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ABSTRACT 

Boppana, N.V. Vijaya Krishna. M.S.Egr., Department of Electrical Engineering, Wright 

State University, 2014. Design of Fast, Low Power and Area Efficient static and dynamic 

digital designs in 250nm and 90nm CMOS Technologies. 

 

High speed, low power, and area efficient adders and comparators continue to 

play a key role in hardware implementation of digital signal processing applications. 

Adders based on Complimentary Pass Transistor Logic (CPL) are power and area 

efficient, but are slower compared to Square Root Carry Select (SQRT-CS) based adders. 

This thesis demonstrates a unique custom designed 16-bit adder in 250-nm CMOS 

technology to obtain fast and power/area efficient features by combining CPL and CS 

logic. Comparing the results obtained for proposed 16-bit Linear CPL/CS adder with the 

BEC (Binary Excess-1 Code) based low power SQRT-CS adder, the delay is reduced by 

approximately one thirds, power is reduced by 19.2%, and the number of transistors is 

reduced by 23.4%. Also, new tree-based 64-bit static and dynamic digital comparators 

are presented in this thesis to perform high speed and low power operations. This tree-

based architecture combines a new approach of designing dynamic comparator using a 

low duty cycle clock to reduce the short circuit power consumption in pre-charge (or pre-

discharge) mode. This work also introduces a new sizing strategy and load balancing 

techniques to improve self-pipelining tendency of a tree based design. A resource sharing 

technique is also integrated in both static and dynamic comparator designs. At 1.2V 
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power supply in CMOS 90nm technology, worst path delay and worst power are 374ps 

and 822µW, respectively for low cost static design with 1244 (768+476) transistors in 

total.  768 transistors are used for resource sharing. The proposed full and partially 

dynamic designs show superior power efficiency compared to recent state of art designs. 

The worst power consumptions at 5GHz and 25% (50ps) duty cycle clock for the 64-bit 

full and partially dynamic comparator designs are 5.00mW and 2.78mW, respectively. 

769 (320+449) transistors includes 320 transistors for resource sharing, and 1217 

(768+449) includes 768 transistors for resource sharing for full and partial dynamic 

comparators, respectively.   
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1 Introduction 

Digital designs have variety of data processing, controlling and data storing 

applications. Combinational and sequential designs, such as adders, sub-tractors, latches, 

flip-flops, multiplexers, shifters, encoders, decoders, counters, etc., are the sub-

components of large scale digital design applications, such as microprocessors, 

microcontrollers, digital signal processors etc. Digital sub-components are built by using 

standard cells, such as NAND, NOR, AND, OR, INVERTER, XOR, XNOR. These 

standard cells can be designed in static or dynamic design methodology.  

1.1 Static designs 

Static designs can be designed either by using Complementary Metal Oxide 

Semiconductor (CMOS) logic or by using Pass Transistor Logic (PTL) [1] [2]. In CMOS 

logic, either pull up network (p-MOS) or pull down network (n-MOS) will be ON at a 

time. Number of transistors in pull up and pull down networks are equal in CMOS 

designs. In case of pass transistor designs, input signals drive the gate as well as pass 

through the FET. Pass transistor based designs require less number of transistors and 

power consumption is also less when compare with the CMOS designs. Power 

consumption in PTL is less because this logic requires less number of transistors and does 

not require power and ground connections to implement standard logic compared with 

CMOS static logic. But it has disadvantage that pass logic generates degraded signal to 

drive other gates and passes noise from input to output.  
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Complimentary Pass transistor Logic (CPL) and Double Pass transistor Logic 

(DPL) are two typical types of pass transistor logic implementation. Figure 1.1 

demonstrates the difference of implementing AND2 gate by using CMOS logic, CPL and 

DPL, respectively. 

      

  

(a)              (b) 
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         (c) 

Figure 1.1  AND logic [1] [2]using (a) CMOS, (b) CPL, and (c) DPL 

 

As shown in Figure 1.1(a), 6 transistors are needed to implement an AND2 

function of Y= ((AB)’+ inv) with the attached Karnaugh map (K-map). It can be seen 

that the number of n-MOS and p-MOS transistors are always equal and in complement to 

each other, which results in that only one network (either pull up or pull down) is on and 

another is off at any stable state. This logic has been the most robust logic to generate 

strong signals with low noise and unique feature of automatic noise error recovery. The 

relative low speed and large number of transistors triggered other logic architecture 

developed. 

Figure 1.1(b) shows the implementation of AND2 using complimentary pass 

transistor logic (CPL). It needs 8 transistors (3 inverters and 2 pass transistors) to design 

AND2 by designing complement ((AB)’) of the function in pass logic using K-map 
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shown in Figure 1.1(b) and an inverter should be added at the output of pass logic to yield 

strong and noise free output for AND2. Though AND2 logic implementation seems it 

requires more number of transistors and power compared to static CMOS, CPL designs 

have advantages while designing complex, complimentary and dual functions which 

share the input inverters to design all the functionalities.   

In other hand, DPL implementation of AND2, using 2 inverters + 4 transistors, 

shown in Figure 1.1(c) has an advantage of speed when compare with the CPL design. 

According to the K-map shown in Figure 1.1(c) every logic should come from two 

transistors in parallel (n-n or p-p or n-p) which reduces the delay when compare with 

CPL. CPL is preferable to DPL when high output drive capabilities required. 

1.2 Dynamic designs 

Dynamic designs [2] are useful in designing some high speed applications with 

power trade off. Dynamic designs need less number of transistors with adding a clock 

control as shown in Fig. 1.2. Any logic function will be implemented only by pull down 

network (n-MOS transistors). Single p-MOS transistor is used to pre-charge the output 

node to be ‘1’. This logic gets rid of the large capacitance contribution of PUN and 

reduces the delay. Figure 1.2 shows footed dynamic logics for dynamic NAND and NOR 

designs. In pre-charge phase of a footed design, when clock is low, the output node of 

containing self-load and gate load capacitances is charged to high. In evaluation phase, if 

pull down network is not ON, the output will keep high (‘1’); if PDN is on, the output 

will be pulled to low (‘0’).  It can be seen that transistor count and input/output node 

capacitance are reduced compared to static CMOS logic. Reduction in capacitance at 
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input output decreases the delay which results in high speed performance. The tradeoff of 

this logic is high power consumption and non-recovering of noise resulted error.   

 

  

(a)              (b) 

Figure 1.2  Examples of footed dynamic [2]logic design (a) NAND, and (b) NOR 

 

1.3 Motivation 

With the increasing requirement for huge number of functionalities performed by 

a single chip, semiconductor industries are trying to encompass billions of transistors in a 

small space. Speed of the operations is in great need while reducing the power 

consumption. The goal for every designer is to design a low power, high speed, and low 

cost chip. Some applications may emphasize speed more, others power more or cost more.  

As mentioned earlier, adders, comparators are the major basic building blocks of any 

processor or controller device. Reducing size, power consumption and increasing speed 
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in micro level is one way of achieving portability, power efficiency and high speeds in 

macro level.  

Performance specifications in digital designs can be achieved by scaling the 

transistor size. Technology is scaling down to atomic sizes. Technology scaling along 

with novel and efficient techniques of implementation of a digital design helps reducing 

the size and power consumption while keeping the speed of operation. There are many 

works dealing with designing high speed and cost efficient adders and comparators for 

different applications. For example, Ripple Carry, Carry Look-Ahead (CLA), Carry 

Bypass, Carry Select, Carry Save, Carry Skip, Look-Ahead Carry, Carry Complete etc., 

are the different techniques to implement adders and all-N-transistor (ANT), Priority 

Encoding (PE), Multiple Output Domino Logic, Multi Level Look Ahead, Parallel MSB 

Checking, Bit-wise Competition Logic, Single Clock Cycle Tree structure, Constant 

Delay logic based comparator etc., are the different techniques used to design digital 

comparators.   

