
PRIORITIZING CONTENT OF INTEREST IN MULTIMEDIA DATA
COMPRESSION

Chong Shao

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2018

Approved by:

Shahriar Nirjon

Russell M. Taylor II

David Brady

Ketan Mayer Patel

Marc Niethammer

©2018
Chong Shao

ALL RIGHTS RESERVED

ii

ABSTRACT

CHONG SHAO: Prioritizing Content of Interest in Multimedia Data Compression
(Under the direction of Shahriar Nirjon and Russell M. Taylor II)

Image and video compression techniques make data transmission and storage in digital multi-

media systems more efficient and feasible for the system’s limited storage and bandwidth. Many

generic image and video compression techniques such as JPEG and H.264/AVC have been stan-

dardized and are now widely adopted. Despite their great success, we observe that these standard

compression techniques are not the best solution for data compression in special types of multi-

media systems such as microscopy videos and low-power wireless broadcast systems. In these

application-specific systems where the content of interest in the multimedia data is known and

well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by

identifying and prioritizing multimedia data’s content of interest, new compression methods can be

invented that are far more effective than standard techniques. In this dissertation, a set of new data

compression methods based on the idea of prioritizing the content of interest has been proposed for

three different kinds of multimedia systems.

I will show that the key to designing efficient compression techniques in these three cases

is to prioritize the content of interest in the data. The definition of the content of interest of

multimedia data depends on the application. First, I show that for microscopy videos, the content

of interest is defined as the spatial regions in the video frame with pixels that don’t only contain

noise. Keeping data in those regions with high quality and throwing out other information yields to

a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy

beacon based system, practical multimedia data storage and transmission is possible by prioritizing

content of interest. I designed custom image compression techniques that preserve edges in a binary

image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new

iii

indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving

object compression method that prioritizes the content of interest.

iv

To Morty.

v

ACKNOWLEDGEMENTS

I would like to takes this chance to express my thanks to Prof. Shahriar Nirjon and Prof. Russell

M. Taylor II, for their constant support and guidance in my research. I would also like to thank Prof.

David Brady, Prof. Ketan Mayer Patel, and Prof. Marc Niethammer, for the meaningful discussions

and suggestions.

vi

TABLE OF CONTENTS

TABLE OF CONTENTS . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xx

1 Introduction . 1

1.1 Research Questions . 3

1.1.1 How to Better Compress Digital Videos with Specific Usages? 3

1.1.2 How to Better Compress Digital Images that Transmitted Through a Band-
width Constrained System? . 3

1.1.3 How to Compress Multiple Types of Application Data in a Bandwidth
Constrained System? . 4

1.1.4 How to Apply Generative Models in Extreme Compression? 4

1.2 A Brief Outline of the Proposed Methods . 4

1.2.1 Content-Prioritizing Correlation-Based Microscopy Video Compression . . 4

1.2.2 Extreme Image Compression that Enables Image Beacons 5

1.2.3 Feature Selection and Key Point Extraction that Enables Indoor Augmented
Reality Data Transmission over BLE Broadcasting 5

1.2.4 Generative Image Compression . 5

1.3 Thesis and Contributions . 6

1.4 Organization of the Rest of the Dissertation . 8

2 Background . 9

2.1 Shannon’s Source Coding Theorem . 9

vii

2.2 Lossless Compression . 10

2.2.1 Variable Length Coding . 10

2.2.2 Dictionary Transform . 11

2.2.3 Contextual Transform . 12

2.2.4 Context Adaptive Variable Length Coding and Context Adaptive Variable
Binary Arithmetic Coding . 13

2.3 Prediction/Residual Framework . 14

2.4 Multimedia Compression . 15

2.4.1 Discrete Cosine Transform . 16

2.4.2 Discrete Wavelet Transform . 17

2.5 Previous Work on Domain-Specific Video Multimedia Data Compression 17

2.5.1 Region-Prioritizing Video Compression methods 18

2.5.2 Video Compression Methods That are Built on Existing Standards 19

2.6 Miscellaneous Topics in Modern Multimedia Compression 20

2.6.1 Point Spread Function in Image and Video Acquisition Process 20

2.6.2 Bandwidth Limited Transmission Channel: Bluetooth Low Energy Broad-
casting Mode . 21

2.6.3 Multimedia Data Quality Evaluation Using Statistical Tests 22

3 Video Compression to Preserve Analysis-Critical Information 24

3.1 Related Work . 25

3.2 Overview . 27

3.2.1 Analysis-Preserving Compression . 27

3.2.2 Analysis-Aware Compression . 29

3.2.3 Statistical Tests . 30

3.3 Methods . 31

3.3.1 Segmentation Stage . 33

3.3.2 Compression Stage . 35

viii

3.3.3 Post-Processing Stage . 37

3.3.4 Analysis-Aware Video Quality Measurement 38

3.4 Results . 40

3.4.1 Analysis-Preserving Compression Results 40

3.4.2 Analysis-Aware Compression Results . 45

3.5 Summary . 55

4 Image Compression to Generate Energy Efficient Broadcast Image Data 58

4.1 Related Work . 63

4.2 BLE System Characterization . 65

4.3 Image Beacon and Use Cases . 66

4.3.1 Long-term Surveillance Systems . 67

4.3.2 Navigation Systems . 67

4.3.3 Internet of Everything Minus the Internet 67

4.3.4 New Applications . 67

4.4 Challenges in Building an Image Beacon . 68

4.4.1 Limited BLE Bandwidth . 68

4.4.2 The Case for Lossless Image Broadcast 69

4.4.3 The Case for Compressed Image Broadcast 69

4.5 Algorithm Design . 71

4.5.1 Patch-Based Binary Image Compression Algorithm 71

4.5.2 Overview of the Color Image Beacon System 75

4.5.3 Multiview Capture and Depth Estimation 78

4.5.4 Color Image Encoding . 83

4.6 Empirical Evaluation . 88

4.6.1 Image Beacon Implementation Details . 88

4.6.2 Binary Image Beacon System Evaluation 89

ix

4.6.3 Color Image Beacon System Evaluation 94

4.7 Real Deployment . 101

4.7.1 Write-Read-Recognize . 101

4.7.2 Navigation in the Building . 104

4.8 Summary . 107

5 Extraction and Compression of Augmented Reality Content for Low Power Augmented
Reality System . 108

5.1 Related Work . 111

5.2 Overview of MARBLE . 112

5.2.1 Two Phases of MARBLE . 114

5.2.2 Internal Modules and Basic Workflow . 114

5.2.3 Advantage of MARBLE . 115

5.3 Application Content Generation . 116

5.3.1 Visual Features . 117

5.3.2 Selecting Unique and Useful Features . 118

5.3.3 Storing Camera Properties . 119

5.3.4 Generating AR Content . 119

5.4 Real-Time AR Content Rendering . 120

5.4.1 BLE-based Location and Viewing Angle Estimation 121

5.4.2 Camera-based Location and Viewing Angle Estimation 121

5.4.3 Fusion of Multiple Sensor Inputs . 122

5.4.4 Rendering Objects . 123

5.5 Implementation Notes . 123

5.6 Evaluation . 124

5.6.1 Microbenchmarks . 124

5.6.2 Algorithm Evaluation . 127

5.7 Summary . 132

x

6 Generative Compression as an Alternative Approach to Extreme Compression 133

6.1 Introduction . 133

6.2 Related Work . 135

6.3 System Architecture . 136

6.3.1 Offline Training . 137

6.3.2 Online Capture, Broadcast, and Render 138

6.4 Algorithm . 139

6.4.1 Background on Variational Autoencoder (VAE) 139

6.4.2 Background on Generative Adversarial Networks (GAN) 139

6.4.3 VAE-GAN in Deep Beacon . 139

6.4.4 Compressed VAE-GAN Embedding . 140

6.5 Embedding Size Reduction Algorithm . 140

6.6 Data Packet Format . 141

6.7 Evaluation . 142

6.7.1 Experimental Setup . 142

6.7.2 The Choice of Embedding Size . 144

6.7.3 Comparision with JPEG Encoding . 145

6.7.4 Performance on Different Image Types . 146

6.7.5 Impact of Number of Beacons . 146

6.7.6 User Study . 147

6.7.7 Comparison with Other Image Beacon Systems 149

6.8 Summary . 149

7 Conclusion and Discussion . 151

7.1 Summary of Contributions . 151

7.1.1 Microscopy Video Compression . 151

7.1.2 Image Compression for BLE Beacons . 152

xi

7.1.3 MARBLE: Augmented Reality Application Data Compression for Blue-
tooth Low Energy Devices . 153

7.2 Discussion and Future Work . 154

7.2.1 Microscopy Video Compression . 154

7.2.2 Image Compression for BLE Beacons . 154

7.2.3 MARBLE: Augmented Reality Application Data Compression for Blue-
tooth Low Energy Devices . 156

7.3 Remaining Technical Issues . 156

7.3.1 MARBLE: Generic Gesture Capture and Rendering 156

7.3.2 Smart Packet Rotation Strategy in Bluetooth Low Energy Broadcasting . . 157

7.3.3 No-Calibration Deployment for MARBLE 157

BIBLIOGRAPHY . 158

xii

LIST OF TABLES

2.1 Comparison between common compression standards. 15

2.2 Comparison between common two-sample statistical tests. 23

3.1 Compression ratio for five real-world videos. The analysis-preserving method outper-
formed standard H.264 compression by large factors in three out of five test cases. In
both cases, the resulting compressed video is in H.264 format so can be easily fed into
analysis pipelines. 40

3.2 Comparison of multiple compression methods on four of the videos shown in the main
text. The left and right numbers match those in TABLE 1. Bzip2 and lossless JPEG2000
compression on the original file sequence were usually worse and never much better
than lossless H.264. Lossless JPEG2000 and Bzip2 on the filtered image set were
always worse than lossless H.264. 41

3.3 Maximum tracking error when using lossy compression techniques and using my
method in four cases (in units of the experiment noise floor, which is 1

10
th of a pixel). In

one video, a bead track was lost, indicated here as infinite error. When they are forced
to achieve the same compression ratios, perceptually-tuned compression techniques
have a large maximum impact on analysis results. 42

3.4 Mean and standard deviations of tracking error when using lossy compression tech-
niques and using my method in four cases (in units of experiment noise floor, which is
1/10th of a pixel). 42

3.5 Compression ratio using the sliding window method and using lossless H.264 alone for
the Fastbeads video. With longer windows, the beads moved across essentially every
pixel in the image, so the method produced almost no improvement over lossless H.264
alone. With very short windows noise suppression was slightly reduced, causing an
increase in file size. The optimal window size for this video was 20 frames, resulting in
an approximately 2 improvement in file size. As expected, smaller dilation results in
better compression (less fore-ground). 44

3.6 Achieved compression ratios for applying analysis-aware methods and lossless com-
pression method on synthetic data and real data and maintain KS test p-score larger
than 0.95 in the resulting video. For synthetic data, an improvement of around a factor
of 2 was achieved above the earlier lossless method. For real data, which had more
noise, the improvement was around a factor of 350. 54

5.1 System lifetime under different settings. 126

5.2 CPU and memory usage of Raspberry Pi . 127

xiii

5.3 CPU and memory usage of Smartphone . 127

6.1 Comparison among three image beacon systems. 149

xiv

LIST OF FIGURES

1.1 Comparison between common generic image/video compression (a) and prior-
itizing content of interest compression (b). 2

2.1 H.264 encoder and decoder as an example of prediction/residual framework. 15

2.2 Sample hand-written digit image (4096 bytes) and the DCT-compressed version
of the image with the compressed size in bytes. 16

2.3 A 2D PSF convolved with a sample image, generates a blurred image. 21

3.1 Analysis-preserving video compression process. 28

3.2 Analysis-aware video compression process. 30

3.3 Mathematical morphology portions of the original algorithm: (a) a sub region
of the first frame in the original video; (b) the correlation-based segmentation
result without refinement; (c) the segmentation result after erosion refinement;
(d) the segmentation result after erosion and dilation refinement. Some fore-
ground regions in (d) are due to other beads that move into this region in later
frames. 33

3.4 Plots of compressed file size comparing against original file size (in percentage)
vs. correlation magnitude threshold on scores for four videos. Four subplots
shows the result for four test videos respectively. Four plots share the same
vertical axis. The horizontal flat line in every subplot indicates the compression
result on that video with H.264 lossless technique. The curves become dashed
when the analysis results on compressed videos differs from the analysis result
on the original, indicating the limit compression without impacting analysis results. . . 34

3.5 Example frame from each of the videos tested, each named as in the description
and tables. 35

3.6 Left to right: a) the starting position of a bead in a video and its moving
trajectory; b) the resulting binary foreground/background map; c) illustration
of the macroblocks that covers the frame; d) the resulting binary macroblock
foreground/background labeling map. 37

3.7 Mean vs. variation intensity plot with centers of the two-means cluster. 39

3.8 Left: one frame of Fastbeads video before beads move; mid-
dle: foreground/background segmentation on whole video right: fore-
ground/background segmentation within a 20-frame window. 44

xv

3.9 Left to right: first frame of the original video, edge detection results: original
video, video with 3.5× compression, video with 4.6× compression, video with
6.8× compression. 45

3.10 Flow chart of the experiment steps with synthetic data 46

3.11 Sample video frames, left: synthetic video, right: real video 47

3.12 Scaled MSD values vs. compression ratio, for five groups of synthetic videos. 49

3.13 KS test p values vs. compression ratio. The horizontal line shows the KS test
p score 0.95. The vertical line in every plot shows the compression ratio for
the previous analysis-preserving method. 50

3.14 K-L divergence values vs. compression ratio, for five groups of synthetic
videos. The vertical line in every plot shows the compression ratio for the
previous analysis-preserving method. 52

3.15 Flow chart of the experiment steps with real data. 53

3.16 Scaled MSD values vs. compression ratio, for five groups of real videos. 54

3.17 KS test p values vs. compression ratio. The two horizontal lines showing the
KS test p score 0.95 and 0.99, respectively. The vertical line in every plot
shows the compression ratio for the previous analysis-preserving method. 55

3.18 K-L divergence values vs. compression ratio, for five groups of real videos.
The vertical line in every plot shows the compression ratio for the previous
analysis-preserving method. 56

4.1 An image beacon system. 59

4.2 The lifetime depends on packet transmission rate and signal strength. 69

4.3 A 64×64 resolution image compressed in high/low quality settings using
JPEG/JPEG2000: (a) JPEG high quality, 1963 bytes (b) JPEG2000 high
quality, 2026 bytes (c) JPEG lowest possible quality, 738 bytes (d) JPEG2000
lowest possible quality, 391 bytes. 70

4.4 Two types of 64×64 resolution image compressed in PNG (a) from natural
scene, 12112 bytes (b) JPEG2000 high quality, 1012 bytes. PNG is good for
handling images with large uniform color regions. 70

4.5 Beacon image processing pipeline. 71

4.6 (a) single spiral, (b) multiple spirals. 73

xvi

4.7 (a) original image; (b) result from patches generated from single spiral image;
(c) result image from patches generated from single spiral image after mor-
phology refinement; (d) result image from patches generated from multiple
spiral images and k-means; (e) result from patches generated from multiple
spiral images and k-means after morphology refinement. 74

4.8 Image processing stages. 77

4.9 Multiple views of a scene are used to estimate the depth map. Combined with
standard image segmentation, this can identify the pixels of an image that may
be of more interest than the rest, e.g. a foreground object. 78

4.10 Image compression details. 83

4.11 64×64 resolution building image compressed in high/low quality settings using
my customized DCT/Wavelet/Triangle encoding: (a) Original image, (b) DCT
342 bytes, (c) Wavelet high 360 bytes, (d) DCT 1114 bytes, (e) Wavelet 1098
bytes, and (f) triangularization 366 bytes. For a similar compressed image size,
DCT preserves less details than Wavelet method. But for low quality settings
(about 350 bytes), Wavelet-encoded images have strange color block defects.
Triangularization failed to preserves the information in the original image. 84

4.12 Original image and the triangularization-compressed image. 86

4.13 The process of Triangularization-based encoding. 87

4.14 Triangle texture averaging process. 88

4.15 Test images used in the empirical evaluation. 90

4.16 Image quality versus image size for different encoding methods. 91

4.17 Image quality versus beacon battery life for different images being approxi-
mated. 91

4.18 Image quality versus device lifetime for various number of beacons. 92

4.19 Image quality versus lifetime for different patch generation methods. 93

4.20 Image quality versus device lifetime for various patch set sizes. Note that the
patch set with size k=16 is not simply a subset of the patch set of size k=32.
They are individual k-means clustering results with different ks. 94

4.21 Image quality versus device lifetime for various grid sizes per patch. 95

4.22 Test images used in the empirical evaluation. 96

4.23 Performance of IMU-guided view capture. 97

4.24 Performance of depth-refined segmentation. 98

xvii

4.25 Image quality versus image size for different encoding methods. 98

4.26 Image quality versus beacon battery life for different image types. 100

4.27 Image quality versus device lifetime for various number of beacons. 100

4.28 Subjective and SSIM scores for each image. 102

4.29 Test images compressed in three quality levels. 103

4.30 Photos of the object used in the experiment. 104

4.31 Responses from user study. The dashed line shows 33 percent chance of
randomly choosing. 104

4.32 Map of second and third floors showing the navigation path. 105

4.33 Images stored at the six locations. 106

4.34 Subjective scores for each image. 106

5.1 The two phases of MARBLE indoor augmented reality system: capture (once)
and render (many times). 109

5.2 System in Action. (a): in capture phase, a person’s gesture and movement is
captured. (b): in render phase, the virtual object avatar is rendered in the empty
environment. (c): screenshot of the viewer’s screen in render phase. 113

5.3 A block diagram illustrating the work flow of MARBLE. 113

5.4 The process of feature filtering: hundreds of ORB features are extracted from a
reference camera image in (a) and feature entropy θ is computed. The resultant
values are weighted by the 2D Gaussian function of (b). Four highest scored
features are shown in a zoomed in region in (c). They are successfully matched
with features extracted from a different image of the same scene even though
some of the objects have been moved, as shown in (d). 117

5.5 The capture unit. 123

5.6 Run-time Analysis . 125

5.7 Energy Consumption of every stage of MARBLE. The data for the capture
phase is colored in blue. The data for broadcasting phase is colored in green.
The data for viewing phase is colored in orange. The power data next to the
stage labels are the working power of each stage. The number next to the bar
charts are the energy consumption for rendering a frame of the virtual object. 126

5.8 Averaged accuracy of matching between ORB features found in 10 query
images and the 4 ORB features from the reference image. 128

xviii

5.9 (a): the configuration of measurement points in the lab. (b): heat map showing
the number of cameras being considered in visual feature matching. 129

5.10 Heat Map of the errors in cm on location estimation in 16 different measure-
ment points. From left to right: BLE Beacon based estimation, Camera based
estimation and Sensor Fusion using two signals. 130

5.11 Heat Map of the errors in angle on pose estimation in 16 different measurement
points. From left to right: IMU based estimation, Camera based estimation
and Sensor Fusion using two signals. 130

5.12 Human Gesture Sampling Frequency Impact at (a) Low Speed (b) High Speed. 131

6.1 The proposed Deep Beacon system. 133

6.2 The data flow of Deep Beacon system. 137

6.3 VAE-GAN model structure. 137

6.4 The Deep Beacon data packet format. 141

6.5 Samples of training and test image dataset. First 4 rows from top row to bottom:
hand-written digits, birds, traffic signs, and flowers. The last row contains
sampled images compressed by Deep Beacon system. 143

6.6 Bar chart showing the average MS-SSIM of four types of image data with
different embedding sizes. 144

6.7 MS-SSIM vs. Imgae size for 100 hand-written digit images (upper plot) and
100 traffic sign images (lower plot). Images are compressed using JPEG (red
dots) and the encoder module in Deep Beacon system (blue dots). 145

6.8 Average MS-SSIM score vs. expected system lifetime plot. Four curves
represent four types of testing data. Each curve represents one type of test
image data. 146

6.9 Average MS-SSIM score vs. expected system lifetime plot. Three curves
represent the experiment result with using one, two, and three beacons, respectively. . . 147

6.10 The traffic sign types used in user study. 148

6.11 The chance in percentage of a participant making a correct answer in recog-
nizing hand-written digit images and traffic sign images compressed by Deep
Beacon system. 148

7.1 A sample football field image taken by a human-scale camera, and processed
by the PSF-based segmentation method. 152

xix

LIST OF ABBREVIATIONS

AR Augmented Reality

ATT Low energy ATTribute protocol

BLE Bluetooth Low Energy

CBA Customer Behavior Analysis

CISMM Computer Integrated Systems for Microscopy and Manipulation

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

GAN Generative Adversarial Network

GATT Generic ATTribute profile

GFSK Gaussian Frequency Shift Keying

GPS Global Positioning System

IMU Inertial Measurement Unit

IoT Internet of Things

ISM band Industrial Scientific Medical band

K-L KullbackLeibler

L2CAP Logical Link Control and Adaptation Protocol

LZ Lempel-Ziv

MARBLE Mobile Augmented Reality with Bluetooth Low Energy

MSD Mean Square Displacement

ORB Oriented FAST and rotated BRIEF

PSF Point Spread Function

QP Quantization Parameter

ROI Region Of Interest

RSSI Received Signal Strength Indicator

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

xx

SURF Speeded Up Robust Feature

SSIM Structure SIMilarity

URL Uniform Resource Locator

UUID Universally Unique IDentifier

VAE Variational Autoencoder

xxi

CHAPTER 1
INTRODUCTION

Data compression is a process to take input data and to generate a compact representation of

the input data with a shorter bit length. It is critical for many multimedia systems. With efficient

data compression, transmission and storage of digital multimedia data become more affordable.

During decades of development in the multimedia data compression field, a variety of popular

multimedia compression methods including image and video compression methods have been

standardized into CODEC specifications. Examples of the specifications are PNG, JPEG, and H.264.

A multimedia compression specification typically includes a generic data compression component.

They sometimes also include a smarter sampling strategy, a region of interest (ROI) data streaming

or multimedia data modeling/parameterization and synthesis (Xu et al., 2014; Zhang and Bull, 2011;

Balle et al., 2011).

New types of multimedia systems with specific purposes are constantly being built. Examples

in recent years of the new systems include virtual reality headset (Oculus, 2015), augmented reality

system (hol, 2017), high-throughput camera array system (Cribb et al., 2015), and low-power mobile

data broadcasting “beacon” (ble, 2018). These new multimedia systems integrate advanced hardware

such as a high-resolution display, low-power consumption chips and all types of sensors, along with

new algorithms including high-accuracy object recognition and real-time scene understanding.

New technologies enable new systems. They also draw challenges on designing and building

them. Sometimes new systems’ data generation, data storage and transmission, and data consump-

tion components need to be redefined and are sometimes completely different from the ones in

traditional systems. Conventional compression methods such as the MPEG-4 Part 10 (H.264)

standard (Wiegand et al., 2003) and the H.265 standard (Sullivan et al., 2012) no longer work

1

efficiently on these new systems. For example, a set of microscopy videos produced by an automatic

microscope array system is only used by an analysis program in a cell-mechanics experiment

pipeline. Most of the pixels in the video are never touched by the analysis program, but a generic

video compression technique such as H.264 cannot accurately separate the useful information from

noise in the microscopy videos. Another example is the designing of an “image beacon” system,

where image data needs to be transmitted over Bluetooth low energy (BLE) broadcasting channel.

The BLE broadcasting channel only has 30 bytes of payload size. However, the standard JPEG

compression rarely compresses a 64×64 image smaller than 200 bytes.

During my Ph.D. work, I design compression techniques that are used for new types of

multimedia systems. I will show that, prioritizing content of interest is one useful approach in

creating new compression methods for these multimedia systems (Figure 1.1). This dissertation

describes several examples of new multimedia systems and their challenges in data compression,

followed by my solution to the problem.

Figure 1.1: Comparison between common generic image/video compression (a) and prioritizing
content of interest compression (b).

2

1.1 Research Questions

In this section, I list the important questions I addressed in this dissertation.

1.1.1 How to Better Compress Digital Videos with Specific Usages?

We observe the increase of generated videos that have specific usages, especially videos that

are analyzed by algorithms. Examples are surveillance videos and microscopy videos generated

by analytical experiment pipelines. In some use cases such as a high-throughput screening (hig,

2017), there is a requirement to compress the video data to accommodate the limited storage.

Standard video compression methods that assign equal importance to every pixel in the frame have

difficulties in achieving small enough compressed video size. The question of how to identify

the analysis-critical component in a microscopy video and how to generalize the analysis-critical

component identification method are addressed in this dissertation.

1.1.2 How to Better Compress Digital Images that Transmitted Through a Bandwidth Con-
strained System?

The Internet of things (IoT) technology is gradually being introduced into our daily environment.

Tiny, special-purpose, and sometimes battery-powered IoT devices bridge our physical world and

the Internet. At the same time, billions of digital images are being uploaded to the Internet every

day (Ima, 2015). There is a requirement to keep and transmit image data through IoT devices. But

many IoT data transmission protocols have extremely small bandwidths. Two examples are the

BLE protocol with 30 bytes (it becomes 200 Bytes in a BLE 5.0 packet in the near future) of packet

payload size and the LoRa technology (LoR, 2018) with the data rate 38522 bytes per day (lor,

2016). This raises the requirement of developing a technology to compress images into the same

order of magnitude as 200 bytes. Standard image compression methods are designed to generate

high-quality images that are visually close to the original image, and the compressed image size is

rarely below 200 bytes for a 64×64 image. I wanted to build a new image compression method

that focuses more on small compressed image size. Specifically, the question is: how to design an

3

extreme compression method to compress a sufficiently large image (no less than 64×64 in size)

into less than 200 bytes, so that the data can be carried by one a BLE 5.0 broadcasting packet?

1.1.3 How to Compress Multiple Types of Application Data in a Bandwidth Constrained
System?

Some bandwidth-limited systems handle multiple types of data. It is an open problem to design

a mechanism to handle data with different properties in such a system. I explored applying new

compression methods in a bandwidth constrained system in compressing multiple types of data.

1.1.4 How to Apply Generative Models in Extreme Compression?

Recently, deep network models have shown strength in generating realistic fake image data.

This opens the door to applying such a model in extreme compression. I also explored this direction.

1.2 A Brief Outline of the Proposed Methods

Here I list the methods I proposed in this dissertation, to address the questions in the last section.

1.2.1 Content-Prioritizing Correlation-Based Microscopy Video Compression

We seek a custom video compression method that efficiently compresses a microscopy video

to preserve the analysis-critical information so that the compressed video generates an analysis

result that matches the one for the original uncompressed video. I propose two new microscopy

video compression methods that efficiently compress a microscopy video, so that the compressed

video does not change the analysis result (analysis-preserving), or it generates an analysis result

with a change within the range of the change caused by noise, comparing to the result from the

uncompressed video (analysis-aware). I will present a correlation-based segmentation method to

locate the analysis-critical region in every video frame.

4

1.2.2 Extreme Image Compression that Enables Image Beacons

In building a self-contained image data storage and broadcast system using the BLE broad-

casting channel, standard image compression techniques such as JPEG and PNG cannot generate

sufficiently small compressed images. I design two new image compression methods that enable

64×64 dimension image storage and broadcast via BLE broadcasting channel. The first method

is a dictionary-based patch matching binary image compression method. The second method is a

foreground-preserving color image compression method that uses depth information in identifying

the foreground in the input image.

1.2.3 Feature Selection and Key Point Extraction that Enables Indoor Augmented Reality
Data Transmission over BLE Broadcasting

I demonstrate a data reduction approach for indoor augmented reality systems, which addresses

question 1.1.3. Using BLE beacons as the storage and transmission component in an indoor AR

system brings many benefits, such as long battery-powered lifetime, easy content data update,

internet-free, and low cost. To overcome the challenges of small data bandwidth of Bluetooth Low

Energy (BLE) protocol, I designed a 3D object data compression, along with a new entropy and

location-based visual feature selection method. They enable indoor vision-based positioning and

3D content broadcasting via BLE broadcasting channel.

1.2.4 Generative Image Compression

I explore an alternative approach for enabling image data storage and broadcast using BLE

beacons. I design a Deep Beacon system that integrates a variational autoencoder generative

adversarial network, which enables 64×64 color image broadcast via BLE broadcasting channel.

Comparing to the previous-explained image beacon system, Deep Beacon supports wider categories

of image data. The input image does not have to have the notion of foreground and background.

5

1.3 Thesis and Contributions

Thesis: Some multimedia systems handle image or video data that has the notion of content

of interest. Identifying and prioritizing image and video’s content of interest in these systems

lead to new image and video compression algorithms including analysis-preserving microscopy

video compression, analysis-aware microscopy video compression, patch-based binary image

compression, and adaptive color image encoding that enable smaller compressed data size that

prediction-residual based generic methods cannot achieve. With the smaller data size, the image

or video data compressed by prioritizing content of interest can also have the same quality as the

data produced by generic methods, measured with a generic image or video quality metric such as

Structural Similarity (SSIM).

In the following paragraphs, I highlight the contributions of this dissertation. Each contribution

is labeled by the corresponding chapter number in this dissertation.

• I propose the first video compression technique in the literature that is based on correlation-

based segmentation. The segmentation method identifies regions in the video that contain

information. The compression method can achieve up to 20x better compression than H.264.

I invent a correlation-based video frame segmentation technique based on the point spread

function (PSF). I integrate the segmentation technique into the compression process. The

PSF is involved in the imaging processes of a wide variety of optical systems. Therefore this

segmentation method can be generalized to many video modalities (Chapter 3).

• I propose a new method to evaluate the quality of a microscopy video based on a statistical

test. The method gives a video quality estimation based on the information loss of the

analysis-critical part of the video. It takes the noise into consideration (Chapter 3).

• I propose a new binary image compression method as a central component of a binary image

beacon system. This is a dictionary-based patch matching algorithm. The input image is

compressed into a set of patch indices. The result size can be less than 40 bytes. The method

can be generalized into other use cases that require binary image compression (Chapter 4).

6

• I develop and evaluate the first binary image beacon system. The evaluation compares the

system performance under two instances of the binary image compression module trained

with two different sets of data. The evaluation gives a deep insight of the system performance

under different settings and proves its effectiveness in practice (Chapter 4).

• I propose a new color image compression method as a central component of a color image

beacon system. This method takes the depth information of the object in the input image to

generate an accurate segmentation for compressing the content of interest. It can generate

less than 200 bytes of compressed image data. The method can be generalized into other

use cases that require color image compression, and depth information of the image can be

retrieved (Chapter 4).

• I develop and evaluate the first color image beacon system. The system supports storage

and broadcast of color images of objects indoor and outdoors. My evaluation compares the

system performance under different system settings and different types of input data. My

user study with a real deployment of the system proves the system’s effectiveness in practice

(Chapter 4).

• I develop and evaluate a new Internet-free beacon AR system that combines camera capture,

IMU sensing input, and BLE signal strength in indoor positioning. The system provides

a low-cost and extensible solution to indoor AR experience with common mobile devices

(Chapter 5).

• I invent an Oriented FAST and rotated BRIEF (ORB) visual feature selection algorithm as a

critical component in the BLE-based indoor AR system. The method selects the most useful

four visual features among hundreds of candidates. It enables visual feature storage and

broadcast via BLE channels for indoor positioning. The method can be generalized to other

systems that require visual feature filtering. It can also be extended to other types of visual

features (Chapter 5).

7

• I design and develop the first image beacon system that integrates variational autoencoder

generative adversarial network (VAE-GAN). The system supports a wide range of binary

and color images. It enables compression of a color 64×64 image into less than 20 bytes. I

analyzed the system performance under different settings of the VAE-GAN model (Chapter 6).

1.4 Organization of the Rest of the Dissertation

The background material that is relevant to multiple projects across my research work is

explained in Chapter 2. Other project-specific previous work information is distributed into other

chapters. The background chapter is followed by the three major parts of my dissertation. Chapter 3

describes my research work on microscopy video compression. Chapter 4 explains the proposed

image compression techniques for Bluetooth low energy beacon devices. Chapter 5 describes

an indoor augmented reality system based on Bluetooth low energy beacons. It also highlights

the proposed 3D object motion data compression method integrated into the system. Chapter 6

discusses using generative models in extreme compression, this research results in a new Deep

Beacon system for generic image storage and compression over BLE. Chapter 7 concludes the

dissertation and discusses potential future research directions.

8

CHAPTER 2
BACKGROUND

This chapter contains the background material related to my dissertation. Section 2.1 discusses

Shannon’s Source Coding theorem, which builds the foundation of information theory. In Sec-

tion 2.2, I highlight a set of lossless compression techniques. I give a brief introduction to each

of them. Section 2.3 describes the prediction/residual framework that is used in many common

multimedia compression systems. After that, in Section 2.4, I explain the important aspects of com-

mon multimedia compression standards, including the two widely used signal transform methods.

This is followed by a summary of existing domain-specific multimedia compression techniques

in Section 2.5. I finish this chapter with Section 2.6. It includes several properties in multimedia

systems that I used in building new compression methods and the background knowledge of new

methodologies used in my compression algorithm design.

2.1 Shannon’s Source Coding Theorem

In 1948, Shannon formulated the source coding theorem (Shannon, 2001). The theorem gives

a theoretical bound of the expected bit length of input codewords. The bound is a function of the

entropy of the input symbols.

The mathematical version of the theorem is:

Let X be a triple (x,Ax, Px), where the outcome x is the value of a random variable that takes

one of the possible values in set Ax = {a1, a2, . . . , aI} with probabilities Px = {p1, p2, . . . , pI}.

P (x = ai) = pi, pi ≥ 0. And X is with entropy H(X) = H bits. Given ε > 0 and 0 < δ < 1,

there exists a positive integer N0 such that for N > N0:

9

| 1
N
Hδ(X

N)−H| < ε (2.1)

Here Hδ is the essential bit content, which is defined as Hδ = log2|Sδ|, in which Sδ is the

smallest subset that satisfies P (x ∈ Sδ) ≥ 1− δ for a given δ.

