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Abstract

With advancements in digital signal processing in recent years, the need for high-speed, 

high-resolution anaiog-to-digital converters (ADCs) v/hich can be used in the analog 

front-end has been increasing. Some examples o f these applications are image and video 

signal processing, wireless communications and asymmetrical digital subscriber line 

(ADSL). In CMOS integrated circuit design, it is desirable to integrate the digital circuit 

and the ADC in one microchip to reduce the cost of fabrication. Consequently the power 

dissipation and area of the ADCs are important design factors.

The original contributions in this thesis are as follows. Since the performance of pipeline 

ADCs significantly depends on the op-amps and comparators circuits, the performance of 

various comparators is analyzed and the effect of op-amp topology on the performance of 

pipeline ADCs is investigated. This thesis also presents a novel architecture for design 

of low-power and low-area pipelined ADCs which will be more useful for very low- 

voltage applications in the future. At the schematic level, a low-power CMOS 

implementation of the current-mode MDAC is presented and an improved voltage 

comparator is designed. With the proposed design and the optimization methodology it is 

possible to reduce power dissipation and area compared with conventional fully 

differential schemes.

Ill
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Chapter 1

Introduction

1.1 Motivation

The quality and performance of the modem electronics devices require extensive digital 

signal processing. High-definition television, multimedia systems, wireless 

communication systems, radar systems, modems, control systems are some examples 

where digital signal processing is mandatory.

Data converters are required for the interface between analog circuits and digital circuits. 

Figure 1.1 shows the general digital signal processing systems.

Analog
signal

Digital
signal

Digital
signal

Analog
signal

ADC DAC
Digital
signal
processor

Figure 1.1; General Digital Signal Processing Systems

As CMOS technology enables manufacturing of battery-powered and portable devices by 

scaling down the size of transistors and supply voltage, the need for low-power design 

techniques becomes more demanding. Consequently design of high-speed and low-power
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ADCs is vital for modern electronics devices. The pipeline ADCs are suitable for low- 

power and high-speed applications and therefore it is the natural choice for these 

applications.

1.2 Research focus

The tradeoff between speed, resolution and power dissipation makes the design of ADCs 

a multidimensional design and challenging. Although the conventional pipeline ADCs 

allow high conversion rate with high accuracy, the low-voltage design limitations bring 

new challenges. In fact it is known that reducing supply voltage will increase the power 

dissipation of pipeline ADCs when high signal to noise ratio is required [1]. Therefore 

developments of new low-voltage pipeline architectures, which allow power optimization 

is essential. In this thesis, the main focus is to develop such an architecture, which will 

lead to power optimization of pipeline ADCs.

1.3 Thesis organization

This thesis presents a theoretical study and design of a novel pipeline ADC architecture 

as well as circuit techniques developed during the course of this research.

Chapter 2 reviews applications of ADCs and conventional ADC architectures. The 

ADCs performance parameters and Figures of merit used to evaluate the overall 

performance of ADCs are also described.
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Chapter 3 describes the general design considerations at the architecture level in pipeline 

ADCs such as effect of non-idealities, digital correction logic and redundancy.

Chapter 4 presents circuit level design of various building blocks used in pipeline ADCs. 

Also theoretical analysis is performed on performance of various building blocks such as 

comparators and op-amps.

Chapter 5 introduces a novel pipeline architecture and design and performance evaluation 

of a 12-bit, low-power and low-area pipeline ADC. Finally the conclusions and future 

works are given in chapter 6 .
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Chapter 2

Analog to digital conversion techniques

2.1 Introduction

As shown in Figure 2.1 an n-bit analog-to-digital converter, converts the input signal Vm 

to a digital binary output with respect to the reference voltage (Vref)- The reference 

voltage defines the input range of the ADC. Mathematically the relation between input 

and output is given by:

K, -  VrefiBita-' + B it ,2 -^  + . . .+ * Y „ 2 - )  (2.1)

The main requirements for ADCs are accuracy, speed, power dissipation and microchip

area. Therefore there exist various conversion techniques for a given set of requirements. 

For example in some applications high speed and high accuracy are a must while the 

power dissipation is not an important design consideration. An example of such 

applications is some of the high-speed data acquisition systems [2], On the other hand 

there are some devices, which require very low-power dissipation and reasonable 

accuracy, but the high conversion rate is not needed, such as hearing aids devices [3]. In 

this chapter various data conversion techniques and their applications are discussed.
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Ill order to assess the performance and accuracy of analog-to-digital converters, a number 

of parameters are used. This chapter also presents the static and dynamic parameters. 

Finally, two of the well-known figure-of-merits (FOM) which are used to evaluate the 

overall performance of ADCs are given.

Analog
input

V.„

V.ref

Output

Figure 2.1; Block diagram of an n-bit ADC 

2.2 Successive approximation

The successive approximation ADC works similar to a binary search algorithm [4]. The 

binary search begins with the most significant bit and goes toward the least significant 

bit. As shown in Figure 2.2, first the input signal is sampled and held. The output of the 

comparator is set to 1 if  input is greater than the digital to analog converter’s (DAC) 

output and 0 otherwise. The successive approximation register (SAR) will store the 

intermediate bits. The advantages of successive approximation ADCs are their high 

resolution, simple circuitry and small area and low power dissipation, however it is 

difficult to achieve high conversion rate due to the feedback. Also the accuracy is limited 

by performance of the comparator and DAC. The successive approximation is used often
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in portable and battery powered devices, which do not require high conversion rate. The 

achievable resolution and speed are up to 20 bits and lOKHZ-IMHZ, respectively.

Vin Sample
And
Hold

NBits

Comparator

Figure 2.2: The successive approximation ADC architecture.

2.3 Sigma-delta ADC

The general architecture of sigma-delta ADCs is shown in Figure 2.3 [5]. The input 

signal comes into the difference amplifier and passes through integrator. The comparator 

compares the integrator’s output with ground and produces a 1 or 0. Comparator’s output 

is fed to a digital filter and to a 1-bit DAC. The feedback loop forces the average of the 

signal to be equal to the input signal. The purpose of the integrator is noise shaping 

which reduces quantization error. Using sigma-delta ADCs, very high resolution (up to 

24 bits) can be achieved, however the speed of recent sigma-delta ADCs is limited to 

about 1-MHZ. Therefore they are used in high precision devices such as weight scales 

and some hearing aids devices.
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Difference 
Yjjj Amplifier Integrator

Comparator
Digital

Digital
Filter

1-Bit
DAC

Figure 2.3: The general architecture of sigma-delta ADCs

2.4 Flash ADC

The flash architecture is the fastest possible way to convert analog signals to digital 

signals, due to its parallel architecture [4]. As shown in Figure 2.4, the input signal 

voltage is fed simultaneously to one of the inputs of each comparator which, their other 

inputs are connected to 2^-1 equally spaced reference voltages. The outputs of all 

comparators are processed by a logic circuit to produce N bits at the output. Therefore to 

produce N bits, 2^-1 comparators are required. The exponential relation between the 

resolution and number o f comparators makes this architecture feasible for only low- 

resoiution applications. Typical applications for flash ADCs are data acquisition and 

high-density disk drives with 4-8 bits, and up to 500MHZ sampling rate.
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Vin
Comparator

Comparator 
2

Comparator

BitN

Figure 2.4: The flash architecture 

2.5 Multi-step SHbranglng ADC

The architecture o f a 2N bit resolution subranging is shown in Figure 2.6. Input signal is 

sampled by the sample-and-hold (S/H) circuit. The first N-bit flash ADC produces the 

most N significant bits. Then the digital output is converted back to analog and subtracted 

firom original input to produce a residue. The residue is amplified and is used by the 

second flash ADC to produce the other N least significant bits.

The advantage of the subranging ADC over the flash quantizer is the reduced number of 

comparators, therefore it consumes less power and area. However it requires high 

accuracy DAC, amplifier and subtracter. The performance of the subranging ADC is 

limited by the amplifier. Some of the applications are cellular phones, telecommunication 

and battery powered devices, however recently the pipeline ADCs are used more often
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for these applications due to their superior performance. The speed of th the subranging 

ADCs is limited tolOOkHZ-lOMHZ.

Amplifier
Sample

N-bit
flash
ADC

N-bit \  
DAC J

N-bit 
flash 

\  ADC
LSB

MSB

Figure 2.5: The architecture of a 2N-bit 2-step subranging ADC.