The motivation of reducing power consumption and portability of designs leads to 

designing a 16-bit static carry select adder design using CPL and CMOS styles. Also, the 

requirement of high speed and low power 64-bit digital comparator operation leads to 

introducing a novel design for static, dynamic and partially dynamic designs with new 

techniques of power and delay optimizations using with clock with reduced duty cycle 

and improving self-pipelining tendency of the design along with resource sharing.  
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1.4 Thesis Organization 

       The rest of this thesis is organized as follows: Chapter 2 discusses the 

implementation of a new architecture using static CMOS and Complimentary Pass 

Transistor (CPL) logic to design low cost and high speed 16-bit Carry Select Adders 

(CSA). Designs in this chapter are realized using 250nm CMOS technology. Chapter 3 

presents the design and implementation of a new radix-4 tree structured 64-bit digital 

comparator in static, full dynamic, and partially dynamic modes suitable for low cost and 

high speed applications. This chapter introduces a new concept of using clock with 

reduced duty cycle to reduce the short circuit power consumption of a dynamic design 

and a concept of improving self-pipelining of the tree based design. All the designs in this 

chapter are realized in 90nm CMOS technology. Finally, conclusions and details about 

future work are included in Chapter 4.  
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2 16-bit Low-Power, High Speed CPL-CSA Adder using 250nm 

CMOS Technology 
 

2.1 Introduction 

    Digital adders are the key components in microprocessor design [3], digital 

signal processors (DSP), etc. Though feature size is reducing gradually, increase in need 

for multifunctional processors enlarge the chip area and increase the power consumption. 

Scaling of transistors is reaching almost atomic levels and at some point of time VLSI 

designs might need inventions at atomic levels. But now with the current feature sizes 

there is a requirement for reducing chip area and power consumption of a particular 

functional design by using some novel techniques of implementation. There are many 

adder architectures [2] designed with emphasis on reducing delay (D), lowering transistor 

count/area (A) and power consumption (P). Each architecture has limitation and trade-off 

for the above three specifications. As mentioned earlier, the basic motive behind this 

section of work is to design and implement a novel technique for a small, fast and low 

power dissipating 16-bit static adder using Complimentary Pass transistor Logic (CPL) 

and Carry Select Adder (CSA) architecture.  

2.2  CPL implementation in 16-bit Carry Select Adder (CSA) design  

2.2.1 Carry Select Adder 

    Ripple carry multi-bit adder takes more time to finish the computation because 

of carry propagation through all one bit adder blocks. General carry select adder 
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architecture [4] consists of two sets of ripple carry adders and a multiplexer. It has two 

architectures, conventional/linear carry select (LCS) and square root carry select 

architecture (SQRT CS). LCSA design for multi bit addition use ‘p’ number of ‘m’ bit 

carry select blocks to get n (= p*m) bit addition. SQRT CSA design use ‘m’ bit carry 

select block as first block of carry select. In later stages of carry select, the number of bits 

of carry select addition in each block increases by one bit until it reaches ‘m+p-1’ bits for 

pth block.  An n bit addition is obtained with p blocks, where n (= p2/2 + [p*m – (p/2)]). 

The main advantage of using carry select adder is the sum and carry out of any sub block 

are predicted. In carry select adder, from second sub block to final sub block, the sum 

outputs and carry outs are selected. So, the design doesn’t add any carry propagation 

delay other than initial sub block set up time (internal ripple carry) and the delay in later 

stages caused by fan out, selection at multiplexers, for preceding block carry out.  

2.2.1.1 Square root -CSA using RCA and BEC [4] 

    SQRT CSA architecture is faster than Linear CSA architecture because 

processing time to get m bit addition in pth block is nearly less than or equal to processing 

time of (m-1) bit addition plus processing time of selecting outputs of  (m-1) bit addition 

through MUX. The sum and carry out bits waiting at MUX are selected by preceding 

block’s carry. In case of SQRT CSA, there is almost no inactive or waiting time between 

any two adjacent blocks to select the sum and carry out. Thus the delay is less for SQRT 

CSA and the difference in delay between SQRT CSA and Linear CSA increases as the 

number of bits of addition is increased. There are different techniques in implementing 

square root CSA [5] [6] [7]. The following discussion is about the two different SQRT 

CSA designs, regular and modified design using BEC (Binary Excess-1 Code). 
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General/regular design uses two sets of RCA (RCA1 and RCA2). Low power design 

proposed in [5] uses one set of RCA and BEC. Figure 2.1(a) and (b) shows the design of 

3 bit (m=3) intermediate block of 16-bit square root adder using regular design and BEC 

design respectively.  

 

          
 

 

(a) (b) 

 

Figure 2.1 Intermediate block of 16 bit SQRT CSA, (a) using RCA+RCA, (b) 

RCA+BEC [2]. 

 

   SQRT CSA using BEC is low power consuming design than using 2 sets of 

RCA because BEC use less number of components than RCA. However, the delay is high 

for design with BEC. This is because the computation of sum and carry out from the 

ripple carry adder has to be done with ‘0’ carry in and then the output has to be processed 

through BEC to get Excess one output; which replaces the computation needed through 

RCA 2 (shown in Figure 2.1 (a)) to predict the outputs with an assumption of carry input 
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as logic “1”. As shown in Figure 2.2, Mux in regular and BEC based designs are 

designed by CMOS switch (transmission gate logic) and BEC is designed by using CPL 

based standard cells XOR and AND. RCA in regular square root carry select adders is 

designed by using 28T full adder.  

 

(a) 
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(b) 

    

 

(c) 

 

(d) 

Figure 2.2  (a) 1-bit 28T full adder, (b) N-bit RCA, (c) N-bit BEC using CPL_XOR 

and CPL_AND, and (d) 2-to-1 Transmission gate Multiplexer.  
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2.2.2 Carry Select Adder using CPL 

    This paper proposes designing SQRT CSA/LCSA using complimentary pass 

transistor logic (CPL) to get fast and low power operations. As shown in Figure 2.3, CPL 

adder cell [8] [9] consume less power because input signals drive the gates as well as pass 

through the channel of the transistors unlike static CMOS logic. There is no need for 

VDD and GND connections to implement the adder logic except where an inverter is 

required; at inputs to generate complimentary signals; at outputs to strengthen the pass 

signals; in some intermediate stages to strengthen a weak “1” output of an n channel pass 

gate. 

   As mentioned in Section 1.1, CPL designs have great flexibility in designing 

complimentary logic functions (S0<=>S0’, C1<=>C1’, C0<=>C0’) without changing 

circuit topology but just by inverting the pass signals (complementarity principle) as seen 

in Figure 2.3. It has a flexibility of designing its dual logic function (C1<=>C0, 

C1’<=>C0’) just by inverting the gate signals. But CPL has disadvantage of signal 

degradation (voltage level and rise/fall times) if the signal pass through long rail of series 

transistors. Using the complimentary nature of CPL designs, if the signal is getting weak, 

the signal can be strengthened by using inverter as a buffer instead of a non-inverting 

buffer which consumes more power; however, the signal and its compliment signal pins 

must be switched.  
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Figure 2.3  1-bit CPL adder cell [8] [9]. 

 

S0 => A (XOR) B    S0’ => A (XNOR) B 

    C1 => A (OR) B    C1’ => A (NOR) B 

 C0 => A (AND) B     C0’ => A (NAND) B 

 

2.2.2.1 4-Bit Regular CPL Adder 

    CPL adder cell shown in Figure 2.3 works as a Half Adder (HA). It generates 

sum (S0), carry (C0) and its dual (C1) as well as the complimentary signals (S0’, C0’, 

C1’). P, Q, R, S Sub blocks of Block1 and Blocks 2 enclosed in left side dotted rectangle 

of 4 bit Regular CPL adder [9] shown in Figure 2.4 generates S[0], S[1], C[1], C[1]’ 

respectively. Structure of Block 3 and Block 4 enclosed in second dotted rectangle follow 

same structure as Block 1 and Block 2 respectively in first enclosed section. Figure 2.5(a), 

(b), (c), and (d) shows P, Q, R, S sub block structures respectively. Sum and carry are 

generated with inputs as A[0], A[1], B[0], B[1] through Block 1 and 2 using P, Q, R, S 

sub blocks. Sum and carry are selected either by primary carry input or by its 
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complimentary signal (Cin or Cin’). Second enclosed section with Block 3 and 4 

generates sum and carry for next 2 bit addition and the signals wait at final stage 

multiplexers P1, Q3, R3, S3. These signals are selected by Carry out and its 

complimentary signal (C[1], C[1]’) generated by first enclosed section with Block 1 and 

2. Carry out signals (C[3], C[3]’) generated by second enclosed section from Block 4 acts 

as carry input signals for the next section and this goes on to design an n (even) bit adder.   