A restatement of the theorem is that: having the input data as N independent and identically

distributed (i.i.d.) random variables each with entropy H(X), it can be compressed into more than

NH(X) bits with negligible risk of information loss, as N −→ ∞. On the other hand, if they are

compressed into fewer than NH(X) bits, it is virtually certain that information will be lost.

Shannon’s source coding theorem is tightly related to multiple lossless compression algorithms.

However, it does not take the dependency between variables into consideration, which is widely

used by many standard lossless compression algorithms such as contextual transform.

2.2 Lossless Compression

Lossless compression refers to the category of compression algorithms that generate compressed

data that can be used to fully reconstruct the original data. In multimedia compression systems,

lossless compression is usually used in an entropy coding stage, where the transformed multimedia

data is losslessly encoded. In this section, I review three common lossless compression techniques:

variable length coding (VLC), dictionary transform, and contextual transform. At the end of the

section, I describe the two lossless compression methods that are customized for entropy encoding

in video compression.

2.2.1 Variable Length Coding

Variable length coding (VLC) divides input data into a set of symbols. It then represents each

symbol by a variable length of bits.

10

The idea of variable length coding is to analyze the frequency of every codeword of the input

data so that the symbols with shorter lengths are assigned to codewords that appear more frequently.

Two most common examples are Huffman coding (Huffman, 1952) and arithmetic coding (Rissanen,

1976; McAnlis and Haecky, 2016). Both Huffman coding and arithmetic coding are used in the

entropy coding stage of H.264 encoding process (Richardson, 2011).

The difference between Huffman coding and arithmetic coding is that Huffman coding uses

symbols of integer length to represent each input codeword. Therefore, the symbol length may

not exactly match the frequency of the corresponding codeword. Arithmetic coding addresses

this problem by allowing floating number length of symbols. This is implemented by assigning

intervals to each codeword at every encoding and decoding stage recursively. For example, we can

assign symbol A to interval [0, 0.7) and assign symbol B to interval [0.7, 1]. A is then represented

by any floating number in interval [0, 0.7). AB is represented by any floating number in interval

[0.7 ∗ 0.7, 1]. Compression is achieved from the shorter bit length for representing a floating number

comparing to the bit length of the original symbol sequence.

2.2.2 Dictionary Transform

A dictionary transform first builds a dictionary from the input data. It then uses the built

dictionary to transform the data. The result is then sent to a statistical encoding routine such as

VLC. Using dictionary transform as a pre-processing step before VLC makes the compression more

effective. One example of dictionary transform is the Lempel-Ziv (LZ) transform (Ziv and Lempel,

1977).

Given the input data as a sequence of symbols, the LZ transform works by maintaining a search

buffer with a limited size. The algorithm scans the input sequence. During the scanning, it fills in

the search buffer with visited symbols. The unvisited symbols starting from the current scanning

position are encoded by the offset and length of the matched symbol sub-sequences in the current

scanning buffer content.

11

To explain the LZ transform more precisely, I use an example: a current scanning buffer

TOBEORNOT, and the unscanned sequence TOBET. So the entire input sequence of symbols in

this example is TOBEORNOT|TOBET. The ‘|’ mark shows the current scanning position. The

algorithm tries to match the longest sequence from the current scanning position in the current

scanning buffer. The result is TOBE. This sequence is encoded as a pair of offset and length. In my

example, it is (9, 4). After this, the scanning buffer is shifted to the right by four steps. Now it is

ORNOTTOBE, and the current scanning position is also shifted to the right by four steps.

2.2.3 Contextual Transform

Contextual transform makes use of the contextual properties of the data. For example, in some

types of data, adjacent codewords are more likely to have the same value. Hence, we can encode

the sequence of repetitive codewords by a pair of a symbol and number of runs of that symbol. This

transform is called run-length encoding. Run-length encoding is the most basic type of contextual

transform. When the data tends to have successive increasing or decreasing values, starting from

the second symbol, we can represent each symbol as the difference from the previous symbol.

Then the result sequence of differences data will be more compactly represented by another pass of

run-length encoding. This process is called delta-encoding.

The Burrows-Wheeler transform is another noteworthy contextual transform. It is effective in

compressing data that certain orders of a pair of tokens are more likely to appear in. For example,

in the English language, the letter ‘h’ is likely to appear after the letter ‘t.’ The Burrows-Wheeler

transform works by rotating the length n data vector n− 1 times, followed by sorting by the first

token. The transformed data is represented by the last column of the result sorted data matrix plus

the index of the location of the original input data vector. When certain orders of symbols are more

likely to appear in the data, this representation tends to be more compact than the original. This

is because that the last column of the result data matrix tends to contain many repeated characters

when the first column of the data matrix is sorted.

12

I give an example of the process of the Burrows-Wheeler transform. I set the input sequence

to be transformed as BANANA. The Burrows-Wheeler transform generates a list of sequences with

length equal to the input sequence length by rotating the original sequence, and sorting by the first

letter: ABANAN, ANABAN, ANANAB, BANANA, NABANA, NANABA. The transform output

is the sequence of the last letter in the list: NNBAAA, and the index of the original sequence in the list:

3. This pair of items is sufficient for recovering the original input sequence. The Burrows-Wheeler

transform generates a sequence that is easier to compress because of the property that certain orders

of a pair of tokens are more likely to appear in, as described in the last paragraph. Therefore, when

the sequence of the first letter in the list is sorted, the corresponding sequence of the last letter is

likely to have a repeating pattern.

2.2.4 Context Adaptive Variable Length Coding and Context Adaptive Variable Binary
Arithmetic Coding

Context Adaptive Variable Length Coding (Karczewicz and Ridge, 2004) (CAVLC) and Context

Adaptive Binary Arithmetic Coding (Marpe et al., 2003) (CABAC) are custom versions of VLCs

for video compression. They are used in the entropy coding stage of H.264 and H.265 video

compression standards. H.264 standard contains three types of profiles for different use cases. They

are baseline profile, main profile, and high profile. In H.264, CAVLC is supported in all profiles.

CABAC is only supported in main profile and high profile. CABAC can usually achieve a higher

compression ratio. However, it requires more computation resource.

In H.264, one intermediate step is to encode a 2D matrix of numbers representing the frequency

component coefficients from a DCT transform. CAVLC uses run-length encoding to encode the

trailing zeros in every DCT coefficient block. The non-zero coefficients are encoded using a look-up

table. There exists a set of candidate look-up tables. The choice of the look-up table depends on

the non-zero coefficients in the neighboring DCT coefficient blocks. Hence, we call the algorithm

“context adaptive.”

13

CABAC is similar to CAVLC because in both algorithms a probability model is selected among

a set of candidates according to the current context. Differing from CAVLC, CABAC requires every

input data to be binarized before compression. This is done by explicitly mapping every input

symbol that is non-binary valued onto a sequence of binary decisions. It uses arithmetic coding

rather than a look-up table.

2.3 Prediction/Residual Framework

We can extract a common pattern from the workflow from most multimedia compression

systems. This pattern is named the Prediction/Residual Framework. The prediction/residual

framework compresses data by making predictions on a subset of the data and use the prediction

to produce a more compact representation of the data. A prediction can be temporal or spatial. A

temporal prediction predicts a subset of the data based on other subsets of the data with a different

timestamp. One example is that one frame in a video can be predicted from the previous frames. A

spatial prediction predicts a sub-region in an image based other sub-regions in the same image.

Due to the complexity of the actual input data, a predicted result usually is not identical to the

actual data. The difference between the predicted result and the actual data is called residual. In the

framework, the residual is extracted, compressed, and encoded as part of the compressed data.

As a summary, the compressed data from a prediction/residual framework is the set of prediction

parameters and the compressed residual. The data is sent to an entropy encoder to achieve a shorter

bit length.

The contribution of my research work described in this dissertation includes tweaking the

components of this framework to fulfill specific application needs. Therefore, it is useful to

understand the general workflow of this framework.

As an example of the Prediction/Residual Framework, Figure 2.1 illustrates the workflow of

an H.264 encoder. Every frame of the input video is passed into the motion estimation module,

the motion compensation module and the intra (spatial) prediction module. These three modules

work as the prediction stage. The prediction result is compared to the original video to generate

14

Input Video

Motion
Estimation

Motion
Compensation

Spatial
Prediction

+
Transform,

Scaling, and
Quantization

Entropy
Ecoding

Scaling,
Inverse

Quantization,
and Inverse
Transform

Residual

Deblocking

Predicted
Current
Frame

+

Decoded Adjacent
Frame

Motion Vector Information

Compressed
Video Data

Figure 2.1: H.264 encoder and decoder as an example of prediction/residual framework.

the residual part of the compressed data. The residual data is further sent to the transform/scaling

quantization module for compression. In the last step, the entropy coder encodes the data to produce

compressed video bits. In H.264, an encoded frame is sent back to the previous motion estimation

and motion compensation modules to encode other frames.

2.4 Multimedia Compression

I revisited some common image and video compression standards. The comparison between

these standards is formulated in Table 2.1. The table contains each compression standard’s year of

release, integrated transform algorithms, and the entropy coding algorithms.

JPEG JPEG2K PNG WebP H.264 H.265 VP9
Released Year 1992 2000 1996 2010 2003 2013 2012

Support Video? No No No No Yes Yes Yes
Transform DCT DWT Filtering Block Prediction + DCT DCT DCT/DST DCT/DST

Entropy Coding Huffman coding LZ77 LZ77 Arithmetic Coding CABAC CABAC Arithmetic coding

Table 2.1: Comparison between common compression standards.

15

In the rest of this section, I briefly explain the two most commonly used data transform

algorithms. They are discrete cosine transform (DCT) and discrete wavelet transform (DWT).

2.4.1 Discrete Cosine Transform

Discrete Cosine Transform is widely used in image and video compression including JPEG (Wal-

lace, 1992) and H.264 (Wiegand, 2003). 2D DCT transforms input 2D information into the frequency

domain, where the low-frequency component coefficients and high-frequency component coeffi-

cients are separated. In a lossy compression process, the high-frequency information is usually

reduced by quantization. Eq. 2.2 gives the DCT formula, where Xk is the kth frequency coefficient.

The sampled input size in spatial domain is denoted by N . The nth input in spatial domain is

denoted by xn and k ranges from 0 to N − 1.

Figure 2.2 gives an example of a test binary image containing hand-written digit ‘2’ and the

images compressed by DCT transform, reducing high-frequency component coefficients, and DCT

inverse transform. The number on top of each image represents the image data size in bytes.

Xk =
N−1∑
n=0

xne
−i2πkn
N (2.2)

Figure 2.2: Sample hand-written digit image (4096 bytes) and the DCT-compressed version of the
image with the compressed size in bytes.

16

2.4.2 Discrete Wavelet Transform

Discrete Wavelet Transform is a transform that recursively applies a filter to the input data at

different scales. Usually, as a result of the process at each stage, the input data is separated into

a low-frequency component and a high-frequency component. The low-frequency component is

further passed into the next stage of filtering. Data reduction is achieved by lossy compression on

the high-frequency components.

The most basic Discrete Wavelet Transform is the Haar transform, which was invented by

Alfréd Haar in 1910. The Haar transform at each stage outputs the average and the difference

between two adjacent values of the input. This is formulated as:

c(n) = 0.5× (2n) + 0.5× (2n+ 1) (2.3)

d(n) = 0.5× (2n)− 0.5× (2n+ 1) (2.4)

In the 2D Haar wavelet transform, at each stage, instead of a pair of filtered outputs, a set of

four outputs are produced: three high-pass filtered outputs in with different filter directions and one

low-pass filtered output.

The major difference between DWT and DCT is that the high-frequency components of DCT

gives a higher frequency resolution, but lower spatial resolution comparing to DWT. As a result, it

is more difficult to recognize detailed spatial information in DCT-compressed images (Parmar and

Scholar, 2014). Regarding DCT-based image compression standard (JPEG) and DWT-based image

compression standard (JPEG2000), JPEG suffers from the blocking artifact due to the block DCT

transform it uses.

2.5 Previous Work on Domain-Specific Video Multimedia Data Compression

This section reviews the existing domain-specific multimedia data compression methods that

are related to my work. They are grouped into four types: region-prioritizing methods, methods that

17

optimized for high-resolution cameras, methods that are optimized for decoding time, and methods

that are based on existing methods.

2.5.1 Region-Prioritizing Video Compression methods

My microscopy video compression approach is a region-prioritizing method. In this subsection,

I present a survey on region-prioritizing video compression methods.

Domain-specific video compression techniques have been developed in many domains, such as

video for plant phenotyping (Minervini and Tsaftaris, 2013), surveillance (Babu and Makur, 2006)

and multi-view video (Martinian et al., 2006). Many of the video analysis routines in these domains

belong to computer vision techniques. In applying computer vision methods, visual features in

the data are extracted and fed into vision algorithms. Because of this, a good domain-specific

compression of this type should do its best job in preserving visual features. Jianshu Chao has made

many contributions in developing video compression techniques that preserve visual features in the

video data (Chao et al., 2015a; Chao and Steinbach, 2011, 2012; Chao et al., 2013b,a, 2015b). The

visual features include frame-based features (SIFT, Speeded Up Robust Features (SURF), Binary

Robust Independent Elementary Features (BRIEF) and Oriented FAST and Rotated BRIEF (ORB))

and spatial-temporal features (Harris, Hessian, and Histogram of Gradients (HoG)/Histogram of

Optical Flow (HoF)).

Many medical image compression techniques are designed based specifically on the further

analysis of the data, and they can be considered as domain-specific compression. Most of these

methods used the idea of the region of interest (ROI) or volume of interest (VOI) to separate the

analysis-critical part and other parts in the data (Ström and Cosman, 1997; Sanchez et al., 2010;

Bai et al., 2004; Signoroni and Leonardi, 1998a,b; Ansari and Anand, 2009; Wakatani, 2002). For

the quality measure of the compressed image/video, Simple global metrics such as Peak Signal

to Noise Ratio (PSNR) (Sanchez et al., 2010; Ansari and Anand, 2009), Maximum absolute error

in ROI (Ström and Cosman, 1997), Correlation coefficient and Mean Squared Error (Ansari and

Anand, 2009) are used. Also due to the nature of the medical image, human expert evaluation is

18

applied in quality measure in (Signoroni and Leonardi, 1998a,b). Another example is a compression

of a stack of CT scan medical images, the surrounding region in each image that is not part of

the tissue will not be used in the later diagnosis and can be highly lossy compressed (Ström and

Cosman, 1997; Sanchez et al., 2010; Bai et al., 2004; Signoroni and Leonardi, 1998a,b). In some

situations, a lossy compression that removes part of the unnecessary information in the video is

even preferred. One example of this is video artifact removal of microscopy video data described

in (Yin and Kanade, 2011). A paper that summarizes the post-processing techniques for artifact

removal is (Shen and Kuo, 1998). My methods build on these and add a method for determining the

region of interest that is independent of the type of analysis to be performed on the images.

2.5.2 Video Compression Methods That are Built on Existing Standards

In this subsection, I list a set of multimedia compression techniques that are built on existing

well-known standards (Chu et al., 1997; Lampert, 2006; Ganesan et al., 2007).

Lampert (Lampert, 2006) presents a set of new video compression techniques that are based

on existing XviD MPEG-4 compression. The new techniques are constructed by replacing the

macroblock decision module in the existing encoder with a machine learning decision maker.

Linear classifier, decision tree, and neural network classifier are used. Chu et al. (Chu et al., 1997)

propose a new video compression system with a hybrid frame encoding. It is based on H.263 video

compression. The new system divides input video frames into three classes: I frame, P frame,

and O frame. The I and P frames are encoded using existing H.263 compression. The O frames

are encoded with a segment-based method, where stationary background region in the frames are

identified. The background information is represented by the content of the adjacent P frames.

Ganesan et al. (Ganesan et al., 2007) discuss a high-performance H.264-based video compression

system with the target application of HD video decoding. It integrates H.264 compression with a

parallel data processing architecture eXtreme Processing Platform (XPP).

A method that manipulates the existing codec syntax element has been developed in (Bergeron

and Lamy-Bergor, 2005), but their application is for encryption instead of compression.

19

In the analysis-aware microscopy video compression method I invented, there are two variations.

One of the two variations is based on existing block-based video transform.

2.6 Miscellaneous Topics in Modern Multimedia Compression

Some of the new compression techniques proposed in this dissertation rely on special properties

of a multimedia system. This section describes the point spread function as the key factor in

microscopy video compression and BLE broadcasting channel with the low data bandwidth as the

major constraint in a BLE-based multimedia system.

My research projects also applied new methodologies in compressing data and evaluating

compressed data quality. This section also briefly explains the related background on statistical

tests.

2.6.1 Point Spread Function in Image and Video Acquisition Process

The PSF describes the response of an imaging system to a point source or point object. Another

way to understand PSF is to consider it as the impulse response of a focused optical system. It can

also be defined as the spatial domain version of the optical transfer function (OTF) of the imaging

system. A sample PSF is shown in Figure 2.3

The PSF is a useful concept in optics, including Fourier optics, astronomical imaging, medi-

cal imaging, electron microscopy and other imaging techniques such as confocal laser scanning

microscopy and fluorescence microscopy (psf, 2018).

The degree of spreading (blurring) of the point object is a measure of the quality of an imaging

system. The image of a complex object can then be seen as a convolution of the true object and the

PSF. (Quammen et al., 2008) et al. developed a visualization system that simulates the effect of PSF

in fluorescence microscopy imaging.

Note that in a diffraction-limited optical system, even a “perfect” version of such system’s image

formation process still involves PSF blurring. As a result, A “perfect” optical system generates a

non-point image from a point source. Such non-point image is also called the “Airy disk”.

20

In the microscopy videos I use, the PSFs have size less than 2 pixels.

Figure 2.3: A 2D PSF convolved with a sample image, generates a blurred image.

2.6.2 Bandwidth Limited Transmission Channel: Bluetooth Low Energy Broadcasting
Mode

Some of my research projects provide solutions to enabling internet-free multimedia data

storage and broadcast using Bluetooth Low Energy broadcasting channel. This section gives an

introduction to the BLE technology.

Bluetooth Low Energy is a wireless communication technology designed by the Bluetooth

Special Interest Group. The aimed applications of BLE technologies fall in the healthcare, fitness,

security, and home entertainment industries (ble, 2018). Differing from classic Bluetooth, BLE

is designed to provide low power consumption and reduced cost while maintaining a similar

communication range.

BLE operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and defines 40 Radio

Frequency channels with 2 MHz channel spacing. All physical channels use a Gaussian Frequency

Shift Keying (GFSK) modulation. The BLE protocol stack consists of five layers. For the three

higher-level layers, the purpose of logical link control and adaptation protocol (L2CAP) layer is

to multiplex the data from higher layers protocol on top of Link Layer connections. Low energy

attribute protocol (ATT) and generic attribute profile (GATT) are used to manage the roles of two

communicating devices: server and client.

21

Besides connected communication, the BLE standard also defines an advertising mode, where

the advertiser role and the scanner role are defined. The advertiser broadcasts 30-byte advertising

packets through one of the three pre-defined advertising channels. The scanner detects the advertised

packets via scanning. The advertising mode can be used for device discovery and communication

before the connection. The adverting packet can also contain a resource locator such as an URL

that directs the scanner to a resource on the Internet.

2.6.3 Multimedia Data Quality Evaluation Using Statistical Tests

In Chapter 3, I present an analysis-aware microscopy compression technique that evaluates the

compressed video quality using statistical tests. The rationale behind this video quality evaluation

is that analysis results on the original video are affected by noise captured as part of the original

video. Therefore, they represent only one of a set of possible analysis results and re-taking new

uncompressed video of the same specimen would produce slightly different results. Therefore,

the compressed videos analysis does not have to exactly match that on that particular video, but it

should be drawn from a distribution that matches those from multiple runs on the same specimen.

In this section, I list a set of common statistical tests that test the chance of two given sets of

samples that following different probability distributions. I formulate a comparison between these

standards in Table 2.2.

22

Assumes Normal? Approach Considerations

KS test No

Quantifies differences between the
empirical distribution functions

of two samples

Sensitive to differences in both
location and shape of the empirical

cumulative distribution function

Mean test No
Quantifies differences between

the means of two samples

Assumes the distributions on
means of different samples

are normally distributed

Variance F-test Yes
Compute the ratio between

two empirical variances

Only compares variances, does
not make assumptions on

the equal means

Van der Waerden test No

Compute the normal scores of two
probability distribution functions, make a

decision based on the mean and
variances of normal scores

Can take k(k > 2) population
distribution function at once.

TOST No

Quantifies the difference between
two equal means, test if

it’s in between the upper and
lower equivalence bound N/A

B-test No

Test whether distributions P and Q
are different on the basis of samples

drawn from each of them,
by finding a smooth function
which is large on the points

drawn from P, and small
(as negative as possible) on

the points from Q N/A

Table 2.2: Comparison between common two-sample statistical tests.

23

CHAPTER 3
VIDEO COMPRESSION TO PRESERVE ANALYSIS-CRITICAL INFORMATION

In this chapter, I present two video compression methods that preserve analysis-critical informa-

tion. This is the first part of my research work on multimedia compression methods that prioritizes

content of interest. My target the application in this part is microscopy video compression.

High-speed, high-resolution and high-content microscopy systems are increasing the rate and

amount of video data being acquired more rapidly than the rate of increase in affordable data

storage (Wollman and Stuurman, 2007). This forces the bench scientist either to be very selective

in which data sets they store or to greatly compress their data (Oh and Besar, 2003). At the same

time, funding agencies and journals are increasingly requiring all data from published experiments

be retained to enable re-analysis by others. One example of high-resolution microscopy system is

described in (Cribb et al., 2015).

The goal of my microscopy video compression research is to develop a method that obtains

high compression while preserving the information needed to perfectly reproduce analysis results.

I propose two novel compression methods for video microscopy data. The methods are based

on Pearson’s correlation and mathematical morphology. The two methods make use of the PSF

(described in Section 2.6.1) in the microscopy video acquisition phase. I designed experiments to

compare the proposed methods to other lossless compression methods and to lossy JPEG, JPEG2000

and H.264 compression for various kinds of video microscopy data including fluorescence video

and brightfield video. The result shows that for certain data sets, the new methods compress much

better than lossless compression with no impact on analysis results (analysis-preserving) or the

impact on analysis result is within the range of error introduced by noise (analysis-aware). The

first method of the two, analysis-preserving compression achieved a best compressed size of 0.77%

24

of the original size, 25× smaller than the best lossless technique (which yields 20% for the same

video). The second method, analysis-aware compression can achieve 1000x compression on certain

test microscopy videos for the same error level in the analysis result. The compressed size scales

with the video’s scientific data content. Further testing showed that existing lossy algorithms greatly

impacted data analysis at similar compression sizes. For the analysis-aware compression method, I

propose a new measurement of quality of a microscopy video based on the level of preservation of

analysis results. I evaluated the method with a bead tracking analysis program.

3.1 Related Work

There are a number of lossless compression techniques available that reduce the size of a data

set while enabling exact reconstruction of the original file (Christopoulos et al., 2000; Wiegand,

2003; Vatolin D, 2007; Burrows and Wheeler, 1994). Some have been developed specifically for

use on images (Christopoulos et al., 2000) and video data (Wiegand, 2003; Vatolin D, 2007). Noise

in the video images combines with the requirement that every pixel be exactly reproduced in every

frame to limit compression rates for these techniques.

Several high-quality image compression techniques are tuned specifically for the human visual

system to produce image artifacts that are not easily seen (they are “perceptually lossless”). They

achieve far greater compression rates without visible quality loss (Christopoulos et al., 2000).

Similarly, various video compression techniques have been invented and standardized in the past

decades. Currently, several of the most widely used techniques are H.264, H265 and VP9 (Wiegand,

2003; Sullivan et al., 2012; Mukherjee et al., 2013). Each of these video compression techniques

is designed to achieve acceptable compression performance on a wide range of videos while

maintaining good visual quality for human observers, sometimes based on popular video quality

metrics designed to measure this such as Peak Signal to Noise Ratio (PSNR).

The use of three new compression techniques for single confocal fluorescence microscopy

images of cells was explored by Bernas et al. (Bernas et al., 2006) to determine how much com-

pression could be achieved based on the signal to noise ratio (SNR) of the images. They used two

25

techniques to estimate SNR for the images (Amer and Dubois, 2005; Nowak and Baraniuk, 1999).

Their spatial downsampling approach reduced image resolution to match the frequency at which

the spatial intensity contrast passed below the estimated noise floor in the images. Their intensity

downsampling approach reduced the number of intensities per pixel to the number of distinguishable

levels based on the noise floor. Their wavelet compression approach removed wavelet coefficients

that were expected to represent only noise. They achieved compression ratios of between 3 and

9 without significant reduction in three quality tests. I seek compression ratios of up to 100 for

96-well experiments.

With the goal of decreasing the transmission bandwidth for time-series of confocal optical

microscopy image transmission, Avinash looked at the impact of different quality levels of JPEG

compression (compared to lossless compression) on the image intensity variance in single 2D

images (Avinash, 1995). He compared this to estimates of image noise based on the variance in

visually uniform background regions. He hypothesizes that adding only slight compression noise

compared to the already-present background noise may not impede quantitative analysis (20%

increase in noise). He compared time-averaged versions of the same region to simulate images

with different noise levels. He found that at a JPEG quality setting of 75/100, the noise variance

was much higher than the difference variance (22-32× greater); at this value, the compression ratio

varied between around 3 (noisy image) and 5 (less-noisy image). The compression ratio was never

more than 11, even for images with significant degradation.

The idea of evaluating the quality of a video based on analysis algorithms can be found

in (Korshunov and Ooi, 2011). In their paper, the video analysis routine is a set of computer vision

algorithms: face recognition, face detection, and face tracking. They used H.264 to compress

video multiple times with various quality settings to generate a set of the compressed video. They

discovered that face recognition and face detection results are not sensitive to compression until they

reach a particularly low quality setting. Above that, compression maintains similar face recognition

and detection results as the original video. Experiments have also been performed on tracking faces

in a set of compressed videos with a certain portion of frames dropped. They proposed that mutual

26

information and blackness be two metrics as they better correlate with the qualities of these analysis

results. These metrics differ from those required by scientific analysis algorithms (Korshunov and

Ooi, 2011).

The video compression method described in this chapter can be characterized as Region-

of-Interest (ROI) based methods. Previous ROI video encoding methods have been explored

in (Van Leuven et al., 2008; Liu et al., 2008; Grois and Hadar, 2012). One application of ROI video

coding to face detection and tracking is discussed in (Menser and Brunig, 2000). Application to

aerial videos is introduced in (Meuel et al., 2011). Chao et al. discussed the ROI video coding for

preserving computer vision visual features in (Chao and Steinbach, 2011, 2012; Chao et al., 2013b).

To my knowledge, there is no work done in exploring the use of ROI video coding for microscopy

video analysis.

3.2 Overview

3.2.1 Analysis-Preserving Compression

I describe a new method for microscopy video compression that achieves up to 100× com-

pression, enabling high-throughput video-acquisition experiments to be stored in the same space

as conventional experiments. The compression has no impact on analysis results. It achieves

this by storing only the information in a video that analysis can use and averaging out noise in

the background. It first separates every frame into foreground (pixels that carry information) and

background (pixels that do not change throughout the video) and then losslessly compresses the

foreground regions. This successfully keeps all relevant data while achieving a better compression

ratio.

The key problem is to decide whether each pixel in each video frame is foreground or back-

ground. For microscopy video, the noise behavior is well understood to be independent between

neighboring pixels, whereas blurring–convolution with the point-spread function (PSF) will spread

image brightness changes in one pixel to its neighbors (Sheppard et al., 2006). The property of PSF

27

is detailed in Section 2.6.1 in the Background chapter. Making use of this property, I designed a

correlation-based method that separates foreground from background. Figure 3.1 summarizes the

steps, which are further detailed below and in the Methods section.

Figure 3.1: Analysis-preserving video compression process.

The method first generates a binary segmentation of each frame into foreground and background

pixels by thresholding on the maximum magnitude of the Pearson’s correlation coefficient (Stigler,

1989) between each pixel and its eight neighbors. This coefficient is computed over all frames of

the video, selecting pixels whose brightness changes are correlated with those of their neighbors.

Because even independent random variables have nonzero correlations with some probability,

a number of pixels are falsely labeled as foreground. These pixels are likely to be spread evenly

across the image, whereas true foreground pixels will be grouped into clusters that are at least as

large as the main lobe of the PSF. To remove these false positives, the binary segmentation is refined

by the mathematical morphology erosion operation.

Because analysis methods make use of pixels near the foreground pixels, the resulting set of

foreground pixels is dilated to include pixels that are close enough to affect analysis (this radius

depends on the parameters of the analysis algorithm, but not on the specific algorithm being used).

Using the refined binary segmentation, the original video has each pixel in its background

regions replaced by that pixel’s time-averaged value. This removes noise, which makes the video

compress more using lossless H.264 compression.

28

To verify that the compression had no impact on analysis, the compressed video is processed

by the same analysis pipeline to make sure the results exactly match those of the original video.

I evaluated the method using Video Spot Tracker (CISMM, 2017) to track moving beads, which

showed that my method can get at most 100x compression without any change to analysis results.

In comparison, H.264 compression either yielded much smaller compression ratio (lossless) or

changed the analysis results (lossy).

3.2.2 Analysis-Aware Compression

The last subsection describes the proposed analysis-preserving compression method that re-

tained identical analysis results after compression. I extend the analysis-preserving method to

enable even higher compression while still maintaining results that are statistically indistinguishable

from samples of the original video. I observe that microscopy video analysis results are already

altered by noise introduced in all stages of the microscopy video acquisition pipeline. The new

method does not force the compressed video to have identical analysis result as the original video.

Instead, it maintains the original information and replicates noise such that the error introduced

by compression is statistically indistinguishable from that introduced by existing noise. This is

verified by running multiple different statistical analyses on the original and compressed videos.

The statistical analyses are explained in 3.2.3. For the case of analysis of bead-tracking results,

this enables a reduction in the number of foreground pixels compared to the prior method, which

enables even larger compression ratios without detectable changes in analysis.

The new method is named as analysis-aware compression. Another difference between this

method and the analysis-preserving method is that analysis-aware compression includes a post-

processing stage that add synthesized noise into the compressed video data to improve the quality

of the video. The overall process of the method is shown in Figure 3.2.

29

Figure 3.2: Analysis-aware video compression process.

3.2.3 Statistical Tests

Because I judge the quality of a compressed video by comparing its error with that introduced

by noise in the original video, the relative distributions should be considered. To provide confidence

values, a quantitative approach in preferred. In testing the performance of my methods, I applied

two experiments: the two-sample Kolmogorov-Smirnov (KS) test and Kullback-Leibler (K-L)

divergence computation.

KS test

In my experiment, the goal is to show that the population of MSD samples from the compressed

video group is not different from the population of the samples from the uncompressed video group.

This can be verified using the KS test, which is a well-known technique for testing and giving the

confidence level that two groups of values drawn from two continuous random distributions are

actually drawn from the same distribution. Unlike the t-test, which mainly tests the difference be

two populations’ means, the KS test takes the shape of the distribution into account and finds the

largest vertical distance between two kernel density plots. For this test, the scientist must select a

30

confidence threshold in order to make the decision on whether the two MSD samples are from the

same distribution.

K-L divergence

Computing a K-L divergence can also compare two samples of MSD values from two unknown

distributions. K-L divergence is a concept in information theory that measures the difference

between two probability distributions. It can be understood as the information lost when probability

distributions Q is used to approximated probability distribution P .

In my experiment, P is the sampled population of the MSD values for the original video and

Q is the sampled population of the MSD values for a compressed video. The measurement is

non-symmetric: KL-div(P,Q) is generally different from KL-div(Q,P). Similar to the KS test,

for this test, the scientist also must select a confidence threshold in order to make the decision on

whether the two MSD samples are from the same distribution.

3.3 Methods

The basic form of my analysis-preserving method and analysis-aware method both apply a

two-step approach.

In the first (segmentation) stage, the analysis-critical regions in every frame in the video are

detected. The methods use an approach based on correlation and mathematical morphology to

determine the important part of the video in a domain- and analysis-independent manner. Every

pixel in every frame is labeled as either foreground or background. This result is stored in a binary

map.

After the segmentation stage, the binary map is sent to a compression routine. The compression

integrates the segmentation result in its encoding process so that for encoding setting the given

fixed resource is allocated in a way to ensure that information in the analysis-critical region is well

preserved.

31

For this stage of the analysis-aware algorithm, I designed and evaluated two different variations.

They are detailed in 3.3.2. After the compression is completed, the resulting compressed video has

a much smaller size, and it is still useful for analysis.

The extended form of analysis-aware compression includes a third stage: The compression

may still introduce changes into the analysis result. To address this problem, I designed a post-

processing stage to refine the compressed video. The post-processing stage makes use of the noise

statistics in the video and refines the video by reproducing the noise that matches the video system

characteristics as explained in Subsection 3.3.3.

The central problem in the proposed methods is to find the separation between foreground pixels

(which may carry information) and background pixels (which contain only noise) in microscopy

video.

The background noise in the video can be well modeled by a Gaussian distribution plus a

Poisson distribution:

N(0, σ) + P (λ) (3.1)

Importantly, neither of these terms depends on the values of neighboring pixels: they are

identically randomly distributed among the pixels in the image (Sheppard et al., 2006).

Another important property of microscopy video is the mixture of values from neighboring

pixels caused by the point-spread function. This causes changes in each pixel’s intensity over

time to be correlated with those of neighboring pixels. As a result, in a microscopy video, time

correlation of the intensity of a pixel and its neighbors tends to become nonzero whenever it is

caused by changes in intensity due to specimen motion.