2.6 Pipelined ADC

The pipelined ADC is the same as the multi-step subranging with the difference that 

pipelining is applied to the architecture. Architecture of an N-bit pipeline ADC is shown 

Figure 2.6 [7], The input is sampled and held by the S/H circuit. The sampled signal is 

processed by the first stage to produce digital outputs and the analog output. The digital 

output is stored in digital delay line and analog output is processed by the second stage. 

While the second stage is processing the analog output of the previous stage, the previous 

stage is processing a new sample. Each stage is in fact a low-resolution 2-step 

subranging ADC. Figure 2.7 shows the genetic architecture of the stages. The pipelining 

speeds up the conversion rate with relatively smaller power dissipation and area. Pipeline 

ADCs are used in a variety of applications, which require IMHZ-IOOMHZ conversion 

rate with low power dissipation such as digital cameras, video recorders, ultrasonic, IF
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digitization, as}mmetrical digital subscriber (ADSL) and etc. In chapter 4 the 

architecture of pipeline ADCs will be discussed in greater details.

----► Stage Stage Stage
1 I s

O-bits Ni-bits Ns-bits

)igital Delay Line

M-bits

Digital Correction Logic

N-bits

Figure 2.6: Generic architecture of pipeline ADCs

2Nj

Vin Vout
S/H

Residue
amplifierSub

DAC

Figure 2.7: Generic architecture of stages.

2.7 Parallel pipeline ADC

Very high sampling rate and wide-band A/D conversion is required in wireless 

communication standards such as the Universal Telecommunication System (UMTS), 

Wireless Local Loop (WLL) and Local Multipoint Distribution Services (LMDS). By

10
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applying parallelism to pipeline ADCs with equal resolution, the sampling rate can be 

increase [6 ]. Figure 2.8 shows the basic architecture for parallel pipeline ADCs. The 

sampling period is divided by the number of pipeline ADCs. At any given time, input 

signal is sampled and processed by one of the pipeline ADCs.

In
Out

MUXDEMUX

Pipeline ADC 1

Pipeline ADC

Pipeline

Figure 2.8: Parallel pipeline ADC with M channels.

2.8 Static parameters

In order to assess the static performance of the ADCs, a number of parameters are used. 

Figure 2.9 shows ideal and non-ideal input/output characteristics of a 3-bit ADC. For an 

ideal N-bit ADC with input range, Vin=[0,Vref], the transition voltages, Vtn are given by:

V
V  =Tn 2  N ■M (2.2)

11
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The quantization step, V ls b , is the difference between any of the two successive 

transition voltages. The static parameters are directly measured by comparison between 

the ideal and actual output transitions [7].

2 J . l  Offset, full-scale and gain errors

The offset error is defined as deviation of the first transition voltage, Vti’ from the ideal 

transition Vn and is expressed in LSB at N-bit level.

l < „ < 2 « - 2  (2.3)
^  LSB

The full-scale error is the deviation of the last transition voltage from ideal case and is 

expressed in LSB at N-bit level.

V - V„  r(2 "-i)' r (2"-i) (o  4 \
E f s -  ^

LSB

The gain error is defined as ratio between slopes of straight lines connecting two 

endpoints of idea! and real characteristics and is expressed in %.

F =Gain

‘'V —V .
V — V

\  T ( 2 " - D  T l j

.100 (2.5)

12
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2.8.2 Integral and differential non-linearity errors

The integral non-linearity (ML) is defined as deviation of each transition voltage of each 

code from the ideal transition voltage estimated from the straight line connecting the two 

endpoints.

INL{n) = -V n n , - ( n - W i s B ' ~ V r v l < n < 2 ^ - I  (2 .6)

The differential non-linearity (DNL) errors can be defined as the difference between a 

real quantization step and the ideal quantization step, after removing the gain error.

a m w  = M il .
ÎSB'

(2.7)

Full
scale
error

Digital
Output

INL

DNL

110
101
100
oil
010
001
000

Offset

(dashed-Ideal conversion case)

Analog Input
VTI VT2 VT3 VT4 VT5 VT6 VT7 Vref

Figure 2.9; The idea! and non-ideal input/output characteristics of a 3-bit ADC
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2 3  Dynamic parameters

The dynamic parameters show the performance of an ADC for a given input frequency at 

the sampling frequency [8]. In order to estimate the dynamic perfomance, a full-scale 

sine wave is applied and an FFT analysis is performed on the numbers at the output [9], 

The spectral gives information about sigaal-to-noise ratio (SNR) and total haraionic 

distortion (THD). Figure 2.10 shows a plot of 2048 point FFT of a t3q)ica! ADC.

Magnitude{dB)

4 6 8 10
Frequency (MHZ)

Figure 2.10: FFT spectrum of an ADC with 4 MHz input sine wave.

2.9.1 Signal-to-noise ratio:

Signal to noise ratio (SNR) is the ratio between the signal power and the summation of 

total noise power. It includes both the circuit noise and the quantization noise. The 

theoretical maximum achievable SNR of an N-bit ADC is given by:

14
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S N R ^  = 6.Q2.N +1.76 (2.8)

The SNR of the Figure 2.10 is about 40 dB and is obtained by summation of the total 

power of noise excluding the total harmonics.

2.9.2 Total harmonic distortion

The total harmonic distortion (THD) is directly related to M L errors in the circuit [9].

By definition THD is expressed as:

J  (2.9)

Where Nh, A (fi„) and A (n.fm) represent, respectively, the number of harmonics, the 

amplitude of the fundamental and the amplitude of the several harmonics.

The THD of the Figure 2.10 is about 44 dB.

2.9.3 Signal-to-noise plus distortion ratio

Signa!-to-Noise plus Distortion ratio (SNDR) is the ratio between the signal power and 

the noise plus harmonic distortion power measured at the converter’s output.
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2.9.4 Spurious free dynamic range

The spurious free dynamic range (SFDR) is the ratio of signal to maximum amplitude of 

the noise or harmonics. It basically shows the overall purity of the spectrum at the output 

of ADC. The SFDR is always limited by one of the harmonics, since the magnitude of 

noise is always less than the harmonics.

2.9.5 Effective number of bits

Effective number of bits (ENOB) is a function of the input signal frequency and shows 

the effective resolution of the ADC.

(2 ,10)

Where, SNDRdBlfin) is the measured SNDR of the ADC for the input frequency.

2.10 Figures-of-merit

In order to evaluate and compare the performance of ADCs, Figures of merit must be 

used. Two of the most important design considerations for ADCs are power dissipation 

and microchip area against their overall performance. Power dissipation is important in
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portable and battery-powered devices and area determines the cost of microchip 

fabrication. The following Figures of merit are used common for evaluation [10]:

POM  = — ——  (2.11)r̂ ENOB

FOM . =
A (2.12)

2 p

FOMl basically, determines the required power in order to achieve the given speed and 

accuracy. F0M2 expresses the cost of fabrication in terms of area for a given

performance. In these Figures of merit, ENOB is used, since it is probably the parameter 

that describes the overall accuracy of the ADC.

2.11 Conclusions

In this chapter a number of well-known data conversion techniques and their applications 

were presented. The advantage of using pipeline architectures over others is high 

conversion rate with lower power and area consumption. Also, a number of parameters 

which are used to assess the static and dynamic performances of ADCs were presented.

In order to compare the performance of various ADCs, two figure-of-merits were 

introduced. FOMl describes the cost in terms of power dissipation and F0M2 describes 

the cost in terms of area, for a given performance.
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Chapter 3

Design considerations for pipeline ADC architectures

3.1 Introduction

As explained in chapter 2, the advantages of the pipeline architectures are high throughput 

rate, low power dissipation and low hardware cost. The high throughput rate of the 

pipelined architectures stems from concurrent operation of the stages. As shown in Figure

3.1 [7], each stage is consisted of a low-resolution flash quantizer (SUB-ADC) and a 

multiplying digital to analog converter (MDAC). The flash quantizer produces a low- 

resoiution digital output proportional to the input signal. The function of the MDAC is to 

convert the digital output to analog, subtract the result from the input signal to produce a 

residue and multiply the residue by 2 '̂, where N is the resolution of that stage. 

