any low-voltage design techniques. Although 

some processes offer low VT transistors at additional cost and turn-around time or zero VT devices which 

are not well modeled[8], standard VT transistors are still favored by analog designers primarily because 

they tend to give much lower sub-threshold leakage current and better noise immunity [7][13]. 

Several techniques have been proposed so far to design amplifiers operating under or around VTN 

+ |VTP| without employing low VT or zero VT transistors, such as bulk-driven MOSFET [11] [38], floating 
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gate MOSFET[39], sub-threshold design [40], level shift techniques [41], etc. Each of these techniques is 

briefly introduced and analyzed below.  

If the gate terminal is biased properly to turn on the MOSFET, the signal can be applied between 

the bulk-to-source junction of the MOSFET so that the drain-to-source current is modulated, a scheme 

known as “bulk-driven technique”. Obviously, the dynamic range of the amplifier is increased since there 

is no threshold voltage associated with the bulk terminal which allows a very low-voltage operation. 

However, the main problem with the bulk-driven technique is that the bulk transconductance (gmb) is 

substantially smaller than the gate transconductance (gm). This insufficient transconductance will affect 

the performance of the amplifier, such as bandwidth, open loop gain, input referred noise, etc. 

Floating gate (FG) devices were first found popular use in digital storage elements such as 

EPROMs, EEPROMs and flash memories. Recently, analog circuits such as amplifiers and filters have 

also utilized multi-input floating gate (MIFG) devices as an integral part of the circuits [13]. The gate of a 

FG device is electrically isolated by high resistive materials thus creating a floating node. Secondary gates 

are deposited above the FG acting as inputs. The charge in the device channel is then modulated by the 

input signals via capacitive dividers. Therefore, two polysilicon layers in a standard CMOS process are 

used for developing the FG devices. Amplifiers employing MIFG transistors can be used in ultra low-

voltage operation while still exhibiting large input swing and high input linear range thanks to the 

capacitive coupling. However, its input transconductance is attenuated due to the capacitive coupling, 

which results in similar disadvantages as the bulk-driven amplifiers. 

Sub-threshold design exploits the sub-threshold operating region of the MOSFET devices. Low-

voltage operation is possible since the gate-to-source voltage (VGS) of the transistor is smaller than VT and 

the saturation voltage (VDS,sat) is only around 100 mV. Sub-threshold circuit features extremely low 

current consumption since the channel current is dominated by diffusion of the carriers instead of drift. 

On the other hand, the bandwidth and the slew rate of the circuit are severely limited. Sub-threshold 
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current is also very sensitive to process, voltage and temperature (PVT) variations due to the exponential 

relations between VGS and VT. Overall, analog circuits designed in sub-threshold region are theoretically 

expected to fit in the implantable biomedical application quite well. However, usually only a few 

transistors (i.e. input differential pairs) inside a typical amplifier are designed to be in this region to avoid 

either mismatch or instability issues [42]. Hence, sub-threshold circuit designs can sometimes be hybrid 

with other low-voltage design techniques. 

Dynamic level shifting circuit provides a feasible solution to low-voltage differential input pairs. 

It utilizes resistors to level shift the common mode input voltage (VCM) of the amplifier to the operating 

zone of the input transistors. The modified input pairs still maintain sufficient transconductance compared 

to the previous techniques, but suffer from low input impedance and considerable resistor area which are 

undesirable in modern CMOS circuits and limit their usage in the implantable biomedical system.  Other 

level shift circuits consisting of only active components can be employed to accommodate either current 

mirrors (CMs) or amplifier output stages for low-voltage operations.   

Other low-voltage design techniques have also been proposed for individual analog circuit blocks 

[43]. For example, active input structures can be adopted to develop low-voltage current mirrors and self-

cascode MOSFETs can be configured to increase the output impedance of current mirrors while providing 

large voltage headroom.  

For low-voltage operations, each aforementioned technique has certain performance limitations, 

such as circuit bandwidth, input referred noise, and offset etc. Depending on the power and the supply 

voltage budget or the circuit bandwidth requirement, specific application usually has its best low-voltage 

design technique candidates. Table 3.1 presents some performance comparisons of the low-voltage design 

techniques mentioned in this section. 

This work mainly adopts the bulk-driven circuit design technique to develop the low-voltage 

amplifier and subsequent potentiostat system, since they have been exploited extensively in recent years.  
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Table 3.1 Techniques in Low-Voltage Analog Circuit Design 

Technique Bandwidth Supply voltage Power 

requirements 

Technology 

requirements 

Sub-Threshold Low < VTN+|VTP| Low Standard 

Bulk-Driven Low < VTN+|VTP| High Standard 

Floating Gate Medium < VTN+|VTP| High Standard 

Level Shift High < VTN+|VTP| Medium Standard 

Other 

Techniques 

High > VTN+|VTP| Medium Standard 

 

Meanwhile, some of the aforementioned techniques are also employed, such as level shift technique, etc. 

Although for a typical bulk-driven amplifier, limited bandwidth or insufficient gain can affect its 

performance, new topologies are proposed in this work to overcome these shortcomings, and make it 

suitable for the implantable biomedical applications.   

3.2 Introduction of the Bulk-Driven Technique 

Bulk-driven MOSFET is first adopted in [38] by Blalock et al in a standard n-well CMOS process 

where only PMOS transistors can be used as the bulk-driven transistors. The operation of a bulk-driven 

MOSFET is similar to a JFET [11] as depicted in Fig. 3.1. Once the inversion layer beneath the transistor 

gate is formed by sufficient gate-to-source biasing voltage, the channel current can be modulated by 

varying the bulk-to-source junction potential (VBS). This operation eliminates the threshold voltage 

limitation of the gate-driven MOSFET since the bulk-to-source junction can be positive, zero, or slightly 

negative biased and still acts as the high impedance node as long as the junction diode is not turned on.  
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Fig. 3.1 Bulk-driven PMOS transistor. 
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Fig. 3.2 Small signal model of the PMOS transistor. 

 

Fig. 3.2 illustrates a small signal model of the PMOS device. 

The square law equation for the PMOS transistor in saturation can be applied in Eq. (3.1) to 

describe the relationship between the output drain current (ID) and the bulk-to-source voltage (VBS) 

without any channel length modulation. 
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where VTHP0 is the threshold voltage of PMOS at zero substrate voltage, φF is the bulk Fermi potential, γP 

is a constant describing  the substrate bias effect, VSG is the fixed source-to-gate voltage. 

The bulk transconductance gmb can be then derived in Eq.(3.2) by taking derivatives of ID to VBS.  
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where gmb can be further related to gm in Eq. (3.3). 
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where ɳ is the ratio from gmb to gm, which maintain constant at the same VBS. Reportedly, if the bulk-to-

source junction is not fully turned on, the ratio of gmb to gm only ranges from 0.2 to 0.4 depending on the 

bulk-to-source voltage and the specific process parameters [11]. For example, typical values for γP and 

2φF in a 1µm CMOS process are 0.6 and 0.7, respectively, for PMOS devices [44]. Therefore, at zero VBS 

biasing, the bulk transconductance gmb is about 0.36 times of the gate transconductance gm.  This becomes 

a limiting factor for the bulk-driven circuit designs. 

With only the bulk terminal being modulated, the input capacitance includes the capacitances 

with respect to the drain and the source terminals (CDB and CSB) and the N-well-to-P-substrate capacitance 

(CB-Sub) as labeled in both Fig. 3.1 and Fig. 3.2. These capacitances (CDB, CSB and CB-Sub) consist of the 

depletion capacitances of their respective junctions and sidewalls. They are expressed in Eq.(3.4), Eq.(3.5) 

and Eq.(3.6), 

     SB channel source js s j swC A A C P C  (3.4) 

 
 DB drain jd d j swC A C P C

 
(3.5) 

 
   B Sub well jwell well j well swC A C P C

 
(3.6) 

where Asource, Adrain and Awell are the areas, Ps, Pd and Pwell are the length of the perimeters (Ps, Pd are 

excluding the side facing the channel), Cjs, Cjd and Cjwel are the depletion capacitances per unit area of the 
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source-to-bulk, drain-to-bulk, and well-to-substrate junctions, respectively. Cj-sw and Cj-well-sw are the 

sidewall depletion capacitances per unit length of these three junctions. The value of CSB also involves the 

channel-to-bulk capacitance whose area is given by Achannel (i.e. Achannel=W×L). 

The depletion capacitances per unit area or per unit length (Cjs, Cjd, Cjwell, Cj-sw and Cj-well-sw) have a 

relationship with the square root of their respective junction voltages, as described in Eq.(3.7), 
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where the Cj0 is the depletion capacitance at 0-V bias voltage, whose value depends on the doping 

densities of the source, drain, well and substrate. 

The overall input capacitance of the bulk-driven MOSFET is around 3.8 times that of the gate-

driven MOSFET input capacitance (mostly CGS) in a 1µm CMOS process as calculated in [11]. This ratio 

only decreases by a factor of S  , where S is the CMOS technology scaling factor. Considering the 

inferior bulk transconductance to the gate transconductance, the transition frequency ft of the bulk-driven 

MOSFET is much less than that of the gate-driven one, where Eq.(3.8) and Eq.(3.9) reveal both of their 

expressions: 
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Fig. 3.3(a) shows one typical application of a bulk-driven PMOS as in a differential pair. The 

gates of the transistors MIA-B are biased to the negative power supply to ensure that both devices are 

operating in saturation region. The subscript A and B represents the two symmetric transistors having the 

same geometry and may be neglected in the rest of this dissertation for simplicity. Extensive experiments 

have been done in [11] proving that the input common mode voltage (VCM) can swing almost rail-to-rail 
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without strongly turning on the bulk-to-source junction diode. This is because while the threshold voltage 

VT is reduced with the decreasing VCM, the voltage at the common source terminals of the input pair also 

moves nearer to the input voltage, which compensates the elevated VSB. As a comparison, the gate-driven 

differential pair in Fig. 3.3(b) has the limited VCM range due to the high threshold voltage. The maximum 

VCM in Fig. 3.3(b) is defined by Eq. (3.10) as, 

 max, , ( )  
TAILCM DD DS sat M TV V V V

 
(3.10) 

where VDS,sat (MTAIL) is the onset of saturation voltage for the transistor MTAIL , where ~0.15 V is normally 

sufficient. In a standard 0.35µm n-well CMOS process, the threshold voltage for a PMOS is ~0.65V in 

typical corner, thus Vmax, CM of ~0.2V is even difficult to achieve with the 1-V operation. 

Another drawback of this bulk-driven input pair is that the ground-connected gate terminals of the 

input pair will pick up any noise generated by the negative power supply. Therefore, the power supply 

rejection has poor performance. 

 

Vin
+ Vin

- Vin
+

Vin
-

MIA MIB MIA MIB

MTAIL MTAIL

VDD VDD

VB_TAIL VB_TAIL

 
Fig. 3.3 (a) Conventional bulk-driven PMOS differential pair; (b) Simple gate-driven PMOS differential 

pair.  
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3.3 Bulk-Driven Amplifier Design Examples in Prior Arts 

In recent years, researchers have put their efforts in developing various solutions to the bulk-

driven-based low-voltage amplifiers. However, most of the proposed designs focused on either boosting 

the open loop gain [45]-[49], minimizing the current consumption [50][51], or further scaling down the 

power supply voltage [12][52][53]. Only a few works provided methods to increase the effective input 

transconductance (Gm_in_eff) of the bulk-driven amplifiers. Schematics involving the partial positive 

feedback loop into the input stage have been adopted by most of them. 

This work focuses on the increment of the Gm_in_eff of the bulk-driven amplifier for two reasons: 

1). It aims to develop a general purpose bulk-driven low-voltage low-power amplifier with its 

performance comparable to a gate-driven amplifier, such as open loop gain (AO), unity gain bandwidth 

product (UGBW), power consumption, etc. 

2). Developing an amplifier with the enhanced Gm_in_eff helps the development of the chosen 

potentiostat topology as discussed in the following chapters.  

3.3.1 Carillo’s Design 

The partial positive feedback is first proposed in [54] to improve the transconductance of low-

power gate-driven OTAs. It is then utilized in bulk-driven low-voltage OpAmps to boost the low input 

stage transconductance [55]-[57] .  

Fig. 3.4 illustrates the bulk-driven amplifier input stage with enhanced Gm_in_eff  by employing the 

partial positive feedback. Transistors MIA-B form the conventional bulk-driven differential pairs with their 

gates tied to ground, while transistors MB2A-B, 3A-B, 4A-B are placed such that there is a positive feedback 

loop working as an active load. The positive feedback loop gain (ξ) is equal to the transconductance ratio 

of devices MB2A-B to MB3A-B (i.e. gm,MB2/gm,MB3). In other words, if the ratio (W/L)MB3A-B/(W/L)MB2A-B 

(i.e. equals to ξ) is smaller than unity, the stability of the loop can be assured.  
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Analysis of this circuit topology shows that the transconductance of this bulk-driven input stage is,  

 
_ _ ,

1
 


m in eff mb MI

B
G g


 (3.11) 

where B is gain of current mirrors formed by devices MB1A-B and MB2A-B, and gmb,MI is the bulk 

transconductance of devices MIA-B.  

The circuit configuration proposed in this work successfully boosts the effective input 

transconductance by B/ (1-ξ) times compared to the conventional bulk-driven input stage, where B is due 

to the current gain. Unfortunately, this partial positive feedback loop increases the impedance at node A 

by the factor 1/ (1- ξ) as well, which introduces a non-dominant pole at the node A. This limits the 

frequency response of the overall amplifier and the maximum Gm_in_eff enhancement this circuit can 

achieve.  
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Fig. 3.4 Bulk-driven input stage with transconductance enhancement proposed in [55][56]and [57]. 
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3.3.2 Raikos’ Design #1 

In [58], G. Raikos et al proposed a modified bulk-driven input stage by employing the positive 

feedback loop directly into the input differential pair instead of being a part of the active load. Fig. 3.5 

exhibits the circuit configuration of this bulk-driven input stage. The positive loop gain is calculated as ξ 

which is equal to gm,MI/gm,MC1. Thus the effective input transconductance is analyzed in the following 

equation: 

 
_ _ ,

1

1
 


m in eff mb MIG g


 (3.12) 

This bulk-driven input stage achieves similar transconductance enhancement to the previous work. 