32

3.3.1 Segmentation Stage

The goal of segmentation is to accurately detect the regions of pixels in a microscopy video

frame that might affect analysis. The analysis-independent method for this task made use of the

PSF to remove regions containing only noise as detailed in Subsection 2.6.1.

Figure 3.3: Mathematical morphology portions of the original algorithm: (a) a sub region of the first
frame in the original video; (b) the correlation-based segmentation result without refinement; (c) the
segmentation result after erosion refinement; (d) the segmentation result after erosion and dilation
refinement. Some foreground regions in (d) are due to other beads that move into this region in later
frames.

The correlation-based segmentation for detecting moving objects in microscopy video is the

same in both analysis-preserving and analysis-aware method. Because of the PSF, every pixel is

blended slightly with its neighboring pixels. This means that any moving image feature will have a

correlated impact on a region of pixels rather than only a single pixel. This does not hold for shot

noise and electronic noise, which scale with image brightness but are uncorrelated between pixels.

To get a foreground score for every pixel, the method computes the Pearson’s correlation score

between it and its neighbors:

Ri = |
∑k

j=1 (xj − x̄)(yij − ȳi)
kσxσyi

| (3.2)

In the formula, xj is the pixel intensity value for the center pixel at the jth frame, x̄ is the mean

pixel intensity value of the center pixel over a time interval, yij is the pixel intensity value for the

neighbor pixel at jth frame, and ȳi is the mean for the neighbor.

33

The method computes this value for all eight neighboring pixels for each pixel. It then computes

the maximum of all neighbor scores and use a threshold on this to determine which pixels are in

the foreground. The threshold was determined by running multiple passes of bead tracking on the

compressed video having the same tracking result as the uncompressed video but it can also be

determined for a system with known sensor characteristics based on a likelihood threshold based

on the system’s noise characteristics. Once determined, this threshold can be transferred to videos

taken with similar experiment setups. After every pixel has a score assigned to it, all pixels whose

score are above the threshold and are marked as potential foreground pixels in a binary map.

Figure 3.4 shows the impact on compression size as this threshold is increased; fewer pixels

are selected as foreground and the compression ratio improves. However, at some point this causes

foreground pixels in the image to be missed, which impacts the data analysis and the compression

begins to change the results of analysis. Because there is no general solution to the question “how

much change to analysis values is too much”, I stop at this level and I select the threshold that has

the best compression without impacting analysis.

Figure 3.4: Plots of compressed file size comparing against original file size (in percentage) vs.
correlation magnitude threshold on scores for four videos. Four subplots shows the result for four
test videos respectively. Four plots share the same vertical axis. The horizontal flat line in every
subplot indicates the compression result on that video with H.264 lossless technique. The curves
become dashed when the analysis results on compressed videos differs from the analysis result on
the original, indicating the limit compression without impacting analysis results.

34

This threshold is set to a liberal value to avoid losing actual features, with the result that the

map contains many small false-positive pixel groups whose size is smaller than the PSF for a given

microscope. The PSF would spread actual features over larger areas, so the method removes these

false positives using the mathematical morphology erosion operation (Serra, 1982). Figure 3.3

shows one example of the test video frame image and the result binary map cleaned up by erosion.

The resulting cleaned binary map guides compression.

Figure 3.5: Example frame from each of the videos tested, each named as in the description and
tables.

In the analysis-preserving method, I perform the dilation size that is equivalent to the erosion

size plus additional dilation to expand foreground region in the correlation-based segmentation result.

This increased dilation (shown in Figure 3.3) provided a conservative estimation of foreground

regions to provide an (analysis-method-dependent) region increase to ensure identical results. In the

analysis-aware method, the expanded region is not required, so the additional dilation size is not

applied - resulting in a much smaller foreground region and greater compression.

My collaborators evaluate their data using the CISMM Video Spot Tracker (CISMM, 2017).

An example of a binary map before refinement and after refinement is given in Figure 3.1.

3.3.2 Compression Stage

For the compression stage, the goal is to make use of the segmentation result to encode the

video data so that information in the analysis-critical regions is preserved in a manner that does

not affect analysis. There are many options for applying existing well-developed video codecs and

integrating the analysis-critical map signals to compress the video data. In developing the system, I

explored two paths.

35

The first approach processes the video frames by averaging background pixel values over

time and then losslessly compressing the processed video frames using a standard algorithm. The

pre-processed video has many pixel locations with constant value over time, which can be efficiently

encoded to provide high compression. Tests were done to compare four standard compression

techniques and software: bzip2, jpeg2000, H.264 and H.265. The result showed that the three

modern compression routines all give a similar good compression with the processed video frames.

From these four methods, H.265 and H.264 achieve the smallest two compressed video file size

based on my data set. H.265 is 4% smaller compressed video size than H.264 but the encoding

speed of H.265 was much slower than other three techniques. Therefore I choose to use H.264 in

my algorithm implementations and experiments. The results should apply to any lossless video

compressor.

In an extension of the analysis-aware method, I also evaluated replacing the background

averaging with an approach that uses a combination of lossless and lossy compression. This

approach works for block-based prediction-residual compression approaches. The implementation

used H.264. In H.264, the motion estimation unit is based on 16x16 pixel patch macroblock.

The pixel data for each macroblock is transformed into the frequency domain. Data reduction

is achieved by reducing the information in the high-frequency components in every macroblock.

Specifically, information reduction is done by quantization that collapses a range of close values into

one. Quantization level is mostly based on the given bandwidth in compression and it is generally a

global property across blocks. But in my compression method, I don’t need high quality for blocks

that represent background pixels. Therefore my approach assigns different quantization levels to

each block based on the segmentation result. I denote qp as the controlled value in quantization.

A higher qp results in a wider range of values to be suppressed into one value, which results in

shorter encoded bit length and lower video quality. As shown in Figure 3.6, if in one block there are

one or more pixels that are classified as foreground in the binary map, I use a better setting (qp=0);

otherwise, I assign a worse setting (qp=51) to the block. This removes the need to calculate running

averages across frames at the expense of variable-quantization encoding.

36

Figure 3.6: Left to right: a) the starting position of a bead in a video and its moving trajectory; b)
the resulting binary foreground/background map; c) illustration of the macroblocks that covers the
frame; d) the resulting binary macroblock foreground/background labeling map.

I also studied combining the two approaches: averaging the backgrounds and using customized

qp assignment in compression. However, the combination yielded larger compressed video sizes

than either technique applied by itself. This may be because the artificial edges introduced by the

first stage are not usually well aligned with the macroblock boundaries, or it is not well aligned with

the prediction model inside H.264.

3.3.3 Post-Processing Stage

By averaging the background pixels over time, the compression is filtering out noise in the

original video signal, producing an output video that has less noise than the input video. This

modifies the results of analysis routines whose kernels reach beyond the foreground pixels, such as

the symmetry-based tracking kernels uses in my analysis.

This can produce more accurate tracking on the compressed video than the original. While

more accurate tracking could be considered better, it is also statistically different from the results

of tracking in uncompressed video. For cases where different regions of the video have different

background fractions this can also produce track-to-track variations in the results. Especially for

analysis that looks at random motion distributions (like the mean-squared displacement calculations

performed by my collaborators), this means that analysis on compressed video is different from

37

analysis on uncompressed video. In these cases, the loss of noise in the reconstructed video is a

problem.

There are two ways to address this problem. The analysis-preserving method expanding the

foreground regions based on knowledge about the spatial extent of the analysis kernels. The

analysis-aware method estimates the distribution of background noise in the original video and adds

synthesized noise into the compressed video during decompression/analysis. This has the benefit of

being independent of the radius of the kernels for analysis performed on the video. This process

is the post-processing stage of the analysis-aware method. During analysis, noise is generated

and added back into the video in an on-line fashion. To avoid a per-pixel storage cost, the known

characteristics of noise in optical microscopy systems can be used to model the entire image with

only two parameters.

In estimating the noise parameters, I model noise value probability distribution as a Poisson

+ Gaussian distribution described in Eq. 3.1. By assuming a large sample size one can further

simplify the distribution (speeding reconstruction calculations) into a single Gaussian distribution

with non-zero mean. The only parameters are the mean and variance of the distribution. To obtain

the parameters for the two distributions (signal and noise), I used k-means clustering method. By

finding the two clusters of the pixel intensity over time points in the mean and variances space, I

use the cluster with lower mean and variance and use its center as the mean-variance of the noise

distribution. One sample plot of the pixel intensity over time’s mean vs. variance plot is shown

in 3.7 where point A is the chosen cluster center.

3.3.4 Analysis-Aware Video Quality Measurement

Because standard video quality metrics such as PSNR and SSIM do not correlate well with

analysis such as object tracking (Korshunov and Ooi, 2011). I seek a better metric for evaluation.

In analysis-preserving compression, the quality of the video was determined by running the same

tracking analysis on the video, and only the video with output exactly matching the original

video’s analysis result passed the validation. For analysis-aware compression, I consider the fact

38

Figure 3.7: Mean vs. variation intensity plot with centers of the two-means cluster.

that analysis results on the original video are affected by noise captured as part of the original

video. Therefore they represent only one of a set of possible analysis results, and re-taking new

uncompressed video of the same specimen would produce slightly different results. Therefore, the

compressed video’s analysis does not have to exactly match that on that particular video, but it

should be drawn from a distribution that matches those from multiple runs on the same specimen. I

propose robust statistically-based video quality measurements based on the values derived from sets

of analysis results.

This statistical approach can be used with any analysis. I demonstrate it using mean square

displacement (MSD) curves that are derived from bead tracking results. An MSD value is calculated

by averaging the squared displacement over movement measured using a fixed time window (τ).

A sequence of MSD values with increasing time windows contains information about the type of

cell motion. By characterizing at the shape of the MSD vs. curve, characteristics of the specimen

(diffusion coefficient, membrane stiffness) can be classified (Monnier et al., 2012).

In my experiment, I converted the tracking trajectory result into a sequence of MSD values with

different time windows. The quality of the video is determined based on the result of the quantitative

tests (detailed in 3.2.3) on these MSD values compared to the MSD values from tracking in the

original uncompressed video. I would like to verify that the error introduced by the compression

39

matches that introduced by existing noise such that the two set of measurements are statistically

indistinguishable.

3.4 Results

3.4.1 Analysis-Preserving Compression Results

Analysis-preserving compression method achieved much better compression than existing

lossless techniques in all cases tested and with identical analysis results in more than half of the

cases tested. The data used for testing consists of six cases (Figure 3.5). The first four (two

fluorescence and two bright-field imaging) have 1000 frames of moving beads attached to cell

membranes. The beads in the fluorescence videos have diameters of 1 m and 500 nm. (The video

with 500 nm beads has many more beads.) The fifth video shows cells moving in bright-field

imaging. The sixth video consists of beads that stay mostly still for the first half of the video and

then move rapidly in one direction.

H.264 lossless Beads 1µm Beads 500nm Brightfield 1 Brightfield 2 Cells
Without my method 20% 28% 47% 50% 33%

Including my method 0.77% 20% 44% 7.3% 4.8%

Table 3.1: Compression ratio for five real-world videos. The analysis-preserving method outper-
formed standard H.264 compression by large factors in three out of five test cases. In both cases,
the resulting compressed video is in H.264 format so can be easily fed into analysis pipelines.

Table 3.1 compares the performance of my method against lossless H.264 compression. The

usage of a more recent video compression standard H.265 was also explored and compared with

H.264. In the experiment, the version of the implementation of the standard libx265 is 1.3+861-

86ca1de606e3. The H.264 implementation libx264 with version 0.142.50 was used.

Firstly, I used the two compression techniques to compress the data listed in the second column

in Table 3.1, namely the fluorescence video with 1 m-diameter beads. In this test, H.264 outperforms

H.265 by having a 0.1MB-smaller compressed video size. The same experiment was done on the

cells video (Figure 3.5, fifth from left). This time H.265 has a 0.1MB-smaller compressed data

40

comparing against H.264. I am interested in the ratio between the size of compressed files with and

without my method. I noticed that this ratio stays almost the same for both H.265 and H.264. More

precisely, the difference stays within 1% of the range of the data size.

Because H.265 does not always yield a better compression, I did most experiments using the

more rapid H.264 implementation. I also compared against lossless JPEG2000 and lossless JPEG,

which did not perform as well. For JPEG2000, the libopenjpeg version 1.5.2 was used.

The size achievable before analysis is impacted scales with the information content of the video:

videos with information in every pixel see no improvement. For the 500 nm video (which has

more foreground) I achieve a compressed size of 19.6%, only slightly better than lossless H.264

alone. For the video with little foreground, the compressed size reaches 0.77%, 25 times better than

lossless H.264 alone and an overall reduction factor of 100.

Figure 3.4 plots the compressed size vs. threshold on the scores and the maximum lossless

correlation threshold in all five cases. The compression ratios using standard techniques are also

displayed as horizontal lines. Table 3.1 compares my best compression ratios against those achieved

by standard compression techniques. Table 3.2 shows the compression ratios for different methods

for all cases.

Techniques applied with my approach Techniques applied without my approach
Video H.264 lossless Bzip2 JPEG2000 lossless JPEG2000 lossless Bzip2 H.264 lossless

Bead 1µm 0.77% 0.70% 1.3% 24% 19% 20%
Bead 500nm 20% 21% 23% 31% 29% 28%
Brightfield 1 44% 49% 46% 47% 51% 47%
Brightfield 2 7.3% 26% 29% 50% 54% 50%

Table 3.2: Comparison of multiple compression methods on four of the videos shown in the
main text. The left and right numbers match those in TABLE 1. Bzip2 and lossless JPEG2000
compression on the original file sequence were usually worse and never much better than lossless
H.264. Lossless JPEG2000 and Bzip2 on the filtered image set were always worse than lossless
H.264.

In all the experiments described above the erosion diameter was 3 pixels (this depends on the

microscope point-spread size). The dilation diameter was set to 51 pixels, which is the size of the

search radius for the tracking algorithm when it is testing for beads that disappear during tracking.

For experiments without disappearing beads, the diameter can be set to be 24 pixels to achieve

41

higher compression. Dilation radius depends only on how many pixels the analysis algorithm looks

at beyond the pixels that are part of the objects being analyzed.

I investigated the question of how much the quality factor of H.264 lossless compression can be

reduced before I saw changes in the analysis. I intended to show the relative sizes of the compressed

video at the smallest H.264 lossy-compressed size that did not induce changes in the tracking

compared to the size of my analysis-preserving compression. However, in the four test cases (two

fluorescence videos and two brightfield videos), the H.264 lossy compression changed the analysis

results even at the setting that provided the least compression and gives the best video quality. This

indicates that H.264 lossy compression at any level introduces changes in analysis.

I then investigated the question of how much impact the H.264 lossy compression has on track-

ing. This was done using a lossy compression level that matched the size of the compressed video

produced by my analysis-preserving compression with no loss. The metric I use for comparison is

specific to my particular analysis mode, and is reported in units of fractions of the noise floor in my

instrument.

Beads 1µm Beads 500nm Brightfield 1 Brightfield 2
Lossy H.264 4.6 ∞ 50.3 2.6
my method 0 0 0 0

Table 3.3: Maximum tracking error when using lossy compression techniques and using my method
in four cases (in units of the experiment noise floor, which is 1

10
th of a pixel). In one video, a

bead track was lost, indicated here as infinite error. When they are forced to achieve the same
compression ratios, perceptually-tuned compression techniques have a large maximum impact on
analysis results.

Beads 1µm Beads 500nm Brightfield 1 Brightfield 2
Lossy H.264 (0.1269, 0.0568) (∞,∞) (0.0468, 0.0502) (0.1019, 0.0734)
My method (0, 0) (0, 0) (0, 0) (0, 0)

Table 3.4: Mean and standard deviations of tracking error when using lossy compression techniques
and using my method in four cases (in units of experiment noise floor, which is 1/10th of a pixel).

Tables 3.3 and 3.4 compare the compressed videos from my method to videos compressed

using the perceptually-tuned H.264 with its quality parameter set to make the file size match mine.

42

(JPEG2000 was also tested and had results similar to H.264). It is not possible to determine the

impact of individual pixel-brightness values on an arbitrary analysis routine; doing this comparison

requires running a particular analysis routine to see the impact. I used the video spot-tracking

algorithm employed by my collaborators on both compressed and uncompressed videos and report

the difference in centroid locations between the original and the compressed videos. In Table 3.3,

the error metric is the squared maximum distance (in units of 0.1 pixels, which is the noise floor of

the instrument) between points along bead traces, reported in units of the experiment noise floor.

In Table 3.3, the error metric is the per-track mean error along with the standard deviation of the

points along bead traces. My method (by design) achieves 0 error, the perceptually-tuned videos

had errors ranging from 2-50 times the noise floor and sometimes lost beads entirely.

To test the generality of the method on non-bead-based specimens, I compressed a microscopy

video of moving cells. Edge-length analysis was performed on this video as follows: Given a video,

every frame in the video is filtered by a Gauss gradient filter with a Gaussian stand derivation 1 pixel

to find the high response locations that suggests existence of an edge. After thresholding, connected

components analysis is run on the binary map. To remove the noise, the connected components

with fewer than 90 pixels were removed.

This process was performed on both original video and compressed video. I compare the edge

detection result in all frames. With the exact same edge detection result, the analysis-preserving

compression method achieved 3.5 better compression than lossless H.264 encoding alone.

Even non-high-throughput cell-motion videos often use low frame rates to reduce the amount

of video storage required. This causes large motion in between frames, which is challenging for

vision-based tracking algorithms to handle. An increased frame rate enables storing a much finer

time resolution in the same file size, potentially improving the resulting analysis.

Fast-Moving Beads Analysis

In some microscopy videos, foreground objects move quickly over time and can cover most of

the frame throughout the course of the entire video. In cases such as this, my basic method does not

work well because most pixels are marked as foreground. I applied my method to one such case: a

43

Figure 3.8: Left: one frame of Fastbeads video before beads move; middle: foreground/background
segmentation on whole video right: fore-ground/background segmentation within a 20-frame
window.

microscopy video that contains 250 frames. Starting in the 100th frame, the beads in the video start

to be move rapidly over the frame. One frame of the video is shown in Figure 3.8. The resulting

map has most of the pixels as foreground (as expected).

To achieve a better compression ratio in cases like this, I added a sliding-window extension to

the technique. I slide a fixed length (in time) window from the beginning of the video to the end

and update the foreground and background pixels using only frames within the window.

For a video of length l and window size s, I get (l − s) different binary maps. By segmenting

out only pixels with beads moving over them in a short time period, the sliding-window version of

the method marks fewer pixels as foreground in each frame.

Dilation Diameter 8 Pixels Dilation Diameter 20 Pixels
Window size With sliding window No sliding window With sliding window No sliding window Lossless H.264
100 frames 16%

35%

21%

39% 39%
50 frames 15% 21%
20 frames 14% 19%
10 frames 15% 20%
5 frames 20% 24%

Table 3.5: Compression ratio using the sliding window method and using lossless H.264 alone
for the Fastbeads video. With longer windows, the beads moved across essentially every pixel in
the image, so the method produced almost no improvement over lossless H.264 alone. With very
short windows noise suppression was slightly reduced, causing an increase in file size. The optimal
window size for this video was 20 frames, resulting in an approximately 2 improvement in file size.
As expected, smaller dilation results in better compression (less fore-ground).

Table 3.5 shows the additional compression provided by the sliding-window technique for a

video with fast-moving beads. With longer windows, the beads moved across essentially every pixel

44

in the image, so the method produced almost no improvement over lossless H.264 alone. With very

short windows, noise suppression was slightly reduced. The optimal window size for this video was

20 frames, resulting in an approximately 2× improvement in file size. A resulting map is shown in

Figure 3.8.

Comparison with Other Techniques

Table 3.2 shows the results of doing compression tests with algorithms other than H.264 lossless.

The first and sixth columns of this table match Table 3.1. Column five shows the result of using

Bzip2 compression on the original files, which is usually slightly worse and in one case slightly

better than lossless H.264. Column four shows the result of using lossless JPEG2000 on the original

videos, which is never better than lossless H.264. Columns two and three show the results of using

Bzip2 and lossless JPEG2000 on the images after my algorithm has been applied, which were

always worse than using H.264 after my algorithm.

Figure 3.9: Left to right: first frame of the original video, edge detection results: original video,
video with 3.5× compression, video with 4.6× compression, video with 6.8× compression.

3.4.2 Analysis-Aware Compression Results

I performed two types of experiments to evaluate the analysis-aware compression methods.

The goal is to compare the new statistically-indistinguishable analysis-aware video compression

method against the standard video compression technique H.264. I included both variations of

the analysis-aware video compression method (V1: per-pixel temporal averaging and V2: custom

per-macroblock qp) in the comparisons, and performed the comparisons for each with and without

45

the noise-addition post-processing. Both synthetic microscopy video data and real microscopy

video data are used in the experiments.

For each compression technique, I compare the performance of different compression methods

under different bandwidth settings (compression ratios). I ran the tests with various configurations

to generate different compressed video sizes. I then plotted the video quality evaluation results

versus video data sizes. The experiments on synthetic data and real data are discussed separately.

Experiment on Synthetic Data

Figure 3.10: Flow chart of the experiment steps with synthetic data

The overall experiment flow on synthetic data is illustrated in Figure 3.10. I wrote a program to

generate synthetic microscopy video frames. This data generating process is composed of several

stages. First, I use a program to simulate bead trajectories with Gaussian random walks. In this

experiment, I generated ten bead trajectories. The data was stored as a list of x-y pairs, describing

the sub-pixel bead positions on every frame in the video. For an 1800-frame video with ten beads, I

had ten lists with length 1800. With the bead trajectory data, I generated ten videos that contain

beads. All ten videos share the same bead trajectories.

In the second stage, for each bead position in every frame, I generate a 2D Gaussian blob with

pre-determined mean intensity and standard deviation values. I place it so that it is centered at the

given sub-pixel x-y location based on the trajectory data list. The result is a clean video without

background noise.

46

The next step is to add per-pixel noise into the video using Eq. 3.1. I generated the final pixel

intensity values with one Gaussian plus Poisson distribution with λ equals to the pixel intensity

value and σ equals to 0.01. The values are selected such that the resulting video has the similar

characteristics to a real microscopy video. Therefore in every video, the background and foreground

pixels values differ, but they are samples from the same distribution.

This results in a set of ten noisy videos. They each share the same bead trajectory, but they have

different noise. Every video contains ten beads. Every video has 1800 frames. Figure 3.11 shows 1

frame in one of the ten videos.

Figure 3.11: Sample video frames, left: synthetic video, right: real video

I tested the compression methods with the noisy videos from the data generation process.

For every video, I first identify the foreground using correlation-based segmentation followed by

mathematical morphology. The dilation operator size in the refinement is set to 5 pixels, which

is smaller than the value I used in the analysis-preserving compression method. This setting does

not ensure the exact same analysis results as the original video. I generate a binary map from

the first step. Then I process the video with five approaches to generate 5 sets of compressed

videos: (a) based on the binary map, I average the background in the video and leave the foreground

unchanged. Then I compress the video using H.264. (b) Based on the binary map, I apply a

customized H.264 compression by applying a low quality setting (qp=51) for the background pixel

47

blocks, and applying a high quality setting (lower qp) for the foreground pixel blocks. (c) I further

add synthesized noise into the resulting compressed video from (a). (d) I further add synthesized

noise into the resulting compressed video from (b). In method (e) I directly compress the original

video (ignoring the binary map) using H.264.

To compare the performance of the five compression methods at different quality levels, I adjust

the parameters to generate a set of compressed videos with different sizes for each compression

method. In methods (a) and (c) I increase the dilation operator size from 5 pixels to a larger value,

which produces a larger foreground region (and thus less compression). In methods (b) and (d) I

used a list of qp values when compressing the foreground blocks in H.264 compression. In method

(e) I used a list of qp values for H.264 compression so that I have different sized videos. I call

methods (a) and (c) analysis-aware compression variation 1 (V1). I call (b) and (d) analysis-aware

compression variation 2 (V2).

By including analysis-aware compression V1 in the experiment, I also include a generalization

of the analysis-preserving method. By increasing morphology dilation size in the refinement stage,

I eventually reach a large enough dilation size that makes the analysis result the same as the one for

original video.

I plot the sizes of compressed videos from various compression methods so that I can compare

their relative effectiveness at a given compressed size. For each method, I ran the compression

with all 10 videos to generate a population of compressed videos. The compressed video size

for the videos after post-processing is considered the same as before post processing because

the post processing can be performed during reconstruction using the compressed video before

post-processing as input.

I analyzed the tracking of beads using video spot tracker (CISMM, 2017). I applied the tracking

on the original uncompressed video and all compressed videos: before post processing (a and b)

and after post-processing (c and d). I then computed the MSD for the tracking results. Figure 3.12

shows the relationship between MSD values and video compression ratios. The MSD values were

plotted as a multiple of the MSD values for original video (1.0 means the MSD values are identical

48

Figure 3.12: Scaled MSD values vs. compression ratio, for five groups of synthetic videos.

to the ones from original videos). Each curve represents the mean MSD values among 10 copies of

videos with the same foreground and different instances of sampled noise values from the same

noise distribution.

The result suggests that two variations of the analysis-aware compression method both generate

a higher quality compressed video because the points on the curves are all close to one (in the range

between 0.98 and 1.02) whereas standard H.264 yields a curve far away from 1.0 given the same

compression ratio. The curves for the videos after post-processing are closer to the 1.0 horizontal

curve, indicating that post-processing of adding back-noise improves the video quality regarding

49

analysis. V1 with post-processing is very close to the original result, indicating that it may be

indistinguishable from it.

Figure 3.13: KS test p values vs. compression ratio. The horizontal line shows the KS test p score
0.95. The vertical line in every plot shows the compression ratio for the previous analysis-preserving
method.

To further probe for potential differences between the original and compressed analysis, I

performed the KS test on the MSD values. The KS test process involves defining a null hypothesis

and making a decision on whether to reject the null hypothesis. In my case, the null hypothesis

states that the two input samples of MSD values are drawn from the same distribution. The KS test

process gives a decision on whether the null hypothesis should be rejected. The p value comes out

from the KS test result indicates the error rate in rejecting the null hypothesis. For instance, for

the KS test that yields p=0.95, rejecting the null hypothesis means to conclude that the two input

50

samples are from the different distribution is very likely to be wrong. Therefore, based on the KS

test result we should consider the two input samples are drawn from the same distribution. On the

other hand, note that there is no way to prove the null hypothesis, by the definition of the KS test.

Interpretation of the p value

The precise definition of the p value in the KS test is the probability that the two cumulative

frequency distributions would be as far apart as observed if the two samples were randomly sampled

from identical populations (Kirkman, 1996). For p=0.95, there is 95% chance that another round of

sampling will generate two cumulative frequency distributions that are at least as far apart as the

current samples.

In this experiment, the MSD values were not normalized by the MSD values from the original

videos. I used one bead’s MSD values across 10 versions of the videos that share the same

foreground content. After that, I selected a fixed window size. Figure 3.13 shows the p values

output from KS test for MSD values on videos compressed using my compression approach V1,

my compression approach V2, and the standard H.264 compression. The curves plot p value vs.

compression ratio. The horizontal line indicates the test decision threshold. For all p values above

the line, the null hypothesis is not rejected, which means that there is no strong evidence that the

MSD values obtained from compressed videos are sampled from a different population than those

from the MSD values obtained from the original video (there is a high probability that equals to the

y value indicated by the line that another round of sampling will generate two cumulative frequency

distributions from the MSD values that are at least as far apart as the current samples).

The KS test for standard H.264 compressed videos always rejects the null hypothesis, indicating

that the distributions are statistically distinguishable. For my approach before the post-processing

the curve sometimes goes above the threshold, but it also falls below the threshold as compression

ratio increases. For the video compressed with my approach after post-processing (V2), the curve is

always above the threshold until it reaches compression ratio 38.

51

Figure 3.14: K-L divergence values vs. compression ratio, for five groups of synthetic videos. The
vertical line in every plot shows the compression ratio for the previous analysis-preserving method.

I also computed K-L divergence values on the same data. The result is shown in Figure 3.14.

A lower K-L divergence value suggests a smaller distance between the compressed video’s MSD

value population and the original video MSD value population.

In this experiment, all compression videos with my method gave similar results for compression

ratios smaller than 148, which was better than the result value from standard H.264. My compression

approach V2 outperformed standard H.264 up until a compression ratio of 1450.

Experiment on Real Data

I also performed experiments on videos from real experiments. For real data, it is impossible to

get the true bead trajectory and generate multiple copies of the same bead trajectory and different

52

Figure 3.15: Flow chart of the experiment steps with real data.

background noise. I handled this by dividing each video into 10 parts and performing tracking

on each of them to produce a population of estimates. It is assumed that there is no significant

background noise property change across the videos in single-video the test set. The experiment

process is illustrated in Figure 3.15

The scaled MSD values for various compression methods vs. video compression ratio plot for

real video data is given in Figure 3.16. For real data, analysis-aware compression approach V1 does

not perform better than H.264 compression for compression ratios greater than about 3000, even

after post-processing. On the other hand, V2 always gives a better result than H.264 compression.

Figure 3.17 and Figure 3.18 shows the MSD values from multiple compression methods

compared using KS test p-value and K-L divergence value. For this data set, K-L divergence does

not show a great difference among different compression methods. In the KS test, the p values for

the videos compressed by standard H.264 stays below the 0.99 threshold, while my compression

method V1 achieves compression ratio larger than 3000 and remains above the 0.99 threshold. My

compression method V2 achieves compression ratio 12 before it drops below the 0.99 threshold.

53

Figure 3.16: Scaled MSD values vs. compression ratio, for five groups of real videos.

Lossless V1 V2
Synthetic Data 18.4 32.9 39.3

Real Data 9.7 3580 23.1

Table 3.6: Achieved compression ratios for applying analysis-aware methods and lossless compres-
sion method on synthetic data and real data and maintain KS test p-score larger than 0.95 in the
resulting video. For synthetic data, an improvement of around a factor of 2 was achieved above the
earlier lossless method. For real data, which had more noise, the improvement was around a factor
of 350.

54

Figure 3.17: KS test p values vs. compression ratio. The two horizontal lines showing the KS test p
score 0.95 and 0.99, respectively. The vertical line in every plot shows the compression ratio for the
previous analysis-preserving method.

3.5 Summary

In summary, I have described an analysis-preserving method and an analysis-aware method for

microscopy video compression based on correlation and mathematical morphology. Experiments

on several real video data sets show that the analysis-preserving compression method can achieve

compression ratios of >100, reducing file size by 99+%. For analysis-preserving compression these

compression ratios correspond to file sizes that are 25× smaller than those generated by lossless

compression techniques.

55

Figure 3.18: K-L divergence values vs. compression ratio, for five groups of real videos. The
vertical line in every plot shows the compression ratio for the previous analysis-preserving method.

I show that the analysis-aware compression method preserves scientific analysis by running

statistical tests on it; the resulting probability distribution of analysis results is not statistically

distinguishable from the analysis result probability distribution from the original video up to a

certainty of 95-99% while halving the size of the compressed data compared to lossless compression

(Table 3.6). The experiment for measuring compressed video quality was based on MSD values from

tracking diffusing beads. The result suggested that comparing against standard video compression

technique H.264, for most compression ratio values, analysis-aware compression method gives a

better quality video in terms of the analysis results.

56

The analysis-aware method extends to other types of microscopy video analysis besides object

tracking. The statistical validation method can be modified to apply to each type of analysis. I

evaluated quality based on KS test and K-L divergence. If a different metric is desired, the statistical

tests can be replaced with the new technique applied to the same population of data.

The correlation-based segmentation method used in my compression technique was verified by

analysis of tracking in a fluorescence microscopy videos in my experiment. But in the experiments

for analysis-preserving compression, I showed that this segmentation method works for a variety of

microscopy video types including fluorescence video, bright field video, fast moving beads video

and cell video and associated analysis routines including segmentation.

57

CHAPTER 4
IMAGE COMPRESSION TO GENERATE ENERGY EFFICIENT BROADCAST IMAGE

DATA

In this chapter, I switch my application domain from video compression to image compression.

I present two new systems I built that integrate a bunch of new image processing techniques I

invented, to support extreme image compression. The two systems make use of properties in an

input image to identify the content of interest in the input image. The systems can compress a

digital color image with size 64×64 pixels small enough so that image broadcasting via a Bluetooth

Low Energy broadcasting channel becomes practical.

In this modern age of the Internet of Things (IoT), it is now possible to literally glue tiny

computers to everyday objects, so that they can sense, react, and tell their own stories. The IoT

community has embraced wireless standards such as Bluetooth Low Energy (BLE) (Gomez et al.,

2012) and developed protocols such as iBeacon (Newman, 2014), in order to create programmable

‘beacon’ devices that periodically broadcast a small amount of preloaded data, and last for multiple

years (Siekkinen et al., 2012) on a coin-cell battery. Broadcast messages from beacon devices

typically contain information about an object, a location, a web-resource, or just an arbitrary string.

This connectionless mode of BLE does not require a receiver to pair/bond or connect to a sender,

and hence, there is no overhead of connection setup and no inconvenience of requiring a user to

enter pins and passwords. These broadcast messages are received by a BLE capable mobile device

to obtain relevant information just-in-time and on-the-spot.

Emerging applications of beacon devices include advertising merchandise in retail

stores (Pierdicca et al., 2015), identifying late passengers at airports, authorizing people at hospitals,

58

Image
Beacons

Snap
Process
Select

write

read

Object

snap

Figure 4.1: An image beacon system.

smarter signage, indoor navigation (Martin et al., 2014), and tracking moving platforms like airline

cargo containers, computers on wheels, museum artworks, or even people (Conte et al., 2014).