Mathematically, function of an ideal MDAC is described by [11];

K , a = 2 ^ ' x ( F , - D K ^ )  (3.1)

Where D is digital output of the sub-ADC.
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At any time, the first stage operates on the most recent sample, while the next stage 

operates on the amplified residue from previous sample. However due to non-idealities in 

circuits gain and non-linearity errors are introduced. In this chapter effect of non­

idealities in the flash quantizer and the MDAC on the performance of the pipeline ADCs 

at the architecture level is analyzed.

s ta g e  1 S tage  i Last Stage

Vin

ML-b«M-bitN-bit

M-M

FLASHFLASH

MDAC

FLASH

MDAC

Delay line and Digital Correction

Figure 3.1; General architecture of an M-bit pipelined ADC

Vin

► Bit 1

Comparatoi 
7 Digital

Comparator 
2^1

VreP^-i)

BitN

Figure 3.2: N-bit Flash quantizer
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3.2 Non-idealities in the flash quantizers

Figure 3.2 shows typical architecture of an N-bit flash quantizer. Due to deviation of the 

reference voltages (Vrefi...VrefN) from their ideal values and the offset errors in the 

decision levels of the comparators, error is introduced in the flash quantizer. A 2-bit 

stage is considered as an example to analyze the effect of errors in the flash quantizer on 

perfomance of the stages. A 2-bit quantizer requires 4 comparators to define the 

operation region of the MDAC. The value of amplified residue to be processed by the 

next stage is given by;
Digital

-v.-^<v,.<-v,^n 00
-v,.,n<v„<o 01

o < n < + C , , / 2
Vout —

{ a v in + ^Kef , i f

4Vin + Kef J f
4V.„ -Kef J f
4V.m-3K , f J f

Figure 3.3 shows the plot of input/output characteristics of an ideal 2-bit stage.

Amplified residue

+Vref

-Vref/2

-Vref -Vref/2-V ref -s-Vref

Input Voltage

Figure 3.3: Residue amplification characteristic of the 2-bit stage.
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With errors in the flash quantizer, the produced digital bits can be wrong. Therefore the 

analog input/output characteristic of the stage is changed. As shown in Figure 3,2, the 

errors cause the amplified residue to go out of the input range of the next stage. In this 

case the errors can not be corrected. A common practice to correct the effect of errors in 

the quantizer is to add redundancy in digital output bits of the stages [12, 13]. The 

redundancy is introduced by making the sum of the individual stage resolutions greater 

than the total resolution of the ADC. When the redundancy is eliminated by using a 

digital correction algorithm, the effect of the quantizers errors is eliminated. However it 

is necessary to keep the input signal of each stage within the correct range.

Amplified residue

+Vref/2

-Vref/2

-Vref

+Vref/20 +Vref-Vref/2-Vref

Input Voltage

Figure 3.4; Effect of quantizer offset error on residue amplification characteristic
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Figure 3.5 shows, the popular 1.5 bit stage characteristic [14, 15], The decision levels of 

the comparators are shifted by Vref/4, while the stage gain is 2. The idea is to introduce 

offset such that, even with offset errors up to Vref/4 in the quantizer, the output range is 

still within the input range of the next stage. Another advantage of the 1.5 bit 

architecture is that only 3 comparators are used. Figure 3.6 shows the characteristic o f a

1.5 bit stage with offset errors up to Vref/4. Clearly the amplified residue is still within 

the range. Therefore it can be corrected by digital correction logic. For the 1.5 bit 

architecture the input/output characteristic is given by:

Vout =

Digital

J f ~V,ef<V^n<-Kef^^ 00

2 f;, J f - K e f ^ ^ < K < + V , ^ l 4 01
(3.3)7 V  - VA  in  ̂ref J f + K , f / 4 < v „ < + K , , 10

+Vref

-Vref/2

-Vref/4 0 +Vref/4 +Vref

Figure 3.5: residue amplification of 1.5 bit stage
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+Vref

+Vref/2

-Vref/2

-Vref
-Vref/4 0 +Vref/4 +Vref-Vref

Figure 3.6; Effect of quantizer errors

Figure 3.7 shows a 10-bit pipeline ADC using the 1.5 bit architecture. The reference 

voltage is IV and the input signal is -0.6V. The analog and digital output of each stage is 

also shown. The digital logic correction simply adds the most significant bits (MSB) of 

the stages to the least significant bits (LSB). Note that the most negative value 

corresponds to “0 0 0 0 0 0 0 0 0 ” and the most positive value corresponds to “1 1 1 1 1 1 1 1 1 1”.

-0.2V -0.4V 0.2V 0.4V -0.2V -0.4V 0.2V 0.4V
-0.6 V

10 Bits

Stage StageStageStage Stage StageStageStage Stage

Delay Line and Digital Logic Correction

Figure 3.7: A 10-bit pipeline ADC with 1.5 bit stage resolution
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The operation of the digital correction logic is as follows:

0 0 0 0 1 0 0 0 1  M S B

+ 010101010 LSB

0011001100  = - 0.6

Figure 3.8 shows the 10-bit pipeline with offset errors in its comparators as Figure 3.6. 

As a result the produced analog and digital outputs of the stages are wrong. With digital 

correction logic, the final result is corrected.

-0.2V 0.6V 0.2V -0.6V -0.2V 0.6V 0.2V -0.6V

-0.6 V stage

irOO

10 Bits

Stage Stage StageStageStage Stage Stage Stage

Delay Line and Digital Logic Correction

Figure 3.8: Produced errors in the stages due to errors in the quantizers.

0 0 1 1 0 0 1 1 0  MSB 
+  0 0 0 0 0 0 0 0 0  L S B

0011001100  =  - 0.6

3.3 Non-idealities in the MDAC

Figure 3.9 shows the architecture of a 1.5-bit MDAC. The errors introduced in the 

MDAC are due to non-idealities in the residue-amplifier, sample-and-hold (S&H) and 

subtracter. Clearly the error in the residue amplifier produces gain errors, resulting the
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output to be smaller or larger than input range of the next stage. Figure 3.10 shows the 

effect of error in the residue amplifier. The S&H and subtracter will also produce non- 

linearity errors as shown in Figure 3.11. To correct the errors in the MDAC analog or 

digital calibration algorithms are used which are more sophisticated than the digital 

correction logic used to correct the effect of errors in quantizers. A complete description 

of these calibration techniques are given in [16, H]-

Vin I Vout
S&H

Residue
amplifier

Sub
ADC

Sub
DAC

lLl.5-bits

MDAC

Figure 3.9: 2-bit MDAC

+Vref/2

-Vrei/2

-Vref/4 0

Figure 3.10: Effect of op-amp finite gain on output characteristic (Solid line is the ideal)
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+Vref

-Vref/2

-Vref

-r Vref/4 -rVrsf-Vref -Vref/4 0

Figure 3.11: Effect of non-idealities of SUB-ADC on output characteristic

3.4 Concliisioas

In this chapter, design considerations for pipelined ADCs at the architecture level was 

discussed. Effect of non-idealities in the flash quantizers and the MDACs on the pipeline 

ADCs appear as gain and no-linearity errors. The effect of errors in the flash quantizers 

can be completely corrected using the digital logic correction. The errors produced by 

the MDACs can be reduced by applying calibration techniques in analog or digital 

domain. Therefore it can be concluded that the accuracy of pipeline ADCs is limited by 

performance of the MDACs.
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Chapter 4

Circuit design considerations for pipeline ADCs

4.1 Introduction

In this chapter, the design of the ADC’s building blocks as well as design considerations 

with low supply voltage are discussed. As the CMOS technology continues to scale 

down the devices and the supply voltage, new circuit design techniques are required to 

cope with some of the limitations. As device dimensions shrink, the applied voltages will 

need to be proportionately scaled in order to guarantee long-term reliability and manage 

power density [18]. In general the analog circuits are designed either in voltage-mode or 

current-mode. The advantages and disadvantages of each design mode is another topic to 

discuss in this chapter.

4.2 Low-voltage design limitations

In conventional analog CMOS design the circuits are designed often in voltage mode. 

Specifically in pipeline ADCs, the switched-capacitor circuits are used in front-end S/H, 

multiplying digital to analog converters (MDAC) and preamplifiers for comparators. The 

switch capacitor circuits contain three components, namely, switches, op-amps and 

capacitors. Advances in CMOS technology, however, are driving the operating voltage
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of integrated circuits increasingly lower. Consequently this will have an effect on 

reliability o f CMOS switches and op-amps.

4.2.1 Effect of lowering voltage on switches

As the supply voltage is reduced, the Ron resistance of switches is increased. This will 

make the switches far from ideal. Although, by using transmission gate, the dynamic 

range of switches can be increased, as discussed in [18] transmission gates cannot be 

directly realized on a supply voltage below the sum of the two threshold voltages. 

