
University of Heidelberg / Heilbronn University
Medical Informatics

Master Thesis

Interactive application independent data processing using synthetic filesystems

Clas Rurik

176965

October 30, 2012

First examiner: Prof. Dr. Dirk Heuzeroth
Second examiner: Prof. Dr. Oliver Kalthoff

Declaration of Authorship
I hereby declare that this thesis has beenwritten entirely as the result of my ownwork without
the use of documents or aid other than those stated below.

This work has not been submitted, either in part or whole, for a degree or qualification at any
other University

Clas Rurik
Heilbronn, October 30, 2012

V

Abstract
In this thesis a software system is proposed that provides transparent access to dynamically
processed data using a synthetic filesystem for the data transfer as well as interaction with the
processing pipeline.

Within this context the architecture for such a software solution has been designed and im-
plemented. Using this implementation various profiling measurements have been acquired
in order to evaluate the applicability in different data processing scenarios. Usability aspects,
considering the interaction with the processing pipeline, have been examined as well.

The implemented software is able to generate the processing result on-the-fly without modifi-
cation of the original input data. Access to the output data is provided by means of a common
filesystem interface without the need of implementing yet another communication protocol.

Within the processing pipeline the data can be accessed andmodified independently from the
actual input and output encoding. Currently the data can be modified using a C/C++, GLSL or
Java front end.

Profiling data has shown that the overhead induced by the filesystem is negligible for most us-
age patterns and is only critical for realtime processing with a high data throughput e. g. video
processing at or above 30 frames per second where typically no file operations are involved.

VI

≺There are three ways of doing something.�
≺The easy, the hard, and the third.�

VII

Acknowledgments
Myhumble thanks go to the following people and institutions for their influence on the concept
behind and the words in front of this thesis.

• My advisor Prof. Dr. Dirk Heuzeroth for his influence in making this document as easy to
read as possible.

• The community for providing such a vast amount of frameworks and libraries to build on.

• Unix, BSD, MINIX, Plan 9 and Linux for themany great concepts and ideas that have been
promoted over such a long time.

VIII

Contents IX

Contents

List of Figures XIII

List of Tables XIII

List of Measurements XV

List of URLs XVI

1 Introduction 1
1.1 Motivation . 1
1.2 Proposal . 2
1.3 Scope and objectives . 4
1.4 Chapter overview . 4

2 Fundamentals 7
2.1 Image processing . 7

2.1.1 Common processing tasks . 7
2.1.2 Image files and formats . 13

2.2 Filesystems and the VFS . 15
2.2.1 The Virtual Filesystem (VFS) interface 15
2.2.2 Synthetic/Pseudo filesystems . 16
2.2.3 User-space filesystems . 16
2.2.4 FUSE and 9P . 17

2.3 Relevant architectural patterns . 18

3 Analysis 23
3.1 Functional requirements . 23
3.2 Non-functional requirements . 24
3.3 Evaluation and success criteria . 24

3.3.1 Functional requirements . 24
3.3.2 Profiling comparison . 25

4 Related Work 27
4.1 Frameworks and Toolkits . 27

4.1.1 VTK/ITK . 27
4.1.2 OpenCV . 28

4.2 Interfaces . 28
4.2.1 Applications . 28
4.2.2 (Web-)Services . 30
4.2.3 Userspace filesystems . 30
4.2.4 HDFS/MapReduce . 31

5 Implementation 33
5.1 Methodology . 33

5.1.1 Programming language and filesystem interface 33
5.1.2 Goals and requirements . 34
5.1.3 Implemented design patterns . 34

5.2 Design and user interaction . 34

X Contents

5.2.1 Startup and initialization . 34
5.2.2 Types and file formats . 39
5.2.3 Modifications and change notifications 41

5.3 Language frontends . 42
5.3.1 C/C++ . 44
5.3.2 Java . 44
5.3.3 OpenGL/GLSL . 45

5.4 File formats and flags . 47
5.5 Tools to improve user interaction . 50
5.6 Implementation of the requirements . 51

6 Evaluation 57
6.1 Interface and user interaction . 57

6.1.1 Overview . 57
6.1.2 Advantages . 58
6.1.3 Usability issues . 59

6.2 Measurement methodology . 60
6.2.1 Gathering of measurement data . 60
6.2.2 Example measurements for the profiling data 61
6.2.3 Subsequent data processing . 63

6.3 Performance evaluation . 63
6.3.1 Preliminary optimizations . 63
6.3.2 Notes about the native and filesystem comparison 64
6.3.3 Raw data throughput . 66
6.3.4 Format and data encoding . 66
6.3.5 Data input (black-box) . 68
6.3.6 Result output (black-box) . 70
6.3.7 Overall filesystem input and output overhead (black-box) 72
6.3.8 Filtering using JIT-compiled C kernels (white-box) 75
6.3.9 Visualization/Filesystem throughput (black-box) 77
6.3.10 OpenGL/Filesystem throughput (white-box) 79

6.4 Functional correctness . 81
6.4.1 Object structure and interaction . 82
6.4.2 FUSE interface and operation tests . 82
6.4.3 Runtime characteristics . 84

7 Conclusion 87
7.1 Successes and problems . 87
7.2 Availability and licensing . 88
7.3 Are we there yet? (Outlook) . 89

7.3.1 User interaction and interfaces . 89
7.3.2 Platform compatibility, multithreading and persistence 89
7.3.3 Integration of language frontends, processing toolkits and DSLs 90
7.3.4 Heterogeneous computing and automated pipeline routing 90