The enabling technology behind these applications is the ability of a beacon to simply broadcast

a few bytes of data (usually a URL or a UUID) as BLE 4.0 advertisement packets. The bound in

data rate comes from the lifetime requirement of these devices. Such a tight budget on payload

size and the maximum data rate have limited a beacon’s capability to only be able to broadcast an

identifier or a small amount of text (effectively ∼30 bytes). The next generation BLE 5.0 beacon is

expected to have a significant increase in broadcasting capacity (∼200 bytes). Such an increase

opens up the possibility to design beacons that can serve larger assets, e.g., an image, carried by

connectionless BLE advertisement packets. However, even a simple 72 × 72 PNG image, such

as the Android launcher icon, has a size of over 3KB. To store and broadcast this image, either I

require to use a dozen BLE 5.0 beacons, or I will have to accept a very long image transmission and

loading time.

Image compression is a natural way to deal with this problem. Existing image compression

algorithms, however, fail to achieve the desired compression ratio for an image to be broadcast over

BLE. Hence, a fundamental challenge toward realizing an image beacon is to devise an algorithm

that efficiently represents an image using as few bits as possible, while taking into account the

59

application-driven limits on the number of usable beacons per image, broadcast message size, data

rate, latency, and lifetime. I proposed solutions to this challenge and devised image beacon systems

that broadcast binary images and color images.

Being able to broadcast images from beacons enables more powerful and feature rich applica-

tions than the ones supported by today’s beacons. I envision that like the web has evolved from

serving hypertexts to streaming multimedia contents, the natural successor of today’s beacon devices

would be the ones that broadcast images. Applications of image beacons would be in scenarios

where there is no Internet connectivity but there is a need for storing and broadcasting information

that can be best described by an image. For example, coordinating rescue workers in disaster areas,

creating a bread-crumb system for adventurous hikers and mountaineers, remote surveillance (when

coupled with a camera), or even a simple system just to let someone know that ‘We were here’.

Recently, Google started to experiment with an idea called ‘Fat Beacons’ (Hardill, 2016), where

they are looking into broadcasting html pages over BLE. However, for lack of a suitable image

compression technique, the pages do not support images.

As a first step toward realizing an image beacon, I explore the challenges to broadcasting binary

images of different categories (e.g., alpha-numeric characters, basic shapes, and arbitrary binary

images), and design algorithms to efficiently store contents of an image inside a set of beacon

devices (Shao et al., 2016b). The set of beacons simultaneously broadcasts chunks of an image over

BLE, which are captured by a mobile device to reconstruct the image. Standard image compression

algorithms are not good enough to archive the required compression ratio so that an image can be

stored inside a beacon. I investigate image approximation/coding techniques that take into account

the limits on number of beacon devices, number of bits available in a beacon device, data rate,

latency, and lifetime. Based on empirical analysis, I devise a patch-based image approximation

algorithm which greatly reduces the image data while keeping the image distortion under a threshold.

I investigate the trade-offs between the image quality and the power consumption to determine the

best set of parameters for the system under user-specified constraints.

60

I further developed a system that store and broadcasts color images with BLE beacons (Shao

and Nirjon, 2017). The crux of the system is an algorithm that analyzes an image to identify

its ‘important’ semantic regions (as defined by the user or the use case) and then encodes them

differently than the rest of the image to reduce the overall image size. The image data are written to

and read from the image beacon system using a smartphone application, which runs the proposed

compression and rendering algorithms. I use the term ‘beacon system’ instead of ‘a beacon’, since

a compressed image may still require more than one physical beacons to ensure its acceptable

quality. Allowing multiple beacons per image makes the system flexible. It widens the scope for

optimization and helps satisfy users who are willing to dedicate more beacons for better results.

Besides, until BLE 5.0 is available, I need to simulate its broadcast capacity with multiple BLE 4.0

devices anyways.

I have developed prototypes of both binary and color image beacon system using a set of

commercially available Estimote beacons (Estimote, 2017), and developed an Android application

that takes images of an object of interest along with user-specified requirements and constraints on

broadcasting the image as inputs, generates previews of the image to be written, writes the image

representation into a set of beacons, and reads the broadcasted image back. Figure 4.1 shows an

example scenario where a user snaps photos of a gnome statue which he is interested in broadcasting.

The smartphone application performs image processing on the phone to produce multiple versions

of broadcast image. The user selects one of these compressed images that satisfies his requirements

(e.g. available beacons, image quality, lifetime, and image loading latency). The user is allowed to

change his requirements and the app immediately shows options for the best possible compressed

images under those constraints. The application writes the image data into the beacon system and

the image is broadcasted by the beacons. A reader application reads the broadcasted image and

displays it on the phone.

I perform an in-depth evaluation of the beacon system. I describe a set of results showing the

trade-offs between system lifetime and image quality, when the image type and the number of

beacons are varied. I also deploy an image beacon system indoors, and perform a user study in

61

a real-world scenario in order to have a subjective measure of the quality of the received images,

where a group of 20 participants are asked to identify the objects from their beaconed images of

various resolutions, and locate them among a set of similar looking objects in the real world.

The main contributions of my research work in this chapter are as follows:

• To the best of my knowledge, I am the first to propose a binary image beacon system that uses

multiple BLE beacons to broadcast binary images over the BLE advertisement messages.

• I have devised a patch-based image approximation algorithm that greatly reduces the image

sizes. I quantify the tradeoffs between the image quality and the device lifetime, and determine

the best set of parameters, under the user-specified constraints on the number of beacons,

latency, and expected system lifetime.

• I have developed and evaluated a prototype of a binary image beacon system that broadcasts

binary images of various types (e.g., alpha-numeric characters, basic shapes, and arbitrary

binary images). The evaluation shows that a set of 2–3 beacons is capable of broadcasting high-

quality images (75%–90% structurally similar to original images) for a year-long continuous

broadcasting, and both the lifetime and the image quality improve when more beacons are

used.

• I propose a new color image beacon system that uses multiple BLE beacons to broadcast

color images over the BLE advertisement messages.

• I have devised an image approximation algorithm that is tailored to the needs of an image

beacon system. I quantify the tradeoffs between the image quality and the device lifetime,

and determine the best set of parameters, under the user-specified constraints on the number

of beacons, latency, and expected system lifetime.

• I have developed and evaluated a prototype of an image beacon system that broadcasts color

images of various types (e.g., near-distance indoor and outdoor objects, road signs, and

buildings). The evaluation shows that one BLE 5.0 beacon would be capable of broadcasting

62

good-quality images (70% structurally similar to original images) for a year-long continuous

broadcasting, and both the lifetime and the image quality improve when more beacons are

used.

4.1 Related Work

In (Pierdicca et al., 2015), the author discussed an intelligent system involving beacon devices

for Customer Behavior Analysis (CBA). The goal is to show how beacon technology could help

gather and classify customer behavior data in retail stores. They deployed the system into a real

retailing scenario and collected the data from mobile devices interacting with Beacon devices. They

also proposed the further data analysis process on the collected data. (Martin et al., 2014) talks

about an indoor localization system constructed with beacon devices. With multiple beacons places

in the environment, the author showed that the error of the estimated location of the object could be

as small as 0.53 meters in average. (Conte et al., 2014) discusses an Beacon occupancy detection

system deployed in smart buildings. In the implementation, they modified Apple’s iBeacon protocol

to better fit their requirements. They showed that with the BLE technology such system could be

more energy and cost efficient than previous solutions.

Previously people have developed various image compression techniques. Many of these

techniques have been standardized and widely used, including JPEG that is based on discrete

cosine transform, and JPEG2000 that is based on wavelet transform. If the images are limited to

binary, a compression method designed for binary images is expected to show a better performance

(smaller compressed image but equivalent image quality) than JPEG or JPEG2000. One approach

to compress binary images is to partition the shape in the image into rectangles and record the

upper-left and bottom-right pixel location of every rectangle (Mohamed and Fahmy, 1995; Zahir

and Naqvi, 2005). This works great on images that contain shapes that can naturally be divided

into rectangles. But in my binary image beacon system, many images contain curves in different

directions and different curvatures. For binary images containing curves, rectangle-based approach

do not give a desired performance within the limited storage constraint. Given the fact that many

63

of my binary images contains curves, chain coding based compression (Kim et al., 1988) would

be preferred. (Zahir et al., 2007) proposed another chain-coding based compression method. They

showed that their coding method could losslessly compress a complex contour shape into around

900 bytes. And their result outperforms previous image coding techniques including JBIG1, JBIG2

and data compression library WinZip. Their method yields compressed image sizes of at least 200

bytes for my data. This still does not satisfy the storage requirement of my systems, and at the same

time I do not need the very-high compressed image quality that their method offers. Therefore, I

designed a binary image compression method that better fits my requirement.

Shapiro (Shapiro, 1993) developed an image encoding technique named embedded zerotree

wavelet (EZW) encoding, which is computationally expensive and slow. Said and Pearlman (Said

and Pearlman, 1996) developed a better wavelet-based image encoding method based on set

partitioning in hierarchical trees. This method gives similar image compression performance

regarding quality and size, and the same time it achieves a faster computation. I have used this

method in my color image beacon system.

Lu et al. (Lu et al., 2000) introduced a piece-wise linear image encoding method using surface

triangularization. Their triangularization algorithm fits the image surface in a top-down manner.

The idea is to apply a constrained resource planning to allocate the least amount of triangles while

achieving a small image approximation error. Their experiment result shows that the triangulariza-

tion method compresses images with a compact code length with a guaranteed error bound. Their

method’s target is to achieve near lossless compression. With that target, their method is designed to

usually generate a large number of triangles (order of magnitude 10000) for an input image, which

requires data size limit much larger than 200 bytes. Since my color image beacon system does not

require lossless compression, we cannot directly apply their method.

A rich set of image segmentation methods exists in the literature. In the past decade, more

modern techniques involving machine learning have been invented. State of the art neural-network

based method (Zheng et al., 2015) can achieve a very accurate result (highest score 90.4 on IoU

evaluation on airplane type testing data). The method is based on neural-network and conditional

64

random field. However, this method is computationally expensive to run on a cellphone. Otsu’s

method (Otsu, 1975) is based on finding a separation on image pixel intensity histograms, which

does not take care of local image structure. Gabor filter segmentation is based on finding edges in

an image using Gabor filtering. Marker-controlled watershed methods (Parvati et al., 2009) use

mathematical morphology to pre-process the data, followed by a watershed segmentation. This

avoids over segmentation, which is a weakness of traditional watershed method.

The notion of foreground and background information can be obtained by disparity estimation

with semi-global matching (Hirschmuller, 2005). The method enforces smoothness in the neighbor

matching process to reduce matching errors. The semi-global matching method is integrated in my

image beacon system as one step in image segmentation.

4.2 BLE System Characterization

An image beacon system should be capable of storing and broadcasting contents of an input

image without the aid of any additional sources of information about the image. The image is either

a photo taken with a camera, an image containing basic shapes, or a hand-drawn image by the user

on his smartphone’s touchscreen. The image data will be written to and read from the image beacon

system using a smartphone application. I assume that the system is self-contained, i.e., no additional

information about the broadcasted image is available from any other sources globally (on the web)

or locally (on the smartphone).

The problem is formally stated as: given a binary image x (i.e. each pixel is represented by one

bit) having the dimensions of N×M bits, the number of available beacon devices K, the payload

size of each beacon packet C bytes, the maximum allowable broadcast rate of R packets/sec, and the

maximum allowable latency for an image T, the objective is to find an approximate representation

of the image x̂ so that the lifetime τ of the beacon system is maximized while the approximation

ratio λ(x, x̂) ∈ [0, 1] of the image is high (λ = 1 means no distortion).

65

Now, for a single beacon, the broadcast rate:

R =

(
NM

8C

)
1

T
(4.1)

For K beacons, considering logK overhead bits for addressing the beacons, and K times more

payload capacity:

R =

(
NM + log K

8CK

)
1

T
(4.2)

Both Eq. (4.1) and Eq. (4.2) are for undistorted images.

The lifetime τ of a BLE device depends on its inter packet interval and in general, τ ∝ 1
R

.

Replacing R and incorporating approximation ratio λ into (4.2):

1

τ
∝
(
λNM + log K

8CK

)
1

T
(4.3)

The above equation relates the lifetime of an image beacon system and the approximation ratio

of any image compression algorithm. In the binary image beacon system, I devise a patch-based

image approximation algorithm that achieves a sufficiently large λ for a reasonably high lifetime of

the system.

4.3 Image Beacon and Use Cases

An image beacon is a battery powered system that supports years-long image data storage and

broadcast over BLE advertisement packets without requiring the Internet connection. An image

beacon system enables many applications, particularly in scenarios when there is a need to store and

broadcast image data for a long period but the Internet is unavailable. Examples of such systems

include:

66

4.3.1 Long-term Surveillance Systems

I can deploy an image beacon system to monitor an environment where the Internet connection

is not always available. The image beacon system can be attached to a camera that sleeps for most

of the time and takes pictures only when triggered by some other sensor (e.g. movements). The

captured image is then stored into an image beacon. Since data is broadcasted by the BLE beacons,

a surveillance drone can fly over the environment to collect the image data (embedding). Later the

embedding can be used to generate the actual images.

4.3.2 Navigation Systems

Graphical navigation information can be stored and deployed with an image beacon to provide

travellers in remote areas with route guidance. Since an image beacon enables storage of arbitrary

images, the navigation information does not have to be selected from a set of pre-determined road

signs and can be highly customized. A similar application scenario is navigation in mining tunnels

where the environment may be constantly changing and a reliable Internet connection is unavailable

to provide Internet-based navigation services.

4.3.3 Internet of Everything Minus the Internet

There are ongoing efforts in developing infrastructures that can map every item in the physical

world to a virtual object to the web. An example is Google’s attempt in designing a ‘fat beacon’ that

can store and broadcast web pages (Hardill, 2016). An image beacon can be a key component in

building an ‘Internet of everything’ to help support thumbnail images on a fat beacon web page.

4.3.4 New Applications

An image beacon can enhance user experience in entertainment applications involving interac-

tions between IoT devices and physical world. Examples include the game “Geocaching” (GEO,

2018) and BLE beacon powered indoor augmented reality described in Chapter 5. In the original

67

Geocaching, players use a smartphone app to locate the approximate location of a hidden “treasure

box”. Then the player needs to find the box with the location hint. After the box has been success-

fully found, the player can take out the item previously stored in the box and replace it by any new

item. Using a graphical “virtual item” stored in an image beacon instead of a physical object, the

game experience can be improved by avoiding encounter of unwanted physical items. For indoor

augmented reality using BLE beacons, texture data can be stored into image beacon to power a

more realistic 3D object rendering.

4.4 Challenges in Building an Image Beacon

The major challenges in designing an image beacon system are listed below. The system suffers

from the limited payload size of beacon packets, and the limited bandwidth of BLE. On the other

hand, typical image data compressed by standard image compression techniques requires much

more data storage space than that a BLE system can afford.

4.4.1 Limited BLE Bandwidth

The main advantage of BLE over any other wireless protocols is its extremely low-energy

packet transmission capability. This is achieved by aggressively maximizing the sleeping interval

and sending data packets at a much lower rate than classic Bluetooth’s.

According to the BLE 4.0 specification, the maximum payload size C available in beacons is

30 bytes. The expected lifetime of BLE beacons depends on the inter-packet interval (Dementyev

et al., 2013). For example, a BLE 4.0 beacon would last up to 3.5 years, if a packet is sent at every

second (i.e. R = 1). Therefore, for a beacon system to last for 3.5 years, its broadcast bandwidth

cannot exceed 30 bytes/sec. Recently, BLE 5.0 has been announced (BLE, 2016) to offer a ∼200

bytes broadcast capacity and a 2X increase in transmission speed.

Figure 4.2 shows the expected lifetime of Estimote BLE beacons for various inter-packet

interval. For example, the beacon would last up to 3.5 years if a packet is sent at every second (i.e.

R = 1). Therefore, for a beacon system that lasts for 3.5 years, its broadcast bandwidth is bounded to

68

500 1000 1500 2000

Packet Interval (ms)

0

25

50

75

Li
fe

tim
e

(m
on

th
s)

-30 dbm
-12 dbm
-4 dbm
+4 dbm

Figure 4.2: The lifetime depends on packet transmission rate and signal strength.

the maximum limit of 16 bytes/sec, and the latency of a complete image transmission cycle would

be 125 seconds for a single beacon, or 1 second for a set of 125 beacons. Again, by using an image

approximation algorithm having a sufficiently high compression ratio, this latency can be reduced

significantly.

4.4.2 The Case for Lossless Image Broadcast

The size of a typical 72 × 72 PNG image can be anywhere between 3 − 13 KB. Therefore,

to transmit such an image, a BLE 4.0 beacon would require 191 − 832 broadcast packets, or

alternatively, it would require up to K = 832 beacons to simultaneously broadcast different slices

of an image. The latency of a complete image transmission cycle would be up to T = 13.9 minutes

for a single beacon, or 1 second for a set of 832 beacons.

When BLE 5.0 beacons replaces 4.0, the transmission latency will drop to 52 seconds for one

beacon, or 1 second 52 of them. Therefore, without compressing the image content, even the new

BLE 5.0 beacons will not be able to support a fast image beacon system with a reasonably small

number of beacons.

4.4.3 The Case for Compressed Image Broadcast

If standard image compression algorithms could generate compressed images that meet the size

and quality requirements of an image beacon system, the problem would have been already solved.

69

But the fact is, even the best of existing image compression methods, such as JPEG/JPEG2000

and PNG, are not capable of the desired data size for BLE broadcast. Figure 4.3 illustrates that

JPEG/JPEG2000 generates extremely poor quality images given a size requirement of 300 bytes

even for a very low-resolution (64×64 pixels) image. On the other hand, to have a compressed image

of acceptable quality (having a minimal useful visual information to the viewer), JPEG/JPEG2000

takes about 2K bytes.

(c)(a) (d)(b)

Figure 4.3: A 64×64 resolution image compressed in high/low quality settings using
JPEG/JPEG2000: (a) JPEG high quality, 1963 bytes (b) JPEG2000 high quality, 2026 bytes
(c) JPEG lowest possible quality, 738 bytes (d) JPEG2000 lowest possible quality, 391 bytes.

(a) (b)

Figure 4.4: Two types of 64×64 resolution image compressed in PNG (a) from natural scene, 12112
bytes (b) JPEG2000 high quality, 1012 bytes. PNG is good for handling images with large uniform
color regions.

PNG and Vector Graphics image, on the other hand, have the potential to generate a smaller

compressed image that may fit the constraints. However, these codecs generate smaller images

only if the input image is of a specific type – such as an image containing a few regions of uniform

colors like a cartoon drawing, or when the shape is not complicated. This is illustrated in Figure 4.4.

In general, PNG and Vector Graphics image encoding do not meet the requirements of an image

beacon system that broadcasts color images taken by a smartphone user.

70

4.5 Algorithm Design

4.5.1 Patch-Based Binary Image Compression Algorithm

The process of converting an input binary image to its approximate equivalent is described in

this section. The process has an one-time, offline phase where an ‘alphabet’ of carefully designed

‘patches’ are generated. During the on-line phase, the input image is encoded using these patches in

order to generate a reduced version of it, which is suitable for writing into the beacons. Figure 4.5

illustrates the overall process.

Figure 4.5: Beacon image processing pipeline.

Offline Processing: Patch Set Generation

In order to store an image into a limited amount of storage, one has to make a tradeoff between

image variety and the quality of the compressed image. By limiting the image type to binary images

that contain mostly curves, I show that it is possible to design a predetermined set of patches to

71

represent the image in a way that the encoded image is extremely compressed with high quality.

The encoding of an image is based on an agreement on the set of patches between the encoder and

the decoder. Hence, only the indices of the patches are required to be stored/broadcasted in order to

encode/decode an image. An immediate question is therefore: how do we design a suitable set of

patches?

There are two main considerations in designing the set of patches. First, determining the

number of patches to use, and second, determining the content of each patch. The set of patches

should be general enough to be able to represent a wide variety of binary images. On the other hand,

the size of the set should not be too large, otherwise, the number of bits required to encode the patch

indices will be large, resulting in larger images. A rule of thumb in designing base elements for

images is to let the set of patches be rich enough for an input image so that given any sub-region

within the image that has the same size as that of a patch, there is always patch in the set whose

texture is roughly the same as the sub-region’s texture, with a very high probability.

Since I have limited the image type to binary images, I seek to design a set of patches that

contains binary textures of varies types and curves in different directions. The two-step process of

generating the set of patches are as follows.

Step 1. Generating Patch Population

A simple approach to generating a population of patches is to divide a spiral image using a

g × g grid to obtain a total of g2 patches. I use spiral images since they are easy to parameterize.

By having a set of parameterized spirals I can easily control the curvature and the direction of the

curves in the patches. Figure 4.6 (a) shows an example of a spiral in a 3× 3 grid. This approach, in

general, produces a diverse set of patches containing curves of different orientations and directions.

However, the patches are biased by the choice of the original spiral. Because of this, I choose to start

from a set of binary images, where each image contains a parameterized spiral whose parameters

are different from other spiral images. Figure 4.6 (b) shows an example where I have m spiral

images. The parametric equation of the nth spiral is: x = t sin(t), y = t cos(t), 0 ≤ t ≤ nπ. Each

72

of these n spirals is divided using a g × g grid to obtain a population of g2n patches. Let us denote

the population of patches as {Pi,j}, where 1 ≤ i ≤ n, 1 ≤ j ≤ g2.

(a) (b)

Figure 4.6: (a) single spiral, (b) multiple spirals.

Step 2. Selecting Patches Using k-means

Given a set of test images {Xi}, 1 ≤ i ≤ l, the goal is to find a K-sized optimal subset S ⊂ {Pi,j},

so that the sum of distances of the fitted image to the original image is minimized, i.e.–

arg min
S

l∑
i=1

g2∑
j=1

min
sk∈S

{
d(xi,j, sk)

}
(4.4)

where, sk ∈ S denotes a selected patch, xi,j is the jth patch-sized subregion of image Xi, and

d(.) is a distance function that measures the fitness of a patch to a subregion of an image.

Finding an optimal subset of S for any arbitrary distance function is in general an NP-complete

problem. Hence, I employ a clustering-based approach where I use k-means algorithm to cluster

the population of patches into K clusters. I use the structural similarity metric (SSIM) (Wang et al.,

2004) as the distance function. The intuition behind this approach is that, given the distance metric,

as long as the distribution of patches in S resembles that of the unknown images, k-means will

select a near optimal subset which minimizes Equation 4.4. More specifically, had I used patches

from actual test images, k-means would be highly likely to find an optimal subset of patches that

best fits the images.

Online Processing: Encoding and Refinement

73

During the online phase, every new image at first is converted to binary images based on a color

threshold, and then it is encoded (using the selected patches from the offline phase) and is refined to

improve the quality of encoding, prior to writing it into the beacons.

I use a simple, fixed-length encoding scheme to describe each input image as a sequence of

patch identifiers. Non-overlapping, patch-sized regions of the input image are sequentially accessed,

and for each region, the patch (within the set of selected patches) that has the maximum structural

similarity to the region is noted, and its index is stored in a queue. When all the regions of the

input image have been processed, the queue contains the encoded image. This simple encoding

scheme can be further improved if I have prior knowledge of each patch’s probability of occurrence.

For example, by assigning short-length codes to more frequent patches, the overall bit length of

the encoded image could be reduced. To keep things simple and generic, I do not employ such a

variable-length encoding approach in this method.

Figure 4.7: (a) original image; (b) result from patches generated from single spiral image; (c) result
image from patches generated from single spiral image after morphology refinement; (d) result
image from patches generated from multiple spiral images and k-means; (e) result from patches
generated from multiple spiral images and k-means after morphology refinement.

After encoding an image, two standard mathematical morphology operations (Schalkoff, 1989)

–dilation and erosion– are applied to enhance the quality of the resultant image. Examples of images

before and after these refinements are shown in 4.7. The parameters of these operations are their

‘operator sizes’ (in pixels), which depend on the curve-width of the input image and the patch set.

74

In my experiments, I found that the resultant image has its best quality when the erosion/dilation

operator sizes are 3 pixels.

Image Decoding

To decode an image, the broadcasted patch indices from all the beacons are received and

serialized by the decoder application. The image is reconstructed by arranging the patches in the

correct order as dictated by the index sequence. The refinement process is applied in the decoder as

well.

4.5.2 Overview of the Color Image Beacon System

In a typical usage scenario of the proposed color image beacon system, a user at first takes

pictures of an object with his smartphone’s camera. A smartphone application analyzes the image

(which may contain objects, portraits, scenes, shapes, signs, and/or text), identifies semantic regions

on it, and processes each region differently to produce a compressed version that satisfies the beacon

system’s requirements such as the number of available beacon devices, maximum allowable loading

time, and lifetime. The user is also shown an interactive preview of the image so that he can verify

it, as well as relax/constrain the system requirements. Finally, when he is satisfied with the preview,

the image is written into the image beacon system. The beacon system would then broadcast the

image periodically over BLE, and any other smartphone user would be able to receive that broadcast

and see the image on their phones.

The design choices I made in developing an image processing algorithm for the proposed image

beacon system are as follows:

First, the custom image compression technique is designed to work for images taken with a

smartphone. I assume that the phone has an on-board IMU in it. The final compressed image will

be a color image with a lower resolution, such as 64× 64 pixels.

Second, I make a reasonable assumption that the image to be compressed is linked to a real-

word “thing” like a near-distance object, a road sign, or a building – which has one or more regions

of interest that a person who took the picture wants to preserve with a higher priority than the rest.

75

By exploiting this, I design an image encoding technique that prioritizes foreground information

preservation during image compression, so that the most important information in the image is

delivered under a given size constraint.

Third, under a very tight budget for the final image size, any image compression algorithm

would distort the original image – which is reflected in different ways such as lacking boundary

details, increased noise, changed colors, or removal of texture. I introduce the concept of adaptive

encoding that applies different encodings to different regions of an image based on the image

content (e.g., a road sign vs. a t-shirt), image regions (foreground vs. background), and what a user

would prefer to preserve (e.g., texture or true color). The proposed compression algorithm should

employ an adaptive approach that applies the most suitable encoding technique for different image

types and region types, so that an optimal compression strategy is chosen for a given image based

on its content.

Fourth, since both capturing an image and writing the compressed version into the beacon

devices involve the smartphone user in the loop, I provide an interactive user interface in order to

guide the user in taking pictures and to preview and select the desired image under a given set of

system constraints.

For a given set of user-defined beacon system requirements, the overall image processing

and compression pipeline (Figure 4.8) consists of four basic stages: multiple view capture, depth

estimation, depth-refined segmentation, and image compression. These steps are briefly described

in this subsection, and elaborated in detail in the subsequent subsections.

Multiple View Capture

The proposed system requires a user to capture two or more views of an object – which helps

at a later stage when the depth map is generated. Estimating pixel depths using a pair of images

takes about 2 seconds on a mobile device. Because processing too many images would be time

consuming, a careful selection of views (e.g. images having adequate overlaps) makes a difference.

76

Multi-View
Capture

Compression

Depth
Estimation

Depth-Refined
Segmentation

Image Pair

Disparity Map
Segmentation

Final Image

User wants to
capture the
road sign

}
Figure 4.8: Image processing stages.

Figure 4.9 (a) shows two views of a mug that have enough overlap to create a depth map. To

guide the user and to select the best pair of images for depth estimation, I leverage IMUs of the

smartphone.

Depth Estimation

Depth of each pixel is estimated by finding and matching corresponding ‘feature points’ (e.g.,

corners and edges) in two or more images. The matched points are then used to generate the camera

relative geometry, so that the depth of every pixel can be estimated. Figure 4.9 (b) shows two depth

maps of the same image. The left one is the computed depth map, and the right one is thresholded

to separate the background from the foreground pixels. However, due to lack of enough views,

low resolution, and inaccuracies in the estimation, a depth map alone is not sufficient to segment

semantic regions in an image.

Depth-Refined Segmentation

Like the depth map, color/texture-based image segmentation algorithms often fail to identify

semantically different/similar regions in an image. For example, the left image in Figure 4.9 (c)

is the result of applying marker-controlled watershed segmentation (Parvati et al., 2009) on the

original image. When I overlay this with the depth map, I obtain a better segmentation, which

77

performs a much better job in isolating the mug from the rest. This step is inspired by (Nirjon and

Stankovic, 2012) that used RGB and depth images from Kinect sensors. In my work, I use only

images to estimate the depth (previous step) and then apply this step to get the final segmentation.

Image Compression

The image compression stage takes both an image (for texture and content information) and its

segmentation map (for semantic region information), and produces the best quality image under the

user-specific constraints of the beacon system. Until the resultant image size satisfies the system

requirements, the algorithm gracefully degrades the quality of different semantic regions, starting

from the least important one (e.g., the background).

(a) Multiple View Capture (b) Depth Estimation (c) Depth-Refined Segmentation

Figure 4.9: Multiple views of a scene are used to estimate the depth map. Combined with standard
image segmentation, this can identify the pixels of an image that may be of more interest than the
rest, e.g. a foreground object.

4.5.3 Multiview Capture and Depth Estimation

The first step of the proposed color image processing pipeline is to guide the user in capturing

two or more views of an object of interest. Further down the pipeline, these images are used to

estimate the depth information of each pixel, so that an image can be segmented into background

and foreground regions, prior to applying appropriate region-specific encodings.

An alternative to using multiple views is to apply standard image segmentation algorithms (Par-

vati et al., 2009; Otsu, 1975; Long et al., 2015; Zheng et al., 2015) on a single image. These

algorithms group adjacent pixels of an image based on information derived from pixel intensity in

various ways. However, in order to obtain a sufficiently accurate segmentation for the proposed

system, I require computationally expensive algorithms, such as convolutional/recurrent neural

78

networks (Zheng et al., 2015), which are not suitable for running on smartphones and do not produce

results in real time.

Challenges with Multiple Views

Even though smartphones cannot run state-of-the-art image segmentation algorithms in real

time, many other computer vision techniques, including depth estimation from two views, can be

implemented on them. In order to get a sense of their real-time performance, I used OpenCV library

for Android to compute the depth map for a pair of 400 × 400 pixel images. It took about two

seconds for the algorithm to finish on a Nexus 5 phone. This gives us the lower limit for depth map

computation, which may only happen if the user is well-trained and knowledgeable to know which

views or camera poses would produce the most effective depth map.

A good pair of images is critical in generating a good depth map. However, the finding of a

good pair of images depends on many factors. The most important of which is a suitable difference

in view angles. It also depends on the distance between the object/scene and the smartphone.

Furthermore, there are other factors such as lighting, texture and shapes of the image.

If a real-time depth estimation system could display the current depth map as the user takes

images, it would be easier for him to generate a good pair of images for depth estimation. However,

depth estimation does not run in true real time on most smartphones. In absence of a real-time

feedback, a user has to take the trial-and-error approach, i.e., he has to take two images, look at the

result after two seconds, and then repeat the entire process until the result looks good. This may

lead to a very long time in just taking the right photos, and result in a non-smooth user experience.

IMU Assisted View Capture

To address this problem, I designed a method to make use of the inertial measurement unit

(IMU) of the phone to shorten the image capture time and to improve the user experience. I adopt a

machine-learning based approach.

In the offline training phase, I use a smartphone to capture video/image of multiple indoor and

outdoor objects. I also keep record of the IMU values for each captured image. The IMU data

consists of δxr, δyr and δzr, which represent the components of the difference vector between the

79

rotation vectors between a pair of images. The IMU data also contains xa, ya and za components

of acceleration when taking an image. After this, I run depth estimation for all pairs of images

and estimate its accuracy by comparing the result against a manually generated ground-truth

segmentation.

The segmentation accuracy is measured in terms of intersection over union (IoU), where

intersection is defined as the area of intersections between foreground regions of two segmentations,

and union is defined as the set of pixels either marked as foreground in the testing segmentation

or in the ground truth segmentation. For a segmentation that is identical to the ground truth, IoU

equals to 1.

Using IoU values as the variable Y, and the IMU data for the corresponding pair of images as

the variable X, where X = [δxr, δyr, δzr, xa, ya, za], I create a data set for many pairs of images,

and then train a regression tree model to learn the relationship between the change in IMU values

between a pair of images and an expected quality of depth segmentation.

During the online phase, when the user is taking images for depth estimation, the trained

regression tree model keeps track of current IMU readings and gives hints about if current view is a

good choice, given the already taken photo(s).

Depth Estimation

In this step, the depth of each pixel is estimated from a pair of images. I use a standard

algorithm (Hirschmuller, 2005) that at first estimates the ‘disparity’ between the corresponding

points on two images, and then estimated depth from disparity. For example, if a point P1 on the

first image and a point P2 on the second image correspond to the same point P on the actual physical

world object, then (P1 − P2) is called the disparity between them. Depth of a pixel is, in general,

inversely proportional to its disparity. This is based on the principle that points in the scene that are

closer to the camera will have larger disparity, and points that are very far away will be effectively

at the same or very close location on both images. Hence, finding the depth map is essentially

equivalent to finding the disparity map.

80

The disparity map is generated by the stereo matching algorithm described in (Hirschmuller,

2005). The goal of the algorithm is to find matching pixel blocks in a pair of images. This is

also called the correspondence problem as it looks for the pixel coordinates on the image pair that

corresponds to the same world point. The disparity map is computed based on the matching result.

The disparity map is a gray-scale map, where the intensity directly corresponds to depth.

Depth-Refined Segmentation

The depth estimation algorithm groups pixels purely based on depth. It may not group pixel

regions even if the regions share a common appearance pattern. As a result, even an accurate depth

map tends to contain holes in foreground regions and isolated, incorrectly marked, small, bright

regions in the background. Therefore, it is necessary to introduce other types of information derived

from the image to obtain a cleaner and better segmentation. The refinement process is described as

follows:

Step 1. Thresholding: At first, a binary segmentation of the depth map is obtained by applying

a threshold on depth values.