Fortunately, for the technology that is used in this work, the threshold voltages of NMOS 

and PMOS are about 0.6 volts and the supply voltage is 1.8 volts. Therefore by 

increasing the width (W) of transistors, the Ron resistance can be reduced. However 

increasing the size of switches will also have two disadvantages. First, clock feed- 

through and charge injection will be increased, which can significantly degrade the 

accuracy of the ADC. This can be seen from expressions for the clock feed-through and 

charge injection given in the following equations respectively [19]:

AF = F     (4.1)
clock-feedthrough ck ^

+ C//

A F  _  WLCg  ̂(FDP K/2 ^th )  /A
ch arg e-injection

ZCh

Where, Cqv, Cqx and Ch represent the overlap capacitance, the gate oxide capacitance and 

the sampling capacitor, respectively.
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The second drawback is that the capacitive load on the op-amps is increased which 

increases the power dissipation. In some cases where the sum of threshold voltages is 

higher than the supply voltage, a common solution is to use a bootstrap circuit, which 

will increase the voltage for switches locally [2 0 , 2 1 ].

4.2.2 Effect of lowering voltage on op-amps

Another design complication with low-voltage is the difficulty in biasing the op-amps. 

This is because, it is desirable to bias the transistors as to increase the output swing. This 

is necessary to achieve acceptable SNR in medium and high resolution pipeline ADCs. 

However this becomes difficult in low-voltage applications since reducing the overdrive 

voltage of transistors will degrade the surface mobility [22]. Using 2-stage topologies 

also requires compensation to avoid the instability problem. This will usually degrade 

the band-with, therefore reducing the speed of pipeline ADCs.

4.2.3 Voltage-mode versus current-mode design

In current-mode circuit design, the signals are represented by current rather than voltage. 

The main building block in current-mode circuits is the current mirror. The accuracy of 

the current mirrors depends on the matching accuracy of transistors. For this reason, it is 

difficult to design high accuracy circuits in current-mode since there is always mismatch 

between devices due to errors in VLSI fabrication process. However the current-mode 

VLSI design has several advantages over the voltage mode approach [23-25].
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Firstly the current-mode IC design is compatible with digital IC design since it does not 

require high linear capacitors as opposed to switched-capacitor circuits. Secondly, the 

basic functions, such as scaling, summation and subtraction can be easily implemented 

without using op-amps. Thirdly, the voltage swing required in current-mode circuits is 

smaller than that in voltage-mode circuits due to the square I-V law of MOS transistors 

operated in saturation region. This advantage makes the current-mode approach suitable 

for low-voltage application. Fourthly, the current-mode approach usually results in low- 

power dissipation without sacrificing the speed.

4.3 Comparators

Low power and low voltage circuit design techniques are required for portable devices. 

Since analog-to-digital converters are the link between the analog and digital domain, it is 

essential to design these circuits with minimum amount of power. High conversion rate 

and low power is desirable in a number of applications, including visual-data processing 

systems, hard disk controllers, handy data terminals, and so forth [26]. The pipelined A/D 

converters are the preferred architectures in terms of speed and power dissipation [26- 

29]. The performance of A/D converters that have the pipelined architecture strongly 

depends on the performance of comparators.

In this section, performance of various comparators in terms of speed, power and 

resolution is analyzed and the simulation is performed using HSPICE models for 0.18 jim 

CMOS process.
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In general, there are two classes of comparators [30], The first class is amplifier type 

comparators, which utilize a number of amplifiers in series in order to obtain the overall 

gain. There is a trade off between bandwidth, resolution and power dissipation. For 

example, in order to obtain high resolution, high gain is required. However, high gain 

reduces the bandwidth of the comparators. One way to overcome this problem is to keep 

the gain in each stage low, while increasing the number of stages [33]. As a result, the 

power dissipation increases with the number of stages. The second class of comparators 

is latch type comparator. The essential part of the comparator is the regenerator latch. 

Due to zero static power and high speed of the latches, these comparators are very 

suitable for low power and high-speed A/D converters. In the following sections, both 

classes will be analyzed and simulated to show their advantages and disadvantages.

4.4 Amplifier type comparators

4.4.1 A two-stage comparator

A two-stage comparator is shown in Figure 4.1 [31]. It consists of a differential stage 

amplifier (Ml and M2), a current inverter M5-M6 (as the second amplifier) and the 

circuit to provide the bias current (M8-M11). The simulation predicts the instantaneous 

dc power dissipation of about 4 jiW while the maximum bandwidth is 10 MHz. This 

speed is much lower than the required frequency for pipelined A/D converters.
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The power dissipation in the differential pair is mainly static, since the differential pair 

only stirs the current that is supplied by the current mirror M7-M8. However, for the 

inverter, the relation for dynamic power (F =1/2 CpVj/ f  where Cp represents the 

capacitance at the output) is still valid. Therefore, the sizes of M5 and M6  are essential 

for d3mamic power dissipation. To get the maximum bandwidth, the transistors size 

should be as small as possible to reduce the time-constant.

M i l

MS

Cp

Figure 4.1: A two-stage comparator

S05m

5S3m
SBIra

■4S&T!

Figure 4.2: Simulation result for the two-stage comparator with the frequency of 10 MHz
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4.4.2 A miilti-stage comparator

In order to increase the bandwidth of the above comparator, the gain of each stage should 

be reduced. Therefore, many stages are required to increase the overall resolution, since 

the gain sets the smallest voltage difference that can be amplified to digital levels. Figure

4.3 shows a multi-stage differentia! pair [33]. Figure 4.4 shov/s the simulation results for 

11 stages of differential pairs which are required to obtain ImV resolution and 50 MHz 

bandwidth. The static power dissipation predicted by HSPICE is 18 pW. The 

disadvantage o f the multi-stage comparator is its high power consumption, since the 

power is increased with every stage added. To produce TTL compatible signals, level 

shifters or an inverter is required at the output. Also, this comparator requires an accurate 

bias voltage, since the overall gain is very sensitive to the voltage.

Oa1

Figure 4.3; A multi-stage comparator
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l.SS

1.1&

/

Figure 4.4: Simulation result for the multistage comparator with the frequency of 50 MHz

4.5 Latch type comparators

The advantage of a latch is that it dissipates no static power. The dynamic latch generates 

digital outputs, and only power dissipation is the charging current and short-circuit 

current from Vm to ground during the transition to settling out. The regeneration time- 

constant, Xreg, for this type of latch is given by [32]:

reg
Smi  + g,n5

(4.3)

Where Cp is the total capacitance at the output nodes and gm is the transconductance of 

the CMOS transistors. The power consumption is a function of transistor size. Figure 4.5 

shows the circuit diagram for a dynamic latch comparator [26]. For the latch comparator, 

the speed is a function of transistor sizes and transconductace (gm). To obtain lower 

regeneration time, smaller transistor's width should be used according to the above
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equation. From the Figure, when the clock is low (reset phase), M7 and M8 axe open, 

and the current cannot flow from Vdd to ground or from inputs to ground. When the 

outputs are settled, there is no static current, because either side of the latch has one of its 

transistors turned off. Figure 4.6 shows the simulation result with 200 MHz frequency. 

The current waveform is shown in Figure 4.7. Figure 4.8 shows the circuit diagram of a 

transconductance latch comparator [29]. The operation is based on the difference between 

the transconductances o f Ml and M2, due to the difference of and Vref. In this 

comparator, the two inverters and two switches (MlO-Ml 1) are used to reduce the power 

consumption by cutting off the current when point A or B is at logic 1. Figures 4.9 and

4.10 show the simulation result with 25MHz frequency and the current waveform of the 

comparator, respectively.

The differential pair comparator as shown in Figure 4.11 [6 ] has a very high bandwidth, 

high resolution and still consumes relatively low power. It also has a relatively small 

input offset, since a differential amplifier is used at the input stage. The operation is 

based on the difference between the transconductances of the differential pair (i.e., Ml 

and M2). When the clock is low, the outputs are reset to V^d through M7 and M8 . At the 

same time, the gates of M5 and M6 are at Vdd, and no current can flow from the power 

supply to ground. When the clock is high, the difference between the transconductances 

of the differential pairs determines which side of the regenerator goes to logic 1 and 

which side goes to logic 0. Figures 4.12 and 4.13 show the simulation result with 200 

MHz frequency and the current waveform for the circuit in Figure 4.11, respectively.
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Figure 4.5: A dynamic latch comparator

4
U .

n
2. a  .