However, its frequency response also suffers from elevated output resistance at the node A. An advantage 

of importing the partial feedback into the input differential pairs is that the gates are no longer connected 

to the ground which could avoid any ground noise problem. Consequently, this amplifier has better 

negative power supply rejection ratio (PSRR-).  
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Fig. 3.5 Bulk-driven input stage with transconductance enhancement proposed in [58].  
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3.3.3 Raikos’ Design #2 

In order to mitigate the effect of process variations on the transconductance increment circuitry in 

Fig. 3.5, G. Raikos et al presented an improved version of the bulk-driven input stage described in [59][60] 

as shown in Fig. 3.6. The source terminals of the input differential pairs in Fig. 3.6 are explicit biased by 

the source terminal of the transistor MC.  

The positive loop gain is calculated as ξ is equal to gMI1/gMI2. Thus the effective input 

transconductance is analyzed in the following equation: 

 
_ _ , 1

2

1
 


m in eff mb MIG g


 (3.13) 

Since more bulk-driven transistors are involved in the input stage, this topology produces further 

transconductance enhancement while consuming more power. It has similar advantages and 

disadvantages as the circuit described in Fig. 3.5. 
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Fig. 3.6 Bulk-driven input stage with transconductance enhancement proposed in [59][60]. 
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3.3.4 Summary of Prior Arts 

Table 3.2 summarizes the performance of the bulk-driven amplifiers with input transconductance 

enhancement presented in prior arts. In summary, the proposed designs in prior arts all have sub 1-V 

operations. The boosted transconductance in them is mainly determined by the positive feedback loop 

gain. Once the gain is designed to be close to unity, the effective transconductance can be maximized. 

However, due to device mismatches and process variations, a loop gain that is too close to unity could 

cause serious stability issues inside the input stage because of the positive feedback. Therefore, the 

effective enhanced transconductance in these works is mostly less than eight times of that of the 

conventional bulk-driven amplifier.  

In addition, the impedance at the output node of the positive feedback loop is boosted by the loop 

gain as well. The non-dominant pole associated with it degrades the frequency response of the amplifier, 

which is another limitation to the achievable transconductance. 
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Table 3.2 Performance Summary of the Amplifiers in Prior Arts 

References [55] [56] [58] [59][60] 

Process 

0.35 µm 

standard nwell 

CMOS 

0.35 µm 

standard nwell 

CMOS 

0.18 µm 

standard nwell 

CMOS 

0.35 µm 

standard nwell 

CMOS 

Simulation/Measurement Simulation Measurement Simulation Simulation 

Topology 
Single ended 

OTA 

Single ended 

OpAmp 

Fully 

differential 

OpAmp 

Fully 

differential 

OpAmp 

Load 15 pF 1 MΩ // 17 pF 20 pF 16 KΩ//20 pF 

VDD 1-V 1-V 0.8-V 1-V 

Theoretically Gm_in_eff 

enhancement 

4 (w/o current 

gain) 

3 (w/o current 

gain) 
6.58 8 

Input stage current 

consumption (µA) 

90 (w/o current 

gain) 

53 (w/o 

current gain) 
40 40 

Achieved Gm_in_eff(µA/V) N/A 
763 (w/ 

current gain) 
240 80 

Current consumption ratio 

of input stage w/ and w/o 

Gm_in_eff enhancement 

1.8 2.12 2 2.5 

Amplifier power 

consumption (µW) 
200 358 100 130 

Input current (nA) N/A 2.15 N/A < 10 

SR+/SR- (V/ µs) 8.9/8.3 2.74/5.02 N/A 0.7 

Open loop gain (dB) 41.7 76.2 56 55 

Unity gain bandwidth (MHz) 10 8.1 3.2 1.6 

Phase margin 58˚ 60˚ 45˚ 36˚ 

Input offset (mV) N/A 
-2.88±1.26 

(Vos±σ) 
36 (3σ) 10 (σ) 

Input referred noise 

(nV/ Hz ) 
461 @ 1KHz 903 @ 1KHz 408 @ 10 KHz 

160 @ 100 

KHz 

CMRR (dB) N/A 70.5 @DC 100 @ 5KHz 68 @100 KHz 

PSRR± (dB) N/A 45 /40.5 @DC 88 @ 10KHz 70 @ 10KHz 
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CHAPTER 4  

DESIGN OF THE BULK-DRIVEN OPERATIONAL 

AMPLIFIER (OPAMP) WITH IMPROVED 

TRANSCONDUCTANCE 

In this chapter, a biasing circuitry for the bulk-driven input differential pair is first proposed in 

Section 4.1. This biasing circuitry can also act as an auxiliary amplifier which doubles the original bulk-

driven input transconductance gmb. In Section 4.2, an improved version of this auxiliary amplifier is 

proposed to boost the effective input transconductance (Gm_in_eff) even more. In the end, a general purpose 

low-voltage bulk-driven OpAmp is presented with the innovative input stages. The performance of the 

input stage alone and the OpAmp are also discussed in detail in this chapter. 

4.1 Low-Voltage Bulk-Driven Input Stage and Its Cascode Bias Circuit 

Fig. 4.1 illustrates the schematic of the first proposed bulk-driven input stage. In this circuit, 

transistors MIA,B and MEA,B consist of the input stage core circuit, of which, transistors MIA,B operate 

similarly to the conventional  bulk-driven differential pair shown in Fig. 3.3 (a) except that their gates are 

cross-biased by MEB,A, respectively.  

4.1.1 Biasing Circuitry 

The biasing circuitry formed by transistors MEA,B, MB1,2,3,4 and MC1,2 is a modified version of the  
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Fig. 4.1 Proposed input stage with modified low-voltage cascode biasing. 

 

topology first proposed in [61] which is based in EKV models. In EKV MOS transistor models, the 

overall current Itot flowing through one single transistor is the difference of the forward (IForward) and the 

reverse (IReverse) channel currents, where IForward is controlled by the gate-to-source voltage and IReverse is 

controlled by the gate-to-drain voltage [62]. Both of the equations can be expressed by Eq.(4.1) as, 

    0 ( ) /22

( ) log 1
 

  G TH S D TV V V U

Forward Reverse S

W
I I e

L



 
 (4.1) 

where UT is thermal voltage; Is is given by Is = 2µCoxUT
2
/ĸ, and ĸ is the reciprocal of the sub-threshold 

slope factor. The onset saturation voltage VDS,sat of a MOS transistor is expressed using IForward and IReverse 

in [61] as expressed by Eq. (4.2), 
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If IForward >> IReverse, an onset saturation voltage VDS,sat can be generated no matter how much current is 

flowing through the device. 

The ratio of IForward to IReverse in transistor MC2 is analyzed in Appendix A.1 and expressed by, 
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,
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Forward MC

verse MC

I m
n

I  
(4.3) 

If the values of m and n are properly chosen (e.g. m = 4, n = 4), the forward current will be much 

larger than the reverse current, where a VDS,sat can be expected across the drain-to-source terminals of 

transistor MC2 independent of the biasing current flowing through it. As a result, the gate voltages of 

MEA,B, which are one diode drop below VDS,sat, can be used to bias the gates of the input pair MIA,B.  For 

accurate biasing, transistors inside the biasing circuitry, such as MIA, B and MEA, B, have identical channel 

lengths, and their overdrive voltages VOV (i.e. VOV = VGS-VT) are designed to be the same. This is also the 

case for the transistors MC2 and MTAIL, where the gate voltage VB_Tail of MTAIL is biased at the same level 

as that of MC2.  

According to gm = ID/(VGS-VT) and the previous Eq. (3.3), the gate and bulk transconductance ratio 

of transistors MI to ME is equal to IDS,MI/IDS,ME (i.e. IDS,MI/IDS,ME = gmb,MI /gmb,ME = gm,MI /gm,ME). 

4.1.2 Enhanced Effective Input Transconductance Gm_in_eff 

The cross-biased devices MEA and MEB also form one auxiliary differential pair whose outputs 

can modulate the gates of the transistors MIA,B. In this way, both the bulk and the gate terminals of MIA,B 

are modulated directly or indirectly by the input signals. Small signal equivalent circuit of this input stage 

is analyzed without considering the second-order effect of MOS devices such as their output resistance. 

The effective input transconductance (Gm_in_eff) is given by, 
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(4.4) 

where gmb,MI, gmb,ME are the bulk transconductance of transistors MI and ME, gm,MI is the gate 

transconductance of transistors MI. There is also a non-dominant pole associated with the node A in Fig. 

4.1. CA is the parasitic capacitance at this node, where the gate-to-source capacitances (CGS) of both 

transistors ME and MI contribute to most of this parasitic capacitance. According to Eq.(3.3), since the 

transistors ME and MI possess the same source-to-bulk voltage, the ratio of gmb,ME to gm,ME is equal to that 

of gmb,MI to gm,MI. Thus at DC, the effective transconductance can be further simplified in Eq.(4.5), 

 
_ _ , ,2 m in eff DC mb MIG g

 
(4.5) 

It can be concluded that the DC value of the Gm_in_eff is doubled irrespective of the gm or gmb of the 

auxiliary differential pair.  

In frequency domain, however, one zero-and-pole doublet (zA and pA, both located at the left half 

plane) is introduced because there are two signal paths between the input signal node and the output of the 

circuit. The doublet can be expressed as, 
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(4.6) 

Fortunately, the zero and pole can cancel each other to a degree in the Bode plot since they are 

fairly close. However, a low frequency doublet does degrade the transient response of the overall circuit. 

Thus, they are preferred to be pushed away from the bandwidth of interest [63], which also means that the 

transconductance of the transistors ME cannot be designed to be too small.  

4.1.3 Common-Mode Voltage Gain and ICMR  

The input common mode gain ACM is also reduced due to this biasing topology. Since it cannot be 

intuitively noticed from the schematic, the expression of ACM is given in Eq. (4.7) with proper 
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approximations as, 

 
, ,

, ,1 1

mb MI out mb MI out

CM

mb MI TAIL m MI TAIL

g R g R
A

g R g R

 
 

     
(4.7) 

where ROUT is the output resistance of the proposed input stage and RTAIL is the output resistance of the tail 

transistor MTAIL. Obviously, the first term is equal to the input common mode gain of a conventional bulk-

driven input stage and the second term results from another common mode signal path from the auxiliary 

differential pair. According to Eq. (3.3) and the aforementioned ratio of gmb to gm (0.2~0.4), ACM can be 

decreased by 20% to 40% compared with that of conventional topology.  

One concern regarding the proposed input stage is the relatively limited input common mode 

range (ICMR) compared to the conventional one. Since the source-to-bulk junction of MOSFET can be 

reverse biased, the maximum VCM can be moved toward VDD by carefully sizing the transistors such that 

the elevated threshold voltage of MI will not push MTAIL and MB3,4 out of saturation. The lower limit of 

VCM, nevertheless, is constrained by the turn-on voltage of the forward biased source-to-bulk junction, and 

it can be given by, 

 
2,min , ,  CM DD DS sat MC forwardV V V V

 
(4.8) 

where Vforward is the diode turn-on voltage of a PMOS device. According to measurements, the voltage 

drop smaller than 0.55 V for Vforward is a good practice for keeping the input bias current of the circuit 

within tens of nano-amperes. 

4.2 Modified Bulk-Driven Input Stage with Improved Input 

Transconductance  

4.2.1 Modified Bulk-Driven Input Stage Structure 
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Fig. 4.2 Improved structure based on the circuit in Fig. 4.1. 

 

An improved version of the input stage topology is proposed, as described in Fig. 4.2 to achieve 

even more effective input transconductance Gm_in_eff with a similar biasing scheme. The basic idea is to 

use more auxiliary differential pairs to improve the voltage gain from the differential inputs to the gates of 

transistors MIA-B. As a result, the transistors ME1A, ME2B and ME1B, ME2A form another cross biasing 

scheme, where both the gate and the bulk terminals of ME2A-B are modulated. Similar to the previous 

structure, all input pairs possess the same channel lengths while their widths are scaled according to their 

drain-to-source current (IDS) to keep the overdrive voltage VOV of each transistor the same. 

The core input differential pair MIA-B are designed with drain currents being i times of those of 

the transistors ME2A-B (i.e. i = IDS,MI/IDS,ME2 = gmb,MI /gmb,ME2 = gm,MI /gm,ME2). In order to save additional 

power and transistor counts, the drain current and the transconductance of ME1A-B can as well be scaled j 

times smaller than that of ME2A-B (i.e. j = IDS,ME2/IDS,ME1 = gmb,ME2 /gmb,ME1 = gm,ME2 /gm,ME1), since it is 

indicated in Eq. (4.5) that the effective transconductance is simply double the value of gmb,ME2 regardless 

of the value of j. The diode-connected PMOS transistors ME3A-B are employed to increase the impedance 

at the node A in Fig. 4.2 by scaling their drain currents k times smaller than that of the transistors ME2A-B. 

This also means the gate or the bulk transconductance ratio (gm,ME2A-B/gm,ME3A-B or  gmb,ME2A-B/gmb,ME3A-B) is 
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equal to the value k. In addition, the voltage gain can be further improved by connecting the bulk 

terminals of ME3A-B to the input signals.  

The ratio of IForward to IReverse of the transistor MC2 in this improved version of the bulk-driven 

input stage is calculated in Appendix A.1 using the parameters m, n, j, k. The final expression is in 

Eq.(4.9), 
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4.2.2 Enhanced Effective Input Transconductance Gm_in_eff 

Neglecting any output resistance of the MOS devices, the effective input transconductance 

Gm_in_eff is deducted in Appendix A.2 as, 
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where gm,ME1 and gm,ME3 are the gate transconductance of transistors ME1 and ME3; gmb,MI is the bulk 

transconductance of MI, k is the parameter which is equal to gm,ME2/gm,ME3 or  gmb,ME2/gmb,ME3, CA and CB 

are the parasitic capacitances associated with the nodes A and B in Fig. 4.2, and are expressed in Eq.(4.11) 

and Eq.(4.12), 

 
, 3 , , 2A GS ME GS MI DS MEC C C C    (4.11) 

 
, 2 , 1 , 1B GS ME GS ME DS MEC C C C    (4.12) 

At DC, the Gm_in_eff is simply,  

  _ _ ,2 2 m in eff mb MIG k g
 

(4.13) 

Clearly, similar to the first proposed input stage, the transconductance does not depend on the gm 
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or gmb values of the auxiliary differential pairs ME1, ME2, ME3 without considering any frequency 

dependent components or second-order effects. Hence minimizing them by downsizing the aspect ratios 

and the drain-to-source currents (IDS) of these devices will improve the input stage performance from the 

power consumption point of view. As a determinant factor of this transconductance enhancement 

methodology, the value k can also be designed relatively large by further scaling down the gm of the 

transistors ME3. 