                  

 
 

Figure 2.4 4-bit regular CPL adder [9]. 
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  (a)                (b) 

           
 

                           (c)                                                                         (d) 

 

Figure 2.5 Internal block structure of regular CPL adder: (a) P-block, (b) Q-block, 

(c) R-block, (d) S-block. 
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2.2.2.2 16-Bit SQRT_CPL_CSA using RCA/BEC 

    16 bit SQRT CSA using 4 bit regular CPL adder yields high speed operation 

but it has more number of transistors and consume high power when comparing the 

results of work 3 and 4 with traditional SQRT CSA, work 1 and 2, at an activity of 

100MHz as shown in Table 2.2. This is because of using two sets of regular CPL adders 

in regular design (or) one set of regular CPL adder and one set of CPL BEC block in 

design using BEC. Regular CPL adder [9] takes more number of transistors to design the 

functionality when compare with the traditional designs. Then this problem leads to 

designing of an area efficient, fast and low power design by modifying internal structure 

of 4 bit regular CPL adder to eliminate second block (RCA/CPLA/BEC) in carry select 

adder. 

2.2.2.3 4-Bit Proposed CPL CS Adder 

This proposed design concentrates on three specifications to reduce power delay 

area (PDA) product. This design shown in Figure 2.6 works on the principle of internal 

carry selection to get better results for design specifications. Block 1 has the similar 

structure as in regular design with only one modification of removing inverters enclosed 

in dotted rectangle R1 of adder cell 1 shown in Figure 2.1 and flip the sum signals. 

Removal of inverters leads to reduction in power consumption. Remaining output signals 

of adder cell are buffered through inverters because they need to drive the gates of 

multiplexers of next block (Block 2 in Figure 2.6).  
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Figure 2.6 4-bit proposed CPL adder cell. 

 

 

Block 2 play a key role in reducing power and delay. Q, R, S sub blocks in Block 

2 of modified design shown in Figure 2.6 follows the similar structure as regular design 

shown in Figure 2.4 except one modification for its sub blocks, i.e., R3 and S3 

multiplexer blocks are removed. The key idea of designing internal carry selection 

involves assuming Cin = 1 to select N1 and M1 signals shown in Figure 2.7(a), (b) to act 

as Cout and Cout’ from 2 bit addition performed by Block 1 and 2. Similarly, assumption 

of Cin’ = 1 yields N2 and M2 as Cout and Cout’. All inverters at the output of adder cell 

2 of modified design are removed to reduce the power consumption and output pin names 

are switched. 
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                     (a)                   (b) 
 

  

    
 

(c)              (d) 

 

Figure 2.7 Internal block structure of modified CPL adder: (a) Mux, (b) P-block, (c) 

Q-block, (d) R-block. 
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The input signals (A, B and their compliment signals) pass through only 2 to 3 

stages of series n MOSFETs, before they get buffered/regenerated by inverters shown in 

Figure 2.5(c), (d). By assumption of primary carry in as ‘1’, N1 and M1 are chosen as 

carry in and its compliment signal to select sum and carry from Block 3 and Block 4 as 

shown in Q (Q3) and R (R3) sub blocks shown in Figure 2.7(c), (d). Similarly N2 and M2 

act as a carry signals by assumptions of primary carry in as ‘0’ (i.e. Cin’ = 1), which 

select the sum and carry signals of Block 3 and 4 using Q4 and R4 multiplexers shown in 

Figure 2.7(c), (d). Finally all sum and carry signals predicted by assuming carry in as ‘1’ 

and ‘0’ wait at P3, Q5, R5 multiplexers of Block 3 and 4. Immediately after getting carry 

from previous 4 bit adder block all out put signals, S[0], S[1], S[2], S[3], C[3], wait at P1, 

Q3 of first enclosed section and P3, Q5, R5 from second enclosed section respectively are 

selected at same time. As shown in Table 2.1, 4 bit modified CPL adder with inbuilt carry 

selection structure meets all three specifications of reducing power, area and delay of 

computations when compare with the regular design specifications. Figure 2.8 shows the 

schematic implementation of regular and modified/proposed 4-bit CPL adders in 250nm 

CMOS technology. 
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(a) 

 

(b) 

Figure 2.8  Schematic implementation of 4-bit CPL adders in 250nm CMOS 

technology (a) Regular (b) Proposed/modified. 
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Table 2.1  4-bit CPL adder results comparison at 500-Mhz activity 

Type of Adder Delay (ps) Avg. 

power 

(mW) 

# of Transistors 

(Avg. # of 

transistors per bit 

addition) 

Sum Cout 

Regular_CPL 696 650 3.112 166 (~42) 

Modified_CPL 675 405 2.685 148 (37) 

 

2.2.2.4 16-Bit SQRT/Linear_CPL_CSA using proposed design. 

4-bit Regular CPL adder design shown in Figure 2.4 generates carry out signals 

for every 2 bit addition performed in rectangular sections enclosed. So, it takes 8 carry 

ripples for 16 bit adder implementation. In proposed design all sum out signals and final 

carry out signals are selected at same time. So, 16 bit Linear CSA design using 4 bit CPL 

modified design takes 4 carry ripples as shown in Figure 2.9(a) and Cout signal is coming 

with just 405ps delay as shown in Table 2.1, which is better than regular CPL adder 

design. High speed carry out play a major role in reducing the delay but not sum. In case 

of 16 bit SQRT CSA as shown in Figure 2.9(b), this design does not use the proposed 

logic till 3rd block, which is a 3 bit CPL modified design, and in case of 5th block also this 

design uses the proposed technique till 4th bit addition after that it does not. Though 

SQRT CSA logic is more beneficial in reducing the delay of computation, because of 5 

ripples needed for computation and all block level additions does not use proposed 

technique completely, SQRT design computation delay is more than linear design. In 

simulation results, delay is measured from Cin to worst case Cout or sum signal. Delay and 

average power for all 16 bit adders mentioned in this paper, in Table 2.2, are measured at 

an activity of 100MHz with 2.5V supply using spectre simulator on schematic designs in 
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0.25 µm CMOS technology in Virtuoso schematic editor. 10ns, 20ns, 40ns are the pulse 

periods for input signals A, B, Cin respectively with 0.1ns as rise and fall times.   

 

 
                    

 (a) 

 
 

 
 

(b) 
 

Figure 2.9  16-Bit CPL CSA using 4-bit proposed design: (a) SQRT, (b) Linear. 

 

     
 

Table 2.2  16-bit SQRT-CSA results comparison at 100-Mhz activity 

 

Work # 

Type of Adder Delay 

(ns) 

Avg. 

Power 

(mW) 

PDP 

(mW*ns) 

# of 

Transistors 

Avg. # of 

transistors per 

bit addition 

1 RCA+RCA 2.54 8.643 21.95 974 ~61 

2 RCA+BEC 3.64 7.056 25.68 752 47 

3 SQRT_RCA_CPL 1.58 10.9 17.22 1182 ~74 

4 SQRT_RCA_BEC_CPL 1.98 7.909 15.65 880 55 

5 Proposed_SQRT_CPL 1.54 5.402 8.31 566 ~35 
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6 Proposed_Linear_CPL 1.25 5.698 7.12 576 36 

 

2.3 Limitations for proposed 4-bit CPL CSA 

    Prediction circuit proposed has an ability to predict and select 4 bit addition 

outputs (four sum outputs and one carry out). Extending the prediction logic to find more 

than 4 bit addition results, with single carry in as selecting signal, needs large number 

(more stages) of multiplexers. As shown in Table 2, proposed 4 bit design holds no good 

delay values for 16 bit SQRT_CPL_CSA (work 5) adder when compare with 16 bit 

Linear CPL_CSA (work 6).  