Step 2. Combining with the Watershed Segmentation: I combine the depth-based segmentation

map with another image segmentation method which groups pixels into several connected large

regions and is computationally inexpensive to run on a mobile device. The watershed segmentation

algorithm fulfills these requirements. However, the traditional watershed segmentation tends to

generate an over-segmented result. Hence, I adopt the marker-controlled watershed segmentation,

which uses mathematical morphology operations to pre-process an input image to avoid over-

segmentation (Parvati et al., 2009).

At first, the input image is converted into grayscale. Then I run the marker-controlled watershed

segmentation on the grayscale image. A successful segmentation contains more than one segmented

region to separate foreground from background in the image. To determine which region belongs to

the foreground, I apply a voting approach: the region that includes the highest number of common

pixels with the foreground region in the depth-based segmentation map is labeled as foreground.

81

Here I denote the number of common pixels as N, where N is defined as:

N = max
i

C(Wi,D) (4.5)

Here, i is the index of a region, and Wi is the corresponding region. D represents the foreground

region in the depth-based segmentation. C(,) computes the number of common pixels between two

regions. If there is another region Wj for which, C(Wj,D) ≥ 0.8× N, then it is also considered

as foreground. This procedure iterates until no more regions can be added to the foreground.

Having two result segmentation maps, I produce a final map by labeling pixels that are considered

foreground in both maps as foreground.

Step 3. Final Refinement: Finally, I perform a pixel-level refinement process. I remove all

connected foreground pixel regions with size less than 1000 pixels because regions of this size tend

to be a background region. Then I apply two common mathematical morphology operations erosion

and dilation, to clean out any remaining bright pixel islands in the background and to expand the

foreground regions, respectively. Lastly, I enforce the accuracy of the segmentation boundary by

combining the result with the labeled watershed foreground region.

The last stage of the proposed image processing pipeline is the image compression step. Using

the segmentation information from the previous stage, this step encodes different segments of an

image using different encoding techniques. The overall goal is to make sure that the resultant image

fits the storage requirement of a beacon system, while making sure that the foreground regions are

the least affected by during the compression process.

I propose three encoding options for image compression – discrete cosine transform (DCT)

and coefficient reduction, wavelet transform with coefficient reduction, and foreground texture

triangularization. All three are applied on the input image and finally the one that produces the best

quality image is chosen as the output. The effect of applying different encodings is illustrated in

Figure 4.11.

82

Selection

Generate
blurred

background

Wavelet
encoding

Generate
Foreground-
Only Image

Images
Segmentation

Triangularization

DCT
encoding

Background

Image Size
Constraint,

and
 User

Preference

Final Image

Best possible
approximation

Best possible
approximationBest possible

approximation

Foreground

Figure 4.10: Image compression details.

4.5.4 Color Image Encoding

Discrete Cosine Transform Encoding

Discrete Cosine Transform (DCT) is a widely adopted image encoding technique. I integrate

DCT encoding into my compression system as a baseline encoding option. The benefit of using

DCT is that – by reducing low frequency coefficients of an image (in the DCT transformed space),

the resultant compressed image’s appearance details is removed first, while it global shape is

preserved. This is useful in the usage scenario when a user wants to preserve the shape of an object

in the image more than its detailed appearance.

83

(b) (c) (d) (e) (f)(a)

Figure 4.11: 64×64 resolution building image compressed in high/low quality settings using my
customized DCT/Wavelet/Triangle encoding: (a) Original image, (b) DCT 342 bytes, (c) Wavelet
high 360 bytes, (d) DCT 1114 bytes, (e) Wavelet 1098 bytes, and (f) triangularization 366 bytes.
For a similar compressed image size, DCT preserves less details than Wavelet method. But for
low quality settings (about 350 bytes), Wavelet-encoded images have strange color block defects.
Triangularization failed to preserves the information in the original image.

At the beginning of encoding, I generate a foreground image by using the segmentation map to

set the background pixels’ intensity of the input image to zero. The image is then down sampled

to 64 × 64 pixels. To further reduce the size, I make use of the fact that the quality of an image

depends more on its brightness information than its color information. During the encoding, at first,

an image is transformed into the YUV space, where Y represents the brightness information and

U/V represents the image color information. I further down sample U and V channels into 32× 32

pixels, while keeping the resolution of Y channel intact. Then DCT is applied on all three channels,

followed by a data-reduction step that sets high frequency components to zero. Finally, the resultant

frequency coefficients are compressed using gzip. The data is sent to the beacon along with the

blurred background image, which is also encoded using DCT. The size of a DCT compressed image,

SDCT can be expressed as:

SDCT = B(g(d)) + B(g(b)) (4.6)

Where, B() denotes the bit length, g() denotes the gzip encoded data size, d is the DCT

transformed (reduced coefficient version) foreground information, and b is the coefficient of the

DCT transformed (blurry) background image data.

84

At the receiving end, a broadcast image is recovered by superimposing the foreground image

and the background image. Note that, the background image needs to have the foreground pixel

intensities set to zero, before it is down sampled. This is done to make sure that the foreground

pixel intensities are not added twice.

A limitation of this above approach is that, for an image with a uniform dark background

and a foreground having more details, DCT may yield a ringing artifact close to the sharp edges,

especially in a low quality setting. This problem can be addressed by switching to using wavelet.

Wavelet Encoding

Wavelet is the second image encoding method that I integrate in the adaptive image encoding

process. When compared to DCT, wavelet tends to better handle images whose backgrounds have

a uniform intensity. Similar to DCT, the best information reduction parameters are sent to the

wavelet encoding module in order to generate the highest quality image under a given storage limit.

I adopt global thresholding of the wavelet coefficients and Huffman encoding, based on the method

described in (Said and Pearlman, 1996).

Similar to DCT, prior to encoding the foreground image, its background pixel intensities are

set to zero to obtain the wavelet data. The down sampled background image (with zero intensity

foreground) is also sent along with the wavelet data. At the receiving end, wavelet coefficients are

inverse-transformed to generate the foreground image and then superimposed on the background

image to render the final image.

The size of a wavelet compressed image SW is as follows:

SW = B(H(w)) + B(g(b)) (4.7)

where, H() denotes the Huffman encoded data, and w denotes the reduced wavelet coefficients

on the wavelet transformed foreground image. All other symbols carry the same meaning as

discussed in the previous section.

85

The weakness of wavelet encoding is that, for limited storage requirements (200 bytes), a

wavelet encoded image may have unrealistic texture patches after decoding.

Triangularization-Based Encoding

Figure 4.12: Original image and the triangularization-compressed image.

Both DCT and wavelet encodings blend the geometric information and texture information of

the foreground image. However, for some cases, an accurate texture information and a fine-grained

boundary representation are not necessary. For example, a “soccer” image’s foreground texture and

shape could be decoupled. For a viewer to understand that the image is a “soccer”, a repeated patch

of a soccer’s surface texture along with an approximate “soccer” shape information would suffice

(Figure 4.12). Both DCT and wavelet would encode too much redundant information for such an

image. To address this, I designed a triangularization-based image encoding method, which consists

of three stages: triangularization, triangle reduction, and color/texture filling. These are illustrated

in Figure 4.13, and are described as follows:

Step 1. Triangularization: Given an input image with the foreground/background segmentation,

the first step is to generate a binary boundary map from the segmentation map, in which, only the

pixels on the segmentation boundary have an intensity of 1. A Delaunay triangularization (De Berg

et al., 2000) is performed on the boundary map. The parameters are chosen to produce a high

number of triangles to capture boundary details.

Step 2. Triangle Reduction: Having a set of triangles, the next step is to reduce the number

of vertices, iteratively, one vertex at a time. For this, I compute the sum of distances for every

86

Filling

Delaunay
Triangularization

Triangle
Reduction

Original Image

Binary
Segmentation

Approximated
Image

Reduced
Mesh

Mesh

Figure 4.13: The process of Triangularization-based encoding.

vertex from its nearest 3 neighbors, and then remove the one with the minimum sum of distances.

The intuition behind this process is that a region of vertices group together densely because of the

non-smooth boundary in the boundary image. Since the goal of removing vertices is to reduce the

details and preserve the general shape information, I should pick a vertex from dense regions.

Step 3. Color/Texture Filling: I provide two options for filling a triangle – with texture or with a

single color. For texture, I choose to fill all triangles with a limited set of textures which are derived

from regions surrounded by each triangle. To reduce the number of textures, I take an average of

textures from different triangles. Fig. 4.14 shows the process. For each triangle, I transform it to

a fixed-size triangle by an affine transform, and then compute one or two average textures for all

triangles. For the case of two textures, I apply k-means algorithm.

The size of the compressed image using triangularization encoding with color filling STc, and

with texture filling STt are as follows:

STc = B(g([v, c, f]) + B(g(b)) (4.8)

STt = B(g([v, c, i]) + B(g(t)) + B(g(b)) (4.9)

87

Here, v denotes the location of the vertices, c denotes the connectivity list, f denotes RGB color

values, i denotes the texture index, and t denotes the reduced DCT coefficients on the texture patch

transformed using DCT. All other symbols carry the same definition as in previous sections.

Compute
Average

Reorder
and
DCT

Texture Data

}Affine
Transform

Affine
Transform

...

Triangles with Texture Transformed Texture

Averaged Texture

...

Figure 4.14: Triangle texture averaging process.

4.6 Empirical Evaluation

4.6.1 Image Beacon Implementation Details

In all of my experiments in this chapter, I have used Estimote model Rev.D3.4 and model

REV.F2.3 Radio Beacons (Estimote, 2017) having a 32-bit ARM Cortex M0 CPU, 256 KB flash

memory, 4 dBm output power, 40 channels (3 for advertising), and 2.4–2.4835 GHz operating

frequency. I vary the BLE broadcast interval for a beacon between 100 ms to 2,000 ms. However,

an encoded image (broadcasted from multiple beacons) reaches a user’s device in less than 1 second.

The transmission power is set to -12 dBm, which limits the range of each beacon to about 30 meters.

The image writing and reading application runs on two platforms: an iPhone 5s having an ARM

v8 based dual-core 1.3 GHz Cyclone CPU, Apple A7 chipset, 1 GB DDR3 RAM, BLE v4.0, and

88

runs iOS 9.2, and a Nexus 5 smartphone having a 2.26GHz quad-core Qualcomm Snapdragon 800

processor, 2 GB RAM, BLE v4, and runs Andriod 6.

I mimic BLE 5.0 broadcast packets by a set of rolling BLE 4.0 packets. The rolling mechanism

is implemented by configuring the Estimote Location beacons to broadcast customized advertising

packets. The customized data is received from an Android compatible LightBlue Bean device (LBB,

2017) via the beacon’s GPIO, configured as an UART interface.

4.6.2 Binary Image Beacon System Evaluation

In this subsection, I describe a series of empirical evaluations on the binary image beacon

system. At first, the patch-based binary image compression approach is compared with JPEG

encoding. Then I describe a set of results that quantifies the tradeoffs between the device lifetime

and the image quality, when the type of images, number of beacons, patch function generation

method, number of patches, and the grid or patch size are varied.

Experimental Setup

I use three types of images in my experiments images containing alpha-numeric characters,

basic shapes, and arbitrary binary images. Examples of these images are shown in Figure 4.15.

Some of these images are directly drawn on the phone by a user (e.g., letters, numbers, and free

hand drawings), while some are real pictures that have been converted to binary format by my writer

application. All images are down-sampled to 64× 64 pixels prior to writing.

The two main metrics that are used in the experiments are structural similarity (SSIM) scores,

and device lifetime in months. I measure these two under different conditions and show their

tradeoffs. The structural similarity scores are used to measure the quality of the produced images

when compared to the original ones. The device lifetime is estimated from its relation to a beacon’s

transmission frequency. Before each experiment, I program the beacons to set a transmission

frequency and use the corresponding estimated device lifetime (as reported by the Estimote beacon

API) in my experiments.

Comparison with JPEG

89

Figure 4.15: Test images used in the empirical evaluation.

In this experiment, I compare the proposed patch-based image encoding algorithm with JPEG.

I pick the image of a handwritten ‘2’ as the test image. In Figure 4.16, I plot the quality of encoded

images obtained from three methods – two versions of the k-means patch-based approach (4 and 8

pixels per patch) and JPEG, for various sizes of images. The result suggests that– JPEG generates

better quality images in general, however, it also requires larger sized images. For a 64× 64 binary

image, JPEG encoded image is about 464 bytes, even with the lowest quality settings. Compared to

that, my patch-based method generates images in smaller sizes (30–200 bytes), making it possible

to store an image inside a small number of beacon devices.

90

Besides JPEG, I also studied several other image compression techniques (Mohamed and

Fahmy, 1995; Zahir et al., 2007; Zahir and Naqvi, 2005). But none of these yield suitably small

sized images.

4 6 8 10 12

Image Size (Log of Bytes)

0.7

0.8

0.9

1
Im

ag
e

Q
ua

lit
y

(S
S

IM
)

k-means
(4 pixels)

k-means
(8 pixels)

JPEG

Figure 4.16: Image quality versus image size for different encoding methods.

Effect of Changing on Different Parameters

1. Effect on Image Type. I conduct an experiment to measure how the patch-based image

encoding method’s performance (in terms of quality) changes when the type of input images is

varied. The three types of images I use include hand-written alpha-numeric characters, basic

geometric shapes, and arbitrary binary images containing complicated shapes and curves. For each

type, I compute the average image quality for a given lifetime. I use three beacons in this experiment

to store and read images.

0 20 40 60 80

Device Lifetime (Months)

0.25

0.5

0.75

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

Alpha-numeric
Basic Shapes
Arbitrary Binary
Images

Figure 4.17: Image quality versus beacon battery life for different images being approximated.

91

Figure 4.17 shows that the image quality drops when the beacon’s power consumption is

reduced to target a prolonged device lifetime. A longer lifetime limits the broadcasting frequency,

and as a result, the amount of data the system can transmit within a fixed period (1 second in

my setting) is reduced– resulting in a poor quality encoding that uses less amount of bytes. This

can however be fixed by allowing a longer image transmission delay (i.e. more than 1 second

wait-time for the reader application). I also notice that the basic geometric shapes and alpha-numeric

characters achieve very high structural similarity scores under all power settings. This happens

since their sub images are very similar to the patches. However, the system does not perform its

best when tested with arbitrary, complex binary images (specially ones with a lot of dark regions).

Effect of Number of Beacon Devices

In this experiment, I investigate the impact of the number of beacons on image quality. Recall

that I have used the the Eddystone URL beacon packet format to store the custom image data where

each beacon can contain at most 16 bytes of image data. Hence, the more beacons I use, the more

bytes I have available to store the same image. Figure 4.18 shows that as the number of beacons is

increased from 1 to 6, the quality of produced images also increases from 0.72 to 0.84.

0 20 40 60

Device Lifetime (Months)

0.4

0.6

0.8

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

1 beacon
2 beacons
3 beacons
4 beacons
5 beacons
6 beacons

Figure 4.18: Image quality versus device lifetime for various number of beacons.

Effect of Patch Function Type

In this experiment I compare three patch generation methods. The first one is the proposed

k-means based approach that considers multiple spirals. The second one uses only a single

spiral, and the third one generates patches from a standard test dataset for hand-written characters

92

MNIST (LeCun et al., 1998). To generate patches, I up-scale the images to 64× 64, adjust intensity,

and dilate the background. Then I divide each image into patches and run k-means on the patches.

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

Alpha-Numeric

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

Basic Shape

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

Arbitrary Image

k-means on Spirals Single Spiral k-means on MNIST

Figure 4.19: Image quality versus lifetime for different patch generation methods.

From Figure 4.19 I observe that patches generated from MNIST dataset performs the best for

alpha-numeric characters. This is expected since MNIST is designed specifically for handwritten

digits. The multiple spiral-based method performs better for basic shapes, and both algorithms

perform similar when tested with arbitrary images. This shows that having prior knowledge helps,

but even if I do not have it, my method performs reasonably well.

Effect of Patch Set’s Size

An important parameter of the beacon system is the size of the patch set, which is same as

the number of clusters k in k-means clustering. A larger patch set is more capable in representing

an input image, but requires more bits to encode the image. This leads to a higher broadcasting

frequency (given the 1 second bound on the maximum transmission latency), and more power

consumption. So, it is important to find a good value for k. Figure 4.20 shows image quality versus

device lifetime for various k. The plot shows that k = 64 almost always outperforms others as

expected. The other two values of k also perform reasonably well (0.65–0.7 when expected lifetime

is between 20–40 months). Note that k = 128 is not applicable to my setup (i.e., 3 beacons and 1

second latency) since this would require an excessive amount of space to store an image.

Effect of Grid Size

93

0 20 40 60

Device Lifetime (Months)

0.4

0.6

0.8

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

k = 16
k = 32
k = 64

Figure 4.20: Image quality versus device lifetime for various patch set sizes. Note that the patch set
with size k=16 is not simply a subset of the patch set of size k=32. They are individual k-means
clustering results with different ks.

Similar to the patch set’s size, the grid size used to divide a spiral image to produce different

sizes of patches also has impacts on the image quality and the encoded image’s size. Using smaller

patches results in high resolution image encoding, but the size of the encoded image will be larger.

For example, a grid size of 1 pixel results in an exact replica of the original image. Figure 4.21

shows the system’s performance for different grid sizes. Using 3 beacons and a grid size of 4 pixels,

the system cannot encode images when the desired device lifetime life is more than 20 months, but

produces best quality images for shorter expected lifetimes. With a grid size of 8 pixels, the system

would last for about 50 months and will perform consistently well to produce images having about

0.75 structural similarity scores. Using larger grids (16 and 32 pixels) results in even longer device

lifetime, but the quality of images degrades to 0.5.

4.6.3 Color Image Beacon System Evaluation

In this section, I describe a series of empirical evaluations on the color image beacon system.

First, I evaluate the performance of IMU-guided multiple view capture and depth-refine segmenta-

tion. Then my image compression approach is compared with JPEG encoding. After that, I describe

a set of results that quantifies the trade-offs between the beacon system lifetime and image quality,

94

0 20 40 60

Device Lifetime (Months)

0

0.25

0.5

0.75

1

Im
ag

e
Q

ua
lit

y
(S

S
IM

)

Grid Size = 4
Grid Size = 8
Grid Size = 16
Grid Size = 32

Figure 4.21: Image quality versus device lifetime for various grid sizes per patch.

when the image type and number of beacons are varied. I also perform a full system evaluation

involving real users, which is described in Section 4.7.

Experimental Setup

I use four types of images in my experiments: images containing road signs, common indoor

and outdoor objects, and buildings. Examples of these images are shown in Figure 4.22. Indoor

object images are taken from a 50cm - 150cm distance. Outdoor objects and signs are taken from

2m to 5m distance. Building images are taken from far. All images are cropped into square shaped

images, and are down-sampled to 288× 288 pixels prior to compression for a fast disparity map

and watershed result computation. Each image is down sampled to 64× 64 pixels before writing

into the beacon system.

The two main metrics that are used in the experiments are structural similarity (SSIM) scores,

and device lifetime in months. I measure these two under different conditions and show their

tradeoffs. The device lifetime is estimated in the same way as described in the last subsection.

Performance of IMU-Guided Multiple View Capture

I evaluate the accuracy and time to capture multiple views with and without the guidance of

IMU. Recall that, the regression tree model takes IMU data and predicts if the current smartphone

positioning is good for taking an image for depth estimation, given an already taken image. In the

evaluation, for each test, a set of images and their corresponding IMU readings are recorded. If

95

Figure 4.22: Test images used in the empirical evaluation.

the predicted image produces the best segmentation result when compared to other images in the

set, I record this test result as a ‘hit’, otherwise, a ‘miss’. The accuracy of prediction is determined

by the ratio of ‘hits’ to total tests. A total of four tests are performed separately for indoor and

outdoor objects. For indoors, there is 1 miss over 4 tests, whereas for outdoors, the model correctly

identifies the best image pair for all tests. The model for outdoor objects is more robust since the

smartphone’s rotation angle shows smaller variations and usually the phone is held vertical. Indoors,

users often take pictures of an object from above, from below, or from the same height, which

results in a large variation in angles.

96

Figure 4.23 shows the expected time for finding a good pair of images with and without the

assistance from the IMU. I observe that the average time to obtain the depth map from a pair of

images takes about 2 seconds, which includes the time to focus, raw image processing, and disparity

map computation. Since the IMU-guided system predicts a good pair in real time, it significantly

decreases the time from 8 seconds to 2-2.5 seconds.

Figure 4.23: Performance of IMU-guided view capture.

Performance of Depth-Refined Segmentation

I compare my depth-refined segmentation method against a segmentation approach that is

purely based on the depth map. I use intersection over union (IoU) as the evaluation metric. I tested

my segmentation method on 20 images of four types: road signs, buildings, indoor and outdoor

objects. For each set, I manually generate the ground truth segmentation. Figure 4.24 shows the

result. I observe that my segmentation technique, which combines depth information and watershed

segmentation information, outperforms depth-only approach by up to 26%. My method performs

better in cases where the object and the background has larger difference in depths, e.g., signs and

indoor objects.

Comparison with JPEG

In this experiment, I compare my proposed color image encoding method with JPEG. For

an in-depth illustration, I use the picture of an apple as our test image. I compare four different

options of my adaptive image encoding methods in the comparison, i.e. DCT-based, wavelet-based,

triangularization with color filling, and texture filling. I measure the quality of a compressed image

using Structure Similarity (SSIM) (Wang et al., 2004). A SSIM score ranges from 0 to 1, and

97

Sign Building Indoor Outdoor
0

0.5

1

Io
U

Depth-Refined Depth-Only

Figure 4.24: Performance of depth-refined segmentation.

two identical images have the best SSIM score of 1. I compute the SSIM value between every

compressed image and the original image. I plot the SSIM versus compressed image size in bytes

in Figure 4.25.

0 500 1000 1500 2000

Size (bytes)

0

0.5

1

Q
ua

lit
y

(S
S

IM
)

DCT
Wavelet
Color Triangle
Texture Triangle
JPEG

Figure 4.25: Image quality versus image size for different encoding methods.

The result suggests that JPEG is able to generate a compressed image with a higher quality

(SSIM close to 1). However, such a high quality image has size larger than 2 KB. When JPEG is set

to compress an image into lower than 1KB, the image quality drops sharply. On the other hand, my

image compression method is based on foreground/background separation. The background in a

compressed image is always blurred. This makes it impossible for my method to get a high SSIM

score larger than 0.8. But my method is able to allocate bits more efficiently under a tight space

constraint. This makes my method (when using wavelet/DCT encoding) outperform JPEG when the

98

compressed image size is about 800 bytes. The plot also shows that my method can compress an

image into as low as 240 bytes (left most point on the wavelet method curve), which is impossible

with JPEG, even in its lowest quality setting.

Triangularization with color filling option performs the best for this test case, and the com-

pressed image size stays less than 500 bytes, while triangularization with texture filling encoding

fails to generate a good compressed image.

Besides JPEG, I also studied several other image compression techniques (Mohamed and

Fahmy, 1995)(Zahir et al., 2007)(Zahir and Naqvi, 2005). But none of these yield suitably small

sized images.

Effect of Image Type

In this experiment, I test how the color image encoding method’s performance changes as I vary

the type of input images. I consider four categories of images, i.e., road signs, buildings, indoor

objects, and outdoor objects. For each image, my algorithm selects the best compressed image

from different versions of the adaptive encoded images based on SSIM score. Then I compute the

average image quality for a given lifetime for each category of images. I simulate a BLE 5.0 beacon

in this experiment to store and read the images. I limit my system to deliver the image data within

0.5 second from one beacon.

The result shown in Figure 4.26 suggests that, on average, indoor object images achieves

the best quality over all types. The building images are best approximated if the beacon system

broadcasts packets at a higher frequency, sacrificing the system life time. The road sign images

have relatively lower quality than other images, but they tend to last for up to 28 months on a single

battery.

Effect of Number of Beacon Devices

I explore the impact of the number of beacons on image quality. Since each beacon in a system

of beacons can be set to broadcast different parts of an image, the more beacons I have, the better

quality images I can generate by utilizing the additional space. This is based on the assumption that

the image loading time and the device lifetime requirements are fixed.

99

5 10 15 20 25

Battery Life (months)

0.2

0.4

0.6

0.8

Q
ua

lit
y

(S
S

IM
)

Sign
Building
Indoor
Outdoor

Figure 4.26: Image quality versus beacon battery life for different image types.

In this experiment, I vary the number of beacons and record the SSIM of the best quality

compressed image generated by my system. The best image is chosen from the adaptive-encoding

results with the highest SSIM score.

I plot the SSIM scores for various expected system lifetime in Figure 4.27. The experiment

results suggest that as the number of beacons is increased from 1 to 3, for the beacon system to have

an expected lifetime of e.g., 32 months, the quality of produced images also increases from 0.45 to

0.69.

0 20 40 60

Battery Life (months)

0.2

0.4

0.6

0.8

Q
ua

lit
y

(S
S

IM
)

1 beacon
2 beacons
3 beacons

Figure 4.27: Image quality versus device lifetime for various number of beacons.

100

4.7 Real Deployment

I implemented the binary image beacon system and the color image system. I performed

user studies of the systems that involve a set of participants. There are two types of experiments:

“write-read-recognize” and “navigation in the building”.

4.7.1 Write-Read-Recognize

Binary Image Beacon Real Deployment

I deploy the binary image beacon system in a scenario where a group of 12 participants uses

the smartphone application to draw, preview, write into, and read from a set of image beacons. All

the participants are graduate students in my department.

I ask every participant to use the ‘previewer’ app to draw images on the phone using its

touchscreen. These images are converted to binary and saved into the phone’s internal storage. Each

participant draws random images containing digits, letters, numbers, and recognizable symbols and

shapes. They also label their drawings with meaningful tags. These images are then encoded so that

they can be stored in 4 beacons, their transmission delay is 1 second, and the lifetime of the system

is over two years. A subset of these encoded images are then shown to other participants who are

asked to recognize them and then provide subjective scores for them. The score denotes how a

participant feels about the overall quality of the shown image and his difficulty in recognizing the

symbols and objects in that image. The score ranges from 1 to 10, where ‘1’ stands for the lowest

perceived quality and the hardest to recognize. Seven of these images are scored by all participants.

I gather user scores and normalize them to [0, 1]. To compare these subjective scores with

structural similarity (SSIM) based objective scores, I computed the mean of the user scores for each

image and show them in the same plot with their SSIM scores. SSIM scores are also scaled to [0,

1]. Figure 4.28 shows that the trend in the SSIM curve and the averaged subjective quality scores

are about the same except for the last image of ‘pi’. The averaged subjective scores for different

images vary more than the SSIM scores. The reason for this is that the participants tend to give a

101

1 2 3 4 5 6 7

Image ID

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
co

re
s

Subjective Score

Structural Similarity
(SSIM)

Figure 4.28: Subjective and SSIM scores for each image.

relatively low score (around 1 to 3) for the images they fail to recognize. This has happened for the

‘@’ symbol. Many participants tend to recognize this as a compressed version of double ‘O’. The

‘pi’ image has a very high average subjective score but a relatively low SSIM score. This ‘outlier’

may be due to the fact that unlike other images, this image takes the whole image display area, and

therefore, it is easier for human to recognize.

Color Image Beacon Real Deployment

I deploy the color image beacon system in an indoor environment to evaluate the ability of color

image beacons in delivering visual information of various real-world objects. An approximated

image stored in the beacon system contains an object’s shape as well as its texture information. The

goal of this deployment experiment was to understand how an image beacon system delivers these

two kinds of information of an image.

To have a subjective measure of the performance of an image beacon system, I conduct a

user study involving 20 participants. Each participant is given a smartphone that receives image

broadcasts from four different beacons placed inside a room. The goal of the user is to identify the

objects in all four images, and then locate them in the room.

The four broadcasted images are of an apple, a chair, a text book and a computer mouse. For

each image, I compress it under three size constraints: 256 bytes, 512 bytes, and 768 bytes, and

obtain the best quality image produced by my compression algorithm under the constraint. The

images compressed in three levels along with the original image are shown in Figure 4.29. I choose

102

these sizes to mimic 1, 2, and 3 BLE 5.0 beacons, respectively; but my actual implementation used

a rolling mechanism with BLE 4.0 (connected with an Arduino), as described earlier. Each user is

progressively shown a better quality image until he is able to identify the object in the room.

Figure 4.29: Test images compressed in three quality levels.

I make sure that there are at least 3 objects in the room that are similar to the one that the user

is looking at on his phone. To test if an object’s texture details are preserved, for the apple test case,

I put another apple having a green/red mixed color and an orange next to it. For the book test case, I

put two other similar sized books next to it that have different covers. To test if an object’s shape

details are preserved, for the chair test case, I add another two chairs of the same color. For the

mouse test case, I add an iPhone and a mac mouse. Figure 4.30 shows photos of the objects along

with the objects that I added to introduce confusion.

The experiment results are shown in Figure 4.31. For each size limit, I plot the number of

correct guesses by the participants for various categories of images. I observe that, as expected,

when the image size limit is larger, participants tend to perform better. Even with the lowest size, at

about 50% images were always guessed correctly by the participants. Therefore, with 3 or more

103

Figure 4.30: Photos of the object used in the experiment.

beacons, the image quality of my system is high enough to let people distinguish very similar

objects.

256 Bytes 512 Bytes 768 Bytes
0

10

20

C

or
re

ct
 G

ue
ss

es

(m
ax

. 2
0) Book

Mouse
Chair
Apple

Figure 4.31: Responses from user study. The dashed line shows 33 percent chance of randomly
choosing.

4.7.2 Navigation in the Building

In this experiment, I choose six locations inside the UNC Computer Science building, and at

each location I place a binary image beacon that broadcasts a compressed image. These compressed

images serve as ‘guides’ for navigating inside the building. Each participant is asked to follow

the navigation information displayed on his phone screen. The participant has been instructed

that ‘walking forward’ is the default direction, and if he sees, for example, a ‘turn right’ image

at a turning point, he should make a right turn and keep walking straight until the current image

104

disappears and the next image is displayed. This experiment is designed to simulate a real world use

case. In a place where the Internet is not accessible one can write arbitrary graphical information

into a set of beacons for others to read at a later point. Therefore, it is critical to support arbitrary

binary image writing functionality in my system, instead of having a predefined set of symbols.

Figure 4.32: Map of second and third floors showing the navigation path.

The navigation path was designed so that it starts at a corner on the second floor, goes across

half of the floor, continues to the third floor, goes across to the half of the third floor, and then

stops. Figure 4.32 shows the path. Each beacon’s broadcasting interval is set to 1 second and the

broadcasting strength is set to -20 dBm so that it’s range does not overlap with its neighboring

105

beacon’s. The experiment finishes when a participant successfully reaches his final destination (the

last beacon showing the ‘STOP’ image) or the participant feels totally lost and cannot continue.

After the experiment, the participants are asked a set of questions to answer: (1) overall difficulty of

going from the starting point to the third floor, (2) overall difficulty of going from the starting point

of the third floor to the destination, (3)–(8): how clear each image looked, (9) usability of the app

(image reader). The score ranges from 1 to 10, where ‘1’ stands for the least perceived quality and

the hardest to recognize.

Figure 4.33: Images stored at the six locations.

1 2 3 4 5 6

Image ID

4

6

8

10

U
se

r
S

co
re

 (
1-

10
)

Figure 4.34: Subjective scores for each image.

Of the 5 participants who completed the user study, 4 successfully researched the destination

point. 1 participant was lost after he reached the third floor. The images used in the study are shown

in Figure 4.33. For each of these six images, I plot the average subjective scores in Figure 4.34. It is

interesting to note that, although the second and the fifth image are the same, the fifth image has

got a higher average score. I believe, this is because when a person sees the same direction for the

second time, he tends to be more confident in recognizing the image. The third image has got the

106

lowest score. This is due to the fact that the instruction at that location asks the user to go upstairs

which was confusing to many participants who did not expect a multi-floor travel path.

I also asked each user about his difficulty in following the navigation signs in floor 2 and floor

3. The average scores for these questions are 0.74 and 0.88, which means the users thought that the

directions were easier to follow during the later stage of the experiment when they became used to

the system. The overall satisfaction of the application was very high. All participants commented

that the app is ‘easy to use’.

4.8 Summary

In this chapter, I described two systems involving beacon devices and smartphones with BLE

receiving functionality. The first system allows a user to generate binary images, write binary

images into the limited beacon device storage, and receive compressed binary images from beacon

devices’ broadcasting packets. The main contribution of this work is the overall system construction,

the patch-based binary image compression method, the evaluation of various system parameters in

the system, and the evaluation of the trade-off between image quality and beacon battery lifetime

based on my patch-based image compression method.

The second system I described allows a user to generate an approximation of an input color

image, write the approximated image into the limited beacon device storage, and receive compressed

images from beacon devices’ broadcast packets. The main contribution of this work is the overall

system construction, the adaptive encoding image compression method, the evaluation of various

parameters of the system, and quantifying the trade-off between image quality and beacon battery

lifetime for my image compression method. My work widens the usage of the energy efficient,

long-lasting beacon devices by allowing easy storage and access of custom image data in scenarios

where there is no Internet connection.

107

CHAPTER 5
EXTRACTION AND COMPRESSION OF AUGMENTED REALITY CONTENT FOR

LOW POWER AUGMENTED REALITY SYSTEM

Chapter 3 and Chapter 4 present the research projects I worked on for video and image

compression, respectively. This chapter expands the domain of multimedia compression into

another type of data: 3D object motion data. In this chapter, I present a new mobile augmented

reality system that is based on Bluetooth Low Energy. The system integrates a content-prioritizing

process to extract the most useful information from a captured object’s motion so that the resulting

3D object motion information can be broadcasted by the small BLE packets.