Nevertheless, the zero-pole doublets associated with the nodes A and B (zA,B and pA,B) can be 

found in Eq. (4.14) and Eq. (4.15) as,  
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For simplifying the analysis, the gm of the transistors ME1 and ME3 is normalized to that of the 

core input pair MI since their drain currents (ITAIL) are usually determined according to the specifications 

of the OpAmp. In the meantime, the capacitances of CA and CB are normalized to CGS,MI (gate-to-source 

capacitances of the transistors MI). The normalizations are both performed in Appendix A.3. To rather 

not complicate the circuit design procedure, the drain-to-source currents of the transistors ME1 and ME3 

are designed to be the same, indicated by the parameter j to be equal to k.  

In Table 4.1 and Table 4.2, the normalized frequencies of the zeros zA,B and the poles pA,B are 

calculated based on various values of parameters i and k. Conclusions can be drawn that only when i is 

equal to 1, the frequencies of both zeros stay in real value, where zB decreases as k increases, and zA is 

unchanged.  However, as the parameters i and k increase, the location of the pole pA moves close to lower 

frequencies while the pole pB only decreases with increment of parameter k. Several tradeoffs can be  
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Table 4.1 Normalized Frequencies of the Zeros zA,B  

 

1 2 3 4 5 

1 1.00,1.00 0.75 ± 0.32i 0.63 ± 0.33i 0.55 ± 0.31i 0.50 ± 0.29i 

2 1.00,0.67 0.57 ± 0.28i 0.45 ± 0.28i 0.39 ± 0.27i 0.35 ± 0.25i 

3 1.00,0.50 0.48 ± 0.23i 0.37 ± 0.24i 0.32 ± 0.23i 0.28 ± 0.21i 

4 1.00,0.40 0.43 ± 0.19i 0.33 ± 0.21i 0.28 ± 0.20i 0.24 ± 0.19i 

5 1.00,0.33 0.40 ± 0.14i 0.30 ± 0.18i 0.25 ± 0.18i 0.22 ± 0.17i 

 

Table 4.2 Normalized Frequencies of the Poles pA,B  

 

1 2 3 4 5 

1 0.50, 0.50 0.33, 0.50 0.25, 0.50 0.20, 0.50 0.17, 0.50 

2 0.33, 0.33 0.20, 0.33 0.14, 0.33 0.11, 0.33 0.09, 0.33 

3 0.25, 0.25 0.14, 0.25 0.10, 0.25 0.08, 0.25 0.06, 0.25 

4 0.20,0.20 0.11, 0.20 0.08, 0.20 0.06, 0.20 0.05, 0.20 

5 0.17, 0.17 0.09, 0.17 0.06, 0.17 0.05, 0.17 0.04, 0.17 

 

noted for optimizations of the values of i and k given that ITAIL is kept constant: 

1) The increment of k enhances the input transconductance Gm_in_eff while a smaller value of i 

leads to more power consumption.  

2) To achieve an optimal transient response when being employed in the overall OpAmp design, 

the non-dominant poles pA,B of the proposed input stage are favored to be pushed further away 

to high frequencies. The frequencies of the zeros zA,B have similar requirements, and can be 

i 
Normalized zA,B 

k 

i 
Normalized pA,B 

k 
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used to cancel the non-dominant poles.  

Apart from these tradeoffs, larger tail current ITAIL can always be dumped into transistors MI such 

that these non-dominant poles and zeros are pushed outside the bandwidth of interest, while at the cost of 

the increased power consumption and Gm_in_eff. In addition, these unwanted non-dominant poles and zeros 

can be compensated by use of the short channel devices to minimize parasitic capacitances CA and CB, 

although the minimum channel length of these transistors is limited by the matching considerations.  

4.2.3 Input Referred Noise  

The input referred noise for the bulk-driven MOSFET is usually worse than the gate-driven ones 

due to the smaller input transconductance but the same noise sources. Neglecting the thermal noise 

contribution of the series gate and bulk resistances, the noise contributions of the transistors MI, ME1,2,3 

and MB3,4,5 at the input stage are calculated in Appendix A.4. Then the input referred thermal noise and 

the flicker noise expressions for the bulk-driven input stage in Fig. 4.2 are derived as, 
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where kB is the Boltzmann constant, T is the temperature, ɤ is the gamma noise factor, Kf is the process 

dependent flicker noise constant. It is obvious that the auxiliary differential pairs have great contributions 

to the total input referred thermal and flicker noise. However, the enhanced Gm_in_eff attenuates them by 
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(2·k+2) times. One effective way to minimize the thermal noise is to increase the current consumption of 

the auxiliary amplifiers, while enlarging the transistors sizes will achieve better flicker noise performance.  

4.2.4 Mismatch and Offset Voltage 

In the square law equation shown in Eq. (3.1) without considering channel length modulation, the 

threshold voltage at zero substrate voltage VTHP0, the current factor β = CoxµW/L and the constant γP are 

the sources of substantial random mismatches in the MOSFET. The commonly accepted standard 

deviations of these three parameters of the long channel transistor are expressed in [64] which are also 

listed in Eqs. (4.18), (4.19) and (4.20) as shown below, 
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where AVTHP0, Aγ and Aβ are the area proportionality constant for each parameter, SVTHP0, Sγ and Sβ are the 

variations of each parameter with the spacing D between two devices. The second terms in these 

equations are relatively small compared to the first terms [64]. 

Sources of random mismatches inside the proposed bulk-driven input stage are introduced by the 

four input transistor pairs and the biasing transistors MTAIL and MB3,4,5. The mismatches from MTAIL and 

MB3,4,5 result in the mismatches between the biasing current fed to the four input differential pairs. Their 

expressions are similar to other conventional OpAmps and therefore are not calculated in this work. 

As for the mismatches between the bulk-driven input pairs, it is very difficult to completely 

analyze their offset voltage (Voffset). However, all the bulk-driven input transistors can be considered as 

one basic bulk-driven input pair as shown in Fig. 3.3 (a) and the overall transconductance can be assumed 
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to be (2k+2)·gmb,MI . The offset voltages due to the mismatches of VTHP0, β and γP respectively are shown 

in Eqs. (4.21), (4.22) and (4.23), 
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Combining Eqs. (4.21), (4.22) and (4.23) and substituting the variables from Eqs.(4.18), (4.19) 

and (4.20), the standard deviation of the offset voltage for the proposed 1-V bulk-driven input stage can 

be expressed in Eq.(4.24) as, 
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(4.24) 

 

Obviously, since constant biasing current is either sourcing or sinking the input differential pairs, 

the gate transconductance gm is kept constant irrespective of the changes of the input voltage. Thus, the 

standard deviation of the offset voltage for the bulk-driven input pair increases as the bulk-to-source 

voltage (i.e. VBS, also the input common mode voltage since the source terminal voltages of the input pairs 

are fixed.) increases. With increased parameter k and width and length of the input pairs, the standard 
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deviation also gets smaller. 

Overall, compared with the input stage proposed in the previous section, the circuit in Fig. 4.2 

still possesses the similar advantages and disadvantages, except that it manages to improve the effective 

transconductance by (2·k +2) times at the expense of a few more transistors at the input stage. 

4.3 1-V Operational Amplifier Prototype Implementation 

4.3.1 1-V OpAmp Schematic Design 

A 1-V bulk-driven general purpose operational amplifier is implemented on a 0.35 µm standard 

n-well CMOS process. It has employed the proposed transconductance enhanced input stage in Fig. 4.2, a 

folded cascode second stage and a class-AB output stage which uses level shift low-voltage design 

technique to accommodate 1-V operation. The schematic of the OpAmp is shown in Fig. 4.3. The bias 

current for the overall circuit is provided by a single external current source set to 2.5 µA. The node 

VB_TAIL is biased so that 10 µA tail current is supplied to the core differential pair MIA-B.  

In order to have maximum input transconductance, while still keeping the non-dominant pole-

zero doublets at higher frequencies and moderate power consumption for the input stage, relatively large 

aspect ratios are chosen for all input differential pairs. Another object of this design is to keep the 

consequent VSG small which leaves more room for the transistors MB3,4,5 to be biased into saturations even 

at high input voltages. The gate transconductance of ME1 and ME3 is designed to be one fourth of the gm 

of the core input differential pair MI and the transconductance ratios j, k are then selected to be equal to 4. 

In addition, the currents flowing through devices MI are set to be the same as the drain currents of devices 

ME3 (i.e. i = 1). Theoretically, the effective transconductance (Gm_in_eff) can be expected to be ten times 

that of the conventional bulk-driven amplifier (i.e. gmb). To further improve frequency response, relatively 

short channel length is selected for the input stage transistors (MI, ME1, ME2, and ME3). A saturation 

voltage around 200 mV is designed to be across MC2. The overall current consumption of this input stage 
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Fig. 4.3 Schematic of the 1-V operational amplifier. 
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is about 25µA, which is 2.5 times that of the standalone bulk-driven input stage without any enhancement. 

The proposed bulk-driven input stage is connected to a folded cascode stage formed by transistors 

MN1A-B, MN2A-B and MP1A-B. The impedance at node 1 is formed by the output resistance of cascode 

NMOSs and one single PMOS in parallel. To compensate this impedance imbalance, the channel lengths 

of the PMOSs MP1A-B are designed to be much longer than those of the NMOSs MN1A-B and MN2A-B. 

Transistors MO2 and MO3 with large W/L ratios form one push-pull output stage to supply a sufficient 

amount of current to the load. To accommodate the limited power supply, one NMOS level shifter MO1 is 

placed between the output of the second stage and the input of the PMOS MO2. However, since the bulk 

terminal of MO1 has to be tied to the negative power supply, the voltage drop across the level shifter is 

increased due to the elevated threshold voltage, which will potentially bring current source transistor MB7 

out of saturation and lower the overall output stage gain.  Therefore, MO1 is sized with large W/L ratio in 

order to keep its gate-to-source voltage small.  The detailed aspect ratios of the main transistors in Fig. 4.3 

are given in Table 4.3. 

 

Table 4.3 Transistors Aspect Ratio of the OpAmp in Fig. 4.3 

Transistor W/L (µm/µm) Transistor W/L (µm/µm) Transistor 

W/L 

(µm/µm) 

MI 54.4/0.5 MB2 2/1 MN2 9.6/0.8 

ME1 13.6/0.5 MB3,5 2/1 MP1A,B 34.4/2.4 

ME2 54.4/0.5 MB4 8/1 MP1C 17.2/2.4 

ME3 13.6/0.5 MC1 244.8/2.4 MO1 64/0.5 

MTAIL 108.8/2.4 MC2 163.2/2.4 MO2 252/0.8 

MB1 4/1 MN1 6.8/1.2 MO3 50.4/0.8 



 

49 

4.3.2 Open Loop Gain AO and Frequency Response of the 1-V OpAmp 

The open loop gain AO for this 1-V bulk-driven OpAmp is calculated as, 

       , , 1 , 2 , 2 , 1 , 3 , 2 , 3 , 22 2    O mb MI o MN m MN o MN o MP m MO m MO o MO o MOA k g r g r r g g r r
 

(4.25) 

which includes the gain from the input stage, the cascode stage and the output stage, respectively. Here, ro 

is the output resistance of the corresponding transistor. 

A capacitor CC is placed inside the output stage to establish the dominant pole which is associated 

with the node 1 in Fig. 4.3. Its frequency is pushed to a lower value due to “Miller effect” of the capacitor 

CC and is derived as, 

where the first term represents the impedance at node 1 in Fig. 4.3 and the second term is the total 

capacitance at the same node. Cgs,MO3 and Cgs,MO1 can be further neglected since they are much smaller 

than the “Miller capacitor”.  Resistor RZ is used as “nulling resistor” and is sized to be larger than 1/ 

(gm,MO2 + gm,MO3) to remove the RHP zero and provide lead compensation [44]. The value of compensation 

capacitor CC is set to 4.7 pF and the resistor RZ is sized to be 3.3 KOhm. This zero is shown in Eq.(4.27) 

as, 
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The secondary pole is designed to be at the output node of this OpAmp.  “Pole splitting” effect 

pushes its frequency further away to higher frequencies. Given that the output capacitor CL and feedback 

capacitor CC are much larger than the gate-to-source junction capacitances of MO2 and MO3, this non-

dominant pole can be expressed by, 
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Another non-dominant pole results from the node at the source terminal of the transistor MO1 since it is 

designed with large W/L.  

When integrating the proposed input stage into the overall operational amplifier, the design 

tradeoff has to be taken into consideration on the non-dominant poles and zeros. Their frequencies should 

be designed to be as high as possible so that the total phase margin (PM) of more than 60˚ can be 

achieved. 

4.3.3 Mismatch and Offset Voltage of the 1-V OpAmp 

The offset voltage of this OpAmp results from both random offset and systematic offset. The 

random offset from the proposed bulk-driven input stage is explained in the previous section, which 

varies with the input voltage. Moreover, since the layout of the bulk-driven input stage tends to cover a 

large area when they are in different n-wells, this as well creates substantial random offset. In order to 

mitigate the random offset special attentions are paid to the layout of the OpAmp. For example, common 

centric layout techniques are used for the bulk-driven input stages. 

The folded cascode stage and the level shift class-AB output stage, on the other hand, are major 

sources of systematic offset when driving various loads. They originate from any mismatch between the 

output stage PMOSs and NMOSs. The risk of the transistors MB3,4,5 and MB7 being pushed into triode 

region, especially at high input/output voltages or driving heavy loads, also contributes to the OpAmp 

offset voltage variations.  