2.4 Results comparison 

The proposed 16 bit SQRT or Linear designs saves significant number of 

transistors (area), power and reduces the delay when compared with regular CPL adder 

designs as shown in Table 2.2. From these results in table, proposed Linear CSA using 

modified CPL design has 18.83% less delay with an increase of 5.4% power and with 

slight increase in transistor count of 1.77% when compared with the results of proposed 

SQRT CSA using modified CPL. Either one of the designs can be selected according to 

the power and speed requirements. The proposed design in work 6 has 50.7% and 65.6% 

reduced delay, 34% and 19.24% reduction in power and 40.8% and 23.4% of reduced 

transistor count when compared with regular square root adder designs in work 1 and 

work 2. 
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3 A High Speed and Low Power 64-Bit Digital Comparator using 

90nm CMOS Technology 

3.1 Introduction 

    Binary comparator is an electronic device capable of performing an arithmetic 

operation of comparing two digital input signals. A simple single bit comparator 

compares two input digits, a digit is either logic ‘1’ or logic ‘0’, and yields three different 

possible outputs: “greater”, “less” or “equal”. A multi-bit comparator compares two 

multi-bit words. A multi-bit input digital comparator is widely used in computing and 

controlling devices, such as microcontrollers, microprocessors, digital image processors, 

encryption devices etc. Modern electronic computing devices are capable of working 

with binary word lengths of 32 bits (4 Bytes) and 64 bits (8 Bytes). Portability, 

computing speed and power efficiency are in great need for computing devices. A variety 

of  comparator designs have been proposed to achieve the design specifications such as 

low power consumption, less delay (high speed) and less number of transistors (low cost 

and portability) [10]-[23]. 

    A parallel tree structured 64-bit comparator using all-N- transistor (ANT) 

dynamic logic was proposed in [10] and demonstrated the improvements of performance 

and transistor count over conventional designs using domino sub-tractors; however, the 

3.5 clock cycle pipelining process made the design less attractive for some applications. 

A priority encoder based comparator was first proposed in [11] to reduce the circuit 

complexity and demonstrated a significant cost improvement along with significant 
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enhancements in speed. Multiple output domino logic (MODL) implementation to 

decrease the power consumption and multi-level look-ahead technique to reduce the path 

delay was also implemented in [11]. High fan in dynamic logic implementation was 

proposed in [12] and demonstrated improvements in delay and transistor count over [10] 

and [11]. A high speed static design was proposed in [13] using 100nm CMOS 

technology. This static design can compete with the dynamic comparator designs for 

high-speed. In [14] parallel MSB checking with dynamic NOR gates was proposed to 

demonstrate the improvements in delay with area trade off over priority encoder based 

design proposed in [11]. 

    An enhanced priority encoder and MUX based high fan in design was proposed 

in [15] using 0.35µm technology to demonstrate the improvement in speed of operation 

with an area trade off over [14]. A bit wise competition logic was proposed in [16] to 

demonstrate the improvement in delay and area over [10] [11] [17]. It was designed using 

less number of transistors (962) which shows a 38% improvement over a previous best 

design for transistor count proposed in [17]. Single clock cycle high performance designs 

were proposed in [18] [19] [20] using 90nm CMOS technology. Tree based single clock 

cycle comparators were proposed in [21] [22] [23]. Designs proposed in [21] and [23] 

were realized in 65nm CMOS technology. Constant delay logic to improve the speed of 

64 bit radix-4 tree based comparator was proposed in [23].  

    In this work, a unique high speed, power and area efficient design for 64-bit 

static and dynamic comparator operation is demonstrated using 90nm-1.2V CMOS 

technology. Generally, dynamic designs consume more power than static designs. This 

work emphasizes the use of clock with reduced duty cycle to reduce the pre-charge (or 
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pre-discharge) time, which reduces the short circuit power consumption in dynamic 

designs, while increasing the evaluation time. Also, this work demonstrates a new 

approach for improving the self-pipeline nature of a digital design by adjusting the worst 

and best delays to be equal. The equal delay can be achieved using the pre-charging and 

sizing strategies discussed in Section 3.5.2.1. This work also introduces the design 

methodology for resource sharing. Some portion of the static or dynamic logic blocks, 

XE (XOR/XNOR) blocks described in Section 3.3, can be utilized to run other important 

arithmetic operations such as addition and multiplication. A similar approach of using 

XOR and XNOR to design comparator and adder was used in [19] and [24], respectively. 

3.2 Operating Principal and Design Methodology 

    The proposed 64 bit comparator design implementation is not based on the 

traditional way of generating Boolean equations using truth table and K-maps. It is 

designed based on the general working principal of comparing binary data. This process 

is illustrated using Figure 3.1(a) where the MSB bits of Data A and Data B are not equal. 

Then the comparator ignores the comparison at rest of the bit positions. According to this 

principal, the comparator always progresses from MSB to LSB of a multi-bit binary data. 

Unlike some previously proposed designs with 3 outputs, AG, BG, and EQ, our proposed 

design has only two encoded outputs AG (or BG) and EQ, as shown in Figure 3.1(b). 

This method of design modification from regular 3-bit output to 2-bit encoded output, 

shown in Figure 3.1(b), is represented by logic functions 3.1, 3.2, and 3.3. 

𝐴𝐺 = 𝐴 . 𝐵                                           (3.1) 

𝐸𝑄 = 𝐴 ⊕ 𝐵                                       (3.2) 
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𝐵𝐺 = 𝐴 . 𝐵 
𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑
→       𝐵𝐺 = 𝐴𝐺 . 𝐸𝑄                        (3.3) 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 3.1  (a) Basic principal for binary data comparison, (b) Comparator design 

modification from traditional 3-bit output to encoded 2-bit output. 

 

    For an N-bit binary comparison, the comparator starts comparing from MSB bit, 

(N-1)th bit, and it proceeds to the next bit, (N-2)th bit, for comparison if and only if the 

MSB bits of two data are equal. As shown in Figure 3.2, this process continues until it 

gets an unequal (X) bit pair on its way of comparison towards LSB bit position. When it 

reaches the first unequal bit pair, it stops comparing the rest of the bits and yields an 

output of logic ‘1’ at AG (A Greater) or BG (B Greater). If both data are equal then it 
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yields logic ‘1’ at EQ and logic ‘0’ at both AG and BG. X and E logics used are realized 

by equations 3.4 and 3.5, respectively.  

𝑋 =  𝐴 (𝑋𝑂𝑅)𝐵                                         (3.4) 

𝐸 = 𝐴 (𝑋𝑁𝑂𝑅)𝐵 = 𝑋                                 (3.5) 

 

 
 

Figure 3.2  N-Bit Comparison 

 

    Implementation of the above design procedure using hardware requires three 

main sub blocks in different stages. One is XE block, second one is Level-1 comparison 

block, and the third one is Level-2 comparison block. XE block performs single bit 

comparison and gives outputs through X and E output pins, as shown in Figure 3.3, 

which is discussed in Section 3.3. Level-1 comparison block includes XE block to 

perform tier-1 comparison. Level-2 comparison block perform tier-2 to tier-M 

comparison. Here M, the total number of tiers, depends on comparison tree structure. 

3.3 Static and Dynamic XE logic 

    The XE block takes A and B bits to generate X and E output signals. This XE 

block is designed in such a way that it yields logic ‘1’ at X (XOR) if both A and B input 
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bits are unequal (0 1 or 1 0). If both A, B input bits are equal (0 0 or 1 1), then E (XNOR) 

takes a value of logic ‘1’. These are the key logic blocks which helps in designing many 

arithmetic designs. In microprocessor designing, this XE block can be used as a common 

logic block for resource sharing to implement other low power and high speed arithmetic 

operations. As shown in Figure 3.3(a) and (b), static XE block design using 

complimentary pass transistor logic requires 12 transistors [9], whereas, the proposed 

dynamic XE block needs 5 transistors. The proposed dynamic XE design resembles a 

static 5 transistor XOR-XNOR logic proposed in [25]. Static 5 transistor XE design in 

[25] is less attractive with high power consumption, especially in low frequency 

operations, and gives weak logic. Proposed dynamic XE block operating functions are 

illustrated using equations 3.6 and 3.7. 

