6,795 research outputs found

    Information preserved guided scan pixel difference coding for medical images

    Full text link
    This paper analyzes the information content of medical images, with 3-D MRI images as an example, in terms of information entropy. The results of the analysis justify the use of Pixel Difference Coding for preserving all information contained in the original pictures, lossless coding in other words. The experimental results also indicate that the compression ratio CR=2:1 can be achieved under the lossless constraints. A pratical implementation of Pixel Difference Coding which allows interactive retrieval of local ROI (Region of Interest), while maintaining the near low bound information entropy, is discussed.Comment: 5 pages and 5 figures. Published in IEEE Wescanex proceeding

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table

    Diagnostically lossless coding of X-ray angiography images based on background suppression

    Get PDF
    X-ray angiography images are widely used to identify irregularities in the vascular system. Because of their high spatial resolution and the large amount of images generated daily, coding of X-ray angiography images is becoming essential. This paper proposes a diagnostically lossless coding method based on automatic segmentation of the focal area using ray-casting and α-shapes. The diagnostically relevant Region of Interest is first identified by exploiting the inherent symmetrical features of the image. The background is then suppressed and the resulting images are encoded using lossless and progressive lossy-to-lossless methods, including JPEG-LS, JPEG2000, H.264 and HEVC. Experiments on a large set of X-ray angiography images suggest that our method correctly identifies the Region of Interest. When compared to the case of coding with no background suppression, the method achieves average bit-stream reductions of nearly 34% and improvements on the reconstruction quality of up to 20 dB-SNR for progressive decoding

    Interleaved S+P Pyramidal Decomposition with Refined Prediction Model

    No full text
    International audienceScalability and others functionalities such as the Region of Interest encoding become essential properties of an efficient image coding scheme. Within the framework of lossless compression techniques, S+P and CALIC represent the state-of-the-art. The proposed Interleaved S+P algorithm outperforms these method while providing the desired properties. Based on the LAR (Locally Adaptive Resolution) method, an original pyramidal decomposition combined with a DPCM scheme is elaborated. This solution uses the S-transform in such a manner that a refined prediction context is available for each estimation steps. The image coding is done in two main steps, so that the first one supplies a LAR low-resolution image of good visual quality, and the second one allows a lossless reconstruction. The method exploits an implicit context modelling, intrinsic property of our content-based quad-tree like representation

    ROI coding of volumetric medical images with application to visualisation

    Get PDF

    JPEG2000 image coding system theory and applications

    Get PDF
    JPEG2000, the new standard for still image coding, provides a new framework and an integrated toolbox to better address increasing needs for compression. It offers a wide range of functionalities such as lossless and lossy coding, embedded lossy to lossless coding, progression by resolution and quality, high compression efficiency, error resilience and region-of-interest (ROI) coding. Comparative results have shown that JPEG2000 is indeed superior to established image compression standards. Overall, the JPEG2000 standard offers the richest set of features in a very efficient way and within a unified algorithm. The price of this is its additional complexity, but this should not be perceived as a disadvantage, as the technology evolves rapidly

    Scalable wavelet-based coding of irregular meshes with interactive region-of-interest support

    Get PDF
    This paper proposes a novel functionality in wavelet-based irregular mesh coding, which is interactive region-of-interest (ROI) support. The proposed approach enables the user to define the arbitrary ROIs at the decoder side and to prioritize and decode these regions at arbitrarily high-granularity levels. In this context, a novel adaptive wavelet transform for irregular meshes is proposed, which enables: 1) varying the resolution across the surface at arbitrarily fine-granularity levels and 2) dynamic tiling, which adapts the tile sizes to the local sampling densities at each resolution level. The proposed tiling approach enables a rate-distortion-optimal distribution of rate across spatial regions. When limiting the highest resolution ROI to the visible regions, the fine granularity of the proposed adaptive wavelet transform reduces the required amount of graphics memory by up to 50%. Furthermore, the required graphics memory for an arbitrary small ROI becomes negligible compared to rendering without ROI support, independent of any tiling decisions. Random access is provided by a novel dynamic tiling approach, which proves to be particularly beneficial for large models of over 10(6) similar to 10(7) vertices. The experiments show that the dynamic tiling introduces a limited lossless rate penalty compared to an equivalent codec without ROI support. Additionally, rate savings up to 85% are observed while decoding ROIs of tens of thousands of vertices

    Compression of MRI brain images based on automatic extraction of tumor region

    Get PDF
    In the compression of medical images, region of interest (ROI) based techniques seem to be promising, as they can result in high compression ratios while maintaining the quality of region of diagnostic importance, the ROI, when image is reconstructed. In this article, we propose a set-up for compression of brain magnetic resonance imaging (MRI) images based on automatic extraction of tumor. Our approach is to first separate the tumor, the ROI in our case, from brain image, using support vector machine (SVM) classification and region extraction step. Then, tumor region (ROI) is compressed using Arithmetic coding, a lossless compression technique. The non-tumorous region, non-region of interest (NROI), is compressed using a lossy compression technique formed by a combination of discrete wavelet transform (DWT), set partitioning in hierarchical trees (SPIHT) and arithmetic coding (AC). The classification performance parameters, like, dice coefficient, sensitivity, positive predictive value and accuracy are tabulated. In the case of compression, we report, performance parameters like mean square error and peak signal to noise ratio for a given set of bits per pixel (bpp) values. We found that the compression scheme considered in our setup gives promising results as compared to other schemes

    Rate-controlled, region-of-interest-based image coding with JPEG-LS

    Get PDF
    Since the standardization of JPEG-LS, several improvements and variations to the original algorithms have been proposed. In this paper we propose a Region of Interest (ROT) based coding strategy for JPEG-LS that has the additional ability of providing effective rate controlled image compression. Given a single ROT or multiple ROTs of a fixed or arbitrary shape, the scheme we propose is able to compress a given image by a required ratio, whilst maintaining the subjective image of the ROTs at either lossless or at a quality specified by a Target Compression Ratio ( TCR) of the ROT. We provide experimental results to compare the performance of the proposed rate-control algorithm with the state of the art near lossless rate control schemes. We show that the proposed scheme is able to achieve much higher TCRs, at increased accuracy and better objective image quality, using a less computationally intensive rate control algorithm. Finally we demonstrate that the proposed ROT based coding scheme can be used to extend the applicability of JPEG-LS to medical and satellite imaging applications and provides a useful alternative to JPEG-2000 based ROT coding
    • …
    corecore