I am particularly interested to know whether BLE beacons are capable of storing and broad-

casting data structures describing 3D objects so that nearby mobile devices are able to receive and

render those virtual objects onto the real world and to having a seamless mobile augmented reality

experience. It turns out that the answer is yes, but in designing such a system, I need to deal with

at least two fundamental challenges. Before I dig into their details, let us look at the benefits of a

beacon-based mobile augmented reality system.

There are several advantages of having an augmented reality system that consists primarily

of a set of BLE beacons. First, the system will be low cost. Second, beacons would store 3D

objects locally and broadcast them over connection-less advertising channels without requiring

any Internet connectivity. Third, beacons are designed to last for a long time with battery

power, which makes these systems easier to setup and maintain. Fourth, in many modern buildings,

beacons are already in place. Setting up a mobile augment reality system in those buildings would

practically cost nothing.

108

The main challenges in any augmented reality systems are: 1) communication of 3D object data

that includes visual features, textures, rendering information, and a time series of these objects in

case of video, and 2) the location and pose of the viewer so that the object can be overlayed on the

real-world at the correct location and orientation. Furthermore, in case of mobile augmented reality,

as the user moves, the object needs to be reoriented and redrawn based on his current position. For

a seamless experience, all these have to happen in real time as well. BLE beacons, to some extents,

provide support for both storage and localization. In the last chapter, I explored BLE’s capabilities

to store images. Recently, Google started to experiment with an idea called ‘Fat Beacons’, where

they are looking into broadcasting html pages over BLE. Indoor localization and navigation using

BLE signals (Zhuang et al., 2016; Martin et al., 2014) is another active area of research. In this

chapter, I combine these two promising aspects of BLE to enable more than what we have achieved

with beacons so far.

In this Chapter, I present the first mobile augmented reality infrastructure that is based primarily

on a set of low-cost BLE beacon devices. The target application is a motion capture scenario where

a user (e.g. an actor, a doctor, or a lecturer) would enter into an area being monitored and make

natural gestures while a distributed camera system would capture his motions. Later these captured

movements can be replayed and viewed in 3D for various types of post-facto analysis purposes such

as training and skill improvement.

Figure 5.1: The two phases of MARBLE indoor augmented reality system: capture (once) and
render (many times).

109

I propose a self-contained system (as shown in Figure 5.1) that consists of a cluster of BLE

beacon units that are connected to an embedded micro-controller and a low-cost stereo camera.

Once the system is installed and set up, it operates in two phases. The first phase is dedicated to

detecting dynamic events in the area being monitored and to capture and store sufficient information

abut moving objects or subjects in the scene. This information is compressed, stored, and broadcast

while meeting the storage and expected lifetime requirement of the system. The second phase is

dedicated to receiving and rendering the 3D virtual objects and placing them at the right location

and at right scale as a viewer moves and looks at the scene through his smartphone.

The crux of the system are two algorithms that are central to the two phases of the system.

The first of which intelligently determines 1) a least number of most informative and useful visual

features, and 2) a minimal amount of information about the moving parts of a 3D object, and

store this extremely compressed information into the limited storage of the beacons. The second

algorithm utilizes the BLE signal strength and combines it with the user’s smartphone’s IMU and

camera images to accurate estimate his position and orientation in real time.

I have developed a prototype of the system, called the Mobile Augmented Reality with Bluetooth

Low Energy (MARBLE), that consists of eight Estimote beacons (Estimote, 2017) connected to

eight Raspberry Pis (RPI, 2017), each having two Arducam (Arducam, 2017) cameras attached to

it. The prototype has been thoroughly tested to quantify its CPU and memory usage, as well as

the accuracy of feature selection and localization algorithms. I demonstrate MARBLE by setting

up an indoor motion capture scenario where 10 volunteers make five types of gestures for about

three seconds while the system captures and stores their motions. Later, they enter the scene, walk

around, and view the captured actions in 3D through their mobile phones.

The main contributions of this research work are as follows:

• To the best of my knowledge, I am the first to propose a BLE beacon-based mobile augmented

reality system. This is a drastically different approach than existing AR technologies where I

take the sensing, storage, and computation out of the mobile device, distribute them in low

cost, low power, long lasting, and shared infrastructure.

110

• I devise two algorithms: (a) determining the least number of most informative and useful

visual features, and a minimal amount of information about the moving parts of a 3D object,

and (b) utilizing the BLE signal strength and combining it with the user’s smartphone’s IMU

and camera images to accurately estimate his position and the orientation in real time.

• I have developed and evaluated a prototype of the proposed system. My evaluation shows

that the system takes about 170 ms to capture an object’s motion. In the rendering phase,

the system renders the captured content in real-time. The selected features are 95%-100%

accurate in determining the reference view, and the mean localization error is 14.5 cm.

• I conduct a user study involving 10 participants and demonstrate that the system is capable

of capturing freehand gestures and when replayed back, the users were able to view and

experience them in real-time.

5.1 Related Work

Many research projects have been done in exploring the indoor localization using Bluetooth

signals. In (Cheung et al., 2006), the authors describe an indoor positioning system with Bluetooth

beacons for a low cost ($20). The approach is to place a beacon with a unique signature inside every

room so that the smartphone can identify the signature to tell which room it is in. Their system

achieves room-level precision. (Kajioka et al., 2014) talks about an experiment of evaluating the

accuracy of indoor positioning using BLE. This work uses 22 BLE beacons inside and outside of a

10.5m x 15.6m classroom. The localization granularity is less than 1m. They divide the space in

the room and outside of the room into 56 regions. They generate 5800 training examples for later

position identifying. In determining the user’s location in the experiment, the current received signal

strength indicator (RSSI) signal is matched against pre-generated data using template matching

based on Sum of Squared Difference (SSD). The accuracy is as high as 95%. (Inoue et al., 2009)

describes a system similar to (Kajioka et al., 2014), but the system estimates a state transition

using a different movement model. It is then followed by a probability distribution calculation to

111

better determine the location. (Faragher and Harle, 2014, 2015) contains analysis of the accuracy

of BLE indoor positioning. It discusses the fast fading effects in BLE indoor positioning and its

impact on the positioning accuracy, it also mentions that the existence of the WiFi signal in the

space also impacts the positioning accuracy. The solution they proposed is to migrating a batch of

RSSI readings (multipath mitigation) by taking the median of a batch of values. They showed that

this improves the RSSI fingerprinting performance. They also further proposed the optimal BLE

deployment density and argue that more dense beacon deployment does not improve the system

performance after a certain threshold is reached. The BLE-based localization in MARBLE uses an

approach similar to (Kajioka et al., 2014), besides that MARBLE also combines other sensor inputs

in localization.

Research has been done in using one or multiple sensor inputs in mobile devices for augmented

reality applications, including (Ababsa, 2009; Al Delail et al., 2013; Deniz et al., 2014; Guan et al.,

2016; Dissanayake et al., 2001; Aulinas et al., 2008). There is a category of technologies named

simultaneous localization and mapping (SLAM) that explores the environment and locates the

viewer simultaneously (Dissanayake et al., 2001; Aulinas et al., 2008), which can be considered as

an alternative solution to my localization and pose estimation problem. (Deniz et al., 2014; Guan

et al., 2016) only uses visual information in determine the viewer’s pose and location. Instead

of using ORB features, (Guan et al., 2016) used Speeded Up Robust Feature (SURF) for image

matching. In (Ababsa, 2009) the author combined multiple sensor inputs using Kalman filter, but

their work is to build an outdoor localization system, where Global Positioning System (GPS) signal

is used as one sensor input. My system works indoor. Differ from the previous approach, MARBLE

fuses visual feature signal, BLE signal, and IMU signal.

5.2 Overview of MARBLE

The MARBLE is a mobile augmented reality system that uses a cluster of off-the-shelf, low

power, storage and bandwidth constrained BLE beacon units as an infrastructure. The system

operates in two phases: 1) the capture and store phase, and 2) the read and render phase.

112

Figure 5.1 (left) shows that a person enters an area being monitored with MARBLE. A set of

cameras capture his actions and stores them inside beacons. Later (right), his activity during the

first phase is viewed through a 3D augmented reality application on a mobile phone. Due to the low

energy consumption feature of BLE protocol, the broadcasting phase is extremely energy efficient.

In most application scenarios of MARBLE, capture phase is only performed once, or the capture is

triggered by a rare event that only happens every few hours or few days. Therefore, most of the

time MARBLE is working in the broadcasting phase and the expected system lifetime can be more

than 6 years.

Figure 5.2: System in Action. (a): in capture phase, a person’s gesture and movement is captured.
(b): in render phase, the virtual object avatar is rendered in the empty environment. (c): screenshot
of the viewer’s screen in render phase.

Object of
interest appears

in the room

Video taken
by capture

unit

Key point
detection

Key point
location

estimation

Object
motion

detection

Key point
information

stored in Beacons

Viewer
receives visual

feature data
Viewer reads
IMU sensor

signal

Location /
viewing angle

estimation
initialization

 Update
location /
viewing
angle

estimation

Viewer
receives 3D

virtual object
data

Viewer
camera
capture

Viewer
receives

Beacon RSSI

Viewer
renders the
3D virtual

object

Generate AR content data (once or rarely) Real-time AR rendering (years)

Figure 5.3: A block diagram illustrating the work flow of MARBLE.

113

5.2.1 Two Phases of MARBLE

During the capture and store phase, a set of low-power cameras are used to capture the dynamics

of a scene. To simplify the design of each unit, I attach a stereo camera to each BLE beacon via a

low-power embedded microcontroller. However, this is not a requirement in MARBLE for every

BLE beacon to have its own camera, i.e. a camera can be shared by multiple beacons. I assume

that the duration of dynamic events during this phase is relatively shorter, and hence, the energy

consumption due to active cameras is not excessively high. Once the microcontroller computes the

minimal necessary information about the scene, and the 3D objects and their motions to store, data

is sent to the beacon for broadcasting over the connectionless BLE advertisement packets.

During the read and render phase, a mobile device such as a smartphone or a augmented reality

headset with a BLE capability, receives the broadcasts and renders the previously captured scene in

3D. A major task in this phase is to determine the position and orientation of the mobile device, so

that the objects are rendered at the right position and orientation in the superimposed space created

by the virtual and the real environment as the users walk in the space. To achieve this, the received

signal strengths of the BLE beacons, in combination with the IMU and camera of the viewer’s

mobile device, is used.

5.2.2 Internal Modules and Basic Workflow

During the set up of MARBLE, a number of beacon units are placed at fixed positions in an

indoor environment surrounding the area to be monitored. Assuming a camera is attached to each

beacon unit, each beacon takes pictures of the empty space – capturing only the environmental

artifacts such as interesting points on the wall, furniture, and portions of the floor and the ceiling it

sees. Each beacon then computes and stores a unique set of visual features (ORB features (Rublee

et al., 2011)) of the view it observes. This view serves as the baseline view for a beacon, and is later

used during the view tracking of the mobile user.

The workflow of my system is illustrated in Figure 5.3 along with the internal modules for each

of the two phases of MARBLE.

114

The capture and store phase starts with the detection of any kind of change in the scene being

monitored, e.g., when a subject enters into the area or an already present object or the subject

moves. This awakens the cameras attached to the beacons, which starts capturing and processing the

image. Processing the image stream involves simple predefined tasks such as detecting predefined

interesting artifacts like a human body. If an object of interest is detected, key points corresponding

to its moving parts (e.g., head and hands in case of a person) are recorded over time inside the

beacon storage.

During the rendering phase, each beacon broadcasts its unique set of visual features and a

subset of the captured 3D point time series data. At the receiving end, the viewer’s smartphone

receives two types of information from all beacons: 1) broadcasted visual features, and 2) received

signal strengths. The smartphone combines this information with its own view as seen from its own

camera to obtain a BLE-aided image-based location and pose estimate of its own. This is further

combined with the smartphone’s IMU data to accurately determine the position and orientation of

the smartphone. Finally, location data and 3D object data are used to render the 3D object on his

smartphone in real-time.

5.2.3 Advantage of MARBLE

There are several advantages of using MARBLE compared to existing mobile augmented reality

systems:

• Low Cost: MARBLE is built upon low-cost technologies. The current prototype, consisting

of eight Estimote BLE beacons, two Raspberry Pis with Arducam cameras, cost about $150

and is sufficient to monitor an indoor space of 6.5m × 5.3m.

• Internet Free: MARBLE relies only on Bluetooth connectivity. It works in indoor environ-

ments where Internet access in unavailable or an inconvenience. Being Internet-free has some

advantages; e.g., monitored environments such as retail stores and museums may already

have WiFi access for customers who have bad cellular coverage, such WiFi accesses typically

115

require additional log in steps or going through confirmation pop-ups which is an inconve-

nience to the user. Compared to this, my proposed system brings a seamless experience to the

user.

• Very Long Lifetime: Thanks to the promised multi-year broadcast lifetime of the BLE

standard, which enables MARBLE to last for a very long time (months, if not years) over

battery power. In scenarios where the dynamics of the scene is lower (e.g., monitoring a

deserted area over a very long period) or motion is captured once but viewed many times (e.g.,

for post-fact analysis purposes), MARBLE may remain vigilant for multiple years without a

battery replacement.

• External Power Requirement: Because of the phased operation, MARBLE does not require

External power supply during the read and render phase. This makes this system convenient

and deployable in scenarios where supplying external power supply is a practical problem.

5.3 Application Content Generation

In order to create a realistic 3D AR experience, the rendered 3D objects need to have the correct

appearance in accordance with the viewer’s position and orientation. A key challenge in MARBLE

is to accurately estimate the viewer’s position and viewing angle, which is discussed in Section 5.4.

This section describes how MARBLE prepares necessary information to enable proper rendering of

captured 3D content on a viewer’s device.

Beacons are required to provide visual features of the scene (as seen from each beacon) so

that these features can be matched with the viewer’s own view to determine where he is looking

at. I describe what are these features, and how they are generated, compressed, and stored inside

beacons.

116

Figure 5.4: The process of feature filtering: hundreds of ORB features are extracted from a reference
camera image in (a) and feature entropy θ is computed. The resultant values are weighted by the
2D Gaussian function of (b). Four highest scored features are shown in a zoomed in region in (c).
They are successfully matched with features extracted from a different image of the same scene
even though some of the objects have been moved, as shown in (d).
5.3.1 Visual Features

MARBLE extracts visual features from images taken by the reference cameras deployed in the

environment. I use ORB features (Rublee et al., 2011) that are faster to compute than commonly

used scale-invariant feature transform (SIFT) (Lowe, 1999) and SURF (Bay et al., 2006) features.

Each ORB feature describes a small local region in the image. ORB features are robust to rotation,

scaling, and translation due to changes in viewing angles. This makes them ideal for registering two

images taken with slightly different viewing positions and angles. Once I find matches between

ORB feature locations on an image from a reference camera to another image from the viewer’s

camera, I adopt the homography method (Malis and Vargas, 2007) to estimate the viewer’s camera

117

relative rotation and translation to the reference camera. I deploy reference cameras surrounding

the environment such that they cover the whole scene. In practice, I don’t need multiple reference

cameras. Only one camera can be placed at different locations to generate visual features to be

stored in beacons. The storage requirement in bytes Bf for n ORB features is:

Bf = n ∗ (k + dw
4
e) (5.1)

where, k is the length of a descriptor in bytes, w is the bit length for describing the horizon-

tal/vertical offset of the location of a feature on the image, k for ORB feature is 32, and w in my

case is 10.

An indoor photo taken by a smartphone usually contains hundreds of ORB features. But a

BLE 5.0 beacon is only able to broadcast seven features in one broadcasting period. This capacity

mismatch motivates us to design a visual feature selection algorithm that selects only four (among

hundreds) features that are necessary for the homography algorithm. This results in a storage

requirement of 4*(32+3) = 140 bytes, which fits in a single BLE 5.0 packet.

5.3.2 Selecting Unique and Useful Features

During feature selection, I consider two factors: 1) the uniqueness of the descriptor, and 2) the

chance of finding this feature in the second view during matching.

To determine the uniqueness of the descriptor, I compute feature entropy (Cao et al., 2014):

θD = −
∑
i

P (di) log2 P (di) (5.2)

Here, feature descriptor D is a vector {d1, . . . , dn}, and P (di) is the probability of di in a feature.

P (di) is estimated from all the features extracted from the reference cameras.

In my application, the difference in viewing angles between a viewer and a reference camera is

usually within 45 degrees. Within this range, there is a high chance of having overlapping regions

between two images near the center of the image taken by the reference camera. Furthermore, due

118

to the co-planar constraint in homography method, I select the feature points that share a plane. I

observe that the feature points on the upper half of the image from the first view are more likely to

be co-planar since they tend to be extracted from the far background (the wall).

In summary, if I denote w and h to be the width and height of the reference camera image, I

would prefer the feature points near the upper half center (w/2, h/4) on the frame. I implement this

by multiplying every θD computed on every feature descriptor by the 2D Gaussian function value

centered on (w/2, h/4) on that location to determine the final feature weight. This is illustrated in

Fig. 5.4 (a) and Fig. 5.4 (b).

Finally, I select n features with the highest weight among all candidates and store them in the

beacon. The entire process is illustrated in Fig. 5.4.

5.3.3 Storing Camera Properties

Besides visual features, I also need to obtain the intrinsic parameters of each reference camera

to compute accurate estimation of viewer’s location and viewing angle in the rendering phase. The

camera intrinsic parameters contain information about the focal length, aspect ratio, and principal

points. These parameters along with the camera’s location and orientation information are measured

and stored inside a beacon only once.

5.3.4 Generating AR Content

MARBLE is designed to support animated 3D content, i.e. a time series of changing 3D

contents. This section describes the 3D content representation of MARBLE.

MARBLE’s 3D content consists of one or more 3D objects. A 3D object in digital systems is

commonly represented by a set of surface meshes or a skeleton model of its internal structure, plus a

distance function to its surface (Siddiqi and Pizer, 2008). Both representations require shape-related

data points to be densely sampled and stored. Typically, hundreds of 3D points and their connection

information are used to describe the surface of a non-trivial 3D object that is not simply a cube or a

sphere. Since I am targeting animated 3D contents, the storage requirement will further increase

119

by an order of magnitude. In total, this may exceed 1MB, even after applying state-of-the-art

compression techniques. This data size does not match MARBLE’s storage limit.

To address this problem, I design my data retrieval component to make use of some prior

knowledge about captured objects. For example, in case of a human body as the captured object,

my system divides a human body into several major components such as two hands, a torso, and

a head. 3D representations of these parts are pre-loaded in the viewer’s app. In the AR content

generation phase, the 3D position and orientation of these major components in the environment

are detected and stored. This require less than 100 bytes of storage. In the rendering phase, these

components’ 3D position and orientation information is received by the viewer’s device. The

viewer’s device then combines this information with pre-stored components’ 3D models to render

the full 3D object. Using eight BLE 5.0 beacons, MARBLE can transmit 112 frames of human

gestures in one broadcast packet.

In addition to captured data, MARBLE has the flexibility to store and broadcast synthesized

virtual 3D object data which can either be pre-written into BLE beacons, or if the Internet connec-

tivity is available, they can also be downloaded from the cloud. This enables MARBLE to render

virtual objects with more details or objects that never appeared in the scene.

5.4 Real-Time AR Content Rendering

MARBLE stays in the broadcasting mode for most of its lifetime. In this mode, when a viewer

enters the environment, he starts receiving 3D contents from the BLE beacons without requiring

him to connect/pair with the beacons, and the virtual objects are rendered on his mobile device by

an application that I developed. To generate a realistic AR experience, the application updates the

rendered scene in real-time in accordance with the viewer’s current viewing angle and position.

This section describes my approach to estimating a viewer’s smartphone’s camera pose and location

in the world coordinate.

120

5.4.1 BLE-based Location and Viewing Angle Estimation

A viewer’s location information is represented by the camera position p = (x, y, z) in the world

coordinate. Similarly, the viewing angle is represented by a set of Euler angles a = (a0, a1, a2) in

the world coordinate.

In BLE-based localization, multiple beacons are deployed on the boundary of the environment

at known fixed locations. A viewer’s mobile device receives the broadcasted BLE signal from all

BLE beacons which results in a list of received signal strength indicator (RSSI) readings, along

with the transmission power information A from the Bluetooth packets. The distance between the

viewer’s mobile device and each beacon is estimated by:

RSSI = −20 log(d) + A (5.3)

Here, d is the distance being estimated. To increase the robustness of the algorithm, I take the

median of the last three RSSIs.

In order to estimates the current location of the phone, the 3D space is divide into grids. I

estimate the theoretical distance between each beacon and the center of each grid and compare

those with the RSSI-based distance estimates. The viewer’s mobile device’s location is at the center

of the grid that has the smallest error Emin:

Emin = min
i

∑
j

||d̂ij − dij||2 (5.4)

where, d̂ij and dij denote the theoretical and RSSI-based distances between the ith grid and jth

beacon, respectively. I use a square grid of dimensions 0.1m × 0.1m × 0.1m.

5.4.2 Camera-based Location and Viewing Angle Estimation

Since Bluetooth’s signal strength is sensitive to changes in the environment (Faragher and Harle,

2014), beacon-based localization has a poor accuracy, with a mean error of 30cm. Hence, I look

121

for an alternative method that uses the camera on the user’s phone and use it in combination with

RSSI-based method.

MARBLE’s camera-based location and viewing angle estimation method uses the reference

visual features broadcasted from the beacons. Recall that these features are generated by a reference

camera, placed at a known location in the environment (Section 5.3). When camera-based local-

ization is enabled, the viewer’s camera takes an image, extracts ORB features, and matches these

features with those obtained from the beacons using (Hamming, 1950).

After the matching process, a homography (Agarwal et al., 2005) matrix corresponding to one

reference camera is generated. The decomposition of this matrix provides us with the rotation and

translation of the viewer’s camera, relative to the reference camera (Malis and Vargas, 2007). The

translation is scaled by the depth of the scene, which is estimated from the location information of

the reference camera. The rotation/viewing angle is further combined with the IMU readings of the

phone to obtain a better viewing angle estimate.

5.4.3 Fusion of Multiple Sensor Inputs

I apply a Kalman filter (Kalman and Bucy, 1961) to fuse BLE-based and camera-based location

and viewing angle estimation methods to achieve a better accuracy. I also incorporate with viewer

device’s IMU readings in viewing angle estimation. I denote the state of a viewer as a six-element

vector S = {a0, a1, a2, x, y, z}. Whenever there is an update on any of the three sources of

information, i.e. camera-based method’s feature matching (1Hz), IMU reading (100Hz), and beacon

signal scanning (8Hz), the current state is updated based on the input signals and the previous state.

For example, a0, a1 and a2 are updated whenever there is a new IMU (rotation) reading is available.

When a beacon signal is received, x, y and z are updated based on the new location estimate.

When camera-based location and pose estimates are available, all the entries in S are updated.

My experimental results (Section 5.6) show that the use of a Kalman filter stabilizes the location

and pose estimates, and results in a better estimation accuracy. By combining a high-frequency

but low-accuracy method (BLE and IMU-based) with a low-frequency but high-accuracy method

122

(camera-based), MARBLE achieves the best of both worlds — real-time and accurate location

and pose estimation. This makes MARBLE suitable for less powerful mobile devices where a

purely camera-based method takes a very long time (e.g. 0.6 seconds on Nexus5) and a purely

IMU/RSSI-based method is extremely inaccurate.

5.4.4 Rendering Objects

As the final AR content rendering, MARBLE uses the estimated viewer’s location and viewing

angle to transform the virtual object. The transformed virtual object is rendered in real-time on the

viewer device’s screen, superimposed on the environment.

5.5 Implementation Notes

I developed each unit of MARBLE using commercial, off-the-shelf components. Figure 5.5

shows one such unit.

Beacon

Cameras
Raspberry Pi

Figure 5.5: The capture unit.

Raspberry Pi is a card-sized single board low cost computer. I am using the Raspberry Pi 3

model, which has Quad Core Broadcom BCM2837 64-bit ARMv8 processor with up to 1.2GHz, 1

GB RAM and 40 GPIO pins. The dimension and weight of Raspberry Pi 3 is 86.9mm x 58.5mm

123

x 19.1mm and 1.5oz. I use Arducam OV5647 Mini Camera Module for Raspberry Pi. As Pi 3 is

equipped with one Camera interface (CSI), I use Arducam Multi Camera Adapter Module as the

interface to the stereo camera.

In all of my experiments, I use Estimote model REV.F2.3 Radio Beacon (Estimote, 2017) with

a 32-bit ARM Cortex M0 CPU, 256 KB flash memory, 4 dBm output power, 40 channels (3 for

advertising), and 2.4-2.4835 GHz operating frequency. The rendering application is written in

Java/C++ and runs in a Nexus 5 smartphone with a 2.26GHz quad-core Qualcomm Snapdragon

800 processor, 2 GB RAM, BLE v4, and Andriod 6. I use OpenGL ES and ARToolkit library in

rendering the virtual object. I use OpenCV library in camera based pose estimation and localization.

I mimic BLE 5.0 broadcast packets by a set of rolling BLE 4.0 packets. The rolling mechanism is

implemented by configuring the Estimote Location beacons to broadcast customized advertising

packets.

5.6 Evaluation

In this section, I describe a series of empirical evaluations. I designed experiments to cover

the evaluations for both the capture and rendering phases. I set up an experimental environment in

the lab with size 6.5m × 5.3m. This is a typical use case scenario for my indoor AR system. For

the capture phase, I evaluated the performance of visual feature selection. For the rendering phase,

I evaluated the performance of reference camera matching in initialization. I also evaluated the

system localization and pose estimation accuracy. In the end, I performed a user study to discover

the trade off between the size of 3D object of interest data and the level of preservation of the object

motion information captured by the system.

5.6.1 Microbenchmarks

Figure 5.6 shows the execution times of different components of the MARBLE system. The

capture phase of the system runs on a Raspberry Pi. The render phase executes on a Nexus 5

Android phone. Detecting moving objects takes 65 ms and identifying point of interest takes 103

124

ms. Obtaining 3D location takes only 1 ms on average. Both rendering, BLE ranging and IMU

data processing takes less than 1 ms on average. The most time expensive process is camera data

processing, which takes 611 ms.

65
103

1
1
1

611

0 175 350 525 700

Detect	Moving	Objects
Identify	Points	of	Interest

Obtain	3D	Locations
Rendering	&	BLE	Ranging

IMU	Data	Processing
Camera	Data	Processing

Time	(ms)

Figure 5.6: Run-time Analysis

I also perform an energy analysis of the system. The result is shown in Figure 5.7. The energy

consumption of different stages of the system is listed. The analysis is based on the setting of 1s

object of interest capture time, 1-year data broadcasting and 15-second viewing. The data consists

of 15 frames of a virtual object motion. For the data broadcasting stage, the Beacon is configured

with the broadcasting power -10 dBm and advertising interval 500 ms.

I consider the fact that different components in MARBLE operate in different time periods.

To better understand the impacts of the energy consumption in each stage on the overall system, I

compute the average energy cost in each component for delivering one frame (one set of key points

positions) of virtual object data to the viewer. Even though BLE Beacons (green bar) operates at a

much lower power than Raspberry Pi capture unit and Android viewer device because it is expected

to stay in broadcasting mode for a year, it consumes the most energy in MARBLE.

I would also like to know the impact of changing the frequency of MARBLE’s capturing

operation on the system’s lifetime. By fixing the amount of energy the system can consume, I

compute the expected lifetime of the system under a variety of capture settings. The result is given

in Table 5.1. I set the total consumable energy to be 25000 mJ. Because the viewer’s device is

125

usually powered by a separate battery, and the number of viewers in the environment is not fixed, I

don’t include the viewer’s power consumption in this analysis.

The result suggests that when my system works in an active surveillance mode that captures the

object of interest in the environment every minute the system is expected to last for 30 days. When

I only capture once at the beginning and then keep broadcasting without re-capturing, the system

can work nearly 7 years.

Figure 5.7: Energy Consumption of every stage of MARBLE. The data for the capture phase is
colored in blue. The data for broadcasting phase is colored in green. The data for viewing phase is
colored in orange. The power data next to the stage labels are the working power of each stage. The
number next to the bar charts are the energy consumption for rendering a frame of the virtual object.

Capture Frequency Expected Lifetime
No capture (Only Broadcasting) 6 years and 348 days

Once in a lifetime 6 years and 348 days
Once every day 6 years and 207 days

Once every hour 2 years and 325 days
Once every minute 30 days

Table 5.1: System lifetime under different settings.

Table 5.2 lists the CPU and memory usage for the corresponding process in the pipeline in

capture phase. For this phase the most expensive process is the detection of moving objects which

126

takes 55.6% CPU and 5.4% memory. Identifying points of interest and obtaining 3D location takes

17.6% and 1.3% CPU, respectively. Table 5.3 gives an overview of the CPU and memory usage

for the components of second phase. Here, IMU data processing consumes most user CPU, which

is 16.33%. Though camera data processing requires lowest user CPU (4.22%), it uses the most

memory (52.11 MB) among these three.

CPU (%) Memory (%)
Detect Moving Objects 55.6 5.4

Identify Points of Interest 17.6 5.4
Obtain 3D Locations 1.3 2.5

Table 5.2: CPU and memory usage of Raspberry Pi

User CPU Kernel CPU Memory
(%) (%) (MB)

Rendering & BLE Ranging 6.55 3.29 65.3
IMU Data Processing 16.33 0.35 5.27

Camera Data Processing 4.22 2.02 52.11

Table 5.3: CPU and memory usage of Smartphone

5.6.2 Algorithm Evaluation

Visual Feature Selection Performance

I evaluate my feature selection approach described in section 3.1. I compare my method with

the approach of picking features randomly. I define the metric of this evaluation by dividing the

number of correctly matched features with the total number of candidate features from the viewer’s

cameras.

In the experiment, I fix the number of features from the reference camera to be 4. I use 9 images

taken by the viewer’s camera. For each image taken by the viewer’s camera, I record the number of

correctly matched feature points with the reference camera’s features selected using my method and

reference camera’s features selected randomly. I performed the same experiment twice with two

sets of images taken in two lab spaces with different lighting conditions. I plot the result in Fig. 5.8

127

0

50

100

Lab	1 Lab	2

Ac
cu
ra
cy
	(%

)

With	our	Approach Without	our	Approach

Figure 5.8: Averaged accuracy of matching between ORB features found in 10 query images and
the 4 ORB features from the reference image.

The result shows that my method can significantly improve the feature matching performance,

given the smallest possible number of features to be stored, my method gives 95% matching

accuracy in lab 1 (darker room) and 100% accuracy in lab 2 (brighter room). As a comparison,

randomly picking features gives 77.5% and 65% chance of generating a correct result in two rooms,

respectively.

Beacon-Guided Camera Matching Performance

I evaluate the performance of Beacon-Guided Camera Matching in the initialization stage.

In setting up the experiment, I placed 64 measurement spots on the floor of the environment, as

illustrated in Fig. 5.9 (a) After that, the 8 beacon’s Bluetooth signals’ strength are measured and

the BLE beacon based location estimation is performed. Then the reference cameras that are far

away from the viewer are filtered out. The number of reference cameras being considered at each

measurement spot is shown in Fig. 5.9 (b). I can observe that in all measurement points, at least one

reference camera is excluded. In half of the cases, more than 3 reference cameras are excluded. This

means reduction of computation time by almost 40% and increase of potential matching success

rate.

Localization Accuracy

I conduct an experiment to measure the localization and pose estimation accuracy of MARBLE

system in the render phase. I design a viewer trajectory that has a length about half of the room size.

I set 16 measurement points along the trajectory. I fix the viewer camera’s angle and location at

every measurement point. I record the angle and location of every measurement point as the ground

128

Figure 5.9: (a): the configuration of measurement points in the lab. (b): heat map showing the
number of cameras being considered in visual feature matching.

truth. In the experiment, I move the viewer device along the trajectory, at each measurement point.

I carefully move the viewer’s device so the device’s location and viewing angle match the designed

value at that point. At every measurement point, I record the camera state estimation (IMU-only,

BLE-only, camera-only and the Kalman filter joint estimation). I design the experiment to have

two measurement points with viewer’s device not pointing to the direction of the virtual object. At

these two points, the system turns off the camera based estimation. So the estimation error from

these two points for the camera-only method is not available (marked as crossed in Figure 5.10 and

Figure 5.11). In the analysis, I compute the localization error based on square root of the sum of

squared differences in x, y and z between estimate and ground truth.

I plot the localization result error in Figure 5.10. The result suggests that the camera based

localization has a higher accuracy than the BLE based localization in most cases. The sensor fusion

using both BLE signal and camera signal provides an even more accurate result, except for the

first measurement point, where the camera based method has the highest accuracy, and the last

measurement point, where the BLE only method has the highest accuracy.

Pose Estimation Accuracy

I also plot the accuracy of pose estimation for the experiment described in the previous

subsection. I derive the error by computing the square root of the sum of squared difference on all

rotation angles between the ground truth and the estimated values.

129

Figure 5.10: Heat Map of the errors in cm on location estimation in 16 different measurement points.
From left to right: BLE Beacon based estimation, Camera based estimation and Sensor Fusion
using two signals.

The result suggests that the IMU based pose estimation has a slightly higher accuracy than

camera based estimation. The error stays less than 20 degrees.

Figure 5.11: Heat Map of the errors in angle on pose estimation in 16 different measurement points.
From left to right: IMU based estimation, Camera based estimation and Sensor Fusion using two
signals.

Real Deployment and User Study

I perform a real user study to explore the performance of the entire system. I design the

experiment with 10 participants entering the room one by one. I capture videos of a person doing

five gestures at two different speeds in the room. The five gestures are: left hand wave, right hand

wave, clap, hand roll, and both hands wave. The gesture is completed within 1.5 seconds and 0.75

seconds for low speed and high speed respectively. I then detect the head and hands locations in

3D to generate the key points over time. I sampled the points at 3Hz, 6Hz, 9Hz, 12Hz and 15Hz to

generate data with different sizes.