1.x
X I - X :::X

.a 4 .

i X

Figure 4.6: The simulation results at 200 MHz for Figure 4.5 (the comparison points are 
at the rising edge of the clock)

I- ........

— 1-0BU

t I

Figure 4.7: The waveform of current flowing from the power supply of Figure 4.5 (the 
power dissipation can be estimated from the area under the current curve to be about 15
pW)
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Figure 4.8: A transconductance latch comparator

7Sam I 
7 9 0 m  I 
T07m Li

2-B A

Figure 4.9: The simulation result for the transconductance latch comparator o f Figure 8 at 
25 MHz (the comparison point is at the falling edge of the clock)

y

-T0U tI

L.i

Figure 4.10: The waveform of current flowing from the power supply of Figure 4.8 (the 
dynamic power dissipation is estimated to be 2 pM )

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■M5

O hi•M4

M l

Figure 4.11: A differential pair comparator
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Figure 4.12: The simulation results for the differential pair comparator of Figure 4.11 at 

the frequency of 200 MHz
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Figure 4.13: Current flowing from the power supply of Figure 4.11 at 200 MHz (the 

power dissipation estimated from the current curve is about 50 jiW)

4.6 Sample-and-hold

Sample-and-hold (S&H) is required for the front end of the pipeline ADCs. Wide-band 

ADCs are required in wireless applications such as IF digitization. Without wide-band 

S&H circuit, it is not possible to achieve high accuracy at a high input frequency. The 

conventional S&H circuits are designed using switched-capacitor circuits. Figure 4.14 

shows a fully differential S&H architecture [35] known as non-inverting amplifier. The 

circuit works in two phases. In the sampling phase (CKl) the input is sampled by the 

sampling capacitors (Cl), while capacitors C2 are disconnected. Also the outputs are 

shorted together to reset the op-amp. In the hold phase (CK2), the inputs are 

disconnected from the sampling capacitors and capacitors C2 are placed around the op- 

amp. Therefore the stored charge on Cl is transferred to C2. The output of the S&H at 

the end of the hold phase is given by:
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V = -----— -----F.out 1 in ( 4  4 )

C2(l + - )   ̂ ^
A

Where A is the finite dc gain of the op-amp. With C1=C2=C, and sufficiently high dc 

gain, the input is sampled and held accurately. However the dependence on the matching 

accuracy of capacitors makes it difficult to sample the input signal accurately.

Figure 4.15 shows a slightly different S&H architecture known as unity gain sampler 

[19]. In the sampling phase the sampling capacitors are charged by the inputs while the 

inputs and outputs of the op-amp are shorted together to reset the circuit. In the hold 

phase the inputs are disconnected and the capacitors are placed around the op-amp to 

form an integrator. The output is given by:

r . „ = - A j -  (4.5)

(I+-)

Which does not require any capacitor matching. The unity gain sampler also is faster 

since its feedback factor is larger. Sometimes, the sampled input signal must also be 

amplified as to increase the signal-to-noise ratio of the ADC. In such applications the 

non-inverting amplifier is used to amplify the sampled input by the ratio of C1/C2.
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CKS

Cl

Q

Figure 4.14: NoB-inverting amplifier

cm

Figure 4.15: Unity gain sampler.
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Figure 4.16(a)
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Figure 4.16: N-bit MDAC, a: In sampling phase b: In residue amplification phase

4.7 Multiplying digital-to-analog converter

The MDAC operates on two clock phases. In the sampling phase (Figure 4.16a), the input 

signal is connected to the sampling capacitors through the switches to sample and hold the 

input signal. Also outputs and inputs are shorted together to keep the input voltages of the

op-amp at the same level.

In the second phase (Figure 4.16b), the inputs are disconnected from the inputs by turning off 

the switches and capacitor Ci is placed around the op-amp to form an integrator. Also the left 

planes of the switching capacitors are connected to a voltage proportional to the output of the 

sub-ADC. At the end of amplification phase, assuming an idea! op-amp, the output is given 

by:

(4.6)
i= l i=l
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Where N is the stage resolution, Dj is digital output bit of the sub-ADC and Ci is the 

capacitor in the capacitor-array:

C o= C , Cf=t^C

Due to non-idealities in the circuit, gain and non-linearity en'ors are introduced. The errors 

in MDACs are due to mismatch between capacitors, finite gain and offset of op-amps, Ron 

resistance, charge injection and clock feed-through of switches. Non-ideality of switches 

appears as gain and non-linearity errors.

In order to analyze effect of mismatch between capacitors, the error in capacitors can be

expressed as:

Co=(l+eo).C , Ci=(2*-'+Si).C ,i= l,....,N  (4.7)

With capacitors mismatch equation (4.6) becomes:

2̂ “i 2̂ “̂ 2̂ "‘
C  = — T T 7 t (U (C o + E C , + E f , ) -  E A C ,(1  + £ ,)U .0  (4.8)

t l - r  C q j . C g  i=o i=t

Which shows that capacitor mismatch produce gain and non-linearity errors.

Assuming perfect matching between capacitors and a non-ideal op-amp, the output is given 

by:

2 " x ( F . , - Z ) W )

U « = ------------------------------------------------------------------------------------(4.9)
1 + ----

AO

Where AO is the finite DC gain of op-amp. Clearly the finite gain of op-amp produces gain 

errors.
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4.8 Topology selection and design of op-amps in pipeline ADCs

In pipeline analog-to-digital converters (ADC), speed, power dissipation and resolution 

significantly depend on the op-amps used in the front-end sample-and-hold and multiplying 

digital-to-analog converters. Since the error in the SUB-ADCs can be corrected completely 

by the digital correction logic, the accuracy of pipeline ADCs is limited by the errors in the 

MDACs and S/H. The main sources of error in these circuits are mismatch between 

capacitors, clock feed-through and charge injection of switches, thermal noise of capacitors 

and finite gain of the op-amps. The input signal range of the ADCs depends on the 

maximum output swing of the op-amps used in the S/H and MDACs. Consequently as the 

supply voltage is scaled down in new CMOS technologies, the output swing of the op-amps 

is reduced. This will make the design of high-resolution pipeline ADCs more challenging 

since achieving high signal-to-noise ratio is more difficult when input signal range is 

reduced. In pipeline ADCs, the main portion of power is dissipated by the dc bias current 

of op-amps used in the front-end S/H and MDACs to meet the settling accuracy at a given 

sampling rate. If current is too low, then the output will not reach to the final voltage level 

during the half clock period, therefore producing error. On the other hand, if  the current is 

too high, the output will reach to the final value earlier than the required time and too much 

power is wasted. Another requirement of the op-amps is the dc gain. Since the finite gain of 

the op-amps produces gain and non-linearity errors, the achievable resolution of each stage 

depends on the dc gain of the op-amp. In this section effect of op-amp topology on power- 

dissipation, area and speed is analyzed. The advantages and disadvantages of various op- 

amps are considered.
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Fig. 4.17: N-bit MDAC a: In sampling phase, b: Equivalent of the circuit in sampling 

phase.
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Fig. 4.18: N-bit MDAC, a: In amplification phase, b: Equivalent of the circuit in

amplification mode.

4.8.1 Speed considerations

The MDAC operates on two clock phases, sampling and amplification phases. Figure 4.17a 

shows the circuit in the sampling phase. From the equivalent circuit (Fig. 4.17b), the time- 

constant of the circuit in sampling mode is approximately given by:
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(4.10)

Where Ronl is the ON resistance of switch SI, Gm is Transconductance of the op-amp, C is 

the unit capacitance and N is the stage resolution.

The time-constant of the circuit in the sampling phase must be small enough to allow settling 

the input voltage across the capacitors. This is important for the S/H, if  the input signal 

contains high frequency components. It is obvious that reducing time-constant requires 

reducing Ronl and C, while increasing G^.

Figure 4.18a shows the circuit in the amplification mode and the equivalent of circuit is

shown in Figure 4.18b.