4.3.4 1-V OpAmp Layout and Chip Micrograph 

The layout of the 1-V bulk-driven OpAmp is shown in Fig. 4.4. The micrograph of the fabricated 

chip is shown in Fig. 4.5. The overall area for the circuit excluding the ESD pads is 525 µm×300 µm. 
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Fig. 4.4 Layout of the 1-V OpAmp. 
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Fig. 4.5 Chip micrograph of the 1-V OpAmp. 
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CHAPTER 5  

DESIGN OF THE 1-V POTENTIOSTAT FOR 

THREE-ELECTRODE ELECTROCHEMICAL 

SENSORS 

In this chapter, the 1-V potentiostat design is introduced in Section 5.1, where the 1-V bulk-

driven transconductance enhanced input stage is employed. In Section 5.2, various performances of this 

1-V potentiostat are analyzed. 

5.1 1-V Potentiostat Design 

The potentiostat proposed in this work is designed to detect biomedical substances inside the 

human blood, such as glucose, lactate and glutamate, etc. The circuits are implemented on a 0.35 µm n-

well digital CMOS process. As discussed in Chapter 2, the biomedical sensors normally require the 

absolute potential Ei between WE and RE to be within 0.5 V ~ 0.7 V. This potential window makes a 1-V 

potentiostat achievable with sufficient dynamic range provided by the proposed 1-V Gm_in_eff enhanced 

bulk-driven amplifier. 

The proposed 1-V potentiostat design adopts the general potentiostat topology in [14]. Fig. 5.1 

and Fig. 5.2 describe two block diagrams of these 1-V potentiostat circuits suitable for positive (Fig. 5.1) 

and negative (Fig. 5.2) potential Ei (i.e. VWR>0 or VWR<0) biosensors. Both of these circuits feature the 

same topology, except in Fig. 5.1 the N-type transistor MO1 is sinking the sensor current while the 
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transistor MO2 mirrors it. Vice versa, the P-type transistor MO1 is sourcing the sensor current while the 

transistor MO2 copies it as shown in Fig. 5.2. A signal processing unit (current-to-frequency converter) 

presented in [4] can be deployed here to process this current signal (Fig. 2.8). The I-F converter takes in 

WE
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RCE CCE
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Fig. 5.1 Schematic block diagram of the proposed 1-V potentiostat with positive Ei. 
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Fig. 5.2 Schematic block diagram of the proposed 1-V potentiostat with negative Ei. 
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any sensor current signal and converts it into an amplitude-shift-keying (ASK) signal. A programmable 

frequency divider is incorporated into the circuit to set the ASK envelope frequency within the audio 

frequency range. Then the output frequency can be transmitted outside. 

The sensor model is illustrated in schematics without negligible solution resistances RS1, RS2 and 

Faradic resistance RRE. This topology suffers from the aforementioned feedback problem. But apart from 

this, this circuit can consume much less power since there is one amplifier inside and the output current 

signal is also more efficient to process than normal voltage signal used in other potentiostat topologies. 

The most important aspect of this topology is that it can operate under low power supply voltage (i.e. 1-V) 

given that the OTA itself is low-voltage compatible. Since the resistance of the counter electrode (RCE) is 

much smaller than that of the working electrode (RWE), the voltage drop across RE-CE can be neglected. 

If merely 0.5 V~ 0.7 V is necessary for biasing WE-RE or RE-WE, an adequate voltage headroom can be 

allocated to transistor MO1 for its saturation operation. The required reference voltage Vref at the inputs of 

the OTA is equal to VDD-VWR in Fig. 5.1 while Vref is equal to VWR in Fig. 5.2.  

A conventional 1-V bulk-driven OTA is not an ideal candidate in this topology due to its low 

open loop gain AO. Use of the gain boosting techniques is problematic as will be discussed later. The 

proposed 1-V bulk-driven amplifier greatly improves AO at the input stage. Thus the design of the OTA 

involved in this potentiostat is derived from the proposed 1-V OpAmp excluding the output push-pull 

stage.  

 5.2 1-V Potentiostat Prototype Implementation 

Fig. 5.3 shows the detailed schematic of Fig. 5.1 with the 1-V OTA. Essentially, this potentiostat 

is capable of working with any biosensors that require a potential Ei from 0 V up to ~|0.8 V|(i.e. by tuning 

the VDS,sat voltage in Fig. 5.3) as long as the source-to-bulk voltage VSB of the input bulk-driven pairs is 

designed not to exceed 500 mV, so there is less than nano-ampere input current.  
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Fig. 5.3 Schematic of the proposed 1- V potentiostat with detailed OTA circuits. 
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It is worth pointing out that the temperature behavior of this input current is not studied as the 

environment temperature tends to be stable inside the human body. A capacitor (Cstab) is placed at the 

sensor current output to ensure the stability between the potentiostat and the SPU interface. 

The frequency response of the 1-V potentiostat is analyzed by considering the 1-V OTA as a 

single circuit block with open loop gain being AO and the aforementioned zero-pole doublets existing 

inside. The loop gain can be calculated as, 
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where  gm,MO1 and ro,MO1 are the transconductance and output impedance of the transistor MO1, the poles 

and zeros are listed in the following: 
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(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

The Bode plot of the loop gain frequency response is shown in Fig. 5.4. The pole p1 is the 

dominant pole whose frequency depends on the double layer capacitance of the working electrode and the 

sensor current while the pole p2 is located at the output node of the transconductance enhanced bulk-

driven OTA. Normally p2 is expected to be a low-frequency pole as well. Doublets p3 and z1 are created 

by the sensor itself. They can almost cancel each other due to the much lower value of RCE than ro,MO1.  
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Fig. 5.4 Bode plot of the 1-V potentiostat loop gain. 

 

The poles p4, p5 and the zeros z2, z3 are doublets from the 1-V bulk-driven OTA as discussed in the 

previous chapter and they are at fairly high frequencies and are thus not capable of significantly affecting 

the overall frequency response. Obviously, to guarantee that only one dominant pole can exist inside the 

loop, a bulk-driven OTA with second stage gain boosting is not plausible in this structure as the open loop 

gain of the OTA is limited to prevent pole p2 interfering the frequency response. However, by employing 

the proposed bulk-driven amplifier, this problem can be solved since the enhanced input transconductance 

compensates the low output impedance of the OTA. As a result, sufficient gain can be attained. 

The current consumption of this 1-V bulk-driven amplifier is, however, reduced to approximately 

half. This is due to the relaxed operating speed requirement of the biomedical applications (i.e. depends 

on the pole p1 frequency). The biasing circuitry is implemented under 1-V power supply to provide bias 

current for this 1-V potentiostat. A common low-voltage bias circuitry [44] is employed. Fig. 5.5 

illustrates the schematic of this biasing circuit. A compensation capacitor is placed at the high impedance 

node to stabilize the feedback loop inside. 
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Fig. 5.5 Schematic of the biasing circuitry. 

 

The impedance at the OTA output node in Fig. 5.1 and Fig. 5.2 and the node capacitance need to 

be kept at a moderate value to maintain a non-dominant pole. Consequently, moderate channel length is 

used for the folded cascode current mirrors and their loads.  The aspect ratios of transistors MO1 and MO2 

are designed to be small in order to match two currents well. The detailed aspect ratios of transistors 

inside this potentiostat are given in Table 5.1.  

 

Table 5.1 Transistors Aspect Ratio of the 1-V Potentiostat in Fig. 5.3 

Transistor W/L (µm/µm) Transistor W/L (µm/µm) Transistor W/L (µm/µm) 

MI 57.6/0.5 MTAIL 19.2/1.2 MN1 2/0.8 

ME1 14.4/0.5 MB3,5 2/1.5 MN2 2.2/0.5 

ME2 57.6/0.5 MB4 8/1.5 MP1 6/0.7 

ME3 14.4/0.5 MC2 28.8/1.2 MO1,2 1.2/0.6 
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The signal to noise ratio (SNR) is calculated in Eq.(5.10) as,  
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2

2 2 2
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n nO WE

I R
SNR

v i R



 (5.10) 

where vn is the equivalent input referred noise voltage of the OTA and inO1 is the drain-to-source noise 

current of the transistor MO1. It can be concluded that the SNR is mainly decided by the noise 

performance of the 1-V OTA, whose input referred noise is shaped by the improved Gm_in_eff.  

The layout and micrograph of this 1-V potentiostat are show in Fig. 5.6 and Fig. 5.7, respectively. 

The layout techniques used for the potentiostat are similar to the OpAmp discussed earlier. Two 

capacitors cover a substantial amount of the chip area and are used to stabilize the interface between the 

potentiostat and the SPU (not shown). The overall chip area excluding the ESD pads is 0.13mm
2
, and the 

power consumption is about 22 µW. 

 

661 µm
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Fig. 5.6 Layout of the 1-V potentiostat. 
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Fig. 5.7 Chip micrograph of the 1-V potentiostat. 
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CHAPTER 6  

PROTOTYPE MEASUREMENTS 

In this chapter, the test equipments including both the hardware and the software are introduced 

in Section 6.1, so as the test setup for the 1-V OpAmp. The characterizations of a single bulk-driven 

MOSFET are then presented in Section 6.1, which are followed by the performance discussion of the 

proposed 1-V general purpose OpAmp derived from the characterization results and comparisons with the 

simulation results. In Section 6.2, the measurement results of the proposed 1-V potentiostat are discussed. 

Then the measured data of the 1-V potentiostat with both the sensor models and the micro-fabricated 

biosensors are revealed. The performance of the 1-V OpAmp and the 1-V potentiostat are summarized 

and compared with the other state of arts at the end of each section. 

6.1 Characterizations of the 1-V OpAmp and Its Sub-Circuits 

6.1.1 1-V OpAmp Test Environment 

Typical OpAmp characterizations include its power consumption, open loop gain (Ao), frequency 

response, transient response, input common mode range (ICMR), noise, power supply rejection ratio 

(PSRR) and common mode rejection ratio (CMRR) measurements. In this work, a single bulk-driven 

MOSFET and the standalone 1-V bulk-driven transconductance enhanced input stage are separately laid 

out and characterized to provide useful design guidelines for the OpAmp implementation and obtain the 

input transconductance of the proposed OpAmp. Except for the single bulk-driven MOSFET, all the other 

circuits are implemented on an n-well 0.35 µm digital CMOS process.  
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A printed circuit (PC) board (Vector board) is used to characterize the 1-V bulk-driven OpAmp 

under the room temperature. The test circuit is shown in Fig. 6.1. Power supply bypassing capacitors are 

soldered next to power supply pins to filter out AC ripples and the power supply noise. Specifically, an 

electrolytic capacitor of 100 μF (on the back of the board), a polypropylene capacitor of 4.7 µF and a 

ceramic capacitor of 0.47 μF are utilized to cover different bandwidth of the power supply noise.  The 

bias current for this 1-V OpAmp or the standalone input stage can be either supplied externally through a 

dedicated pin or connected to an on chip biasing circuitry as shown in Fig. 5.5.  

In order to characterize the DC parameters of the circuits, the Keithley 2400 source meters are 

extensively employed, which are controlled by the software Labtrace 2.0 developed by Keithly 

Instruments Inc. as well. In addition, OpAmp characterization software developed by the ISCAL group 

led by Dr. Blalock at the University of Tennessee is used to evaluate most of the performance for the 1-V 

bulk-driven OpAmp. Other measurement hardware such as low-noise amplifier, spectrum analyzer, high 

precision power supplies, etc. are also employed. Table 6.1 shows all the equipments used to characterize 

the single MOSFET, the bulk-driven input stage alone and the 1-V OpAmp. The detail test setups are 

presented in the following sub-sections. 

 

 

Fig. 6.1 The test board for the 1-V bulk-driven OpAmp characterizations. 
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Table 6.1 Equipments Used to Characterize the Single MOSFET, the Standalone Bulk-Driven Input Stage, 

and the 1-V Bulk-Driven OpAmp 

Type Features 

Agilent E3631A Triple Output DC 

Power Supply 
0~6V;-25V~25V 

Spectrum/Network Analyzer HP 3589A 
10 Hz to 150 MHz frequency range;80dB~112dB 

dynamic range 

Source Meter Keithley 2400 
Five instruments in one (IV Source, IVR 

Measure) 

Agilent MSO6052A Mixed Signal Oscilloscope 500MHz Bandwidth, 4Gsample per second. 

Agilent 33220A Waveform Generator Maximum 20 MHz Sine wave. 

Agilent 34401A Digit Multimeter 6.5 bits 

Perkin Elmer 5184 Preamplifier 60 dB gain up to 1MHz; 800pV/Hz
1/2

 

GPIB Cables Shielded 

Lenovo Laptop With National Instruments GPIB device driver 

 

6.1.2 Characterizations of the Bulk-Driven MOSFET 

To achieve the best bulk-driven circuit performance, it is necessary to start with the single bulk-

driven P-type MOSFET characterizations. The comparisons between the measurements and the 

simulations are able to provide insights for subsequent circuit implementations.  

The basic source-to-bulk junction I-V curve is measured by using source meters to sweep the 

bulk-to-source voltage (VBS) and obtain the junction current (IBS). Fig. 6.2 reveals the characterizations of 

the PMOS source-to-bulk junction in a 0.5 µm digital n-well CMOS process from both simulation and 

measurements. All comparisons are conducted with the same 6 µm/ 3 µm diode-connected PMOSs where 

their VGS are kept at -1.2 V. Berkeley Short-channel IGFET Model (BSIM) 3 spice model is used in the 

simulation.  The measurements are performed on four chip samples. It can be noticed that the measured 

data on each chip is very consistent and the junction currents IBS reach -2 nA at the voltage VBS equal to -
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600 mV. The simulation, however, shows similar trend except that the IBS already reaches around -2 nA at 

VBS of -450 mV, which means more than 150 mV higher turn-on voltage of the junction can be expected 

from measurements to simulation. This characterization is particularly important for designing the 

proposed bulk-driven amplifier regarding to the achievable input common mode voltage range.  Clearly, 

for VBS larger than -600 V, the bulk-driven MOSFET still exhibits high input impedance. 

