1,776 research outputs found

    Comparator Design in Sensors for Environmental Monitoring

    Get PDF
    This paper presents circuit design considerations of comparator in analog-to-digital converters (ADC) applied for a portable, low-cost and high performance nano-sensor chip which can be applied to detect the airborne magnetite pollution nano particulate matter (PM) for environmental monitoring. High-resolution ADC plays a vital important role in high perfor-mance nano-sensor, while high-resolution comparator is a key component in ADC. In this work, some important design issues related to comparators in analog-to-digital converters (ADCs) are discussed, simulation results show that the resolution of the comparator proposed can achieve 5µV , and it is appropriate for high-resolution application

    Ultra-Low-Power Superconductor Logic

    Full text link
    We have developed a new superconducting digital technology, Reciprocal Quantum Logic, that uses AC power carried on a transmission line, which also serves as a clock. Using simple experiments we have demonstrated zero static power dissipation, thermally limited dynamic power dissipation, high clock stability, high operating margins and low BER. These features indicate that the technology is scalable to far more complex circuits at a significant level of integration. On the system level, Reciprocal Quantum Logic combines the high speed and low-power signal levels of Single-Flux- Quantum signals with the design methodology of CMOS, including low static power dissipation, low latency combinational logic, and efficient device count.Comment: 7 pages, 5 figure

    A 12-bit, 40 msamples/s, low-power, low-area pipeline analog-to-digital converter in CMOS 0.18 mum technology.

    Get PDF
    With advancements in digital signal processing in recent years, the need for high-speed, high-resolution analog-to-digital converters (ADCs) which can be used in the analog front-end has been increasing. Some examples of these applications are image and video signal processing, wireless communications and asymmetrical digital subscriber line (ADSL). In CMOS integrated circuit design, it is desirable to integrate the digital circuit and the ADC in one microchip to reduce the cost of fabrication. Consequently the power dissipation and area of the ADCs are important design factors. The original contributions in this thesis are as follows. Since the performance of pipeline ADCs significantly depends on the op-amps and comparators circuits, the performance of various comparators is analyzed and the effect of op-amp topology on the performance of pipeline ADCs is investigated. This thesis also presents a novel architecture for design of low-power and low-area pipelined ADCs which will be more useful for very low voltage applications in the future. At the schematic level, a low-power CMOS implementation of the current-mode MDAC is presented and an improved voltage comparator is designed. With the proposed design and the optimization methodology it is possible to reduce power dissipation and area compared with conventional fully differential schemes.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .M64. Source: Masters Abstracts International, Volume: 43-01, page: 0281. Adviser: C. Chen. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance

    A 10-Gb/s two-dimensional eye-opening monitor in 0.13-μm standard CMOS

    Get PDF
    An eye-opening monitor (EOM) architecture that can capture a two-dimensional (2-D) map of the eye diagram of a high-speed data signal has been developed. Two single-quadrant phase rotators and one digital-to-analog converter (DAC) are used to generate rectangular masks with variable sizes and aspect ratios. Each mask is overlapped with the received eye diagram and the number of signal transitions inside the mask is recorded as error. The combination of rectangular masks with the same error creates error contours that overall provide a 2-D map of the eye. The authors have implemented a prototype circuit in 0.13-μm standard CMOS technology that operates up to 12.5 Gb/s at 1.2-V supply. The EOM maps the input eye to a 2-D error diagram with up to 68-dB mask error dynamic range. The left and right halves of the eyes are monitored separately to capture horizontally asymmetric eyes. The chip consumes 330 mW and operates reliably with supply voltages as low as 1 V at 10 Gb/s. The authors also present a detailed analysis that verifies if the measurements are in good agreement with the expected results

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    A low kickback fully differential dynamic comparator for pipeline analog-to-digital converters

    Get PDF
    This study presents a fully differential dynamic comparator with low kickback noise, an effect caused by voltage variations in the regeneration nodes of these types of circuit. Given their low power dissipation, dynamic comparators are key circuits in analog-to-digital converters (ADCs), especially in pipelined ADCs. The proposed comparator has been simulated and compared with three other comparator topologies. The value of the kickback noise generated by the proposed circuit is lower than that generated by other conventional dynamic comparators over a wide input range, while simultaneously showing a low offset voltage error. The dynamic comparator has been implemented in a low-resolution ADC with a resolution of 2.5 effective bits, which has been prototyped in a 0.35-m CMOS AMS C35B4 process. Its size is 34 m × 38 m.This work has been partially funded by Spanish government projects TEC2015‐66878‐C3‐2‐R (MINECO/FEDER, UE) and RTI2018‐097088‐B‐C33 (MINECO/FEDER, UE)

    Analyses and design strategies for fundamental enabling building blocks: Dynamic comparators, voltage references and on-die temperature sensors