 

𝑋𝑠𝑡𝑟𝑜𝑛𝑔 = (𝐴 . 𝐵 + 𝐴 . 𝐵). 𝐶𝐿𝐾𝑎                        (3.6) 

   𝐸𝑠𝑡𝑟𝑜𝑛𝑔 = 𝐶𝐿𝐾𝑎 . (𝐴 . 𝐵 + 𝐴 . 𝐵)                     

                 = 𝐶𝐿𝐾𝑎 . 𝐴 ⊕ 𝐵                                   

     = 𝐶𝐿𝐾𝑎 . 𝑋𝑠𝑡𝑟𝑜𝑛𝑔                                (3.7) 
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(a) 

 

 

 

(b) 

 

Figure 3.3  XE block (a) 12T-staic [24], (b) 5T-dynamic. 
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    This proposed 64 bit comparator needs 64 XE blocks. More than half of the 

area and power of the 64-bit static comparator are utilized by XE blocks. To reduce the 

power consumed by dynamic block design, the proposed design approach uses a clock 

with reduced duty cycle to decrease the pre-discharge/pre-charge time. Reduction in pre-

discharge/pre-charge time reduces the short circuit current while increasing the 

evaluation time. Dynamic XE block with traditional 50% duty cycle clock, as shown in 

Figure 3.4(a), causes a high power consumption when clock is high and two input signals 

are opposite in logic. In this case, one of the p-MOS transistors in pull up network and 

clocked n-MOS transistor in pull down network go to ON state. Then, there is a 

continuous flow of short circuit current between VDD and GND rails, which is a major 

contribution for power consumption in dynamic designs. In effort to improve the power 

efficiency and speed of operation, we performed the simulations on dynamic XE block 

with reduced duty cycle (D), which is shown in Figure 3.4(b). This proposed method 

yields an excellent improvement in power and delay reduction, as summarized in Table 

3.1, with 25% and 10% duty cycle clock. All results obtained are based on simulations 

performed in Cadence Analogue Design Environment (ADE) on designs using standard 

Vt transistors in 90nm CMOS technology. 
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(a)                                               (b) 

Figure 3.4  Dynamic XE block performance using (a) traditional clock (D=50%) and 

(b) clock with reduced duty cycle (D<50%). 

 

 

As shown in Figure 3.4, simulations on static and dynamic XE designs are 

performed using 1.0GHz and 500MHz pulse signals as Data A and Data B, respectively. 

For dynamic designs, clock frequency is double the frequency of fastest input signal. As 

summarized in Table 3.1, at 2GHz and 10% duty cycle clock with 1.2V and 1.0V supply, 

average power consumption by dynamic design is nearly equal to the average power 

consumption by static design for the same vector. Reduction in duty cycle of the clock 

from 50% to 10% also increases the evaluation time for the dynamic design. Pre-

charging/pre-discharging strategies, discussed in Section 3.5, used in designing Level-1 

and Level-2 dynamic sub-blocks explains the improvement in the overall speed of the 

proposed 64-bit full dynamic comparator design while reducing the transistor count. 
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  Table 3.1  Simulation results of static and Dynamic XE blocks  

Mode Activity/clock 

@VDD 

Duty 

Cycle 

Avg. Power 

(µW) 

Delay (ps) # of 

Transistors 

Static 1GHz@1.2V N/A 9.37 39  

12 1GHz@1.0V N/A 5.85 80 

Dynamic 2GHz@1.2V 50% 38.53 14  

 

5 

25% 21.24 14 

10% 10.83 14 

2GHz@1.0V 50% 19.83 22 

25% 11.26 22 

10% 5.99 22 

 

3.4 Design of proposed 64-bit static comparator using Level-1 & Level-

2 sub blocks 

3.4.1 Level-1 4-Bit Static Comparator Sub Block Design 

    The proposed 4 bit comparator works on the previously mentioned design 

principal illustrated in Figure 3.1 and Figure 3.2. As shown in Figure 3.5, Level-1 (L1) 4-

bit comparator sub block needs 4 ‘XE’ blocks and 3 chains of transistors for performing 

the Greater and Equal operations. This 4 bit block clearly shows proposed logic for 

comparison between two 4 bit words A and B. First, all XE blocks perform comparison at 

the respective positions in parallel and generates outputs X (bits are not equal) and E (bits 

are equal). Then, the actual 4 bit word magnitude comparison takes place using Chains 1, 
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2, and 3. Chain 1 and 2 generates output at AG (A greater) and Chain 2 and 3 generates 

output at EQ. Chain 2 is a common logic generator for both AG and EQ outputs. 

    As mentioned in Section 3.2, proposed design compares the first unequal bits of 

A and B to check which word is greater. If any bit pair is unequal then it sets logic ‘1’ on 

X which sets and pass through the respective parallel transistor in chain 3 and sets a weak 

logic ‘1’ at node N2. This weak logic ‘1’ sets a strong logic ‘0’ at EQ. If some 

intermediate unequal bit pair is found, then the first unequal bit pair sets X to logic ‘1’ 

and E to logic ‘0’ at that position. This active low signal at E breaks the n- MOS chain to 

ignore the comparison results at rest of the bit positions. The AG and EQ logic functions 

for Level-1 sub-block are developed in 3.8 and 3.9 respectively. 

 

𝐴𝐺 =  (𝑋3𝐵3) + 𝐸3(𝑋2𝐵2) + 𝐸3𝐸2(𝑋1𝐵1) + 𝐸3𝐸2𝐸1(𝑋0𝐵0) + 𝐸3𝐸2𝐸1𝐸0 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅            (3.8)  

        𝐸𝑄 =  𝑋3 + 𝑋2 + 𝑋1 + 𝑋0 + 𝐸3𝐸2𝐸1𝐸0                                      (3.9)  
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Figure 3.5  Level-1 static 4-Bit comparator sub-block 

       

    For instance, if MSB bits of A3 and B3 are not equal (1 0 or 0 1), then outputs 

of XE block, X3 and E3, set to logic ‘1’ and logic ‘0’ respectively. Then, logic ‘0’ at E3 

breaks rest of the Chain 1 by setting the transistor T4 to OFF mode and logic ‘1’ at X3 

sets the transistor T0 to ON mode. As shown in Figure 3.5, one end (drain) of the N-MOS 

transistor T0 is connected to input bit B3. In this example, if bit B3 is logic ‘0’, then this 

implies that A3 input is logic ‘1’ and the word A is greater. So, logic ‘0’ from B3 pass 

through transistor T0 and sets logic ‘0’ on node N1. Then, this logic ‘0’ gets inverted at 

inverter 1 to yield logic 1 at AG. 
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    Chain 2 performs operation in one of the worst cases that is when all bit pairs 

are equal. At this case, all E outputs from XE blocks sets to logic ‘1’, which sets all 

transistors in chain 2 to ON state. Then, chain 3 passes a strong ‘0’ to node N2 either 

from ground or from X3. Strong ‘0’ on N2 sets two outputs AG and EQ at same instance. 

Logic ‘0’ at node N2 passes through inverter 2 to set logic ‘1’ at EQ. It also sets the P-

MOS transistor P0 to ON mode, which sets logic ‘1’ on node N1 by passing logic ‘1’ 

from E3, which in turn sets an output of logic ‘0’ on AG. Most actions performed by 

chains 1, 2 and 3 do not need any ground (VSS) or power (VDD) connections except for 

substrate connections. This type of designing reduces the power consumption by stack 

effect. Only one ground connection is used by T10 to pass logic ‘0’ though chain 2. Here 

there is an alternative to avoid this ground connection by connecting the free end of the 

T10 transistor to X0. It works well because chain 2 function only if all E’s are logic ‘1’ 

and in this case all X’s set to logic ‘0’, which is helpful to avoid the ground connection 

with an increase in delay. It has a design flexibility that switching connections between 

transistors (T0, T1, T2, T3) and input bits from B (B3, B2, B1, B0) to input bits from A 

(A3, A2, A1, A0) switches output AG to work as BG. 

3.4.2 Level-2 4-bit Static Comparator Sub-block Design 

    For multi-bit (N-bit) input data comparison, single tier comparison using Level-

1 yields outputs with large delay at worst case comparisons. This is because of N number 

of series transistors in Chain 1 and Chain 2 for single tier 64 bit comparator architecture. 