IBS = - 2 nA

 

Fig. 6.2  Measured and simulated IBS versus VBS for the bulk-driven PMOS. 
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By using source meters, Fig. 6.3 (a) is able to show the measured PMOS source-to-drain current 

(ISD) variations with increasing VBS in comparison with the simulation result. The measurement setup is 

the same with the one in Fig. 6.2 with VGS kept constant at -1.2 V. It shows that for VBS larger than -200 

mV, the drain currents decrease at the similar rate between the measurements and the simulation with 

increasing VBS, while below -200 mV the measured ISD increase more rapidly than the simulated one with 

descending VBS.  

This behavior also implies that the bulk transconductance gmb in the measured MOSFET is larger 

than the simulated one. Fig. 6.3 (b) shows the calculated bulk transconductance gmb from the measurement 

results using MATLAB. It reveals that, compared to simulation result, the measured gmb can achieve 

much larger value with further forward biasing of VBS. Particularly, the measured gmb is about two times 

of the simulated one at VBS of -400 mV, while more than five times at VBS of -600 mV. The trend is also 

quite different between the measurements and the simulation, where measured gmb drops with increasing 

VBS and simulated gmb behaves the opposite. This measurement results also match the relationship of gmb 

with VBS derived in Eq. (3.2). 

6.1.3 Characterizations of the Standalone Bulk-Driven Input Stage  

The proposed 1-V bulk-driven input stage with the enhanced transconductance is laid out 

separately (i.e. the circuit in Fig. 4.2) and necessary nodes are pinned out so a conventional 1-V bulk-

driven input stage can be formed and characterized. In order to achieve a fair comparison, the bias 

conditions of the core input pairs for both circuit topologies are kept the same. The simulations and 

characterizations of both the proposed and the conventional bulk-driven input stage are done by biasing 

the negative input at the voltage Vinput, then sweeping the voltage on the positive input in small increments 

(e.g. 100 µV) around Vinput as shown in Fig. 6.4. Complementary power supplies, which provide ± 0.5 V, 

are used to power both input stages. 

The effective input transconductance (Gm_in_eff) can be obtained using Eq. (6.1) as,  
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  (6.1) 

 

Fig. 6.3 (a) Measured and simulated ISD variations with the change of VBS; (b) Measured and simulated 

gmb variations with the change of VBS. 
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0.5 V

-0.5 VVinput

Vsweep Iout-

Iout+

 

Fig. 6.4 Test setup for charactering the 1-V bulk-driven input stage. 

 

where Iout+ and Iout- are the output currents in Fig. 6.4.  Simulation results in Fig. 6.5 show the comparison 

of the Gm_in_eff between the proposed circuit and the conventional one at different input voltages Vinput. 

Since there is the aforementioned lower limitation of the common mode input voltage for the proposed 

input stage, simulations are only conducted for Vinput more than -200 mV.  The source-to-bulk voltage VSB 

of the input transistors is given by,  

 
, ,SB input DD input DS satV V V V    (6.2) 

where VDS,sat is mentioned in the previous chapters which is designed to be around 200 mV. The 

maximum Gm_in_eff of the proposed bulk-driven stage is equal to 142 µA/V when Vinput is around 320 mV 

(i.e. VSB is close 0 V) while the Gm_in_eff of the conventional bulk-driven input stage peaks at the similar 

input voltage with a value of 18.5 µA/V. 

The measured input transconductance of both the proposed and the conventional 1-V bulk-driven 

input stages are shown in Fig. 6.6 where both peak at input voltage of -200 mV. The maximum Gm_in_eff 

the proposed circuit can achieve is 518.2 µA/V where that of the conventional circuit is 56.4 µA/V.   
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Fig. 6.5 Simulated transconductance (Gm_in_eff) of the proposed and the conventional bulk-driven input 

stage and its increments. 

 

Fig. 6.6 Measured transconductance (Gm_in_eff) of the proposed and the conventional bulk-driven input 

stage and its increments. 
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Several differences can be observed from Fig. 6.5 and Fig. 6.6. 

1) The measured Gm_in_eff of the conventional and the proposed input stages are much larger than 

the simulated ones particularly at lower values of Vinput. The trend shows the measured conventional and 

enhanced Gm_in_eff drops with elevated Vinput while the simulated ones increase with elevated Vinput except at 

high input voltages. This agrees with the characterization results of a single PMOS transistor.  

2) The ratio of Gm_in_eff from the proposed bulk-driven input stage to the conventional one is also 

calculated in these two figures (labeled as Gm_in_eff increment). The theoretical increment is 10 times since 

parameter k is designed to be 4 while the actual increment is smaller than that due to the second-order 

effect of the transistors. In the simulation, within the overall input range, the Gm_in_eff increment to the 

conventional bulk-driven stage is 8.5 times at most and more than 6 times in the worst case scenario. 

While in the measurement, the increment is 9.5 times at most and 7 times at least. The increments 

decrease at elevated Vinput in both simulation and measurement because the source-to-gate voltage of the 

input pair transistors also increases with Vinput which pushes the biasing transistors MB3,4,5 more into the 

triode region. 

In addition, the offset voltage (Voffset) for the proposed bulk-driven input stage can be calculated 

based on the previous measurements. By taking the voltage difference between the positive and the 

negative inputs when the output currents are equal, the offset voltages are obtained as shown in Fig. 6.7. 

From measurements, it can be noticed that Voffset increases with elevated Vinput. This confirms the offset 

voltage analysis in the previous chapter. Another contribution to the varied Voffset is the pushed-to-triode 

biasing transistors particularly at high input voltages.  

The input current is measured on the proposed bulk-driven input stage which can be regarded as 

the input biasing current of the following 1-V bulk-driven OpAmp since they have identical geometries. 

Fig. 6.8 reveals that the input current is below 10 nA at Vinput more than -200 mV. It further drops below 

100 fA after Vinput increases beyond -50 mV.  
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Fig. 6.7 Measurement of the proposed bulk-driven input stage offset voltage. 

 

 

Fig. 6.8 Measured input current of the proposed bulk-driven input stage. 
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6.1.4 Characterizations of the Proposed 1-V Bulk-Driven OpAmp  

Typical OpAmp performance such as power consumption, offset voltage,  input common mode 

range (ICMR), open loop gain (Ao), unity-gain bandwidth (UGBW), noise, power supply rejection ratio 

(PSRR) and common mode signal rejection ratio (CMRR), etc. have been measured. Comparisons with 

simulation results are also presented in this section. Complementary power supplies, which provide ± 0.5 

V, are used for most of the measurements conducted in this section unless noted otherwise.  

This OpAmp is generally tested under two load conditions, namely, the light load and the heavy 

load. The light load originates from the loading of an oscilloscope probe, where 15 pF capacitance and 

1MOhm impedance can be found. The heavy load is created by connecting the output to a 35pF capacitor 

(which adds up to 50 pF including the probe capacitance) and a 3.3 KOhm resistor. However, if an 

oscilloscope probe is not used in certain measurements, physical capacitors and resistors are added to 

mimic both loads. 

6.1.4.1 OpAmp ICMR, Offset Voltage and Power Consumption 

The input common mode range (ICMR) for an OpAmp is defined as the maximum input voltage 

range that all transistors work in saturations. Additionally, for bulk-driven OpAmps, the input impedance 

needs to be high (e.g. Iinput < 10 nA). The ICMR of this 1-V OpAmp can be measured using the test setup 

in Fig. 6.9 where the OpAmp is in unity-gain, non-inverting configuration. The voltage at the positive 

input (Vinput) is swept from -200 mV to 500 mV to avoid turning on the source-to-bulk junction diode. The 

offset voltage (Voffset) can be calculated by taking the difference between the input voltage (Vinput) and the 

output voltage (Vout) at each point.  

The ICMR and the offset voltage measurements are conducted under both the light load and the 

heavy load situations. Fig. 6.10 and Fig. 6.11 show the measurement results. Under the light load, the 

proposed 1-V OpAmp shows ICMR from -200 mV to 500 mV where it still maintains high linearity and 



 

72 

input current smaller than 10 nA. Measurements also reveal that ICMR can be extended lower to -250 mV 

for input current as low as 38 nA. The offset voltage changes from 3.9 mV to 16 mV in one sample, and -

6.7 mV to -13.2 mV in anther sample.  

 

0.5 V

-0.5 V

RLoad CLoad

Vinput

Vout

 

Fig. 6.9 Test setup for the OpAmp ICMR measurement. 

 

On the other hand, under the heavy load, ICMR values from -200 mV to 400 mV still keeps the 

OpAmp in high linear operation and high impedance input. The offset voltage varies from 7.4 mV to 16.6 

mV in one sample and -7.7 mV to -14.4 mV in another sample.  

The offset voltage of this 1-V OpAmp changes along with the input voltage for the following 

reasons: 

1) The offset voltage variations inside the input stage (due to random mismatches). 

2) Systematic mismatches inside the OpAmp cascode stage and output push-pull stage.  

3) The risk of the triode operation of the transistors inside the input stage and the output push-

pull stage. This could result in gain decrements particularly at high input/output voltages or 

driving heavy loads.  

The power consumption of this 1-V OpAmp is measured using the same test setup driving both 

loads. Its comparison with the simulated power consumption is shown in Table 6.2. 
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Fig. 6.10 ICMR and offset measurements of the proposed 1-V OpAmp under the light load. 

 

 

Fig. 6.11 ICMR and offset measurements of the proposed 1-V OpAmp under the heavy load. 
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Table 6.2 1-V OpAmp Power Consumptions 

 Simulations Measurements 

Load 1MOhm//15pF 3.3KOhm//50pF 1MOhm//15pF 3.3KOhm//50pF 

Vinput (V) 0 0 0 0 

Power 

Consumption 

(µW) 

180 261 197 254 

 

6.1.4.2 OpAmp Open Loop Gain (Ao) 

The open loop gain (Ao) is another important parameter of any OpAmp as it directly decides its 

linearity. For OpAmps with open loop gain less than 60 dB, an open loop configuration is sufficient to 

measure their Ao. However, high-gain OpAmps require the close loop configuration with unity-gain and 

inverting topologies. The test setup for measuring the open loop gain is illustrated in Fig. 6.12. Large 

feedback resistors of 470 KOhm are used to reduce their effects on loading the OpAmp output. By 

applying a 200 mV VPP sinusoidal signal using a network analyzer, the open loop gain Ao can be 

calculated as, 

 
out

o

e

V
A

V
  (6.3) 

where Ve is the error voltage measured at the negative input of the OpAmp at one specific frequency.  The 

network analyzer has an internal sine-wave synthesizer, which prevents any spectral leakage during the 

FFT analysis of the output of the OpAmp. The probing of this error voltage at the OpAmp input 

introduces a stray capacitance, which forms a low-frequency pole in the feedback loop. Therefore, a 

feedback capacitor of 10 pF is also required to cancel this low-frequency pole.  
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Fig. 6.12 Test setup for measuring the open loop gain. 

 

The open loop gain of this OpAmp is characterized for frequencies ranging from 100 Hz to 10 

KHz under both the light load and the heavy load conditions. The unity-gain bandwidth (UGBW) can be 

derived by extrapolating the plot with a -20 dB/decade slope to cross the 0 dB line and assuming this 

OpAmp to be an ideal single pole system. Fig. 6.13 and Fig. 6.14 show the measured (Blue dot) and the 

simulated (Green curve) open loop gains under both loads at the common mode input of 0 V. The 

measured data is also extrapolated as displayed by the blue curve. The measured Ao at DC are 88.3 dB 

and 70 dB under different loads which are about 4.5 ~ 5 dB larger than the simulated ones. The 

extrapolated UGBW are 10 MHz and 7.7 MHz, respectively, which is around 2.5 ~ 2.7 times that of the 

simulated ones. The larger-than-simulation results originate from both the underestimated bulk 

transconductance in the model and the process variations from the foundry.  

The open loop gain Ao is also characterized at different common mode voltages Vinput under both 

loads for two chip samples. In Fig. 6.15, under the light load, the common mode input range is swept 

from -200 mV to 400 mV, while under the heavy load; Vinput is swept from -200 mV to 300 mV. These 

ranges are selected based on the previously measured ICMR of this OpAmp under both loads. 
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Fig. 6.13 Measured and simulated open loop gain Ao at Vinput = 0 V under the light load. 

 

 

Fig. 6.14 Measured and simulated open loop gain Ao at Vinput = 0 V under the heavy load. 
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Fig. 6.15 Open loop gain Ao at different Vinput under both loads. 

 

The extrapolated UGBW from each gain measurement in Fig. 6.15 are also compared with the 

simulation results as shown in Fig. 6.16. The results from two chip samples show significant 

improvement of the UGBW from measurements to simulations. This mostly comes from the 

underestimation of the input transconductance Gm_in_eff in simulations. The rough estimations of the 

UGBW by ignoring non-dominant poles and zeros effect also contribute to this discrepancy. 

Both the trends of the measured and the simulated Ao and UGBW along with the input voltage are 

quite consistent with the input transconductance measurements and simulations presented in Fig. 6.5 and 

Fig. 6.6, respectively, where the measured highest open loop gain Ao and UGBW occur at the input 

voltage of -200 mV, while the simulated Ao and UGBW reach their peak at input voltage of ~200 mV. On 

the other hand, the measured AO drops below the simulated ones at high Vinput. This is due to the 

aforementioned potential gain deteriorations from the biasing transistors inside the input stage and the 

level shift inside push-pull output stage at high input/output voltages. 
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Fig. 6.16 UGBW at different Vinput under both loads. 

 

6.1.4.3 Small Signal and Large Signal Transient Response 

Important parameters such as rise time, fall time and slew rate can be obtained by applying small 

or large transient signals to the positive input of the unity-gain non-inverting configured OpAmp and 

measuring the output transient response. The test setup for the transient response measurements can be 

referred to the one in Fig. 6.9. A function generator and an oscilloscope are employed to create transient 

signals and capture the transient output signals. 