130

In the render phase I use these data to create the moving virtual object (avatar). Once a user

enters the room I show him/her the avatar performing one of the five gestures on the phone running

the render app. The user then guesses which gesture is being performed. I vary the avatar data

being used with different sampling frequency and speed. In total I gather 50 answers. Based on the

correctness of the answers I derive the quality of the avatar at every sampling frequency and speed

combination.

0
25
50
75

100

3 6 9 12 15Ac
cu
ra
cy
	(%

)

Sampling	Frequency(Hz)
Left	Hand	Wave Right	Hand	Wave
Roll Clap
Both	Hand	Wave

0
25
50
75

100

3 6 9 12 15Ac
cu
ra
cy
	(%

)

Sampling	Frequency(Hz)
Left	Hand	Wave Right	Hand	Wave
Roll Clap
Both	Hand	Wave

(a) (b)

0
25
50
75

100

3 6 9 12 15Ac
cu
ra
cy
	(%

)

Sampling	Frequency(Hz)
Left	Hand	Wave Right	Hand	Wave
Roll Clap
Both	Hand	Wave

0
25
50
75

100

3 6 9 12 15Ac
cu
ra
cy
	(%

)

Sampling	Frequency(Hz)
Left	Hand	Wave Right	Hand	Wave
Roll Clap
Both	Hand	Wave

(a) (b)

Figure 5.12: Human Gesture Sampling Frequency Impact at (a) Low Speed (b) High Speed.

In Figure 5.12 (a), I can see that for low speed gesture, 6Hz sampling frequency is enough (100%

accuracy) for users to recognize the easy gestures like right hand wave and left hand wave. Although

for more difficult gestures like both hand wave, it gives about 75% accuracy. In Figure 5.12 (b), I

131

can see that higher gesture speed has a higher recognition accuracy (more than 90%) for difficult

gestures at 9Hz, it gives lower accuracy (70%) of easy gestures at 6Hz. Overall, I argue that 9Hz

sampling frequency is good enough to capture the meaning of a motion around 1s. This requires

162 bytes data, which can be broadcasted by one BLE 5 packet.

5.7 Summary

In this chapter, I described MARBLE, an Internet-free augmented reality system that uses

beacon devices. The system captures the object of interest in the environment, finds the 3D key

points that best describes the object of interest given limited storage, and transmits it to the viewer

for rendering. The viewer uses multiple sensor information, including the beacon BLE signal

strength, to determine its location and pose in the environment. In the broadcasting phase, the

MARBLE system works without external power support and battery replacement for years.

The main contribution of my work described in this chapter is the overall system design and

construction, the method of selecting the best visual features for camera-based localization and pose

estimation and quantifying the trade-off between object key point data size and the quality of the

object approximation. My work widens the usage of the energy efficient, long-lasting beacon device

by enabling the application of this type of devices for indoor AR application. My system can be

easily extended for building other types of AR applications including real world object tagging.

132

CHAPTER 6
GENERATIVE COMPRESSION AS AN ALTERNATIVE APPROACH TO EXTREME

COMPRESSION

6.1 Introduction

Input OutputWrite

VAE-GAN
Encoder

VAE-GAN
Decoder

Read

Beacon

Figure 6.1: The proposed Deep Beacon system.

In Chapter 4 and Chapter 5, I devised image beacon systems that broadcast images of a few

limited categories such as binary images and images containing common indoor and outdoor objects.

I designed custom image compression modules that are applicable to only a fixed set of images.

These limitations prohibit the usages of image beacons in many scenarios. For example, the color

image beacon relies upon depth information of an image which is obtained by engaging a user in

taking multiple images of the target object. The system does not work for a regular image whose

depth information is missing. Furthermore, when color images were considered, they required

multiple advertisement packets for a full image to be broadcasted. This often resulted in minutes of

waiting time as a receiver has to wait for a full cycle of broadcast in case of packet drops. Hence,

a new generation of image beacon system needs to be developed which is capable of efficiently

storing and retrieving a wide variety of high-quality images.

133

Recently, the machine learning community has developed autoencoders which demonstrate

strong performance in finding the best low dimensional representation of a certain type of data. A

specific type of autoencoder called the Variational Autoencoder (VAE) (Kingma and Welling, 2013)

consists of an encoder network and a decoder network. The encoder network converts an input

image to an embedding vector, which is a representation of the image in a low dimension and is

several orders of magnitude smaller in size than the original image. The decoder network takes

the embedding vector and recovers the input image. VAE is useful in applications such as ‘fake’

content generation. For example, smiling faces and sad faces have different embedding vectors.

One can take these two embedding vectors, interpolate them, execute the decoder network on each

interpolated vector, and be able to generate intermediate faces to show a realistic illusion of a person

becoming sad from smiling.

I am inspired by VAE’s power of extracting a low dimensional representation of an input image

and explore the potential in developing an image beacon system that employs an autoencoder to

enable high-quality, arbitrary, color image storage and broadcast in a BLE beacon system. The

system (as shown in 6.1) consists of one or more BLE beacons, a writer app equipped with a trained

encoder that runs on a mobile device, and a reader app equipped with a trained decoder which also

runs on the mobile device. I assume that no additional information on the broadcasted image from

any other sources is available (e.g. from the web or the user’s smartphone).

I have developed a prototype of a Deep Beacon system using a set of commercially available

Estimote beacons (Estimote, 2017), and developed an Android application that takes images along

with user-specified requirements and constraints on broadcasting the image as inputs, generates

previews of the image to be written, and writes the image representation into a set of beacons.

I developed a reader application that reads the broadcasted image data, decodes the image, and

displays it on the phone.

I perform an in-depth evaluation of the beacon system. I describe a set of results showing

the tradeoffs between system lifetime and image quality when the image type and the number of

beacons are varied. I also deploy a Deep Beacon system indoors and perform a user study in a

134

real-world scenario in order to have a subjective measure of the quality of the received images. In

this study, a group of 15 participants are asked to identify traffic signs and hand-written digits from

their beaconed images of various qualities.

The main contributions of this project are as follows:

• To the best of my knowledge, I am the first to propose an image beacon system that incorpo-

rates a deep neural network generative model to compress, store, and broadcast color images

over BLE advertisement messages.

• I have devised a bit length reduction algorithm that is tailored to the needs of an image beacon

system. The algorithm reduces the bit length of the image encoding down to 10 bytes. I vary

the bit length reduction setting and quantify the tradeoffs between image quality and device

lifetime, and determine the best set of parameters, under the user-specified constraints on the

number of beacons, latency, and expected system lifetime.

• I have developed and evaluated a prototype of a Deep Beacon system that broadcasts images of

various types e.g., birds, traffic signs, flowers, and hand-written digits. My evaluation shows

that one BLE 4.0 beacon is capable of broadcasting images (90% multi-scaled structurally

similar to original images) for 4 year-long continuous broadcasting, and both the lifetime and

the image quality improve when more beacons are used.

6.2 Related Work

My Deep Beacon system uses a generative model for image compression. The concept of using

generative model for compression is discussed in (Santurkar et al., 2017). During recent years,

many useful generative models have been developed in the machine learning community. Examples

include (Theis and Bethge, 2015; Goodfellow et al., 2014). Among those, generative adversarial

networks (GAN) (Goodfellow et al., 2014; Goodfellow, 2016) is especially powerful. This approach

iteratively trains a generator model and classifier model in an adversarial way. Experiments shows

that GAN is able to generate realistic, visually plausible images (Zhang et al., 2016). People have

135

extended GAN and developed a various of enhanced generative models. Examples include (Ledig

et al., 2016; Isola et al., 2016; Denton et al., 2015; Zhang et al., 2016; Reed et al., 2016). My system

uses the original version GAN (Goodfellow et al., 2014).

Another potential direction of using deep neural network model for image compression involves

“style transfer” using a trained convolutional networks (Gatys et al., 2015; Champandard, 2016;

Gatys et al., 2016). The style transfer model transfers the style of texture from one input image

onto another input image. This can be used to enhance the compressed image, in which the texture

information is lost during compression. The original style transfer algorithm is designed to transfer

oil painting stroke texture onto real photographic images. The transfer process is computationally

intensive. Later, researchers have developed faster versions of the algorithm that can run on a

smartphone in real time (Ulyanov et al., 2016; Johnson et al., 2016). On the other hand, models

that transfer high quality real photos have been developed (Luan et al., 2017). Researchers also

combined style transfer model with U-net (Ronneberger et al., 2015) to guide the style transfer,

so that the model performs automatic coloring on gray scale images (Liu et al., 2017). This could

potentially turn the binary image beacon system into a color image beacon system. However, this

type of automatic coloring algorithm tends to have good performance only on sketched images. It

has difficulties in handling complex variations o textures and colors of natural images. Therefore, I

decide to not apply this approach for my system.

6.3 System Architecture

Deep Beacon consists of a set of BLE beacons which store and broadcast images. The system

comes with a mobile application that is used to (1) capture, compress, and write an image into the

beacons, as well as (2) to receive and render a broadcast image on the screen of the smartphone.

Figure 6.2 shows these two operations. A writer app takes a picture and uses a pre-trained

encoder to generate an extremely compressed version of the image which is written into the beacons.

Later, a reader app captures these compressed image broadcasts and uses a pre-trained decoder to

render the image on the smartphone’s screen.

136

The following two subsections describe the training of the encoder and decoder that happens

offline, and operations that execute on the mobile application at run-time, respectively.

VAE-GAN
Encoder

VAE-GAN
Decoder

VAE-GAN
Discriminator

Writer
app

Reader
app

0.1
0.7
0.5
…

Offline training

Online applicationembeddinginput

output

training data

Figure 6.2: The data flow of Deep Beacon system.

0.1
0.7
0.5
…

input output

Real image?
Yes/No

64x64x3

32x32x64

16x16x128

8x8x256

4x4x512 4x4x512

8x8x256

16x16x128

32x32x64

64x64x3 64x64x3

32x32x64

16x16x128

8x8x256

4x4x512

Encoder Decoder Discriminator

 embedding

Figure 6.3: VAE-GAN model structure.

6.3.1 Offline Training

Before the deployment of the Deep Beacon system, the VAE-GAN model is trained using

a large collection of images. The training process iteratively updates the model parameters to

minimize a loss function. After training, the model represents the data space of a given image type.

A compact representation (embedding) is generated from the encoder of the model given an input

image.

The VAE-GAN model and the optimization function of the training process are explained in

Section 6.4. The dataset and the details of the training process is described in Section 6.7.

137

6.3.2 Online Capture, Broadcast, and Render

Once the VAE-GAN model is trained and deployed, the Deep Beacon system becomes ready

for image storage and broadcast. The workflow of the online phase of Deep Beacon consists of

three stages: 1) image capture and write, 2) image broadcast, 3) image read and decode.

In the image capture phase, a user who wants to write an image into Deep Beacon uses the

writer app on his mobile phone to compress the image. The input image can either be an existing

image or one taken with the phone camera. The writer app scales and crops the image into 64×64

pixels. Then it uses the trained Deep Beacon encoder to compress the processed image. The

compression output or the embedding is a list of floating point numbers.

The embedding has between 10 to 100 floating point numbers. The precision of these floating

point numbers is configurable in Deep Beacon which provides flexibility to a user in making a

trade-off between data size and image quality. The details of this trade-off is presented in Section 6.7.

Once the embedding data is stored in BLE beacons, it is broadcasted by them over their

advertisement packets. For a very large image, it may require more than one advertisement packet

to carry the embedding data. Based on the number of available beacons, two approaches are used to

handle such cases. First, a single beacon broadcasts embedding data (whose size is larger than a

single packet) by iterating over packets during broadcasting. Second, when multiple BLE beacons

are available, data are distributively stored and broadcasted from multiple beacons.

Each time a user (in the role of an image data viewer) enters the environment, the reader app

on his mobile phone starts BLE scanning to collect BLE advertisement packets containing the

embedding data. Once the entire embedding is received, data are passed to the Deep Beacon decoder

to recover the input image.

138

6.4 Algorithm

6.4.1 Background on Variational Autoencoder (VAE)

A Variational Autoencoder (VAE) contains a pair of image encoder and decoder. Specifically,

an image encoder takes a 64×64 RGB image and converts it to a sequence of floating point numbers.

It does so by passing an image through the encoder in VAE and then taking the computed values of

the final layer nodes as the embedding output. The encoder is composed of four convolution layers.

Each layer contains a set of convolution filters that generate a smaller patch from the output patch

of the previous layer. The decoder, on the other hand, takes an embedding and generates a 64×64

RGB image. When a VAE model is properly trained, the result image is expected to be visually

similar to the original one. Similar to an encoder, a decoder also has four layers of filters but they

perform the opposite (deconvolution) operation.

6.4.2 Background on Generative Adversarial Networks (GAN)

The VAE-GAN used in Deep Beacon is an enhancement on the VAE with the Generative

Adversarial Networks (GAN) (Goodfellow et al., 2014) model. GAN shows strong performance in

terms of learning an unknown distribution of given image dataset, and generating ‘fake’ images that

are visually plausible. GAN combines a generator that generates fake images and a discriminator

that recognizes real images from fake images. The training process involves optimizing the generator

to generate realistic images as well as optimizing the discriminator to better classify generated

images versus real images.

6.4.3 VAE-GAN in Deep Beacon

A traditional VAE has a weakness that it tends to generate blurry images as the training process

penalizes sharp edge differences between an input image and an encoded image. A blurry image

is likely to be classified as a false image by the GAN discriminator, resulting in a larger loss. By

139

incorporating the loss term derived in GAN training process, the VAE is trained to generate sharper

images. The structure of the VAE-GAN model used in Deep Beacon system is shown in Figure 6.3.

The overall VAE-GAN structure is shown in the offline training block in Figure 6.2. The

decoder in VAE is shared with GAN as the generator in GAN. The training of VAE-GAN involves

optimizing a loss function with three terms: a prior term that enforces the embedding to follow

standard Gaussian distribution, a log likelihood term that measures reconstruction error, and a style

error term from the GAN training. The details of the training process can be found in (Larsen et al.,

2015).

6.4.4 Compressed VAE-GAN Embedding

The embedding of an image is a list of n digit single-precision floating point numbers. Storing

each number requires four bytes of memory, resulting in a 4n bytes storage space requirement

for the embedding. I optimize the storage by further reducing the bit length of the embedding

data. I design Deep Beacon system such that it supports a variable number of bytes in representing

a floating point number (with up to 4 bytes) N and a half byte size is also supported. This is

done by quantizing the last byte in the representation. The steps of reducing the bit length of an

embedding is given in Section 6.5. It assumes little-endian byte ordering. The impact of a shorter

byte representation of an embedding on the result image quality is discussed in the evaluation.

6.5 Embedding Size Reduction Algorithm

The embedding size reduction algorithm takes the targeting bytes per-element k, and preserves

the highest k significant bytes for each digit in the input. For a n-digit input, the algorithm outputs

nk bytes.

140

6.6 Data Packet Format

I design a custom data packet format on top of the BLE broadcasting packet to carry the image

embedding information. The package structure is shown in Figure 6.4. The packet contains a 2-byte

header, which contains three syntax elements:

 payload

payload_formatdata_type_id packet_id

30 Bytes

3 bits5 bits 8 bits

header

Figure 6.4: The Deep Beacon data packet format.

• data type id: the first 5 bits of the header carries the image data type information. The

Deep Beacon system VAE-GAN model deployer, the writer, and the reader should agree on

the meaning of the data type id to data type mapping. Essentially, each data type maps to

a specific instance of VAE-GAN model that handles a certain type of image encoding and

decoding.

• payload format: the second part of the header represents the payload format. This

information indicates how many bytes are used to represent a single floating point number

in the embedding data. This ensures a correct decoding of the embedding data on the image

reader.

• packet id: when the payload embedding data cannot fit into one BLE broadcasting packet,

the packet id information is required so that the order of the set of received data packets can

be determined.

The remaining 28 bytes in the packet is used as a payload to carry the embedding data.

141

6.7 Evaluation

In this section, I describe a set of empirical evaluations. Firstly, I show the quality of com-

pressed images for different embedding sizes. Then I compared my system’s image compression

performance with JPEG. I then perform experiments to quantify the tradeoffs between image

quality and expected battery life when the system is configured for different types of images or

different number of beacons. I also conduct a user study that involves multiple use cases including

hand-written digit and traffic sign recognition tasks. Finally, I compare my Deep Beacon system

with two image beacon systems I developed previously.

6.7.1 Experimental Setup

I use Estimote model Rev.D3.4 Radio Beacons (Estimote, 2017) having a 32-bit ARM Cortex

M0 CPU, 256 KB flash memory, 4 dBm output power. I vary the BLE broadcast interval for a

beacon between 100 ms to 2,000 ms. However, an encoded image (broadcasted from multiple

beacons) reaches a user’s device in less than 0.5 second. The transmission power is set to -12 dBm,

which limits the range of each beacon to about 30 m. The writer and reader application runs in a

Pixel 2 smartphone having an Qualcomm Snapdragon 835 processor, 4 GB RAM, BLE v4.0, and

runs Android 8.1.0 Operating System.

I use four image datasets containing hand-written digits (LeCun et al., 1998), birds (Welinder

et al., 2010), flowers (Nilsback and Zisserman, 2008), and traffic signs (Stallkamp et al., 2011). They

are selected from the MNIST dataset (LeCun et al., 1998), the Caltech-UCSD Birds dataset (Welin-

der et al., 2010), the 102 Category flower dataset (Nilsback and Zisserman, 2008). and the GSTRB

dataset (Stallkamp et al., 2011), respectively. Examples of images are shown in the first four rows

in Figure 6.5. All images are center-clipped and down-sampled (or up-scaled in case of MNIST) to

64×64 pixels. In the training, I use 1000–2000 images from each dataset. As test images, I use

100 images from each dataset. There is no overlapping between training images and test images.

142

The VAE-GAN model and the training program is implemented in TensorFlow 1.1.0. I use Google

Cloud Machine Learning Engine (goo, 2017) for training.

Figure 6.5: Samples of training and test image dataset. First 4 rows from top row to bottom: hand-
written digits, birds, traffic signs, and flowers. The last row contains sampled images compressed
by Deep Beacon system.

The metrics I use to measure image quality are multi-scale structural similarity (MS-

SSIM) (Wang et al., 2003) and device lifetime in months. I measure these two under different

conditions and show their tradeoffs. The MS-SSIM scores are used to measure the quality of the

produced images when compared to the original ones. Compared to single scale SSIM metric,

MS-SSIM gives more flexibility in image quality assessment with respect to different viewing

conditions. The formula for computing the MS-SSIM score is given in Eq. 6.1, where lM measures

the illumination (pixel intensity mean) difference between image x and image y, cj measures the

two images’ contrast (pixel intensity variance) difference, sj measures the two images’ structural

difference, computed by the covariance between pixel values. The cj and sj are computed over

different scales and the results are scaled by the constants αM , βj , and γj and multiplied. In my

experiments, I use 5 scales. I apply the constant values with the same ratios suggested in (Wang

et al., 2003): αM = β5 = γ5 = 0.0267, β4 = γ4 = 0.0473, β3 = γ3 = 0.06, β2 = γ2 = 0.0571, and

β1 = γ1 = 0.09. The device lifetime is estimated from its relation to a beacon’s advertising interval.

Before each experiment, I program the beacons to set a beacon interval and use the corresponding

estimated device lifetime (as reported by the Estimote API) in my experiments.

143

MS-SSIM(x, y) = [lM(x, y)]αM
M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj (6.1)

6.7.2 The Choice of Embedding Size

My goal in this experiment is to determine an optimal embedding size for the VAE-GAN model.

I train 12 different VAE-GAN models that are arranged in four groups. Each group is trained

with one image dataset: hand-written digit, bird, flower, or traffic sign. Within each group, three

embedding lengths are applied: 10, 50, and 100.

With the 12 trained models, I apply the test images (described in the previous subsection) on

each model to generate compressed versions of the test images. Each type of test image is only

applied to the corresponding model that has been trained with the same type of training images.

I then compute the MS-SSIM scores for every compressed image. Figure 6.6 shows the average

MS-SSIM score for all 12 models. Each color represents one embedding length.

The result suggests that the models having an embedding length of 10 does not show a significant

weakness compared to the models having an embedding length of 50 or 100. For the hand-written

digit images, the model having an embedding length of 10 achieves similar performance as the

model with embedding length 100. Considering the fact that the most important factor in the design

of a BLE-based system is the limited data bandwidth, I choose an embedding length of 10 in Deep

Beacon system since this configuration requires much shorter bit length to represent an image than

the embedding length 50 and 100. I use this value in all other experiments.

Figure 6.6: Bar chart showing the average MS-SSIM of four types of image data with different
embedding sizes.

144

6.7.3 Comparision with JPEG Encoding

The goal of this experiment is to get an insight on Deep Beacon’s image compression perfor-

mance compared to standard JPEG (Wallace, 1992). I use two test data sets: hand-written digits

and traffic signs. Each test data set contains 100 images. I compress each image using JPEG in

its lowest quality setting. This generates the smallest possible JPEG compressed image. I also

compress every image with the encoder in Deep Beacon. For a compression with Deep Beacon, I

use the embedding length 10, and 4 bytes for each number in the embedding.

I compute the MS-SSIM between every compressed image and the original uncompressed

image. I then scatter plot the MS-SSIM values vs. the compressed image size in bytes in Figure 6.7.

The result in each plot clearly shows two clusters: one for images compressed with Deep Beacon

encoder, one for images compressed with JPEG. For black-white hand written digit images, JPEG

generates compressed image of sizes between 400 to 500 bytes. For color traffic sign images,

the JPEG compressed size ranges between 700 to 900 bytes. As a comparison, my Deep Beacon

encoder always generates 44 byte compressed data size, including the data packet header. I also

observe that the compressed images’ MS-SSIM quality scores from Deep Beacon encoder can reach

the same level as the images from JPEG compression.

Figure 6.7: MS-SSIM vs. Imgae size for 100 hand-written digit images (upper plot) and 100 traffic
sign images (lower plot). Images are compressed using JPEG (red dots) and the encoder module in
Deep Beacon system (blue dots).

145

6.7.4 Performance on Different Image Types

It is useful to understand the performance of the Deep Beacon system for different types of

image data. To derive the relation between the average image quality and the expected system

lifetime for a certain type of image data, I fix several parameters in the system. I set the number of

beacons in the system to be 1. I fix the image data delivery latency to the reader to be 0.5 second.

For the system to fulfill this latency limit requirement, the BLE broadcasting frequency will be

adjusted accordingly, results different expected system lifetime.

I plot the average MS-SSIM scores between the original uncompressed image and the com-

pressed image vs. the expected system lifetime in months in Figure 6.8. As expected, the higher the

expected system lifetime, the less data the system is able to broadcast within a fixed time window,

results a lower quality image. Note that the average image quality does not change significantly until

the system lifetime requirement goes above 37 months. On average, the system performs the best

on simple hand-written digit images, having average MS-SSIM scores larger than 0.9. When I apply

RGB images with complicated textures and structures, the distortion introduced in the compression

yields a quality drop on the compressed image.

Figure 6.8: Average MS-SSIM score vs. expected system lifetime plot. Four curves represent four
types of testing data. Each curve represents one type of test image data.

6.7.5 Impact of Number of Beacons

I also explore the case when multiple beacons are used together as a single storage and broadcast

unit. In this case, each beacon’s broadcasting frequency can be lower and the Deep Beacon system

can still achieve the same broadcast bandwidth as a single-beacon Deep Beacon system does.

146

I test the cases when 1, 2, and 3 beacons are used, with the traffic sign image set. I plot the

average MS-SSIM score vs. the expected system lifetime in Figure 6.9. The three curves represent

the case when 1, 2, or 3 beacons are used, respectively. I mark the MS-SSIM score zero when the

system is not able to broadcast the image data within the given fixed time limit for that system

lifetime requirement. From the result I observe that when switching the number of beacons from 1

to 2, the system lasts much longer, from less than 4 years to more than 5 years and still broadcasts

high quality images (average MS-SSIM score higher than 0.8). But adding another beacon to

construct a 3-beacon system does not further improve the system performance. This is because the

Deep Beacon system encodes an image into an embedding vector that can always be carried by up

to 2 BLE broadcast packets.

Figure 6.9: Average MS-SSIM score vs. expected system lifetime plot. Three curves represent the
experiment result with using one, two, and three beacons, respectively.

6.7.6 User Study

I conduct a user study to evaluate the usefulness of Deep Beacon as a traffic sign storage and

broadcast system and a hand-written digit storage and broadcast system. I store 18 images randomly

picked from the traffic sign test image dataset and the hand-written digit test image dataset. The

images are encoded and stored in one BLE 4 beacon, read back from the beacon, and decoded.

Samples of compressed images are shown as the first eight images (starting from the left) on the

last row of Figure 6.5. Each decoded image is shown to a participant. For traffic sign images, the

participant is asked to identify the traffic sign labels by choosing one of the ten reference traffic sign

labels shown in Figure 6.10. The ten reference traffic sign labels cover all 18 test traffic sign images.

For hand-written digit images, the participant is asked to write down the number he or she thinks

147

that is in the image. The Deep Beacon is configured to use length 10 embedding, with 4 bytes for

every digit in the embedding.

I collect result data from 15 participants. I group the result data into lowest 1
3
, medium 1

3
,

and highest 1
3

quality measured by MS-SSIM scores. I then compute the average chance of one

participant making a correct guess in each group. The result is shown in Figure 6.11. The result

suggests that Deep Beacon greatly preserves the information in hand-written digit images so that

the correctness ratio is close to 1. For traffic sign images, the performance varies more. For

high-quality images, almost every participant correctly identifies the meaning of the traffic sign.

For the low-quality group, the chance of success drops significantly. This is caused by the higher

appearance variation in the training image data that contains images in different lighting conditions

and viewing angles (as shown in the 3rd row in Figure 6.5).

Figure 6.10: The traffic sign types used in user study.

Figure 6.11: The chance in percentage of a participant making a correct answer in recognizing
hand-written digit images and traffic sign images compressed by Deep Beacon system.

148

6.7.7 Comparison with Other Image Beacon Systems

I compare the proposed Deep Beacon with the binary image beacon system and the color image

beacon system described in Chapter 4. I look at the following characteristics:

• Does the system support color images?

• Is an offline training with an image dataset required?

• Is the writer required to take multiple images for a write?

• The typical latency for a reader to receive the image.

I list the comparison result in TABLE 6.1. The advantage of Deep Beacon over the previous

color image beacon system is that the image writer does not need to take multiple images in

preparing the image write. This is a necessary step in the color image beacon system described in

Chapter 4 because the depth information needs to be extracted from multiple input images.

The Deep Beacon system has the lowest latency (≈0.5s) in delivering an image to the image

reader. The latency corresponds to the use of 4 BLE beacons and an expected lifetime of 4 years.

Like the binary image beacon system, the Deep Beacon system also requires offline training for

each image type.

Table 6.1: Comparison among three image beacon systems.
Binary Image Beacon Color Image Beacon Deep Beacon

Color Image Support No Yes Yes
Require Offline Training Yes No Yes

Require Taking Multiple Images No Yes No
Typical Latency ≈1s ≈8s ≈0.5s

6.8 Summary

In this chapter, I present the third type of image beacon system called the Deep Beacon. It uses

the state-of-the-art deep learning models composed by an autoencoder VAE-GAN. I show that by

applying VAE-GAN as the compressor and decompressor, it is possible to save and broadcast one

149

RGB image using a single BLE broadcasting packet. The resultant image is of high quality and

carries meaningful information. I perform quantitative analysis on my Deep Beacon, and I compare

its performance with two previously developed image beacon systems.

150

CHAPTER 7
CONCLUSION AND DISCUSSION

This chapter concludes the dissertation. Section 7.1 reviews the contributions of this dissertation.

Section 7.2 discusses potential future research directions. Some remaining technical issues are

explained in Section 7.3.

7.1 Summary of Contributions

7.1.1 Microscopy Video Compression

For the projects that I worked on with the application of microscopy compression, I made three

major contributions. First, I invented a new video compression technique that is based on adjacent-

pixel over time correlation scores (Shao et al., 2015). To the best of my knowledge, this is the first

video compression technique in the literature of this kind. The compression technique integrates

a correlation-based video frame segmentation technique that makes use of the PSF. Second, I

proposed a new way to evaluate the quality of a compressed microscopy video based on statistical

tests (Shao et al., 2018). Third, the two new video compression methods I invented achieve better

performance comparing to H.264 video compression standard. Having the same compressed video

quality, the analysis-preserving compression achieves up to 20x better compression than H.264.

The analysis-aware compression achieves up to 1000x compression. The work in microscopy

compression also results in a patent: (Russell et al., 2017).

My segmentation technique can be applied to a wide variety of videos, as long as the video

is taken by an optical system that involves the PSF. I tested applying my PSF-based video frame

segmentation method on a video taken by a human-scale camera. Figure 7.1 shows one frame of

151

a football field video, and the segmentation on that frame with my method. My method correctly

identifies the moving part of the video. The background regions in the segmentation are the

stationary football field. During a compression, these regions can be represented by a fixed football

field texture.

Figure 7.1: A sample football field image taken by a human-scale camera, and processed by the
PSF-based segmentation method.

7.1.2 Image Compression for BLE Beacons

I worked on three projects on compressing image data to enable image storage and broadcast

via BLE broadcasting channels. My major contribution on this topic is three-fold: first, I invented

the first binary image beacon system that enables 64×64 binary image storage and broadcast with

BLE beacons (Shao et al., 2016a). Second, I designed and built the first color image beacon system

that takes an RGB input image and compresses it into less than 200 bytes (Shao and Nirjon, 2017).

This enables affordable RGB image data broadcasting via BLE. Third, I applied the VAE-GAN

model to encode a 64×64 RGB image into as small as 10 bytes. This makes it possible to carry an

RGB image data with one BLE broadcasting packet.

In building these image beacon systems, I designed new algorithms for my custom image

compression. They include a method to reduce patch dictionary size for binary image compression,

an adaptive image encoding method for color image compression, and an IMU-guided image capture

process that shortens the average image capture time.

These new algorithms can be generalized and be used in other systems. The adaptive image

encoding algorithm can be applied in other systems where there is a strict limitation on storage

152

space and broadcasting capacity. The IMU-guided capture technique can be applied to other systems

that involve multi-view depth estimation.

Moreover, I performed a comprehensive study to evaluate the image beacon systems with a set

of criteria including system life, image quality, and the number of beacons. The study includes both

theoretical derivation and empirical experiments. The experiments I conducted include: measuring

the patch matching performance with different test image types (hand-written image, simple and

complex geometric shapes) in binary image compression, measuring the adaptive image encoding

performance with different types of color images taken indoors and outdoors, evaluating IMU-

guided image capture performance on average time savings on capturing a good pair of images for

depth estimation in two indoor environments with different lighting conditions, and measuring the

compressed image quality under a set of embedding length settings in the VAE-GAN encoder.

7.1.3 MARBLE: Augmented Reality Application Data Compression for Bluetooth Low En-
ergy Devices

The contributions from the project MARBLE include overcoming the challenge in building a

robust indoor localization using BLE RSSI and the design and implementation of the first indoor

sensor fusion system that uses BLE signals. The system presents a novel use of BLE beacons for

both content broadcasting and localization. The system has the benefit of low power consumption.

The battery-powered MARBLE system lasts seven years. The system also has low cost. The cost of

building MARBLE is around $200, which is 20 times cheaper than some of the state-of-art indoor

AR solutions such as Microsoft HoloLens.

I designed an ORB visual feature selection algorithm to support ORB feature broadcasting via

BLE broadcasting channels for indoor localization. My feature selection algorithm outperforms

existing techniques in selecting visual features for camera localization and pose estimation. This is

because it takes both the uniqueness and spatial location of a visual feature into consideration. The

algorithm can be generalized for selecting other types of visual features. The indoor localization

technique I invented that combines BLE, IMU and camera is the first indoor localization technique

153

that combines these three sensor signals. It has a higher accuracy comparing to existing techniques

that uses two or one of the three sensor signals. This technique can be applied to other tasks

including indoor motion planning.

7.2 Discussion and Future Work

7.2.1 Microscopy Video Compression

For the videos that were analyzed in the microscopy video compression projects, I selected the

largest threshold value that still produced analysis output identical to that from the original videos

(the compression included all of the steps described below). This requires running the compression

and analysis pipelines several times for each video, so is not efficient.

In future work, I seek a closed-form approach to the selection of the threshold value. Otsu’s

method (Otsu, 1975) fails in the case where there is either no foreground or no background in a

given video. Because it is forced to generate two classes, it wrongly classifies a certain portion of

background and foreground in all cases. I am investigating camera-noise-estimation methods to

automatically determine an appropriate threshold.

7.2.2 Image Compression for BLE Beacons

The two image beacon systems are most useful when the application scenario requires years-

long working time without maintenance. In the future, it is meaningful to design a long timescale

experiment to analyze the data write-read pattern within a long period.

The color image beacon system will perform at its best with beacons that adopt the upcoming

Bluetooth 5.0 standard. Future work is to evaluate the different aspects of the system performance as

Bluetooth 5.0 is released and gets popular. Moreover, a ‘fat-beacon’ standard is under development

at Google (Hardill, 2016), which allows an even higher broadcast transmission capacity for BLE

beacons. The goal of that standard is to equip beacon devices with the ability to broadcast basic

154

web contents to smartphones in the absence of the Internet connectivity. It will be meaningful to

study the application of the image beacon system combined with a fat beacon.

The proposed image beacon system only considers stationary objects. This is an inherent

problem of any depth estimation technique. In such case, we have to resort to texture or color-based

segmentation.