Though the single tier architecture seems to utilize low power and less number of 

transistors, it does not meet challenging speeds with single tier architecture. So, the 

design needs multi-tier architecture. 
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    Level-2 comparator sub blocks are useful in designing different multi-tier 

architectures. We can observe the clear resemblance of operation between Leve-1 and 

Level-2 sub blocks. Level-1 (L1) compares input bits from MSB to LSB and in a similar 

way Level-2 (L2) compares outputs of Level-1 sub blocks from most significant block to 

least significant block. As shown in Figure 3.6, Level-2 sub block uses 4 pairs of EQ and 

AG outputs from 4 Level-1 sub blocks as inputs and generates BG and EQ as outputs. 

Level-2 sub-block also has 3 chains to perform the greater and equal operations. Chain 1 

and 2 performs operations to contribute to the BG output. Chain 2 and 3 contribute to the 

EQ output. As discussed earlier, both Level-1 and Level-2 blocks yields inverted outputs. 

In a 64-bit comparator, if the architecture is designed with odd number of tiers (or stages) 

and if transistors T0, T1, T2, and T3 in Level-1 sub block are connected to input bits of B, 

then the output will be AG. And, if the input connections are flipped, from B to A, then 

the output of the comparator switches from AG to BG. This consideration for outputs will 

be altered for comparator with even number of stages. BG and EQ logic functions for 

level-2 are developed in 3.10 and 3.11, respectively.  

 

  𝐵𝐺 = (𝐸𝑄3𝐴𝐺3) + 𝐸𝑄3(𝐸𝑄2𝐴𝐺2) + 𝐸𝑄3𝐸𝑄2(𝐸𝑄1𝐴𝐺1) +
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      

𝐸𝑄3𝐸𝑄2𝐸𝑄1(𝐸𝑄0𝐴𝐺0) + 𝐸𝑄3𝐸𝑄2𝐸𝑄1𝐸𝑄0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                            (3.10) 

 

𝐸𝑄 = 𝐸𝑄3 + 𝐸𝑄2 + 𝐸𝑄1 + 𝐸𝑄0 + 𝐸𝑄3𝐸𝑄2𝐸𝑄1𝐸𝑄0                   (3.11) 
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                                               (b) 

Figure 3.6  Level-2 static 4-Bit comparator sub-blocks 

 

3.4.3 Delay and Power Optimization Strategies 

   Low power and high speed are the objectives of this proposed design. 

Analyzing Figure 3.5 and Figure 3.6, the worst delay path is Chain 1 when only the LSB 

pair bits are not equal. The delay path is T3, T6, T5, and T4. Two techniques are used to 

optimize this worst path delay. One is adjusting the transistors sizes; another is balancing 

the load. Increase Chain 1 transistor widths progressively from MSB side, to worst case 

input side, LSB side, to reduce Chain 1 delay. Chain 1 and Chain 2 structures are similar. 

Both chains are stacked ones. But, Chain 2 is designed with minimum width transistors. 
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So, delay optimization procedure for both blocks is similar. The simulations are 

performed on different low cost sub-blocks and results are tabulated in Table 3.2.  Low 

cost design is intended for smaller area and maximum width of transistor used in 

designing is 480nm. As shown in Table 3.2, Level-1 and Level-2 low cost sub-block 

delays are 130ps and 123ps, respectively. 

Table 3.2  Simulation results for L1 and L2 static comparator sub blocks at an 

activity (Data rate) of 500MHz (1GHz). 

 

Design 

 

No. of 

Transistors 

Low Cost 

Power 

(µW) 

Delay (ps) Max. width of 

transistor EQ AG/BG 

Level-1 68 28.21 130 117 480nm 

Level-2 28 5.99 57 123 480nm 

 

    Load balancing is another important factor in delay optimization of 64-bit tree 

based comparator. Outputs from Level-1 sub blocks in tier-1 has to drive the gates of 

Level-2 sub block in tier-2 and then Level-2 sub block outputs drive Level-2 sub block in 

tier-3 and this process goes on till the last tier. EQ output signal from Level-1 has larger 

load to drive than AG. So, to set the overall effective delays of final output signals nearly 

equal, by considering loads, delay of EQ signal is made less than the AG/BG signal in 

Level-2 sub-blocks.  

3.4.4 Tree Based 64-bit Low Cost Static Comparator Design  

    In this work, a 64-bit static comparator is designed in radix-4 tree structure 

using the proposed 4-bit comparator design. Radix-4 is a 3 tier architecture, shown in 

Figure 3.7. There are other tree based structures like radix-2 and radix-8. The number of 

stages (2) needed to implement a 64-bit comparator in radix-8 is smaller; however, the 
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stack height (8) is too high for delay optimization. Radix-2 structure is also not good for 

delays, because it is a 6 tier structure with 12 transistors and 6 inverters in its worst path. 

In case of radix-4 design, worst path from LSB side includes 12 blocks of delay and best 

path from MSB includes 3 blocks. As shown in Figure 3.8, radix-4 structure has 13 

transistors and 5 inverters in worst path, and 4 transistors and 5 inverters in best path. 

Delays of signals coming from all paths should be nearly equal to maintain the self-

pipelining of the design. This design needs 4 buffers at ‘Bg’ outputs shown in Figure 3.7 

from stage 2 for worst case delay improvement.  

 

Figure 3.7  Proposed 64-bit static comparator using radix-4 tree structure 
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Figure 3.8  Worst and best path delay representation in radix-4 structure. 
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Figure 3.9  Input vectors to measure (a) Worst path delay, (b) Worst power, and (c) 

Maximum power consumption. 

  

3.4.5 Schematic Simulation Results 

    Average power at worst case delay vector, worst case delay, worst power and 

maximum power consumptions are measured by triggering input vectors, shown in 

Figure 3.9, in Cadence Spectre simulator. As mentioned in Section 3.3, simulations are 

performed on designs using standard-Vt transistors. In low cost mode, worst case path 

delay of 64-bit comparator using vector 1 is 374ps and average power consumption at 

this vector is 232µW. Maximum power consumption of 822µW was measured by 

triggering vector 3. With input vector 3, the design consumes maximum power (more 

than when triggering by vector 2). In this proposed design, XE block is the major power 

consuming block. This proposed 64 bit comparator has 64 XE blocks and the maximum 
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power consumption was measured by triggering maximum activity involving all XE 

blocks. As shown in Figure 3.9(c), vector 3 causes a maximum of 5 transitions per 1 ns 

period at each XE block. But vector 2, which seems to be the worst power vector, triggers 

4 transitions per 1ns period at XE block. With input vector 2, worst average power 

consumption is 647µW, which is less than the power consumption, 822µW, caused by 

triggering vector 3. The number of signal transitions in XE block is calculated using the 

formula in 3.12. 

 

# 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠.

 1𝑛𝑠
=
2

𝑇𝐴
+
2

𝑇𝐵
+
# 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠. 𝑜𝑛 (𝑋 + 𝐸)

1 𝑛𝑠
                 (3. 12) 

 

𝑊ℎ𝑒𝑟𝑒 𝑇𝐴 & 𝑇𝐵 𝑎𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑓𝑜𝑟 𝐴 𝑎𝑛𝑑 𝐵 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑖𝑛 𝑛𝑠.     
 

Switching frequency can also be represented by activity factor “α” which is 

estimated by using 3.13 [23].     

α =  
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 × # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠
                (3. 13) 

 

3.5 Proposed 64-bit dynamic comparator design using Level-1 & Level-

2 sub blocks 

3.5.1 Level-1 and Level-2 4-Bit dynamic sub block design 

    Dynamic sub blocks are designed by modifying static sub-blocks. This section 

demonstrates the dynamic low cost radix-4 tree structured 64 bit comparator design using 

reduced duty cycle clock. In this work, clock signal is given in stimuli of the simulator. 

Measurement of average power, delay and transistor count do not include clock tree. This 
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work demonstrates mainly the impact of proposed approach of using the non-traditional 

clock with reduced duty cycle. The Radix-4 64-bit dynamic design is similar to static 

design with some internal modifications in Level-1 and Level-2 sub-blocks. Both Level-1 

and Level-2 dynamic sub blocks are designed for low cost purpose where the maximum 

width of transistor used is 480nm. Level-1 sub block is modified from static to dynamic 

by adding dynamic XE block in place of static XE block to reduce the transistor count.  