For the small signal analysis, a square wave of 50 mV Vpp is generated by the function generator 

at 10 KHz. Transient signals are measured under the light load and the heavy load, respectively. Fig. 6.17 

and Fig. 6.18 specifically reveal the rising and the falling edges of the small signal responses at the input 

voltage of 0 V under both loads. The purple curves are the input square wave signals and the green curves 

are the output transient responses.  
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475 mV~ 525 mV
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Fig. 6.17 Small signal response measurement under the light load at Vinput = 0 V. 

 

Fall time=50ns Rise time=39ns

Input 

475 mV~525 mV

Output 

475 mV~ 525 mV

100 µs

 

Fig. 6.18 Small signal response measurement under the heavy load at Vinput = 0 V. 
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The UGBW can be calculated using Eq. (6.4) based on the rise time of the small signal response. 

The UGBW is more accurate than the one measured in Fig. 6.16 since it includes the effects from non-

dominant poles and zeros existing close to the bandwidth.  

 

(10% 90%)

0.35

rise

UGBW
t 

  (6.4) 

The UGBW at different input voltages are then calculated after obtaining various small signal 

transient responses under both loads. Fig. 6.19 reveals their values. They generally descend as the input 

voltage increases which conforms to previous measurements.  

For the large signal transient response, a 0.6 V Vpp input square wave signal is applied to the 

OpAmp at 10 KHz under the light load, while a 0.55 V Vpp input square wave signal is applied under the 

heavy load. Fig. 6.20 and Fig. 6.21 show the large signal transient responses under both loads, 

respectively. The purple curves are the input square wave signals, and the green curves represent the 

output transient responses. Both positive and negative slew rates can be characterized from the 

measurements of the rise and fall times. 

 

Fig. 6.19 UGBW calculated from the measured small signal responses. 
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100 µs

Rise time 190 ns

Fall time 350 ns

Input 

300mV~900mV

Output 

300 mV~900 mV

  

Fig. 6.20 Large signal transient response under the light load. 

 

100 µs

Rise time 280 ns

Fall time 380 ns

Input 

300mV~850mV

Output 

300 mV~850 mV

 

Fig. 6.21 Large signal transient response under the heavy load. 
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Table 6.3 compares the simulated and measured slew rates. Considering the power consumptions 

are fairly consistent between simulations and measurements, the higher-than-simulation slew rates result 

from the process, especially the capacitance variations from chip to chip.  

6.1.4.4 Noise Characterization  

The input referred noise is measured using the test setup in Fig. 6.22. The OpAmp is configured 

as a non-inverting buffer whose input is tied to ground. Due to the noise level in the spectrum analyzer, it 

is better to measure the OpAmp output noise by amplifying it first. A low-noise preamplifier (LNA) is 

used where its gain maintains 60 dB up to 1 MHz and its output impedance is 450 Ohm. Since the input 

impedance of spectrum analyzer is 50 Ohm, the output noise of the OpAmp can be amplified by 100 

times up to 1MHz. The Labview program is used to capture the noise data. In Fig. 6.23, the noise 

measurement is performed between 1 KHz to 1 MHz by averaging more than 10 sets of the noise data. 

The measured output noise, combining both the flicker noise and the thermal noise, of the proposed bulk-

driven OpAmp is substantially smaller than the simulated one thanks to the underestimated Gm_in_eff in 

simulations. The averaged thermal noise is less than 60  nV/ Hz  at 1 MHz. 

 

Table 6.3 Simulated and Measured Slew Rates 

 Positive slew rate (mV/ns) Negative slew rate (mV/ns) 

Simulation (Light load) 2.01 1.04 

Measurement (Light load) 2.53 1.37 

Simulation (Heavy load) 1.63 0.91 

Measurement (Heavy load) 1.57 1.16 
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Fig. 6.22 Test setup for the noise measurement. 

 

Fig. 6.23 Input referred noise comparison between the measurement and the simulation. 

 

6.1.4.5 PSRR Measurements 

The power supply rejection ratio (PSRR) characterizes the ability of the OpAmp to reject the 

noise on the power supply rails. In this work, PSRR at DC is measured at both positive and negative 

power supply rails. The test setup is illustrated in Fig. 6.24, where the OpAmp is configured as unity-gain 

and non-inverting. The complimentary power is supplied by the Keithley 2400 source meters. The  
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Fig. 6.24 Schematic of the OpAmp PSRR measurement setup. 

 

variations on the OpAmp output under the light load can be measured by sweeping either one of the 

power supplies.  

Fig. 6.25 shows the measured PSRR± under the light load with common mode input voltage of 0 

V and ± 20% variations on the complimentary power supplies. The power supply rejection ratios are also 

characterized under different input common mode voltages from -200 mV to 400 mV as shown in Fig. 

6.26. Compared with the simulation results, inferior power supply rejection ratios are obtained at positive 

and negative power rails (i.e. 5dB~10dB less) thanks to the process variations during chip fabrications. 

6.1.4.6 CMRR Measurements 

Common mode rejection ratio (CMRR) is another important performance of an OpAmp, which 

can characterize its ability to reject common mode signals at its inputs. Specifically, it represents the ratio 

of the differential open loop gain to the common mode open loop gain. At DC, CMRR can be measured 

using the close loop test setup in Fig. 6.27. In this configuration, a driver OpAmp with very low offset 

(i.e.OP-27) is employed by maintaining its output (Vout,driver) at 2×Vinput, which is expressed in Eq. (6.5). 

The output of the 1-V OpAmp is then fixed at 0 V. Fixing the 1-V OpAmp output voltage can reduce the 

effect of power supply variations on the OpAmp output. 



 

85 

 
Fig. 6.25 PSRR ± measurements at input voltage of 0 V. 

 

 
Fig. 6.26 Simulated and measured PSRR ± under different input voltages. 
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By sweeping the Vinput, the error voltage VID is varied accordingly. The CMRR can be calculated 

using Eq. (6.6) as, 

 

 

out
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dV dV

dV

 (6.6) 

The CMRR of the 1-V OpAmp is measured under the light load by sweeping the overall ICMR 

from -200 mV to 500 mV. The result is then curve fitted and compared with the simulation data in Fig. 

6.28. It can be concluded that the measured CMRR is lower than the simulated ones especially at input 

voltages from -100mV to 300 mV. This is because of the aforementioned variations of the offset voltage 

at different input common mode voltages, which further result from both the random and the systematic 

mismatches in this OpAmp circuit.  

6.1.4.7 Summary of the 1-V OpAmp Performance 

Table 6.4 summarizes the performance of the proposed 1-V bulk-driven OpAmp. The 

measurement results listed here are all performed at the common mode input voltage of 0 V given that a 

complimentary power supplies ± 0.5 V are applied. According to these results, the proposed OpAmp is 

able to maintain more than 70 dB open loop gain while having sufficient phase margin to guarantee stable 

operations under both the light load and the heavy load. Due to the low-voltage class AB output stage 

employed in this design, the power consumption changes greatly at various loads.  
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Fig. 6.27 Schematic of the test setup for CMRR measurements. 

 

 

Fig. 6.28 Measured CMRR over ICMR, and its comparison with the simulation. 
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Table 6.4 Performance Summary of the Proposed OpAmp 

Technology (0.35µm, ± 0.5 V Supply) Units 
Load 

1 MΩ || 15 pF 3.3 KΩ||50 pF 

DC Open loop gain dB 88.3 70 

UGBW MHz 11.67 8.97 

SR+/SR- V/µs 2.53/1.37 1.57/1.16 

ICMR mV 700 660 

Offset Voltage
*
 mV 8.4,10 10,10.9 

Input Current nA <10 

Power Consumption µW 197 254 

Noise ( @1 MHz) nV/Hz
1/2

 <60 

CMRR@DC 
dB 

40 

PSRR+/PSRR-@DC 40/46.8 

*
Two chip samples 

 

6.1.5 1-V OpAmp Comparisons with the State of the Arts 

The performance of the proposed 1-V bulk-driven OpAmp are also compared with previous bulk-

driven amplifier works [56][60] in Table 6.5 with the input common mode voltage at the middle of the 

power supplies. Both works proposed transconductance boosting techniques employing positive feedback 

configurations in a 0.35 µm n-well CMOS process.  

In addition, a figure of merit (FOM) is also used for performance comparisons of some sub 1-V 

amplifiers proposed in recent years in Fig. 6.29.  The FOM is expressed in Eq. (6.7), 

 
100  LUGBW C

FOM
I

 (6.7) 

where I is the overall circuit current consumption.  Apparently, this FOM is able to present the bandwidth 

and drive capability of the amplifiers proposed in different years. Amplifiers with larger UGBW, heavier 

loading capacitance, and smaller current consumption demonstrate better FOM values. The performance 

of the 1-V OpAmp is among the tops in Fig. 6.29. The only two works with higher FOM are not general 
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purpose amplifiers and are with gate-driven input stages. 

 

Table 6.5 Comparisons Between the Bulk-Driven Amplifiers with Transconductance Enhancement 

 Proposed(Measurement) [56] (Measurement) [60] (Simulation) 

Process 0.35 µm n-well CMOS 

Supply voltage (V) 1 

Load 
1 MΩ || 15 

pF 

3.3 KΩ||50 

pF 

1 MΩ || 17 

pF 

3.3 KΩ||50 

pF 

320KΩ|| 

1pF 

16KΩ|| 

20pF 

Power 

consumption (µW) 
197 254 358 130 

Open loop gain 

(dB) 
88.3 70 76.2 59.1 64 55 

Unity gain 

bandwidth (MHz) 
11.67 8.97 8.1 5.9 1.93 1.6 

SR+/SR- (V/µs) 2.53/1.37 1.57/1.16 2.74/5.02 2.66/4.51 0.7 

ICMR(mV) 700 600 1000 930 700 700 

Offset 

Voltage(mV) 
8.4,10 10,10.9 

2.88±1.26(1

σ) 

2.91±1.23(

1σ) 
10 (1σ) 

Offset Tuning 

Circuit 
No Yes No 

Maximum Input 

Current (nA) 
<10 2.15 <10 

Phase margin - - - - 44˚ 36˚ 

Theoretical 

Gm_in_eff 

enhancement 

10 3 (w/o current gain) 8 

Input stage 

current 

consumption (µA) 

25 53 (w/o current gain) 40 

Noise (nV/ Hz
1/2

)                                           

@1MHz 
<60 < 300 165 

CMRR (dB) @DC 40 70.5 - 

@ 100KHz - - 68 

PSRR ± (dB)@DC 40/46.8 45.0/40.5 - 

@ 10KHz - - 70 

Die Area (µm* 

µm) 
525·300 140·380 250·250 



 

90 

 

Fig. 6.29 FOM versus the year of publication. 

 

6.2 Characterizations of the 1-V Potentiostat 

In this work, the 1-V potentiostat is characterized by employing it in continuous glucose 

monitoring with an implantable glucose sensor. The three-electrode sensor is developed by our 

collaborators at the University of Connecticut. The working and the reference electrodes are made by 

coiling 125µm platinum (Pt) wire and silver (Ag) wires close to the working electrode. The surface of the 

silver wire is then converted to AgCl through galvanometry in HCl solution on a stirring plate where the 

Ag/AgCl reference electrode is fabricated. Another Pt coil forms a counter electrode by placing it next to 

the reference electrode. 

6.2.1 1-V Potentiostat Test Environment 

The 1-V potentiostat circuit is tested on a Vector PC board. Since the signal process unit (i.e. I-F 

converter) is taken from the circuit proposed in [4], different power supplies are required for these two 
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circuits. This potentiostat is not only tested with the sensor models composing of physical resistors and 

capacitors, but also with the O2 based glucose detection sensor in the stirred Phosphate-Buffered Saline 

(PBS) solution (pH 7.4) maintained at 37 ˚C.  The test board with its connections of the sensors dipped in 

the solution is shown in Fig. 6.30. Other equipments employed in this test are listed in Table 6.6. 

 

 

Fig. 6.30 Test setup for the 1-V potentiostat with a glucose sensor. 

 

Table 6.6 Test Equipments for the 1-V Potentiostat 

Type Features 

Agilent E3631A Triple Output DC 

Power Supply 
0~6V;-25V~25V 

Source Meter Keithley 2400 Five instruments in one (IV Source, IVR Measure) 

Agilent MSO6052A Mixed Signal Oscilloscope 500MHz Bandwidth, 4Gsample per second. 

Stirring Plates N/A 

AD8512 Low offset and low input bias current Amplifier 
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6.2.2 Simulations and Measurements of the 1-V Potentiostat with Resistor and Capacitor Sensor 

Models 

The physiologically observed glucose concentration inside human bloodstream is from 2 

mM/Liter to 22 mM/Liter. This glucose concentration corresponds to 0.1 µA to 1.5 µA of the sensor 

current. To leave some margin, this 1-V potentiostat is designed to provide sensor current with dynamic 

range from 70 nA to 2.6 µA. 

As shown in Fig. 2.2, considering the potential Ei is 700 mV (i.e. VWR=700 mV) for the working 

electrode to get oxidized, the sensor model resistance of RWE could vary from 10 MOhm to 250 KOhm 

while the model resistance RCE is usually constant at 10 KOhm. The capacitance of both the working and 

the counter electrodes are also modeled as CWE is around 300 nF, and CCE is about 10 nF. In this work, 

this potentiostat is initially simulated and measured using a glucose sensor model consisting of only 

resistors and capacitors.  

  Fig. 6.31 illustrates the simulation data versus the measurement data of the 1-V potentiostat 

connecting with the aforementioned sensor model. Two chips are characterized and both the simulated 

and the measured output signal periods (reciprocal of output frequency) varied linearly with the increment 

of the resistor modeled as RWR (reciprocal of sensor current). The linear regression factors (R
2
) of all these 

curves are calculated to be more than 0.997. The slight discrepancies between the simulated and the 

measured results are due to the on-chip variations of the integrating capacitor inside the current-to-

frequency converter developed in [4]. 

The variations of the voltage between the working and the reference electrodes are also measured 

in Fig. 6.32. Two low-offset and high-input-impedance commercial amplifiers are configured as the 

unity-gain non-inverting buffers to output the voltage difference so that any resistive load of the working 

and the reference electrodes can be avoided. Fig. 6.32 shows that the potential Ei is maintained relatively 

constant over the whole range of RWR. The small deviations from the ideal 700 mV are due to the offset in 
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the potentiostat system, which are in the error range. The variations of the VWR are negligible which prove 

good linearity of the proposed potentiostat. 