The time-constant of the circuit during the amplification phase is approximately given by:

_ .._(C ,+C }((2 ^ - l ) x C  + C,,) + C,C
G„C

Where Cm is the input capacitance seen at the input of op-amp and Cl is the total capacitance 

seen at the output of the MDAC. At the end of amplification phase, the output of the 

amplifier must settle to the required accuracy in order not to cause any error. This also 

depends on the time-constant in amplification phase. From (4.10) and (4.11), it can be 

concluded that in order to reduce the time-constant of the MDAC, the transcoductance of the 

op-amp Gm must be increased. For one-stage op-amps, this can be accomplished by 

increasing width of the input transistor [19], without increasing current, which will require 

reducing the overdrive voltage. This can be seen by considering the transconductance 

equations of CMOS transistors:
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2 1  bias

(^o s -K b )

(4.12)

(4.13)

Table 4.1: Performance of double cascode op-amp

Op-amp Not Optimized Optimized

Bandwidth 25.15 KHZ 24 KHZ

Unity Gain 330 MHZ 340 MHZ

DC Gain 82dB 83dB

Load 1.5 pf 1.5 pf

Settling time 8ns 8ns

Bias current 1.012mA 0.507mA

Width (Mi,2) 9pm 18pm

Power dissip. of At 0.5mW 0.5mW

Power dissip. of A2 0.5mW 0.5mW

Total power 2.82mW 1.91mW
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Figure 4.19 (a): a double cascode op-amp with gain-boosting.
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Fig. 4.19 (b): Magnitude response of the optimized cascode op-amp.
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Fig. 4.19 (c): Settling behavior of the cascode op-amp

Figure 4.19a shows a gain-boosted double cascode op-amp. The magnitude response and the 

settling behavior are depicted in Figures 4.19b and 4.19c respectively. The gain-boosting 

op-amps, A1 and A2, are conventional n and p type folded cascode op-amps. The gain for a 

double cascode is given by gmi[(gm3ro3 Toi) || (gms Tqs To?)], which can only be a few hundred. 

This gain is not enough to be used for pipelined ADCs, with gain-boosting technique the gain 

is approximately given by: gmi[(Algm3ro3 toi) || (A2 gm5 Tos To?)].

Table 4.1 summarizes the performance of the op-amp in 2 cases. In the first case the main 

op-amp was biased with 1.012 mA. In second case, the bias current was reduced by about 

50% while the width of Ml and M2 was increased by the same factor. Although the power 

dissipation was reduced, simulation predicts almost the same settling time and bandwidth 

since the transconductance is not reduced. Another consideration is output swing.
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For a double cascode op-amp the output swing is 2 (VDD-VoD9-VoDi"VoD3-iVo,D5HVoD7|)- 

With 1.8V supply voltage, in 0.18|im CMOS technoiogy, and assuming 300mV across the 

PMOS and current source transistors and 200mV across the NMOS transistors, the output 

swing is 1 Vp.p. By using the well-known, folded cascode topology, the output swing can be 

increased by about 600mVp-p at the cost of higher power dissipation and lower speed.

Figure 4.20 shows a pseudo-differential double cascode op-amp with the output swing equal 

to that o f the folded cascode. The power dissipation is reduced by a factor of about 3/5 and 

higher speed can be achieved comparing to the folded cascode topology [36].

V did= lS V

V b

M 4

M i
V i t , -

Figure 4.20: A gain-boosted pseudo-differential op-amp

Vm
AyI Gm2

I lout

First sta^ Secon stag  ̂ — 

Figure 4.21: 2-stage op-amp topologies
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In applications where a wide-band ADC is required, the transconductance of one-stage op- 

amps may not be high enough in the sampling mode. In these cases, 2-stage topologies will 

provide higher transconductance. As shown in Figure 4.21 the effective Gm of a 2-stage op- 

amp is given by:

^  oat

3F,, dV,

(4.14)

Another way to reduce the time-constant is to reduce total capacitance. The capacitor units

are chosen according to noise constraints. As shown in [7], for n bit resolution ADC with 

signal range of 2Vref, the value of capacitor unit in an N-bit MDAC must satisfy the 

following condition:

2n

c » 3 .K .T .2
r̂ N jr2I  y  R e /

(4.15)

Where K is the Boltzmann’s constant, T is the absolute temperature.

R >

Figure 4.22: RC model to analyze step response
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4,8.2 Power dissipation

In pipelined ADCs the main source of power dissipation is the dc biasing current o f the op- 

amps to meet the settling time requirements. In order to analyze the step response of the 

circuit in each phase, a first order RC (shown in fig. 4.22) circuit is used. The step response 

of an RC circuit is given by:

V^(t) = I ,R + ( V , - I , R ) e - ^  (4.16)

With R= 1/Gm. Solving the above equation for current gives:

bias - t /  (4.1 / j

Where Vo is the initial voltage at the output. The time-constant x in the above equation is 

either Xsam or Tamp. However Rias corresponds to the greater value of the two.

Also Ibias given in the above equation is for half of the circuit, therefore minimum bias

current is given by:

Imin 2Max(Isam,Iai-np) (4.18)

Where ham and lamp are the required bias current in the sampling and amplification mode, 

respectively. In the above equation, Imin is the minimimi required current to charge the 

output from the initial voltage to Vref in a given time, t. From (4.17) it can be seen that
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reducing the time-constant will result in reduction of power dissipation significantly. If 

signal range is large, the value of capacitors can be small, since this will relax the thermal 

noise constraints. In low voltage applications, the output swing can be increased by using 2- 

stage topologies. Although the extra stage has its own power dissipation, in low-voltage and 

medium to high resolution pipeline ADCs, the power dissipation may be even reduced 

comparing to the case of one-stage op-amps. This can also be explained by considering the 

gain requirement. Since gain of one-stage op-amps is too low to be used for pipelined 

ADCs, gain-boosting may be used which, also increases the power dissipation.

VdtfeiSV

M7

Vbl M3 M4

Ml

Vi#

Figure 4.23: A 2-stage high-swing op-amp

Another way to increase the gain, is by using a 2-stage op-amp, which also improves 

transconductance and output swing. Nonetheless, 2-stage op-amps require compensation to 

become stable and their speed is limited.

Figure 4.23 shows a 2-stage op-amp with high output swing. The gain is approximately given 

by: gmi[(gm3ro3 fo i )  II ( gm s fo5 ro7)][gm9 (ro9||roii)]. The differential output swing is 2(Vdd-
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|VoD9i"VoDii)- In O.lSfim CMOS technology and 1.8V supply voltage, the output range is 

about 2.4Yp.p (2(l,8-0.3-0.3)). Since the output swing is increased by a factor of almost 2 

comparing to one-stage op-amps, the unit capacitance can be reduced by a factor of 4. 

Therefore it can be concluded that both power dissipation and area are reduced.

4 3  Conclusions

In this chapter design consideration for sub-circuits used in pipelined ADCs was 

discussed. In order to analyze performance of comparators, five comparators have been 

analyzed in terms of their advantages and disadvantages. It has been shown that in 

designing comparators, there is a trade off between their resolution, bandwidth and power 

consumption. As shown in the simulation results, the latch type comparators have better 

performance in terms of speed, resolution and power dissipation. The power 

consumption is only dynamic due to the charging/discharging of the output, which is a 

function of switching activity. Another issue with comparators is the input offset voltage. 

Unfortunately, the latch type comparators have high input offset. One way to reduce the 

offset is to use a preamplifier so that the input offset is divided by the amplifier’s gain 

[26, 34]. This method, however, results in the increased power dissipation. Another way 

to overcome the input offset is to use a digital logic error correction circuit, v/hich 

consumes less power compared to the first method.

In section 4.6 effect of op-amp topology on the overall performance of pipeline ADCs was 

analyzed. It was shown that increasing transconductance of op-amps, will reduce the power 

dissipation and improves the band-width of pipeline ADCs. In one-stage op-amps.
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transconductance is improved by increasing the width of the input devices. In low-voltage 

applications, by using 2 -stage topologies, both transconductance and output swing are 

increased, which can also result in lower power and area, however they achieve lower 

conversion rate. In general it may be concluded that for high conversion rate and medium 

resolutions, one-stage topologies, such as pseudo-differential architectures are suitable. If 

higher resolutions and lower conversion rate is required, 2 -stage topologies may prove better 

performance. Also, parallel pipeline architectures may be used to increase the conversion 

rate [36].
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Chapter 5

Design of a novel low-power, low-area, 12-bit 40MsampIes/s 

pipeline ADC

5.1 Introduction

The conventional architecture of pipeline ADCs is shown in Figure 5.1. It is consisted of 

a few stages, and a digital logic correction. Each stage is consisted of a Multiplying 

digital to analog converter (MDAC) and a low resolution SUB-ADC.

In conventional voltage-mode pipeline ADCs, the MDACs are designed using fiiily 

differential switched capacitor circuits, which require high-gain, high-swing, fast settling 

time op-amps and large, high-linearity capacitors, which occupy large area. In these 

stages the main source of power dissipation is the biasing current of op-amps to meet the 

settling time requirements.