    As shown in Figure 3.10, a clock gated n-MOS transistor, T7, and a p-MOS 

transistor, P5, are added at node N2 of chain 3 and node N1 of Chain 1 respectively to 

pre-discharge and pre-charge; pre-discharge on node N2 substitute the functionality of 

chain 2; pre-charge on node N1 reduces the worst case delay through chain 1. Level-2 

dynamic sub-block can be designed in a similar way as Level-1 dynamic sub-block 

designed to reduce the transistor count. But, that makes the EQ signal quicker than that of 

AG/BG output signal. To set the AG/BG signal delay and EQ signal delay equal, to retain 

the self-pipelining, Level-2 dynamic comparator sub block is designed by adding a 

clocked p-MOS pre-charge transistor, shown in Figure 3.11, at node N1 on Chain 1 of a 

low cost sub-block. In this work, self-pipelining is a special tendency of the design to 

yield the synchronized outputs without the need for adding any D Flip Flop (DFF). To 

improve the self-pipelining nature of the design, AG/BG output signals and EQ signals of 

sub blocks should come with same delay. Worst, moderate and best case signal 

propagation delays should be close. Maximum width of the transistor used in designing 

low cost comparator sub blocks is 480nm, which is discussed in Section 3.4.3. 
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Figure 3.10  Level-1 dynamic 4-bit comparator sub-block 
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Figure 3.11  Level-2 dynamic 4-bit comparator sub-block 

 

3.5.2 Proposed 64-bit, low cost, full dynamic, self-pipelined comparator 

design using radix-4 structure  

    Though the proposed dynamic and static designs are designed using similar 

structure, dynamic designs need more effort to make the design operate with self-

pipelining. Level-1 and Level-2 sub blocks used in static and dynamic designs are of 

similar size. Duty cycle of clock and sizing strategy for sub blocks at different levels 

plays a major role in improving the pipelining of the proposed design. 
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3.5.2.1 Sizing and Pre-charging Strategies:  

    Worst path and best path delays are made approximately similar by reducing 

the transistor widths in best path, when unequal bit pairs occur in MSB position. Initially, 

worst path delay is optimized and then signal delays from best delay paths increased to 

match the worst delay. This proposed approach helps improving the self-pipelining nature 

of any tree structure. In a sub-block design, widths were increased progressively from 

MSB side to LSB side. 

    Second important factor in improving speed and self-pipelining is proper 

arrangement of pre-charging transistors. In Level-1 dynamic sub-block design, N1 and 

N2 nodes are pre-charged quickly to increase the speed through worst path. But, in 

second and third stages, chain 3 does not need any pre-charge transistor. EQ signal 

passing through second stage should come with moderate delay. If Level-2 sub-block 

also has a pre-charge transistor, EQ signal comes first to the last stage and causes invalid 

logic. Reduced duty cycle clocks strategy is proposed to eliminate the pre-charge overlap 

issues. As shown in Figure 3.12, reduced duty cycle clocks are given at different stages 

from CLKa to CLKc to improve the power efficiency while maintaining its speed. 
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Figure 3.12  Clock strategy for proposed radix-4 64-bit full dynamic comparator 

design 

 

 

3.5.3 Proposed 64-bit partially dynamic comparator design in radix-4 

structure  

    In an attempt to further reduce the power consumption at high speeds of 

operation, proposed dynamic design (full dynamic) is modified as a partially dynamic 

design. In full dynamic design, maximum power is consumed by dynamic XE block 

(XED). In order to reduce the power consumption, dynamic XE block (5 transistors) 

belong to Level-1 sub-block of stage 1 is replaced by static XE block (12 Transistors), 
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which increases the transistor count. Full dynamic design requires 64 clock inputs to 

drive 64 dynamic XE block, where partial dynamic design require no clock inputs to 

drive XE logic. So, partial dynamic design requires smaller clock tree. To improve the 

speed of AG/BG and EQ signals, Level-1 and Level-2 sub-blocks in stage 1 and stage 2 

are given clocks CLKb, CLKbb, and CLKc as shown in Figure 3.13. 

 

 

Figure 3.13  Clock strategy for proposed radix-4 64-bit partially dynamic 

comparator design 
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3.6 Simulation Results and Discussion 

    As mentioned earlier, all designs are developed in Cadence-Virtuoso schematic 

editor using 90nm-1.2V CMOS technology. All designs are designed using standard-Vt 

transistors. Figure 3.14 shows the schematic implementation diagrams of 64-bit digital 

static, full dynamic and partially dynamic comparators. Simulations are performed in 

Cadence-ADE L using Spectre simulator and simulation results for dynamic design do 

not include clock tree. All input signals, A[63:0] and B[63:0], and clock signals were 

given in simulator to test the performance of the proposed designs.  

 

(a) 

 

(b) 
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(c) 

Figure 3.14  Schematic designs for 64-bit digital comparators in 90nm CMOS 

technology (a) Static (b) Full dynamic (c) Partially dynamic 

 

   As mentioned in Section 3.4.5, the average power consumption when measuring 

the worst path delay for static design are obtained by triggering input vectors seen in 

Figure 3.9(a). The proposed low cost static design works at a worst path delay of 374ps, 

which is a moderate value when compared with [18] [21] [22] [26]. Though the delay 

values are moderate for this proposed static design, average power consumption at worst 

case delay vector and worst power vector, 232µW and 822µW respectively, are 

significantly lower compared to the previous work. Also these proposed designs are 

intended for resource sharing purpose. Total number of transistors required to build the 

static design are 1244 (768+476) of which 768 transistors, 64 XE block transistors 

(64×12), can be used to design other functionalities such as adder and multiplier. 

   The proposed full and partially dynamic design’s delay and power consumption 

at full activity are obtained by triggering input data vectors shown in Figure 3.15. Clocks 

are given for full and partially dynamic designs according to the clock strategies 

illustrated in Figure 3.12 and Figure 3.13 respectively. The duty cycle of the clock is 



 

53 

given as 20% (40ps) and 25% (50ps), and then the delay and average power consumption 

are measured. As summarized in Table 3.3, while varying the duty cycle, the proposed 

dynamic design with self-pipelining works at 5GHz with worst case delays varying from 

268ps to 278ps for full dynamic design, and 254ps and 256ps for partially dynamic 

design. 

 

 

                      

(a)                                                               (b) 

Figure 3.15  Worst case vectors (a) for delay, (b) for power at 5 GHz clock. 

 

 

 Figure 3.16 shows the simulation results for worst case delay measurement with 

20% duty cycle clock for the full dynamic design. Delay values for partial dynamic 

design are nearly unchanged with variation in duty cycle. These delay values can be 

further lowered by designing with larger transistor widths. At 5 GHz clock (comparison 

rate), while triggering the worst path delay vector, the design works with very low 

average power consumption results, shown in Table 3.3. While varying the duty cycle of 
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the clock from 20% to 25%, the power consumption varies from 156µW to 164µW for 

full dynamic design and 639µW to 643µW for partially dynamic design. Though the 

power consumption for partial dynamic design is higher at worst path delay vector, worst 

power consumption (2.57mW to 2.78mW) is far below the worst power consumption 

(4.21mW to 5.00mW) by full dynamic design. Partial dynamic designs’ worst power 

consumption varies slightly with the clock duty cycle when compared with the variation 

for full dynamic design. 