 

Fig. 6.31 Simulation and measurements of the 1-V potentiostat output signal period with variations of RWE. 

 

 

Fig. 6.32 Simulation and measurements of the potential Ei applied between the working and the reference 

electrodes. 
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6.2.3 in vitro Measurements of the 1-V Potentiostat with a Biosensor 

This potentiostat is measured with the aforementioned three-electrode glucose sensor. The sensor 

current is obtained by raising the glucose level in the PBS solutions from 0 mM/Liter to 30 mM/Liter. 

The glucose is added 2 mM every 100 seconds before an initial background stabilization period of around 

8 minutes. 

The measured output frequency with the variation of the glucose concentration is shown in Fig. 

6.33 Overall, the 1-V potentiostat exhibits good linearity within the glucose concentration up to 30 

mM/Liter, which is well beyond the physiological range inside the human body (i.e. 2 mM/Liter to 22 

mM/Liter). The measured output frequency shows better than 0.6% accuracy. 

6.2.4 Comparisons Between this Work and Prior Arts 

The performance of the 1-V potentiostat is compared with other works in Table 6.7. The 

proposed work shows significant reduction in the power consumption and the supply voltage while still 

maintaining comparable linearity. 
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Fig. 6.33 Measurement of the 1-V potentiostat with a three-electrode glucose sensor. 

 

Table 6.7 Comparisons Between Proposed Work and Previous Literatures 

 Process 
Supply 

voltage (V) 

Power 

consumption 

of the 

potentiostat 

Linearity 

Detected 

sensor 

current 

Range 

Topology 

Proposed 

work 

0.35 µm n-

well CMOS 
1 22 R

2
=0.9941 

70 nA -> 

2 .6µA 
SE 

[4] 
0.35 µm n-

well CMOS 
1.5 

400 

(Including 

SPU) 

R
2
= 0.999 

200 nA->2 

µA 
SE 

[14] 
0.18 µm n-

well CMOS 
1.8 32.4 R

2
= 0.9984 1 nA -> 1µA SE 

[26] 

(Simulation) 

0.18 µm n-

well CMOS 
1.8 80 N/A 

1nA-

>200nA 
SE 

[33] 
0.18 µm n-

well CMOS 
1.8 15840 R

2
= 0.98 N/A FD 

[36] 
0.18 µm n-

well CMOS 
1.8 307 N/A 

10nA -> 

10µA 
SE 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this dissertation, the importance of the low-voltage and low-power operation of the implantable 

biosensor system is first discussed. Consequently, a 1-V potentiostat working with electrochemical 

sensors is developed. The potentiostat includes a 1-V bulk-driven amplifier as the core. The presented a 1-

V bulk-driven amplifier is designed to improve its effective input transconductance. Innovative low-

voltage bulk-driven design techniques have been proposed to boost the transconductance. The 

performances of the amplifier such as UGBW and open loop gain are all improved. The amplifier can also 

connect to 1-V compatible push-pull output stage which can drive a heavy load.  The circuit has been 

implemented using a 0.35µm standard CMOS process. 

7.2 Future Work 

7.2.1 1-V OpAmp Offset Tuning Circuit 

An offset tuning circuit is useful for the 1-V bulk-driven OpAmp. The overall offset voltage 

varies with the common mode input voltage in the proposed OpAmp. Offset tuning circuits can be 

developed to tune the offset of the input stage or the output stage of the OpAmp without degrading the 

performance too much. Specifically, an offset tuning circuit has been developed in [56] for compensating 

the offset generated by the output push-pull stage. The basic idea is to tune the level-shift transistor drain 

current so that the output push-pull stage static biasing conditions can be changed. 
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7.2.2 Bandgap Reference (BGR) for the 1-V Potentiostat 

A reference circuit can be used in this work to generate necessary reference voltage for the 

potentiostat. Fig. 7.1 illustrates the topology of the reference circuit [44].  The idea behind it involves 

adding both proportional to absolute temperature (PTAT) and complementary to absolute temperature 

(CTAT) currents together to a resistor such that a constant reference voltage can be generated. Instead of 

using cascode current mirrors to precisely mirror current and force voltages at node A and B equal an 

OpAmp circuit is utilized to achieve the same function. 

 

1 V

MP1 MP2 MP3MPstart

MNstart

MPstart1

OTA

D1,1 D2,4

R

L*R L*R N*R CLoad

IPTAT +

ICTAT

Start-up circuit

VrefA B

 

Fig. 7.1 Schematic of the 1-V reference circuit. 

 

The PTAT current is generated by diodes D1, D2 and resistor R. It can be calculated as follows, 

 ln 4T
PTAT

nV
I

R




 
(7.1) 

where n is the emission coefficient, VT is the thermal voltage which is given by kB×T/q where kB is  

Boltzmann’s constant and T  is the temperature in Kelvin. 
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The CTAT current is due to D1 and resistor L* R, which is given by, 

 
1D

CTAT

V
I

L R



 (7.2) 

The sum of both currents is mirrored and supplied to the resistor N×R. Thus the reference voltage 

can be expressed in as, 

 

1ln 4ref T D

N
V nV N V

L
      (7.3) 

The first term has a temperature coefficient (TC) of 0.085 mV/C, while the second term has a TC of -1.6 

mV/C. By tuning the value L, those two terms can be cancelled out leaving the reference voltage 

relatively constant throughout the operating temperature range. Then by selecting desired N an output 

voltage of 300 mV can be achieved. 

For the OpAmp circuit inside, a conventional gate-driven amplifier is difficult to implement to 

achieve 1-V operation under this long channel CMOS process. Therefore, a simple bulk-driven folded 

cascode structure is adopted as shown in Fig. 7.2. The output stage of this OpAmp is merely unity gain 

level shift circuit. A compensation capacitor is placed at high impedance node to make the feedback loop 

inside the reference circuit stable. 

7.2.3 1-V Signal-Processing Unit (SPU) 

The overall 1-V biosensor system is complete if the signal processing unit (such as the I-F 

converter displayed in Fig. 2.8 or Fig. 2.9) is 1-V compatible. Two solutions are proposed for this 

problem. The first is to implement a novel low-voltage circuit technique for the I-F converter. However, 

the simpler method is to utilize the short channel transistors with the low VT, since digital circuits 

comprise most of this block and they suffer much less from the disadvantages brought by this type of 

transistors. 
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IBIAS

1 V

MO1MN1A MN1B

MN2A MN2B

MP1A
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Fig. 7.2 Schematic of the bulk-driven OTA inside the 1-V reference circuit. 

  



 

100 

 

 

 

 

LIST OF REFERENCES 

 

 

 

 

 

 

 

 

 

 

 



 

101 

[1] S. A. Grant, K. Bettencourt, Peter Krulevitch, Julie Hamilton, Robert Glass, “In vitro and in vivo 

measurements of fiber optic and electrochemical sensors to monitor brain tissue pH,” Sensors and 

Actuators B: Chemical, vol.72, no.2, pp.174-179, Jan.2001. 

[2] M. M. Ahmadi, G. A. Jullien, “A wireless-implantable microsystem for continuous blood glucose 

monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol.3, no.3, pp.169-180, 

Jun.2009. 

[3] D. A. Baker, D. A. Gough, “A continuous, implantable lactate sensor,” Analytical Chemistry, 

vol.67, no.9, pp.1536-1540, 1995.  

[4] M. R. Haider, S. K. Islam, S.Mostafa, Mo Zhang, Taeho Oh, “Low-Power Low-Voltage current 

readout circuit for inductively powered implant system,” IEEE Transactions on Biomedical 

Circuits and Systems, vol. 4, no.4, pp. 205-213, Aug.2010.  

[5] A. K. M. Shamsuddin, T. Tamura, K. Nakajima, T. Togawa, “Preliminary study of 

transcutaneous optical coupling for implantable devices using GaAs solar cell,” IEEE 

Engineering in Medicine and Biology Society, 1995 and 14th Conference of the Biomedical 

Engineering Society of Indi., pp.1/39-1/40, Feb.1995.  

[6] S. W. Arms, C. P. Townsend, D. L. Churchill, J. H. Galbreath, S. W. Mundell, “Power 

management for energy harvesting wireless sensors,”  Proceedings of the SPIE 5763, 267, 

Mar.2005.  

[7] C. Hu, “Future CMOS scaling and reliability,” Proceedings of the IEEE, vol.81, no.5, pp. 682-

689, 1993. 

[8] S. Chatterjee, K. P. Pun, N. Stanic,Y. Tsividis, P. Kinget, “analog circuit design techniques at 

0.5V,” Analog Circuits and Signal Processing, Springer, 2007. 

[9] K. Bult,  “Analog design in deep sub-micron CMOS,” Proceedings of the 26rd European Solid-

State Circuits Conference, pp.126-132, Sep.2000.  

[10] www.mosis.com. 

[11] B. J. Blalock, , P. E. Allen, G.A. Rincon-Mora,  “Designing 1-V op amps using standard digital 

CMOS technology,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal 

Processing, vol.45, no.7, pp. 769-780, Jul. 1998.  

[12] S. Chatterjee, Y. Tsividis, P. Kinget, “0.5-V analog circuit techniques and their application in 

OTA and filter design,” IEEE Journal of Solid-State Circuits, vol.40, no.12, pp. 2373-2387, 

Dec.2005.  

[13] S. S. Rajput, S. S. Jamuar, “Low voltage analog circuit design techniques,” IEEE Circuits and 

Systems Magazine, vol.2, no.1, pp.24-42, 2002.  

[14] M. M. Ahmadi, G. A. Jullien, “Current-mirror-based potentiostats for three-electrode 

amperometric electrochemical sensors,” IEEE Transactions on Circuits and Systems I: Regular 

Papers, vol.56, no.7, pp.1339-1348, Jul.2009.  

[15] E. A. Johannessen, W. Lei, Li Cui; Tong Boon Tang, M. Ahmadian, A. Astaras, S.W. J. Reid, P.S. 

Yam, A.F. Murray, B.W. Flynn, S. P. Beaumont, D. R. S. Cumming, J. M. Cooper, 

“Implementation of multichannel sensors for remote biomedical measurements in a microsystems 

format,” IEEE Transactions on Biomedical Engineering, vol.51, no.3, pp. 525-535, Mar. 2004.  

[16] M. Roham, P. Mohseni, “A wireless IC for wide-range neurochemical monitoring using 

amperometry and fast-scan cyclic voltammetry,” IEEE International Symposium on Circuits and 

Systems, pp.3131-3134, May 2007.  

[17] Joseph D. Bronzino, “The biomedical engineering handbook, second edition,” Chapter 49, 1999. 

[18] R. G. Kakerow, H. Kappert, E. Spiegel, Y.Manoli, “Low power single chip CMOS potentiostat,” 

The 8th International Conference on Solid-State Sensors and Actuator and Eurosensors IX.. 

Transducers, vol.1, pp.142-145, Jun.1995.  



 

102 

[19] R. J. Reay, S. P. Kounaves, G. T. A. Kovacs, “An integrated CMOS potentiostat for miniaturized 

electroanalytical instrumentation,” IEEE International Solid-State Circuits Conference, Digest of 

Technical Papers, pp.162-163, Feb. 1994. 

[20] C.Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K. Oppermann, H. Kapels, 

E. Landgraf, D. Wenzel, D. Etzrodt, “Low power integrated pressure sensor system for medical 

applications,” Sensors and Actuators A: Physical, vol.73, no.1-2, pp. 58-67, Mar.1999.  

[21] M. Breten, T. Lehmann, E. Braun, “Integrating data converters for picoampere currents from 

electrochemical transducers,” IEEE International Symposium on Circuits and Systems, vol. 5, 

pp.709-712, May 2000.  

[22] Willy M C. Sansen, “Analog design essentials,” Springer, pp.18, 2006. 

[23] H. Chun-Yueh, L. Huan-Yu, Yu-Chien Wang, Wei-Yin Liao, Tse-Chuan Chou, “A portable and 

wireless data transmission potentiostat,” IEEE Asia-Pacific Conference on Circuits and Systems, 

vol.2, pp.633-636, Dec.2004.  

[24] S. M. Martin, F. H. Gebara, T.D. Strong, R.B. Brown, “A low-voltage, chemical sensor interface 

for systems-on-chip: the fully-differential potentiostat,” Proceedings of International Symposium 

on Circuits and Systems, vol.4, pp.IV-892-5, May 2004. 

[25] H. S. Narula, J. G. Harris, “VLSI potentiostat for amperometric measurements for electrolytic 

reactions,” Proceedings of International Symposium on Circuits and Systems, vol.1, pp.I-457-60, 

May 2004.  

[26] M. M. Ahmadi, G. A. Jullien, “A very low power CMOS potentiostat for bioimplantable 

applications,” Fifth International Workshop on System-on-Chip for Real-Time Applications, 

pp.184-189, Jul. 2005.  

[27] Jichun Zhang, Yue Huang, N. Trombly, Chao Yang, A. Mason, “Electrochemical array 

microsystem with integrated potentiostat,” IEEE Sensors, Oct.2005.  

[28] S. M. Martin, , F. H. Gebara, B.J. Larivee, R.B. Brown, “A CMOS-integrated microinstrument 

for trace detection of heavy metals,” IEEE Journal of Solid-State Circuits, vol.40, no.12, pp. 

2777-2786, 2005.  

[29] S. B. Prakash, , P. Abshire, M. Urdaneta, M. Christophersen, E. Smela,  “A CMOS potentiostat 

for control of integrated MEMS actuators,” IEEE International Symposium on Circuits and 

Systems, pp. 5558, May 2006.  

[30] S. M. R. Hasan, “Stability Analysis and Novel Compensation of a CMOS Current-Feedback 

Potentiostat Circuit for Electrochemical Sensors,” IEEE Sensors Journal, vol.7, no.5, pp. 814-824, 

2007.  