It is also possible to design these stages in current mode using simple current mirrors, 

which do not require the wide bandwidth op-amps and large capacitors to save their 

power dissipation and area [38, 39], How ever because of their limited accuracy they can 

be only used in low-resolution applications. There have been also some current mode 

pipeline ADCs with high speed and medium resolution [40, 41], but they use more
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complex circaits, which consume more power and area comparing to voltage-mode 

pipeline ADCs.

This chapter describes a novel pipeline architecture using combination of voltage-mode 

and current-mode stages. Section 5.2 presents the architecture and circuit design. 

Section 5.3 describes the optimization methodology. The simulation results and 

conclusion are given in section 5.4 and 5.5 respectively.

ri-  I:

I Digital Dalay and Logic Consctian

Figure 5.1: Conventional architecture for pipeline ADCs

5.2 Design

5.2.1 Architecture

The block diagram of the proposed architecture is shown in Figure 5.2.. It is consisted of 

a front-end sample and hold, N voltage-mode stages, a voltage-to-current converter
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(VIC), M curreiit-mode stages and a digital logic correction. The resolution of all stages 

is 1.5-bit [42] therefore 11 stages are required to obtain 12 bits output. Each stage is 

consisted o f a 1.5-bit sub-ADC and a 1.5-bit MDAC, except the last stage, which is a 2- 

bit flash quantizer. In the following sections, design and optimization are described.

voltage to 

N voltage-mode convertL current-mode

Figure 5.2: The proposed pipeline ADC. PD: pseudo-differential. D: differential, 

single-ended.

Multiply by 2

\ .
0 b-DAC

l.S—bite

Figure 5.3: Current-mode stages architecture
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5.2.2 Current-mode stages

Fig. 5.3 shows the architecture and fig. 5.4 shows the schematic design of the current 

mode stages. During CKl, the input current is multiplied by 2 and sampled. At the same 

time the output bits of the SUB-ADC are produced. During CK2 the sampled current is 

subtracted fi"om appropriate current to produce 2Iin-Il, 2Iin-I2, or 2Im-I3, depending on 

the output o f the SUB-ADC (X, Y and Z). The current mode stages are single-ended, 

which are designed using simple low-voltage cascode current mirrors rather than the 

well-known regulated-cascode current mirrors. This is because the performance of 

regulated-cascode current mirrors is degraded at high sampling rates. To maximize the 

accuracy of current mirrors, parametric analysis is used to find the best size o f transistors 

for the current range. In practice the mismatch between transistors will produce error in 

current mirrors, therefore analog layout techniques are important to reduce the mismatch 

between transistors. In order to sample current accurately, voltage-sampling technique is 

used. As shown in fig. 5.4, the gate voltage of M8a is sampled and applied to the gate of 

M8b, therefore ideally the same current flows through M8b. The op-amps used are 

regulated cascode and dissipate only 350pW, and their gain is designed to be 20000. To 

reduce the power dissipation, current is scaled in pipeline stages. In order to estimate the 

average error in the MDAC, the output was compared with an ideal MDAC for 100 

cases. According to our simulation results, average error is about +/-0.3% of the foil 

scale. Fig. 5.8a shows the latch type current comparator [30], with zero static power 

dissipation. To reduce the kickback noise the size of input transistors is minimized.
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Figure 5.4: 1.5 bit current-mode MDAC and clock phases.
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Figure 5.5: 1.5 bit voltage-mode MDAC architecture.
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Figure 5.6 (a): Pseudo-differential op-amp.
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Figure 5.6 (b): Layout design of the pseudo-differential op-amp
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Figure 5.6 (c): Magnitude response o f schematic versus post-layout.
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Figure 5.7: A Low-Power VIC with differential input and single-ended output.
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5.2.3 Voltage-mode stages

The voltage-mode stages and S/H were designed in voltage-mode using switched 

capacitor circuit. Figure 5.5 shows the 1.5 bit MDAC architecture. In order to achieve 

high signal swing, fast settling time with low power dissipation, pseudo-differential 

cascode op-amps [36] with gain boosting are used. The schematic and layout design of 

the op-amp are shown in Figure 5.6a and 5.6b respectively. Figure 5.6c shows the 

magnitude response of schematic and layout. It can be seen there is only a negligible 

difference between their magnitude responses. Since the input common mode of the VIC 

must be accurately defined, the last voltage mode stage was designed using fiilly- 

differential folded cascode op-amp with common-mode feedback to control the input 

common-mode level of the VIC. The VIC requires accurate input common mode to 

produce the correct current range, which can not be defined by pseudo-differential op- 

amp. To convert voltage to current a low-voltage VIC with high linearity and low power 

dissipation is used. The schematic of the VIC is shown in fig. 5.7 [43], which is modified 

to provide single-ended output current from differential input voltage. The input and 

output ranges are -/+700mV and -/+40pA respectively. An offset current of 80pA is 

added so that the output current range is always positive from 40|iA to 120pA. In order 

to reduce power dissipation, the output current is only available during sampling mode 

and is turned off on otherwise. The power dissipation of VIC is about 2.4mW. The total 

harmonic distortion (THD) of the VIC is about -38dB at 5MHZ full range sine wave and 

the non-linearity is about +/-0.2% of the full scale. Fig. 5.8b shows the voltage 

comparator [14]. In order to improve the resolution of the comparator, Nmos M3 a and
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M3b are added which work as pre-amplifiers. It is important to make sure that M3 a and 

M3b operate in saturation region during the latch regeneration. Therefore transition 

analysis was used to find the required size of these transistors to operate in saturation 

region. According to our simulation results, the average error in the voltage mode 

MDAC is about +/-0.06%.

Iret

Latchm M12

Figure 5.8: (a) Current comparator, (b) Voltage comparator 

5.3 Optimization methodology

In order to optimize the pipelined ADC, the number of voltage-mode and current mode 

stages must be selected such that the total area, power dissipation and propagated error in 

the stages are minimized. In our analysis, the error of the sub-ADCs is not considered, 

because they are completely corrected by the digital logic correction. The MDACs in
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each stage is modeled as an ideal MDAC plus a source of error which, is added at the 

output. Using this model the total output-referred error (E) is given by:

fA
^  = E  E  .e,. + £„c + .e

M ,1=1
(5.1)

Where, N is the number of voltage-mode stages, M is the number of cunent-mode stages, 

G is the gain of the stages which is 2, Ci is the error of the i*̂  voltage-mode stage, ej is the 

error in the j*  current-mode stage and evic is the error of the VIC. The total power 

dissipation and area o f the pipelined stages are given by:

N  M

P =TP,+'EPj +P„c (5-2)
!=1 J=l

N  M

A = E 4 + E V + V , c  (5.3)
r=l J=\

Where Pi, Pj and Pvic are the power dissipation of voltage-mode, current-mode and VIC

stages respectively. Aj, Aj and Avic represent the area of voltage-mode, current-mode and 

VIC stages respectively. Using the above formulation the following quantities (Q) are 

considered for minimization*:

Q , = P - A - E  (5.4)

02 =P-A-E°-^

* Other formulations have been investigated and found not useful in the optimization procedure.
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However it would be a difficult task to prove that power, area and error are linearly 

related to each other therefore the analysis is done experimentally. Figure 5.9a, 5.9b and 

5.9c show the output-referred error, power and area versus different combination of 

stages respectively. Figure 5.9d and 5.9e show plot of Q1 and Q2 versus architecture 

configuration. Figure 5.9d shows that the most optimized configuration occurs when 5 

voltage-mode and 6  current-mode stages are implemented. Figure 5.9e shows that the 

optimized configuration is achieved when 3 voltage-mode and 8 current-mode stages are 

implemented, however in this case the accuracy might be too low for most of applications 

according to the output referred error in Fig. 5.9a. In order to keep the accuracy as high 

as possible the optimization is done based on Q1 criteria.