The IMU-based prediction algorithm uses a regression tree model. Its prediction accuracy is

lower indoors than outdoors. A robust model may train a separate regression tree for different cases,

such as one model for taking images on objects below the phone, one model for objects of the same

height as the phone.

A property of marker-controlled watershed segmentation algorithms is that they always generate

a clean segmentation result. The combined segmentation method does not fully exploit this feature.

I could further enhance the power of combining depth estimation and watershed results by deploying

a smarter foreground region growing method.

Potential future work on the deep beacon system includes adding support for a larger image

size by redesigning the VAE-GAN model. Also, when many types of image data need to be

supported simultaneously, the cost of storing a broad set of models could bring issues in deploying

the Deep Beacon system on a storage-constrained mobile device. Yao et al. (Yao et al., 2017)

proposed a generic deep network model compression technique for mobile applications. Raghavan

et al. (Raghavan et al., 2017) explored a bit-regularizing approach to the model compression problem.

It is useful to explore the possibility of adopting a model compression technique to my system.

Finally, note that the GAN model can be used to generate other types of multimedia data including

speech data (Kaneko et al., 2017). It would be useful if the Deep Beacon system can be extended to

support other types of multimedia data.

Adding the support for animated images (GIFs, etc.) into an image beacon increases the

usefulness of the system. Common inter-picture image prediction techniques need to be re-designed

to fit in the low-bandwidth constraint from BLE broadcasting protocol.

155

7.2.3 MARBLE: Augmented Reality Application Data Compression for Bluetooth Low En-
ergy Devices

The MARBLE system is a realization of using BLE beacons for indoor augmented reality. Start-

ing from MARBLE, several possible extensions can be developed, and research can be conducted.

In the capture phase, if the object of interest is a human body, with face recognition and face

tracking techniques, the accurate orientation of the person’s face can be estimated. The face details

can be captured. Therefore, the additional face information can be stored and broadcasted in the

system. This will enable visualization of the face as a part of the avatar. Besides that, the entire shape

information may be captured and represented as a 3D mesh, to replace the key points information.

A mesh compression method such as (Brettle and Galligan, 2017) or (Valette and Prost, 2004) that

reduces the 3D mesh data size can be applied.

To enhance the user experience with an avatar that contains more details of the object of interest,

another approach is to store both the texture information and shape information. The challenge

for this is that the texture information usually requires thousands of bytes of storage space, which

exceeds the system’s storage capacity.

Depending on the viewer’s device, more types of input signals including GPS or infrared camera

can be added into the sensor fusion model. MARBLE should make use of the three input signals

described in Chapter 5 as the basis for the localization and pose estimation task, and it should be

able to accommodate new types of sensor inputs when they are available.

7.3 Remaining Technical Issues

I would like to list a set of remaining technical issues for the systems I built.

7.3.1 MARBLE: Generic Gesture Capture and Rendering

In demonstrating the MARBLE system, I applied the most basic setting: a color marker guided

head and hand location detection, followed by rendering an avatar composed of simple geometric

shapes. I would like to replace the marker-guided system with a more generic head and hand

156

detection with state-of-the-art computer vision techniques. I would also integrate a more realistic

avatar model into the rendering component. An analysis can be performed to evaluate the user

experience improvement after the change.

7.3.2 Smart Packet Rotation Strategy in Bluetooth Low Energy Broadcasting

From the development of an image beacon demo that divides image data into multiple data

packets, I realized that a simple round-robin strategy for packet switching is suboptimal when the

scanner has a scanning rate lower than the packet switching rate. When one packet is not received

by the scanner, another rotation round is required for the scanner to get that packet.

A smart packet rotation strategy can be used in this case to decrease the average time for a

scanner to receive all the packets. One observation on the BLE packet loss pattern is packet loss

burstness (Wei et al., 2007): when one packet loss happens, the successive packets are more likely

to be lost. This can be used in designing the smart packet rotation strategy.

7.3.3 No-Calibration Deployment for MARBLE

The MARBLE project has the goal of enabling a new indoor AR system with BLE infrastruc-

ture. However, the current implementation of MARBLE may not work in certain types of indoor

environments. Indoor spaces with irregular boundary shapes may bring trouble for the BLE-based

indoor localization. More tests need to be done to verify MARBLE’s limitation. Noisy indoor

spaces with Wi-Fi signals may also impact the BLE-based localization accuracy. In that case, the

noise parameter for BLE-based estimation in the Kalman filter needs to be adjusted accordingly.

157

BIBLIOGRAPHY

How many photographs of you are out there in the world? https:
//www.theatlantic.com/technology/archive/2015/11/
how-many-photographs-of-you-are-out-there-in-the-world/413389/,
2015.

Bluetooth 5.0 Press Release. http://tinyurl.com/hvrosf5, 2016.

Send picture via lorawan? https://www.thethingsnetwork.org/forum/t/
send-picture-via-lorawan/2407/5, 2016.

Lightblue bean. punchthrough.com/bean, 2017.

Raspberry pi. https://www.raspberrypi.org/, 2017.

Google cloud machine learning engine. https://cloud.google.com/ml-engine/, 2017.

High-throughput screening. https://en.wikipedia.org/wiki/High-throughput_
screening, 2017.

Microsoft hololens. https://www.microsoft.com/hololens, 2017.

Geocaching. https://www.geocaching.com/play, 2018.

Lpwan. https://en.wikipedia.org/wiki/LPWAN#LoRa_based, 2018.

Bluetooth low energy. https://en.wikipedia.org/wiki/Bluetooth_Low_Energy,
2018.

Point spread function. https://en.wikipedia.org/wiki/Point_spread_
function, 2018.

F. Ababsa. Advanced 3d localization by fusing measurements from gps, inertial and vision sensors.
In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages
871–875. IEEE, 2009.

A. Agarwal, C. Jawahar, and P. Narayanan. A survey of planar homography estimation techniques.
Centre for Visual Information Technology, Tech. Rep. IIIT/TR/2005/12, 2005.

B. Al Delail, L. Weruaga, M. J. Zemerly, and J. W. Ng. Indoor localization and navigation using
smartphones augmented reality and inertial tracking. In Electronics, Circuits, and Systems
(ICECS), 2013 IEEE 20th International Conference on, pages 929–932. IEEE, 2013.

A. Amer and E. Dubois. Fast and reliable structure-oriented video noise estimation. IEEE
Transactions on Circuits and Systems for Video Technology, 15(1):113–118, 2005.

M. Ansari and R. Anand. Context based medical image compression for ultrasound images with
contextual set partitioning in hierarchical trees algorithm. Advances in Engineering Software, 40
(7):487–496, 2009.

158

https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-world/413389/
https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-world/413389/
https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-world/413389/
http://tinyurl.com/hvrosf5
https://www.thethingsnetwork.org/forum/t/send-picture-via-lorawan/2407/5
https://www.thethingsnetwork.org/forum/t/send-picture-via-lorawan/2407/5
punchthrough.com/bean
https://www.raspberrypi.org/
https://cloud.google.com/ml-engine/
https://en.wikipedia.org/wiki/High-throughput_screening
https://en.wikipedia.org/wiki/High-throughput_screening
https://www.microsoft.com/hololens
https://www.geocaching.com/play
https://en.wikipedia.org/wiki/LPWAN#LoRa_based
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Point_spread_function
https://en.wikipedia.org/wiki/Point_spread_function

Arducam. Arducam camera. arducam.com, 2017.

J. Aulinas, Y. R. Petillot, J. Salvi, and X. Lladó. The slam problem: a survey. In CCIA, pages
363–371. Citeseer, 2008.

G. B. Avinash. Image compression and data integrity in confocal microscopy. Scanning, 17(3):
156–160, 1995.

R. V. Babu and A. Makur. Object-based surveillance video compression using foreground motion
compensation. In Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th International
Conference on, pages 1–6. IEEE, 2006.

X. Bai, J. S. Jin, and D. Feng. Segmentation-based multilayer diagnosis lossless medical image
compression. In Proceedings of the Pan-Sydney area workshop on Visual information processing,
pages 9–14. Australian Computer Society, Inc., 2004.

J. Balle, A. Stojanovic, and J.-R. Ohm. Models for static and dynamic texture synthesis in image
and video compression. IEEE Journal of Selected Topics in Signal Processing, 5(7):1353–1365,
2011.

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European conference
on computer vision, pages 404–417. Springer, 2006.

C. Bergeron and C. Lamy-Bergor. Complaint selective encryption for h. 264/avc video streams. In
Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pages 1–4. IEEE, 2005.

T. Bernas, E. K. Asem, J. P. Robinson, and B. Rajwa. Compression of fluorescence microscopy
images based on the signal-to-noise estimation. Microscopy research and technique, 69(1):1–9,
2006.

J. Brettle and F. Galligan. Introducing Draco: compression for 3D
graphics. https://opensource.googleblog.com/2017/01/
introducing-draco-compression-for-3d.html, 2017.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Digital EquipmentCorporation, 1994.

Y. Cao, C. Ritz, and R. Raad. Adaptive and robust feature selection for low bitrate mobile augmented
reality applications. In Signal Processing and Communication Systems (ICSPCS), 2014. IEEE,
2014.

A. J. Champandard. Semantic style transfer and turning two-bit doodles into ffine artworks. arXiv
preprint arXiv:1603.01768, 2016.

J. Chao and E. Steinbach. Preserving sift features in jpeg-encoded images. In Image Processing
(ICIP), 2011 18th IEEE International Conference on, pages 301–304. IEEE, 2011.

J. Chao and E. Steinbach. Sift feature-preserving bit allocation for h. 264/avc video compression.
In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 709–712. IEEE,
2012.

159

arducam.com
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html

J. Chao, A. Al-Nuaimi, G. Schroth, and E. Steinbach. Performance comparison of various feature
detector-descriptor combinations for content-based image retrieval with jpeg-encoded query
images. In Multimedia Signal Processing (MMSP), 2013 IEEE 15th International Workshop on,
pages 029–034. IEEE, 2013a.

J. Chao, H. Chen, and E. Steinbach. On the design of a novel jpeg quantization table for improved
feature detection performance. In Image Processing (ICIP), 2013 20th IEEE International
Conference on, pages 1675–1679. IEEE, 2013b.

J. Chao, R. Huitl, E. Steinbach, and D. Schroeder. A novel rate control framework for sift/surf
feature preservation in h. 264/avc video compression. IEEE Transactions on Circuits and Systems
for Video Technology, 25(6):958–972, 2015a.

J. Chao, E. Steinbach, and L. Xie. Keypoint encoding and transmission for improved feature
extraction from compressed images. In Multimedia and Expo (ICME), 2015 IEEE International
Conference on, pages 1–6. IEEE, 2015b.

K. C. Cheung, S. S. Intille, and K. Larson. An inexpensive bluetooth-based indoor positioning hack.
In Proceedings of UbiComp, volume 6, 2006.

C. Christopoulos, A. Skodras, and T. Ebrahimi. The jpeg2000 still image coding system: an
overview. IEEE transactions on consumer electronics, 46(4):1103–1127, 2000.

C.-T. Chu, D. Anastassiou, and S.-F. Chang. Hybrid object-based/block-based coding in video
compression at very low bit-rate. Signal Processing: Image Communication, 10(1-3):159–171,
1997.

CISMM. Video spot tracker. http://cismm.cs.unc.edu/resources/
software-manuals/video-spot-tracker-manual/, 2017.

G. Conte, M. De Marchi, A. A. Nacci, V. Rana, and D. Sciuto. Bluesentinel: a first approach using
ibeacon for an energy efficient occupancy detection system. In 1st ACM International Conference
on Embedded Systems For Energy-Efficient Buildings (BuildSys), 2014.

J. Cribb, L. D. Osborne, J. P.-L. Hsiao, L. Vicci, A. Meshram, E. T. OBrien III, R. C. Spero, R. Taylor,
and R. Superfine. A high throughput array microscope for the mechanical characterization of
biomaterials. Review of Scientific Instruments, 86(2):023711, 2015.

M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational geometry. In
Computational geometry, pages 1–17. Springer, 2000.

A. Dementyev, S. Hodges, S. Taylor, and J. Smith. Power consumption analysis of bluetooth low
energy, zigbee and ant sensor nodes in a cyclic sleep scenario. In Wireless Symposium (IWS),
2013 IEEE International, pages 1–4. IEEE, 2013.

O. Deniz, J. Paton, J. Salido, G. Bueno, and J. Ramanan. A vision-based localization algorithm for
an indoor navigation app. In 2014 Eighth International Conference on Next Generation Mobile
Apps, Services and Technologies, pages 7–12. IEEE, 2014.

160

http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-manual/
http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-manual/

E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid
of adversarial networks. In Advances in neural information processing systems, pages 1486–1494,
2015.

M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. A solution to the
simultaneous localization and map building (slam) problem. IEEE Transactions on robotics and
automation, 17(3):229–241, 2001.

Estimote. Estimote Beacons, 2017. https://estimote.com/.

R. Faragher and R. Harle. An analysis of the accuracy of bluetooth low energy for indoor positioning
applications. In Proceedings of the 27th International Technical Meeting of The Satellite Division
of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, volume 812, 2014.

R. Faragher and R. Harle. Location fingerprinting with bluetooth low energy beacons. IEEE Journal
on Selected Areas in Communications, 33(11):2418–2428, 2015.

M. K. A. Ganesan, S. Singh, F. May, and J. Becker. H. 264 decoder at hd resolution on a coarse
grain dynamically reconfigurable architecture. In Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pages 467–471. IEEE, 2007.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shechtman. Preserving color in neural artistic style
transfer. arXiv preprint arXiv:1606.05897, 2016.

C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of bluetooth low energy: An emerging
low-power wireless technology. Sensors, 12(9):11734–11753, 2012.

I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

D. Grois and O. Hadar. Advances in region-of-interest video and image processing. Multimedia
Networking and Coding, pages 76–123, 2012.

K. Guan, L. Ma, X. Tan, and S. Guo. Vision-based indoor localization approach based on surf and
landmark. In Wireless Communications and Mobile Computing Conference (IWCMC), 2016
International, pages 655–659. IEEE, 2016.

R. W. Hamming. Error detecting and error correcting codes. Bell System technical journal, 29(2):
147–160, 1950.

B. Hardill. Physical web fatbeacons. https://www.hardill.me.uk/wordpress/2016/
09/06/physical-web-fat-beacons/, 2016.

161

https://estimote.com/
https://www.hardill.me.uk/wordpress/2016/09/06/physical-web-fat-beacons/
https://www.hardill.me.uk/wordpress/2016/09/06/physical-web-fat-beacons/

H. Hirschmuller. Accurate and efficient stereo processing by semi-global matching and mutual
information. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 807–814. IEEE, 2005.

D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the
IRE, 40(9):1098–1101, 1952.

Y. Inoue, A. Sashima, and K. Kurumatani. Indoor positioning system using beacon devices for
practical pedestrian navigation on mobile phone. In International Conference on Ubiquitous
Intelligence and Computing, pages 251–265. Springer, 2009.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. arXiv preprint arXiv:1611.07004, 2016.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In European Conference on Computer Vision, pages 694–711. Springer, 2016.

S. Kajioka, T. Mori, T. Uchiya, I. Takumi, and H. Matsuo. Experiment of indoor position presump-
tion based on rssi of bluetooth le beacon. In 2014 IEEE 3rd Global Conference on Consumer
Electronics (GCCE), pages 337–339. IEEE, 2014.

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. Journal of basic
engineering, 1961.

T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and K. Kashino. Generative adversarial
network-based postfilter for statistical parametric speech synthesis. In Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International Conference on, pages 4910–4914. IEEE,
2017.

M. Karczewicz and J. Ridge. Context-based adaptive variable length coding for adaptive block
transforms, Sept. 21 2004. US Patent 6,795,584.

S.-D. Kim, J.-H. Lee, and J.-K. Kim. A new chain-coding algorithm for binary images using
run-length codes. Computer Vision, Graphics, and Image Processing, 41(1):114–128, 1988.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

T. Kirkman. Statistics to use: Kolmogorov-smirnov test. http://www.physics.csbsju.
edu/stats/KS-test.html, 1996.

P. Korshunov and W. T. Ooi. Video quality for face detection, recognition, and tracking. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM), 7(3):14,
2011.

C. H. Lampert. Machine learning for video compression: Macroblock mode decision. In Pattern
Recognition, 2006. ICPR 2006. 18th International Conference on, volume 1, pages 936–940.
IEEE, 2006.

162

http://www.physics.csbsju.edu/stats/KS-test.html
http://www.physics.csbsju.edu/stats/KS-test.html

A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding beyond pixels using
a learned similarity metric. arXiv preprint arXiv:1512.09300, 2015.

Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-resolution using a generative adversarial
network. arXiv preprint arXiv:1609.04802, 2016.

Y. Liu, Z. G. Li, and Y. C. Soh. Region-of-interest based resource allocation for conversational video
communication of h. 264/avc. IEEE transactions on circuits and systems for video technology,
18(1):134–139, 2008.

Y. Liu, Z. Qin, Z. Luo, and H. Wang. Auto-painter: Cartoon image generation from sketch by using
conditional generative adversarial networks. arXiv preprint arXiv:1705.01908, 2017.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440, 2015.

D. G. Lowe. Object recognition from local scale-invariant features. In The proceedings of the
seventh IEEE international conference on Computer vision. Ieee, 1999.

T. Lu, Z. Le, and D. Yun. Piecewise linear image coding using surface triangulation and geometric
compression. In Data Compression Conference, 2000. Proceedings. DCC 2000, pages 410–419.
IEEE, 2000.

F. Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo style transfer. arXiv preprint
arXiv:1703.07511, 2017.

E. Malis and M. Vargas. Deeper understanding of the homography decomposition for vision-based
control. PhD thesis, INRIA, 2007.

D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding in the
h. 264/avc video compression standard. IEEE Transactions on circuits and systems for video
technology, 13(7):620–636, 2003.

P. Martin, B.-J. Ho, N. Grupen, S. Muñoz, and M. Srivastava. An ibeacon primer for indoor
localization: demo abstract. In Proceedings of the 1st ACM Conference on Embedded Systems
for Energy-Efficient Buildings, pages 190–191. ACM, 2014.

E. Martinian, A. Behrens, J. Xin, A. Vetro, and H. Sun. Extensions of h. 264/avc for multiview video
compression. In Image Processing, 2006 IEEE International Conference on, pages 2981–2984.
IEEE, 2006.

C. McAnlis and A. Haecky. Understanding Compression: Data Compression for Modern Develop-
ers. ” O’Reilly Media, Inc.”, 2016.

163

B. Menser and M. Brunig. Face detection and tracking for video coding applications. In Signals,
Systems and Computers, 2000. Conference Record of the Thirty-Fourth Asilomar Conference on,
volume 1, pages 49–53. IEEE, 2000.

H. Meuel, M. Munderloh, and J. Ostermann. Low bit rate roi based video coding for hdtv aerial
surveillance video sequences. In Computer Vision and Pattern Recognition Workshops (CVPRW),
2011 IEEE Computer Society Conference on, pages 13–20. IEEE, 2011.

M. Minervini and S. A. Tsaftaris. Application-aware image compression for low cost and distributed
plant phenotyping. In Digital Signal Processing (DSP), 2013 18th International Conference on,
pages 1–6. IEEE, 2013.

S. A. Mohamed and M. M. Fahmy. Binary image compression using efficient partitioning into
rectangular regions. Communications, IEEE Transactions on, 43(5):1888–1893, 1995.

N. Monnier, S.-M. Guo, M. Mori, J. He, P. Lénárt, and M. Bathe. Bayesian approach to msd-based
analysis of particle motion in live cells. Biophysical journal, 103(3):616–626, 2012.

D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and R. Bultje. The
latest open-source video codec vp9-an overview and preliminary results. In Picture Coding
Symposium (PCS), 2013, pages 390–393. IEEE, 2013.

N. Newman. Apple ibeacon technology briefing. Journal of Direct, Data and Digital Marketing
Practice, 15(3):222–225, 2014.

M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes.
In Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

S. Nirjon and J. A. Stankovic. Kinsight: Localizing and tracking household objects using depth-
camera sensors. In 2012 IEEE 8th International Conference on Distributed Computing in Sensor
Systems, pages 67–74. IEEE, 2012.

R. D. Nowak and R. G. Baraniuk. Wavelet-domain filtering for photon imaging systems. IEEE
Transactions on Image Processing, 8(5):666–678, 1999.

V. Oculus. Oculus rift. Available from WWW:¡ http://www. oculusvr. com/rift, 2015.

T. Oh and R. Besar. Jpeg2000 and jpeg: image quality measures of compressed medical images.
In Telecommunication Technology, 2003. NCTT 2003 Proceedings. 4th National Conference on,
pages 31–35. IEEE, 2003.

N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-296):23–27,
1975.

H. M. Parmar and P. Scholar. Comparison of dct and wavelet based image compression techniques.
International Journal Engineering Development and Research, 2(1):664–669, 2014.

164

K. Parvati, P. Rao, and M. Mariya Das. Image segmentation using gray-scale morphology and
marker-controlled watershed transformation. Discrete Dynamics in Nature and Society, 2008,
2009.

R. Pierdicca, D. Liciotti, M. Contigiani, E. Frontoni, A. Mancini, and P. Zingaretti. Low cost em-
bedded system for increasing retail environment intelligence. In Multimedia & Expo Workshops
(ICMEW), 2015 IEEE International Conference on, pages 1–6. IEEE, 2015.

C. W. Quammen, A. C. Richardson, J. Haase, B. D. Harrison, R. M. Taylor, et al. Fluorosim: a
visual problem-solving environment for fluorescence microscopy. In Eurographics Workshop on
Visual Computing for Biomedicine, volume 2008, page 151. NIH Public Access, 2008.

A. Raghavan, M. Amer, and S. Chai. Bitnet: Bit-regularized deep neural networks. arXiv preprint
arXiv:1708.04788, 2017.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to
image synthesis. arXiv preprint arXiv:1605.05396, 2016.

I. E. Richardson. The H. 264 advanced video compression standard. John Wiley & Sons, 2011.

J. J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research and
development, 20(3):198–203, 1976.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In
2011 International conference on computer vision, pages 2564–2571. IEEE, 2011.

M. T. I. Russell, C. Shao, Z. Zhong, and K. D. Mayer-Patel. Methods, systems, and computer
readable media for compressing video images, Aug. 24 2017. US Patent App. 15/506,725.

A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in
hierarchical trees. IEEE Transactions on circuits and systems for video technology, 6(3):243–250,
1996.

V. Sanchez, R. Abugharbieh, and P. Nasiopoulos. 3-d scalable medical image compression with
optimized volume of interest coding. IEEE Transactions on Medical Imaging, 29(10):1808–1820,
2010.

S. Santurkar, D. Budden, and N. Shavit. Generative compression. arXiv preprint arXiv:1703.01467,
2017.

R. J. Schalkoff. Digital image processing and computer vision, volume 286. Wiley New York,
1989.

J. Serra. Image analysis and mathematical morphology, v. 1. Academic press, 1982.

165

C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 5(1):3–55, 2001.

C. Shao and S. Nirjon. Imagebeacon: Broadcasting color images over connectionless bluetooth le
packets. In Proceedings of the Second International Conference on Internet-of-Things Design
and Implementation, pages 121–132. ACM, 2017.

C. Shao, A. Zhong, J. Cribb, L. D. Osborne, E. T. O’Brien, R. Superfine, K. Mayer-Patel, and R. M.
Taylor. Analysis-preserving video microscopy compression via correlation and mathematical
morphology. Microscopy research and technique, 78(12):1055–1061, 2015.

C. Shao, S. Nirjon, and J.-M. Frahm. Years-long binary image broadcast using bluetooth low energy
beacons. In Distributed Computing in Sensor Systems (DCOSS), 2016 International Conference
on, pages 225–232. IEEE, 2016a.

C. Shao, S. Nirjon, and J.-M. Frahm. Years-long binary image broadcast using bluetooth low energy
beacons. In Proceedings of the International Conference on Distributed Computing in Sensor
Systems (DCOSS 2016), 2016b.

C. Shao, J. Cribb, L. D. Osborne, E. T. O’Brien III, R. Superfine, K. Mayer-Patel, and R. M. Taylor.
Analysis-aware microscopy video compression. Microscopy research and technique, 2018.

J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions
on signal processing, 41(12):3445–3462, 1993.

M.-Y. Shen and C.-C. J. Kuo. Review of postprocessing techniques for compression artifact removal.
Journal of visual communication and image representation, 9(1):2–14, 1998.

C. J. Sheppard, X. Gan, M. Gu, and M. Roy. Signal-to-noise ratio in confocal microscopes.
Handbook of biological confocal microscopy, pages 442–452, 2006.

K. Siddiqi and S. Pizer. Medial representations: mathematics, algorithms and applications,
volume 37. Springer Science & Business Media, 2008.

M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen. How low energy is bluetooth low
energy? comparative measurements with zigbee/802.15. 4. In Wireless Communications and
Networking Conference Workshops (WCNCW), 2012 IEEE, pages 232–237. IEEE, 2012.

A. Signoroni and R. Leonardi. Progressive roi coding and diagnostic quality for medical image
compression. In Visual Communications and Image Processing’98, volume 3309, pages 674–686.
International Society for Optics and Photonics, 1998a.

A. Signoroni and R. Leonardi. Progressive medical image compression using a diagnostic quality
measure on regions-of-interest. In Signal Processing Conference (EUSIPCO 1998), 9th European,
pages 1–4. IEEE, 1998b.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign Recognition
Benchmark: A multi-class classification competition. In IEEE International Joint Conference on
Neural Networks, pages 1453–1460, 2011.

166

S. M. Stigler. Francis galton’s account of the invention of correlation. Statistical Science, pages
73–79, 1989.

J. Ström and P. C. Cosman. Medical image compression with lossless regions of interest. Signal
processing, 59(2):155–171, 1997.

G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the high efficiency video coding
(hevc) standard. IEEE Transactions on circuits and systems for video technology, 22(12):1649–
1668, 2012.

L. Theis and M. Bethge. Generative image modeling using spatial lstms. In Advances in Neural
Information Processing Systems, pages 1927–1935, 2015.

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky. Texture networks: Feed-forward synthesis
of textures and stylized images. In ICML, pages 1349–1357, 2016.

S. Valette and R. Prost. Wavelet-based progressive compression scheme for triangle meshes:
Wavemesh. IEEE Transactions on Visualization and Computer Graphics, 10(2):123–129, 2004.

S. Van Leuven, K. Van Schevensteen, T. Dams, and P. Schelkens. An implementation of multiple
region-of-interest models in h. 264/avc. In Signal Processing for Image Enhancement and
Multimedia Processing, pages 215–225. Springer, 2008.

K. D. S. S. Vatolin D, Grishin S. Lossless video codecs comparison. http://compression.
ru/video/codec_comparison/lossless_codecs_2007_en.html, 2007.

A. Wakatani. Digital watermarking for roi medical images by using compressed signature image. In
System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International Conference
on, pages 2043–2048. IEEE, 2002.

G. K. Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992.

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality
assessment. In Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh
Asilomar Conference on, volume 2, pages 1398–1402. Ieee, 2003.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4):600–612, 2004.

D. X. Wei, P. Cao, and S. H. Low. Packet loss burstiness: measurements and implications for
distributed applications. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pages 1–8. IEEE, 2007.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

T. Wiegand. Draft itu-t recommendation and final draft international standard of joint video
specification. ITU-T rec. H. 264— ISO/IEC 14496-10 AVC, 2003.

167

http://compression.ru/video/codec_comparison/lossless_codecs_2007_en.html
http://compression.ru/video/codec_comparison/lossless_codecs_2007_en.html

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h. 264/avc video coding
standard. IEEE Transactions on circuits and systems for video technology, 13(7):560–576, 2003.

R. Wollman and N. Stuurman. High throughput microscopy: from raw images to discoveries.
Journal of cell science, 120(21):3715–3722, 2007.

H. Xu, H. Zha, and M. A. Davenport. Manifold based dynamic texture synthesis from extremely
few samples. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3019–3026, 2014.

S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher. Deepiot: Compressing deep neural network
structures for sensing systems with a compressor-critic framework. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems. ACM, 2017.

Z. Yin and T. Kanade. Restoring artifact-free microscopy image sequences. In Biomedical Imaging:
From Nano to Macro, 2011 IEEE International Symposium on, pages 909–913. IEEE, 2011.

S. Zahir and M. Naqvi. A new rectangular partitioning based lossless binary image compression
scheme. In Electrical and Computer Engineering, 2005. Canadian Conference on, pages 281–285.
IEEE, 2005.

S. Zahir, K. Dhou, and B. Prince George. A new chain coding based method for binary image
compression and reconstruction. PCS, Lisbon, Portugal, pages 1321–1324, 2007.

F. Zhang and D. R. Bull. Advances in region-based texture modeling for video compression. In
Proc. SPIE, volume 8135, page 81350N, 2011.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. Stackgan: Text to
photo-realistic image synthesis with stacked generative adversarial networks. arXiv preprint
arXiv:1612.03242, 2016.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr.
Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1529–1537, 2015.

Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy. Smartphone-based indoor localization with
bluetooth low energy beacons. Sensors, 16(5):596, 2016.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on information theory, 23(3):337–343, 1977.

168

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Research Questions
	How to Better Compress Digital Videos with Specific Usages?
	How to Better Compress Digital Images that Transmitted Through a Bandwidth Constrained System?
	How to Compress Multiple Types of Application Data in a Bandwidth Constrained System?
	How to Apply Generative Models in Extreme Compression?

	A Brief Outline of the Proposed Methods
	Content-Prioritizing Correlation-Based Microscopy Video Compression
	Extreme Image Compression that Enables Image Beacons
	Feature Selection and Key Point Extraction that Enables Indoor Augmented Reality Data Transmission over BLE Broadcasting
	Generative Image Compression

	Thesis and Contributions
	Organization of the Rest of the Dissertation

	Background
	Shannon's Source Coding Theorem
	Lossless Compression
	Variable Length Coding
	Dictionary Transform
	Contextual Transform
	Context Adaptive Variable Length Coding and Context Adaptive Variable Binary Arithmetic Coding

	Prediction/Residual Framework
	Multimedia Compression
	Discrete Cosine Transform
	Discrete Wavelet Transform

	Previous Work on Domain-Specific Video Multimedia Data Compression
	Region-Prioritizing Video Compression methods
	Video Compression Methods That are Built on Existing Standards

	Miscellaneous Topics in Modern Multimedia Compression
	Point Spread Function in Image and Video Acquisition Process
	Bandwidth Limited Transmission Channel: Bluetooth Low Energy Broadcasting Mode
	Multimedia Data Quality Evaluation Using Statistical Tests

	Video Compression to Preserve Analysis-Critical Information
	Related Work
	Overview
	Analysis-Preserving Compression
	Analysis-Aware Compression
	Statistical Tests

	Methods
	Segmentation Stage
	Compression Stage
	Post-Processing Stage
	Analysis-Aware Video Quality Measurement

	Results
	Analysis-Preserving Compression Results
	Analysis-Aware Compression Results

	Summary

	Image Compression to Generate Energy Efficient Broadcast Image Data
	Related Work
	BLE System Characterization
	Image Beacon and Use Cases
	Long-term Surveillance Systems
	Navigation Systems
	Internet of Everything Minus the Internet
	New Applications

	Challenges in Building an Image Beacon
	Limited BLE Bandwidth
	The Case for Lossless Image Broadcast
	The Case for Compressed Image Broadcast

	Algorithm Design
	Patch-Based Binary Image Compression Algorithm
	Overview of the Color Image Beacon System
	Multiview Capture and Depth Estimation
	Color Image Encoding

	Empirical Evaluation
	Image Beacon Implementation Details
	Binary Image Beacon System Evaluation
	Color Image Beacon System Evaluation

	Real Deployment
	Write-Read-Recognize
	Navigation in the Building

	Summary

	Extraction and Compression of Augmented Reality Content for Low Power Augmented Reality System
	Related Work
	Overview of MARBLE
	Two Phases of MARBLE
	Internal Modules and Basic Workflow
	Advantage of MARBLE

	Application Content Generation
	Visual Features
	Selecting Unique and Useful Features
	Storing Camera Properties
	Generating AR Content

	Real-Time AR Content Rendering
	BLE-based Location and Viewing Angle Estimation
	Camera-based Location and Viewing Angle Estimation
	Fusion of Multiple Sensor Inputs
	Rendering Objects

	Implementation Notes
	Evaluation
	Microbenchmarks
	Algorithm Evaluation

	Summary

	Generative Compression as an Alternative Approach to Extreme Compression
	Introduction
	Related Work
	System Architecture
	Offline Training
	Online Capture, Broadcast, and Render

	Algorithm
	Background on Variational Autoencoder (VAE)
	Background on Generative Adversarial Networks (GAN)
	VAE-GAN in Deep Beacon
	Compressed VAE-GAN Embedding

	Embedding Size Reduction Algorithm
	Data Packet Format
	Evaluation
	Experimental Setup
	The Choice of Embedding Size
	Comparision with JPEG Encoding
	Performance on Different Image Types
	Impact of Number of Beacons
	User Study
	Comparison with Other Image Beacon Systems

	Summary

	Conclusion and Discussion
	Summary of Contributions
	Microscopy Video Compression
	Image Compression for BLE Beacons
	MARBLE: Augmented Reality Application Data Compression for Bluetooth Low Energy Devices

	Discussion and Future Work
	Microscopy Video Compression
	Image Compression for BLE Beacons
	MARBLE: Augmented Reality Application Data Compression for Bluetooth Low Energy Devices

	Remaining Technical Issues
	MARBLE: Generic Gesture Capture and Rendering
	Smart Packet Rotation Strategy in Bluetooth Low Energy Broadcasting
	No-Calibration Deployment for MARBLE

	BIBLIOGRAPHY