[31] Y. Chao, , H. Yue, B.L. Hassler, R.M. Worden, A.J. Mason, “Amperometric Electrochemical 

Microsystem for a Miniaturized Protein Biosensor Array,” IEEE Transactions on Biomedical 

Circuits and Systems, vol.3, no.3, pp. 160-168, 2009. 

[32] Stevan B. Saban, Robert B. Darling, “Multi-element heavy metal ion sensors for aqueous 

solutions,” Sensors and Actuators B: Chemical, vol.61, no.1-3, pp.128-137, Dec.1999. 

[33] S. M. Martin, , F. H. Gebara, T.D. Strong, R.B. Brown, “A Fully Differential Potentiostat,” IEEE 

Sensors Journal, vol.9, no.2, pp.135-142, Feb.2009. 

[34] M. R. Haider, S. K. Islam, S. Mostafa, Mo Zhang, Taeho Oh, “Low-power low-voltage current 

readout circuit for inductively powered implant system,” IEEE Transactions on Biomedical 

Circuits and Systems, vol.4, no.4, pp. 205-213, Aug.2010.  

[35] H. Sungkil, S. Sonkusale, “CMOS VLSI Potentiostat for Portable Environmental Sensing 

Applications,” IEEE Sensors Journal, vol.10, no.4, pp. 820-821, 2010.  



 

103 

[36] W.-S. Wang, W.-T. Kuo, Hong-Yi Huang, Ching-Hsing Luo, “Wide dynamic range CMOS 

potentiostat for amperometric chemical sensor,” IEEE Sensors Journal, vol. 10, no.3, pp. 1782-

1797, 2009.  

[37] L. Busoni, , M. Carla, L. Lanzi, “A comparison between potentiostatic circuits with grounded 

work or auxiliary electrode,” Review of Scientific Instruments,  vol.73, no.4, pp. 1921-1923, 2002.  

[38] P. E. Allen, , B. J. Blalock, G.A. Rincon, “ A 1 V CMOS op amp using bulk-driven MOSFETs,” 

IEEE International Solid-State Circuits Conference, pp.192-193, 1995.  

[39] P. Hasler, T. S. Lande, “Overview of floating-gate devices, circuits, and systems,” IEEE 

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.48, no.1, 

pp.1-3, 2001. 

[40] Anantha Chandrakasan, A. W. B. H. C, “Sub-threshold design for ultra low-power systems,” 

Springer, 2006.  

[41] J. F. Duque-Carrillo, J. L. Ausin, G. Torelli, J.M. Valverde, M.A. Deminguez, “1-V rail-to-rail 

operational amplifiers in standard CMOS technology,” IEEE Journal of Solid-State Circuits, 

vol.35, no.1, pp.33-44, 2000.  

[42] R.R. Harrison, C. Charles, “A low-power low-noise CMOS amplifier for neural recording 

applications,” IEEE Journal of Solid-State Circuits, vol.38, no.6, pp.958-965, Jun 2003. 

[43] SANCHEZ-SINENCIO, S. Y. E, “Low voltage analog circuit design techniques: A tutorial,” 

IEICE Transactions on Fundamentals of Electronics, Communications and Computer,  vol.E83-

A, pp.179-196, Feb.2000. 

[44] R. Jacob Baker, “CMOS circuit design, layout and simulation, 2
nd

 edition,” Wiley – IEEE Press, 

2004. 

[45] J. Rosenfeld, M. Kozak, E.G. Friedman, “A bulk-driven CMOS OTA with 68 dB DC gain,” 

Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems, 

pp.5-8, Dec.2004.  

[46] Y. Haga, H. Zare-Hoseini, L. Berkovi, I. Kale, “Design of a 0.8 Volt fully differential CMOS 

OTA using the bulk-driven technique,” IEEE International Symposium on Circuits and Systems, 

vol.1, pp.220-223, May 2005. 

[47] P. Monsurro, G. Scotti, A. Trifiletti, S. Pennisi, “Sub-1V CMOS OTA with body-driven gain 

boosting,” 18th European Conference on Circuit Theory and Design, pp. 535-538, Aug.2007.  

[48] S. A. Zabihian, R. Lotfi, “Ultra-low-voltage, low-power, high-speed operational amplifiers using 

body-driven gain-boosting technique,” IEEE International Symposium on Circuits and Systems, 

pp. 705-708, May 2007.   

[49] K. D. Layton, D. T. Corner, D.J. Corner, “Bulk-driven gain-enhanced fully-differential amplifier 

for VT+ 2Vdsat operation,” IEEE International Symposium on Circuits and Systems, pp.77-80, May 

2008.  

[50] T. Stockstad, H. Yoshizawa, “A 0.9-V 0.5 µA rail-to-rail CMOS operational amplifier,” IEEE 

Journal of Solid-State Circuits, vol.37, no.3, pp.286-292, 2002.  

[51] T. Cheng-Fang, L. Jui-Lin, Rong-Jian Chen, “Using bulk-driven technology operate in 

subthreshold region to design a low voltage and low current operational amplifier,” IEEE Tenth 

International Symposium on Consumer Electronics, pp.1-5, 2006.  

[52] L. H. C. Ferreira, T. C. Pimenta, R.L. Moreno, “An ultra-low-voltage ultra-low-power CMOS 

miller OTA with rail-to-rail input/output swing.” IEEE Transactions on Circuits and Systems II: 

Express Briefs, vol.54, no.10, pp.843-847, 2007. 

[53] M. Trakimas, S. Sonkusale, “A 0.5 V bulk-input OTA with improved common-mode feedback 

for low-frequency filtering applications,” Analog Integrated Circuits and Signal Processing, 

vol.59, no.1, pp. 83-89, 2008. 



 

104 

[54] R. Wang, R. Harjani, “Partial positive feedback for gain enhancement of low-power CMOS otas,” 

Analog Integrated Circuits and Signal Processing, vol.8, no.1, pp.21-35,1995.  

[55] J. M. Carrillo, G. Torelli, R. Perez-Aloe, J.F. Duque-Carrillo, “1-V rail-to-rail bulk-driven CMOS 

OTA with enhanced gain and gain-bandwidth product,” Proceedings of the 2005 European 

Conference on Circuit Theory and Design, vol.1, pp.I/261-I/264, 2005.  

[56] J. M. Carrillo, G. Torelli, R. Perez-Aloe, J.F. Duque-Carrillo, “1-V rail-to-rail CMOS OpAmp 

with improved bulk-driven input stage,” IEEE Journal of Solid-State Circuits, vol.42, no.3, pp. 

508-517,2007.  

[57] J. M. Carrillo, G. Torelli, J.F. Duque-Carrillo, “Transconductance enhancement in bulk-driven 

input stages,” 15th IEEE International Conference on Electronics, Circuits and Systems, pp.13-

16, 2008.  

[58] G. Raikos, S. Vlassis, “0.8 V bulk-driven operational amplifier,” Analog Integrated Circuits and 

Signal Processing, vol.63, no.3, pp. 425-432, 2009. 

[59] Raikos, G. S. Vlassis, “Low-voltage differential amplifier,” 16th IEEE International Conference 

on Electronics, Circuits, and Systems, pp.136-139, May 2009. 

[60] Raikos, G. S. Vlassis, “Low-voltage bulk-driven input stage with improved transconductance,” 

International Journal of Circuit Theory and Applications, vol. 39, no.3,pp. 327-339, 2011.  

[61] B. A, Minch,  “A low-voltage MOS cascode bias circuit for all current levels,” IEEE 

International Symposium on Circuits and Systems, pp.619-622, May 2002.  

[62] C.C. Enz, F. Krummenacher, E.A. Vittoz, “An analytical MOS transistor model valid in all 

regions of operation and dedicated to low-voltage and low-current applications,” Analog 

Integrated Circuits and Signal Processing, vol. 8, no. 1, pp. 82–114, 1995.  

[63] K. Bult, G.J.G.M. Geelen, “A fast-settling CMOS op amp for SC circuits with 90-dB DC gain,” 

IEEE Journal of Solid-State Circuits, vol.25, no.6, pp. 1379-1384, 1990. 

[64] M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, “Matching properties of transistors,” IEEE 

Journal of Solid-State Circuits, vol.24, no.5, pp. 1433-1439, 1989. 

 



 

105 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 



 

106 

A.1 Calculations of the 1-V Bulk-Driven Input Stage Biasing Using EKV 

Model 

The biasing circuitry proposed in [61] can be analyzed using EKV model invented by C.C. Enz et 

al. Since the transistor MC1 is diode connected, the reverse current IReverse,MC1 controlled by the drain 

terminal can be neglected according to Eq.(4.1). As a result, 

 
1 1, ,tot MC Forward MCI I

 

(A.1) 

On the other hand, because the gates of transistors MC1 and MC2 are connected, so as the source 

of MC1 and the drain of MC2, the following equations can be deducted, 
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where m/2 is the size ratio of transistors MC1 to MC2 (i.e. W/LMC1/W/LMC2 = m/2). Meanwhile, the overall 

currents flowing through MC1 and MC2 respectively are supplied by the current sources MB2, MB3 and 

MB4.Their relationship is expressed in Eq.(A.3), 

  
2 1, ,2 1 tot MC tot MCI n I

 

(A.3) 

By substituting Itot,MC2 derived in Eq.(A.2) and Eq. (A.3) into Eq.(A.4), 

 
2 2 2, , , tot MC Forward MC Reverse MCI I I

 
(A.4) 

Eq.(A.5) can be calculated as, 

 
2 2 2, , ,(2 1)

2
  Reverse MC Forward MC Reverse MC

m
n I I I

 
(A.5) 

After rearranging it, the ratio of IForward to IReverse in transistor MC2 can be expressed by, 
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(A.6) 

Similarly, the improved version of the bulk-driven input stage in Fig. 4.2 can be analyzed. 

Eqs.(A.2) and (A.3) are revisited according to the modifications of the size of transistor MC2 and the 

overall current flowing through it. The modified equations are expressed as,  
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 (A.7) 
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As a result, the ratio of IForward to IReverse in transistor MC2 can be expressed by, 
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(A.9) 

 

A.2 Calculations of the Enhanced Transconductance Gm_in_eff in Fig. 4.2 

The proposed 1-V bulk-driven input stage in Fig. 4.2 increases the Gm_in_eff even more by 

employing a more complex auxiliary differential pairs than the one in Fig. 4.1. The auxiliary differential 

pairs consist of transistors ME1,2,3 in Fig. 4.2. Among them, transistors ME1 and ME2 are similar to the 

bulk-driven differential pair in Fig. 4.1 with the output current being the drain current of transistor ME2, 

where the transconductance Gm_inter is expressed in Eq.(A.10) as, 
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(A.10) 

 

Similarly, one pole associated with the node B in Fig. 4.2 is found. With this Gm_inter, the auxiliary 

gain Aaux from inputs to the node A is calculated including transistor ME3 and one pole associated with 
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node A as shown below,  
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(A.11) 

 

Therefore, the overall Gm_in_eff is derived in a similar fashion as the calculation of Gm_inter and can 

be expressed as, 

 
_ _ , ,( )  m in eff aux m MI mb MIG s A g g

 
(A.12) 

 

By substituting Gm_inter and Aaux in Eqs.(A.11) and (A.12), the detailed expressions of Aaux and 

Gm_in_eff are shown in Eqs.(A.13) and (A.14): 
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(A.14) 

 

Since gmb,ME2/gmb,ME3  and gm,ME2 /gm,ME3  are equal to parameter k and gmb/gm are constant between 

transistors ME1,2,3 and MI, Gm_in_eff can be further simplified as, 
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 (A.15) 

At DC, the Gm_in_eff is simply,  

  _ _ ,2 2 m in eff mb MIG k g
 

(A.16) 
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A.3 Calculations of the Zeros and Poles inside the Bulk-Driven Input Stage 

The zeros and the poles can be found inside the proposed bulk-driven input stage (Fig. 4.2) by 

converting the Eq.(4.12) to fraction and equating the numerator and denominator to zero respectively. As 

a result, they are expressed in Eqs.(A.17) and (A.18) as, 
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(A.18) 

 

For simplifying the analysis of the zeros and the poles, the gate transconductance of the 

transistors ME1 and ME3 are normalized to that of the core input pair MI, and the capacitances of CA and 

CB are normalized to that of CGS,MI. Relating the aforementioned i = gm,MI /gm,ME2, j = gm,ME2 /gm,ME1 k = 

gm,ME2 /gm,ME3,  and neglecting the drain-to-source capacitance, the gm,ME1, gm,ME3, CA and CB can be derived 

as,  

 

1, ,

1
m ME m MIg g

ij
 

(A.19) 

 

 

3, ,

1
m ME m MIg g

ik
 

(A.20) 

 

 
,

1
1

 
  
 

A GS MIC C
ik  

(A.21) 

 

 

,

1 1 
  
 

B GS MIC C
i ij

 

(A.22) 

 

To rather not complicate the circuit design procedure by dealing with these non-dominant poles 

and zeros, the drain-to-source current of the transistors ME1A and ME3A are sized to be the same which 
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also indicates that the parameter j is equal to k. Then zA,B and pA,B are derived with respect to gm,MI/CGS,MI 

as well, 
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where parameter j is substituted with k.  

A.4 Calculations of the Input Referred Noise of the Bulk-Driven Input Stage 

The thermal noise and flicker noise of the transistors MI, ME1,2,3 and MB3,4,5 contribute to the 

overall output noise inside the proposed bulk-driven input stage in Fig. 4.2. Calculations of the noise 

current in,th flowing out of the proposed input stage are performed. The noise contribution of each 

transistor is shown in the following while ignoring the series gate and bulk resistance noise for simplicity. 

For the transistor MI, the thermal noise current and flicker noise current are expressed as, 

 2
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where kB is the Boltzmann constant, T is the temperature, ɤ is the gamma noise factor, Kf is the process 

dependent flicker noise constant. 

For the transistor ME3, 
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For the transistor ME2, 
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For the transistor ME1, 
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For the transistor MB3, 
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For the transistor MB4, 
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For the transistor MB5, 
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The overall output noise current is the sum of the previous equations. Then the input referred 

noise voltage of this input stage from both thermal noise and flicker noise are calculated as, 
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The detail expressions are in Eqs.(4.16) and (4.17). 
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