In pipeline ADCs the required accuracy of stages is relaxed from stage i to stage i+1, as 

the remaining output bits is reduced from stage i to stage i+1 [44]. This allows 

optimizing each stage based on its required accuracy. Therefore the sampling capacitors 

are scaled down in pipelined stages which, allows reducing biasing current of the op- 

amps. Table 1 shows the estimated power dissipation and area of each stage. The power 

dissipation was estimated using cadence SpectreS simulator. The area was estimated by 

summing the area of each transistor and capacitor and adding 100% for interconnections 

spacing. Table 11 shows the estimated power and area for a conventional Mly-differential 

pipeline ADC. It can be seen that both power dissipation and area are significantly 

reduced. This is because in conventional fully-differential pipeline ADC, the folded- 

cascode op-amps require large biasing current to achieve high bandwidth, however in the 

proposed design, only the third stage uses a differential folded-cascode op-amp. Also
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voltage mode stages require 4 large capacitors, but the current-mode stages require only 

one capacitor, reducing the area.
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Figure 5.9a: Output-referred error versus configuration
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Figure 5.9b: Total power dissipation versus configuration
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Figure 5.9e: Q2 versus configuration

Table 5.1: Estimated average power dissipation and area of the proposed pipeline ADC 

stages.

Stage Type Sampling
Capacitance

Power
dissipation

Area

S/H PD 1.1 pF 2.2 mW 0.016

PD 0.5 pF 2.45 mW 0.0284

3̂ *̂ ,4*" PD 0.4 pF 2.1 mW 0.027
5th D 0.3 pF 3.84mW 0.0315

VIC S 2.4 mW 0 .012

6,7® S 0.25 pF 1.1 mW 0.019

8-10* s 0.25 pF 0.8 mW 0.019

11® s 0.3 mW 0.004

Total 22.44 mW 0.2693
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Table 5.2: Estimated average power dissipatioa and area of folly differential pipeline 

ADC stages.

Stage Type Sampling
Capacitance

Power
dissipation

Area

S/H D l.lpF 4.3mW 0.02

jst 2 nd D 0.5pF 4.5mW 0.032

3""*,4* D 0.4pF 4mW 0.0315

5,6® D 0.3pF 3.84mW 0.03

7,8® D 0.25pF 2.15mW 0.025

9,10® D 0.25pF 2mW 0.025

11® D 0.3mW 0.006

Total 37.58mW 0.313

5.4 Results

Fig. 5.10 shows a plot of fast Fourier transform (FFT) of the output at 40Msamples/s with 

4 MHZ input signal. The SFDR which shows the purity of the signal is 62.5 dB. The 

SNDR is 58.3dB. However SNDR is reduced to 56.2 dB at 5MHZ. A significant part of 

signal distortion is due to the sample and hold which, degrades the accuracy at higher 

input frequencies. Table 5.3 summarizes the specifications of the ADC.
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Figure 5.10: FFT spectrum at 40 MS/s and 4 MHZ input.

Table 5.3: ADC specifications

Technology 0.18-pm TSMC CMOS

Supply Voltage 1.8 V

Resolution 12-bits

ENOB 9.5-bits

Sampling Rate 40-Msample/s

Full Scale input range 1.4 V p .p

SFDR@ 4MHZ (5MHZ) +62.5dB (59.2 dB)

SNDR@ 4MHZ (5MHZ) 58.3dB (56.2dB)

SNR@ 4MHZ (5MHZ) -63dB (-6 6dB)

Estimated Area of ADC 0.36

Estimated Power dissipation of ADC 24.5mW
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5.5 Conclusions

In this chapter design of a novel pipeline ADC was presented in details. It was shown 

that the proposed pipeline architecture using combination of current-mode and pseudo­

differential voltage-mode is suitable for design of low power, low area and high speed 

ADCs. According to the simulation results, the accuracy of the designed pipeline ADC 

was limited by the performance of the front-end S/H and not but the ADC, therefore by 

improving the speed of the S/H, better accuracy can be achieved at high frequencies. . 

Table 5.4 shows various ADCs along with some of their performance parameters.

In order to compare this design with other published works, FOMl and F0M2 are 

calculated and plotted (Figure 5.11 and 5.12). It can be concluded that using the 

described design, it is possible to reduce power dissipation and area comparing to 

conventional fully differential schemes. It is known that scaling down the voltage can 

actually result in higher power dissipation in conventional voltage-mode pipeline ADCs

[1] therefore it is expected that the proposed design be more useful for future low-voltage 

CMOS technologies due to current-mode stages, since the power dissipation of current 

mode stages is reduced by scaling voltage.
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Table 5.4: Summar>" of published works for pipeline ADCs.

ADC Resolution Speed Fewer dissip. ENOB Area Technology Year

Miyazaid [36] 10-bit 30 MBPS 16mW 8.71 3.12mm“ 0.3 |im 2003

Aslanzadeh [45] 12-bit 25 MBPS 76mW 11.35 N/A 0.35 pm 2003

ADC10321 [46] 10-bit 20 MSFS 98mW 9.2 N/A N/A 2003

ADC10030 [47] 10-bit 30 MSFS 125mW 9.1 N/A N/A 2003

Blum [48] 10-bit 100 MSPS ISOmW 8.83 0.43mm^ 0.12 pm 2002

Sang [49] 10-bit 120MSFS 208mW 9.37 3.6mm^ 0.25 pm 2002

Chang [50] 10-bit 25MSFS 21mW 7.68 2.24mm^ 0.35 pm 2002

Jamal [51] 10-bit 120MSPS 234mW 9.14 12.5mm^ 0.35 p.m 2002

Thompson [52] 15-bit 20MSFS 380mW 14.66 13.76inm^ 0.5 jjm 2001

Mikko [6] 10-bit 200MSFS 405mW 6.85 7.4mm“ 0.5 jJm 2001

Hamedi [53] 10-bit 50MSPS 65mW 9.17 1.2mm^ 0.25]Lim 2001

Kwak [54] 15-bit 5MSPS 130mW 13.8 27.3mm^ 1.4 jim 1997

This work 12-bit 40MSFS 24.5mW 9.5 0.36 mm^ 0.18pm 2004
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Chapter 6

Conclusions and future works

The focus o f this thesis was optimization of pipeline ADCs in terms of power dissipation 

and area such that integration of analog and digital circuits in one microchip becomes 

more efficient.

In chapter 2, a number of well-known analog to digital conversion techniques and their 

applications were reviewed. For very high resolution and low-speed applications the 

successive approximation and sigma-delta architectures are feasible in terms of power 

dissipation. However if  high conversion rate is required, pipelined ADCs have superior 

performance. It was also shown that the advantage of using the pipeline architecture over 

sub-ranging and flash architectures is the reduced number of comparators and high 

conversion rate with lower power dissipation. Also a number of parameters to evaluate 

static and dynamic performance of ADCs were given.

In chapter 3, design considerations for pipelined ADCs at the architecture level was 

discussed. Effect of non-idealities in the flash quantizers and the MDACs on the pipeline 

ADCs was analyzed. The effect of errors in the flash quantizers can be completely 

corrected using the digital logic correction. The errors produced by the MDACs can be
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reduced by applying digital or analog calibration techniques. Therefore the accuracy of 

pipeline ADCs is limited by performance of the MDACs.

Chapter 4 focused on circuit design considerations for pipeline ADCs. The limitations of 

low-voltage design on switches and op-amps were discussed. Also cmrent-mode and 

voltage-mode designs were compared and their advantages and disadvantages were 

analyzed. The main advantage of current-mode design is low power dissipation, however 

the trade off is less accuracy due to mismatch between transistors in the current mirror. 

Also effect of op-amp topology on the performance of pipeline ADCs was analyzed. It 

was shown that for high-speed and medium bandwidth, single stage topologies such as 

the pseudo-differential cascade op-amp are more efficient. If high bandwidth is required, 

2-stage topologies can meet the requirements due to greater transconductance. The draw­

back of using 2-stage op-amps is lower speed. By applying parallelism the speed of 

pipeline ADCs is increased.

In chapter 5, a novel pipeline architecture was proposed and a 12-bit 40Msamples/s 

pipeline ADC was designed. It was shown that by using voltage-mode stages in the 

front-end and current-mode stages at the back-end, more optimized design can be 

achieved compared to the conventional voltage mode schemes.

Although the designed ADC consumes low-power and area, its bandwidth is limited to 

about 5MHZ. This is mainly due to performance degradation of the front-end S/H circuit 

at higher frequencies. As explained in chapter 4, in applications which require wide-band 

ADCs (example: radio receivers), high transconductance op-amps such as 2-stage 

topologies in the S/H will improve the ADC bandwidth. However parallelism must be
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applied to increase the sampling rate. For fature work development o f a wide-band 

pipeline ADC by using a parallel-pipeline architecture and wide-band S/H will be useful. 

Also development of calibration techniques in analog or digital domain is necessary to 

reduce the effect of errors in the MDACs and to improve linearity.
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