70 research outputs found

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Secure and Privacy-preserving Data Sharing in the Cloud based on Lossless Image Coding

    Get PDF
    Abstract Image and video processing in the encrypted domain has recently emerged as a promising research area to tackle privacy-related data processing issues. In particular, reversible data hiding in the encrypted domain has been suggested as a solution to store and manage digital images securely in the cloud while preserving their confidentiality. However, although efficiency has been claimed with reversible data hiding techniques in encrypted images (RDHEI), reported results show that the cloud service provider cannot add more than 1 bit per pixel (bpp) of additional data to manage stored images. This paper highlights the weakness of RDHEI as a suggested approach for secure and privacy-preserving cloud computing. In particular, we propose a new, simple, and efficient approach that offers the same level of data security and confidentiality in the cloud without the process of reversible data hiding. The proposed idea is to compress the image via a lossless image coder in order to create space before encryption. This space is then filled with a randomly generated sequence and combined with an encrypted version of the compressed bit stream to form a full resolution encrypted image in the pixel domain. The cloud service provider uses the created room in the encrypted image to add additional data and produces an encrypted image containing additional data in a similar fashion. Assessed with the lossless Embedded Block Coding with Optimized Truncation (EBCOT) algorithm on natural images, the proposed scheme has been shown to exceed the capacity of 3 bpp of additional data while maintaining data security and confidentiality

    QARV: Quantization-Aware ResNet VAE for Lossy Image Compression

    Full text link
    This paper addresses the problem of lossy image compression, a fundamental problem in image processing and information theory that is involved in many real-world applications. We start by reviewing the framework of variational autoencoders (VAEs), a powerful class of generative probabilistic models that has a deep connection to lossy compression. Based on VAEs, we develop a novel scheme for lossy image compression, which we name quantization-aware ResNet VAE (QARV). Our method incorporates a hierarchical VAE architecture integrated with test-time quantization and quantization-aware training, without which efficient entropy coding would not be possible. In addition, we design the neural network architecture of QARV specifically for fast decoding and propose an adaptive normalization operation for variable-rate compression. Extensive experiments are conducted, and results show that QARV achieves variable-rate compression, high-speed decoding, and a better rate-distortion performance than existing baseline methods. The code of our method is publicly accessible at https://github.com/duanzhiihao/lossy-vaeComment: Technical repor

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Lossless compression of images with specific characteristics

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.The compression of some types of images is a challenge for some standard compression techniques. This thesis investigates the lossless compression of images with specific characteristics, namely simple images, color-indexed images and microarray images. We are interested in the development of complete compression methods and in the study of preprocessing algorithms that could be used together with standard compression methods. The histogram sparseness, a property of simple images, is addressed in this thesis. We developed a preprocessing technique, denoted histogram packing, that explores this property and can be used with standard compression methods for improving significantly their efficiency. Histogram packing and palette reordering algorithms can be used as a preprocessing step for improving the lossless compression of color-indexed images. This thesis presents several algorithms and a comprehensive study of the already existing methods. Specific compression methods, such as binary tree decomposition, are also addressed. The use of microarray expression data in state-of-the-art biology has been well established and due to the significant volume of data generated per experiment, efficient lossless compression methods are needed. In this thesis, we explore the use of standard image coding techniques and we present new algorithms to efficiently compress this type of images, based on finite-context modeling and arithmetic coding

    3D Wavelet Transformation for Visual Data Coding With Spatio and Temporal Scalability as Quality Artifacts: Current State Of The Art

    Get PDF
    Several techniques based on the three–dimensional (3-D) discrete cosine transform (DCT) have been proposed for visual data coding. These techniques fail to provide coding coupled with quality and resolution scalability, which is a significant drawback for contextual domains, such decease diagnosis, satellite image analysis. This paper gives an overview of several state-of-the-art 3-D wavelet coders that do meet these requirements and mainly investigates various types of compression techniques those exists, and putting it all together for a conclusion on further research scope

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Interactive application independent data processing using synthetic filesystems

    Get PDF
    In this thesis a software system is proposed that provides transparent access to dynamically processed data using a synthetic filesystem for the data transfer as well as interaction with the processing pipeline. Within this context the architecture for such a software solution has been designed and implemented. Using this implementation various profiling measurements have been acquired in order to evaluate the applicability in different data processing scenarios. Usability aspects, considering the interaction with the processing pipeline, have been examined as well. The implemented software is able to generate the processing result on-the-fly without modification of the original input data. Access to the output data is provided by means of a common filesystem interface without the need of implementing yet another communication protocol. Within the processing pipeline the data can be accessed and modified independently from the actual input and output encoding. Currently the data can be modified using a C/C++, GLSL or Java front end. Profiling data has shown that the overhead induced by the filesystem is negligible for most usage patterns and is only critical for realtime processing with a high data throughput e. g. video processing at or above 30 frames per second where typically no file operations are involved
    • …
    corecore