 

 

Figure 3.16  Simulation results showing worst case delay at 40ps (20%) duty cycle (D) 

clock for 64-bit dynamic comparator. 
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Table 3.3  Performance Comparisons for 64-bit Static and Dynamic Comparator 

Design Technology Clock/input 

Frequency 

 

Power 

(mW) 

Delay 

(ps) 

Transistor 

count 

PDP 

(pJ) 

C.C. Wang 

1997 [10] 

0.6um 5V 

 

1GHz 

(Dynamic) 

0.111mW/MHz 

[11] 

6300 [11] 1890 111 

C. Huang 

2003 [11] 

0.6um 3V 

 

185MHz 

(Dynamic) 

0.023mW/MHz 5400 

 

1640 

 

23 

 

Boroujeni 

2005 [13] 

 

100nm 1V 1GHz 

(Static) 

HS 0.614 302 N/A 0.185 

LP 0.150 570 N/A 0.085 

J.Y. Kim 

2007 [16] 

0.18um 1.8V 200MHz 

(Static) 

2.53 1120 964 2.83 

Menendez 

2007 [26] [20] 

100nm 1.2V N/A 

(Dynamic-LP) 

0.025 8471 >1000 0.214 

N/A 

(Dynamic-HS) 

1.25 462 >1000 0.577 

S. Perri 

2008 [18] 

90nm 1V 2.7GHz 

(Static) 

4.4 373 N/A 1.64 

4.3GHz 

(Dynamic) 

1.0uW/MHz 230 1051 0.989 

F. Frustaci 

2010 [19] 

90nm 1V N/A 

(Dynamic) 

0.77uW/MHz 258 1365 [21] 0.198pJ/GHz 

(EDP) 

M. Larijani 

2011 [20] 

90nm ptm 1.2V 5.4GHz 

(Dynamic) 

13.6(3) 222 724 3.0(3) 

UMC 90nm 

1.2V 

4.2GHz 

(Dynamic) 

3.3(3) 310 724 1.02(3) 

P. Chuang 

2012 [21] 

90nm 1V 100MHz 

(Dynamic) 

0.207 

(worst power) 

240 1206 0.049 

65nm 1V 100MHz 

(Dynamic) 

0.189 

(worst power) 

166 1206 0.031 

S.A. Hafeez 

2012 [22] 

0.15um 1.5V 1GHz 

(Static) 

7.76 860 4000 6.67 

P. Chuang 

2013 [23](2)(5) 

65nm 1V 500MHz 

(Static) 

1.87(6) 

(α=12.5%) 

203 N/A 0.38 (2.15)(4)(6) 

500MHz 

(CD logic) 

2.34(6) 

(α=12.5%) 

167 N/A 0.39 (2.2)(4)(6) 

 

Proposed Radix-4 Low Cost Static, Dynamic and Partially Dynamic designs’ simulation results 

Static 90nm 1.2V 1 GHz 

 

0.232(0.822)(4) 374 768(1)+476 

=1244(1) 

0.086(0.307)(4) 

Dynamic 90nm 1.2V 

 

5GHz 

D=20% 

D=25% 

 

0.156(4.21)(4) 

0.164(5.00)(4) 

 

268 

278 

 

320(1)+449 

=769(2) 

 

0.042(1.13)(4) 

0.046(1.39)(4) 

Partially-

Dynamic 

90nm 1.2V 5GHz 

D=20% 

D=25% 

 

0.639(2.57)(4) 

0.643(2.78)(4) 

 

254 

256 

 

768(1)+449 

=1217(2) 

 

0.162(0.65)(4) 

0.164(0.71)(4) 

             LC-Low Cost, HS- High Speed, LP-Low Power                   
                                1 for resource sharing 

                    2 results include clock tree 
                    3 Average power consumption measured at worst case delay vector 

                    4 Numbers in brackets related to maximum power consumption (full activity)  

                    5 Silicon results 

                    6 Values are extrapolated in [23] to full speed by using the formula: 
1

(𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟 𝑑𝑒𝑙𝑎𝑦 × 500𝑀𝐻𝑧)
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The power-delay product (PDP) at worst case delay vector for full and partially 

dynamic designs varies from 0.042pJ to 0.046pJ and 0.162pJ to 0.164pJ respectively with 

clock duty cycle changing from 20% to 25%. Worst PDP values for full and partially 

dynamic designs at worst power vector varies from 1.13pJ to 1.39pJ and 0.65pJ to 0.71pJ 

respectively, which are far lower than the simulated/measured results obtained from the 

previously proposed designs. Worst PDP values are calculated by multiplying worst 

power and worst delay for the proposed designs. There is a comparative analysis done 

using results summarized in Table 3.3. The transistor count of 769 (320+449) for fully 

dynamic design is lower than many designs proposed previously but this full dynamic 

design requires large clock tree. If we consider the resource sharing, sharing of 64 

dynamic XE blocks, for other functionality, the transistor count is even lower. 

 There is a comparative analysis done on normalized delay and PDP values 

obtained in this work and [23]. Results obtained in current work using 90nm-1.2V are 

normalized to 65nm-1V process to compare the performance of the proposed design with 

recently proposed design [23]. To make proper comparisons, PDP values from [23] are 

extrapolated from its full speed (5.98GHz frequency or 167ps delay) to the proposed 

designs operating speed (5GHz). Normalization formula for delay and extrapolated 

normalization formula for PDP (Energy) used in [23] are used in this work to make 

comparisons as shown below. 

𝑡𝑑𝑛𝑜𝑟𝑚 = 𝑡𝑑 × (
65𝑛𝑚

𝑡𝑒𝑐ℎ.
)                          (3.14) 

𝑃𝐷𝑃𝑛𝑜𝑟𝑚 = 𝑃𝐷𝑃𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 × (
65𝑛𝑚

𝑡𝑒𝑐ℎ.
) × (

1𝑉

𝑉𝑡𝑒𝑐ℎ
)
2

           (3.15) 

𝑃𝐷𝑃𝑛𝑜𝑟𝑚−𝑒𝑥𝑡𝑟𝑎 = 𝑃𝐷𝑃𝑛𝑜𝑟𝑚 × (
5𝐺𝐻𝑧

𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
)                  (3.16) 
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    Comparisons are depicted in Figure 3.17 and Figure 3.18 for normalized delay 

and PDP respectively. The normalized delay values for the proposed full and partial 

dynamic designs are 16% to 29% and 9.5% to 10.7% higher than the delay value of 

167ps measured in [23], normalized-extrapolated energy values illustrated in Figure 3.18 

are far lower than the normalized and extrapolated (to 5GHz) values in [23]. Partially 

dynamic design shows a superior power improvement than full dynamic design with the 

transistor count trade-off. Delays can be further decreased by designing a high speed 

design using larger width transistors with a slight power trade-off. Proposed dynamic 

designs works with a superior improvement in worst case energy values with 69% and 

62% improvement for full dynamic design and 82% and 80% improvement for partial 

dynamic design when compare with the normalized-extrapolated silicon results measured 

in [23], which includes clock tree. 
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Figure 3.17  Comparison of normalized (to 65nm-1V) delay results for proposed 64-

bit low cost dynamic design at 5GHz clock with various D and silicon results 

measured in [23]. 

 

 

 

 

Figure 3.18 Comparison of normalized-extrapolated (to 65nm-1V, 5GHz) PDP 

results for proposed 64-bit low cost dynamic design at 5GHz clock with various D 

and silicon results measured in [23]. 
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4 Conclusion & Future Work 

4.1 Conclusion 

 The proposed technique for the 4-bit CPL adder block, sub-block of 

proposed 16-bit carry select adder, results in significant reduction in 

power, area, and delay for the square root and linear carry select adder 

designs when compare with the regular designs.  

 One set of the proposed design replaces the requirement of two sets of 

RCA or RCA and BEC to save the area and power.  

 New static and dynamic 64-bit comparator designs are presented in this 

work.  

 The proposed design approach using a reduced duty cycle clock for pre-

charge and pre-discharge along with a strategy of width adjustment in 

comparator sub-blocks increase the self-pipelining of the design to make 

the design work at 5GHz clock speed.  

 Proposed designs (static, full dynamic, and partially dynamic) maintain 

competitively lower transistor count and worst power consumptions.  

 Full dynamic design is suitable for low transistor count applications while 

partially dynamic design is apt for low power consuming applications.  
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 The proposed reduced duty cycle clock usage in dynamic designs with 

reducing power consumption and sizing strategy for radix-4 tree structure, 

is applicable for many tree based structures to improve the self-pipelining.  

 In addition to low power and high speed applications, the proposed 

designs in static and dynamic modes can share some portion of resources 

for other important functionalities, such as addition, multiplication, etc.  

4.2 Future Work 

Future work include: 

 Developing new techniques to design a 64 bit and a 128 bit fast, low-

power consuming and area efficient adders. 

 Improving the power efficiency and speed (>5GHz to 10GHz) of the 

operation by implementing with different low power and high speed XOR-

XNOR designs. This design can reach even more speeds by making the 

high speed sub blocks and adding registers for high speed pipelining. 

 Silicon implementation and exhaustive functional testing. 

 Testing the robustness of the designs by doing PVT variations and Monte 

Carlo analysis. 

 Testing signal integrity and power integrity while packaging and placing 

on printed circuit board (PCB). 
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