    Get PDF
    Dynamic comparators and voltage references are among the most widely used fundamental building blocks for various types of circuits and systems, such as data converters, PLLs, switching regulators, memories, and CPUs. As thermal constraints quickly emerged as a dominant performance limiter, on-die temperature sensors will be critical to the reliable operation of future integrated circuits. This dissertation investigates characteristics of these three enabling circuits and design strategies for improving their performances. One of the most critical specifications of a dynamic comparator is its input referred offset voltage, which is pivotal to achieving overall system performance requirements of many mixed-signal circuits and systems. Unlike offset voltages in other circuits such as amplifiers, the offset voltage in a dynamic comparator is extremely challenging to analyze and predict analytically due to its dependence on transient response and due to internal positive feedback and time-varying operating points in the comparator. In this work, a novel balanced method is proposed to facilitate the evaluation of time-varying operating points of transistors in a dynamic comparator. Two types of offsets are studied in the model: (1) static offset voltage caused by mismatches in mobilities, transistor sizes, and threshold voltages, and (2) dynamic offset voltage caused by mismatches in parasitic capacitors or loading capacitors. To validate the proposed method, dynamic comparators in two prevalent topologies are implemented in 0.25 μm and 40 nm CMOS technologies. Agreement between predicted results and simulated results verifies the effectiveness of the proposed method. The new method and the analytical models enable designers to identify the most dominant contributors to offset and to optimize the dynamic comparators\u27 performances. As an illustrating example, the Lewis-Gray dynamic comparator was analyzed using the balanced method and redesigned to minimize its offset voltage. Simulation results show that the offset voltage was easily reduced by 41% while maintaining the same silicon area. A bandgap voltage reference is one of the core functional blocks in both analog and digital systems. Despite the reported improvements in performance of voltage references, little attention has been focused on theoretical characterizations of non-ideal effects on the value of the output voltage, on the inflection point location and on the curvature of the reference voltage. In this work, a systematic approach is proposed to analytically determine the effects of two non-ideal elements: the temperature dependent gain-determining resistors and the amplifier offset voltage. The effectiveness of the analytical models is validated by comparing analytical results against Spectre simulation results. Research on on-die temperature sensor design has received rapidly increasing attention since component and power density induced thermal stress has become a critical factor in the reliable operation of integrated circuits. For effective power and thermal management of future multi-core systems, hundreds of sensors with sufficient accuracy, small area and low power are required on a single chip. This work introduces a new family of highly linear on chip temperature sensors. The proposed family of temperature sensors expresses CMOS threshold voltage as an output. The sensor output is independent of power supply voltage and independent of mobility values. It can achieve very high temperature linearity, with maximum nonlinearity around +/- 0.05oC over a temperature range of -20oC to 100oC. A sizing strategy based on combined analytical analysis and numerical optimization has been presented. Following this method, three circuits A, B and C have been designed in standard 0.18 ym CMOS technology, all achieving excellent linearity as demonstrated by Cadence Spectre simulations. Circuits B and C are the modified versions of circuit A, and have improved performance at the worst corner-low voltage supply and high threshold voltage corner. Finally, a direct temperature-to-digital converter architecture is proposed as a master-slave hybrid temperature-to-digital converter. It does not require any traditional constant reference voltage or reference current, it does not attempt to make any node voltage or branch current constant or precisely linear to temperature, yet it generates a digital output code that is very linear with temperature

    16-bit Digital Adder Design in 250nm and 64-bit Digital Comparator Design in 90nm CMOS Technologies

    Get PDF
    High speed, low power, and area efficient adders and comparators continue to play a key role in hardware implementation of digital signal processing applications. Adders based on Complimentary Pass Transistor Logic (CPL) are power and area efficient, but are slower compared to Square Root Carry Select (SQRT-CS) based adders. This thesis demonstrates a unique custom designed 16-bit adder in 250-nm CMOS technology to obtain fast and power/area efficient features by combining CPL and CS logic. Comparing the results obtained for proposed 16-bit Linear CPL/CS adder with the BEC (Binary Excess-1 Code) based low power SQRT-CS adder, the delay is reduced by approximately one thirds, power is reduced by 19.2%, and the number of transistors is reduced by 23.4%. Also, new tree-based 64-bit static and dynamic digital comparators are presented in this thesis to perform high speed and low power operations. This tree-based architecture combines a new approach of designing dynamic comparator using a low duty cycle clock to reduce the short circuit power consumption in pre-charge (or pre-discharge) mode. This work also introduces a new sizing strategy and load balancing techniques to improve self-pipelining tendency of a tree based design. A resource sharing technique is also integrated in both static and dynamic comparator designs. At 1.2V power supply in CMOS 90nm technology, worst path delay and worst power are 374ps and 822µW, respectively for low cost static design with 1244 (768+476) transistors in total. 768 transistors are used for resource sharing. The proposed full and partially dynamic designs show superior power efficiency compared to recent state of art designs. The worst power consumptions at 5GHz and 25% (50ps) duty cycle clock for the 64-bit full and partially dynamic comparator designs are 5.00mW and 2.78mW, respectively. 769 (320+449) transistors includes 320 transistors for resource sharing, and 1217 (768+449) includes 768 transistors for resource sharing for full and partial dynamic comparators, respectively
    corecore