A Appendix XIX
References . XIX

B Test results (Functional correctness) XXIII

Contents XI

C Throughput measurements of selected filesystem interfaces XXIX

D R profiling/measurement processing code XXXI

E Implementation details and instructions XXXVII
E.1 Build instructions and external dependencies XXXVII
E.2 Code metrics . XXXVII

F Selected code extracts XXXIX

G Digital attachment XLI

XII Contents

List of Figures XIII

List of Figures

1 Conventional architecture for data processing pipelines 1
2 Proposed architecture for data processing applications 3
3 Example of an intensity based windowing operation 8
4 Example of linear histogram equalization . 8
5 Examples for intensity-basedmaximum intensity projections 9
6 Examples for different types of noise . 10
7 Common noise reduction methods . 11
8 Visibility of noise in spatial frequency domain 11
9 Binarization and region growing segmentation examples 12
10 Characteristics of destructive image compression 14
11 Applications and the VFS . 16
12 FUSE VFS architecture . 18
13 Pipes and filters design pattern . 19
14 Composite design pattern . 19
15 Decorator design pattern . 20
16 Double dispatch architecture overview . 21
17 Overview of the data pipeline as used in VTK and ITK 27
18 Overview of interactive applications based on different frameworks 29
19 GrapeFSmount and startup output . 35
20 Folder creation in GrapeFS using .c extension 35
21 Content of a newly created GrapeFS folder . 36
22 Simple GrapeFS processing code (passthrough) 37
23 Example C code for GrapeFS to invert data . 37
24 Example for numeric input arguments in C code 38
25 Options to transfer data to the GrapeFS filesystem 39
26 General-purpose image output with GrapeFS 40
27 Exemplary output of the grapefs.encoding attribute 40
28 Sequence diagram for the utime and inotify interaction. 41
29 Class structure of ComputationKernels . 42
30 ComputationKernel API . 43
31 Schematic handling of C code within GrapeFS 44
32 GrapeFS filter using the Java front-end . 45
33 Visualization architecture using OpenGL . 46
34 GLSL shader for visualization support in GrapeFS 46
35 Example visualization output with OpenGL 47
36 DICOM input and general-purpose output visualization 47
37 API to implement formats in GrapeFS . 48
38 Flag attribute to specify the encoding quality (100) 49
39 Flag attribute to specify the encoding quality (1) 49
40 Blur filtering output . 52
41 File manager view of the GrapeFS structure 53
42 Correlation filter output . 53
43 GLSL visualization output . 55
44 Architecture overview . 57
45 Output access example using ParaView and MeVisLab 58
46 Access example using "Internet Explorer" and "Photo Viewer" 59

XIV List of Listings

List of Tables

1 Characteristics of some general purpose image formats. 14
2 Userspace filesystems based on FUSE. 18
3 Available filter templates . 51
4 Conclusive evaluation of the required and the GrapeFS functionality. 87

List of Listings

1 Partial example of a DICOM header . 15
2 List of important file and container formats 23
3 Example listing to connect two processing folders 39
4 Extended attributes example to set the output format 39
5 Partial list of supported general-purpose formats using FreeImage 48
6 grapefs.dlopen code . 50
7 grapefs.mkdir code . 50
8 Example code for blur filter . 52
9 GLSL vertex shader used to transfer the xyz image series coordinates 54
10 GLSL fragment shader used to map the image data 54
11 Code to acquire TSC time stamps for the evaluation measurements 60
12 Kernel output to ensure a reliable TSC counter 61
13 System specific load and system usage measurement method 61
14 Code to obtain exemplary profiling measurements 62
15 Exemplary profiling measurements results . 62
16 Schematic presentation of measuring the black-box results 66
17 List of all implemented test sets . 81
18 oprofile call analysis (mapPath) . 84
19 oprofile call analysis (gfs_write) . 85
20 oprofile call analysis (gfs_read) . 85
21 GrapeFS license terms excerpt . 88
22 CTest execution results . XXIII
23 R evaluation code . XXXI
24 GrapeFS codemetrics . XXXVII
25 Exported interface of ComputationKernel implementations XXXIX
26 Exported interface of DataFormat implementations XXXIX
27 Macro definitions to acquire the runtime profiling data XL

List of Measurements XV

List of Measurements

1 Raw GrapeFS data throughput . 66
2 GrapeFS data input (encoded and raw) . 68
3 GrapeFS data output (encoded and raw) . 70
4 GrapeFS data throughput (input and output) 72
5 GrapeFS compression overhead . 73
6 GrapeFS profiling data for LLVM operations . 75
7 GrapeFS filesystem throughput (Raw) . 77
8 GrapeFS filesystem throughput (Uncompressed TGA format) 78
9 GrapeFS OpenGL filesystem throughput (Raw) 79
10 GrapeFS OpenGL filesystem throughput (JPEG format) 80
11 Raw tmpfs throughput . XXIX
12 Raw FUSE throughput . XXIX
13 Raw 9p throughput . XXIX

XVI List of URLs

List of URLs

1 http://www.barre.nom.fr/medical/samples/ (Image source) 12
2 ftp://medical.nema.org/medical/dicom/2011 15
3 http://dokan-dev.net/en/ . 18
4 http://osxfuse.github.com/ . 18
5 http://en.wikipedia.org/wiki/Filesystem_in_Userspace#Examples 18
6 http://en.wikipedia.org/wiki/File:Composite_UML_class_diagram_(fixed).svg 19
7 http://en.wikipedia.org/wiki/File:Decorator_UML_class_diagram.svg 20
8 http://www.opengl.org/wiki/Legacy_OpenGL 25
9 http://www.vtk.org . 27
10 http://www.itk.org . 27
11 http://ait.web.psi.ch/services/visualization/paraview.html 29
12 http://www.mevislab.de/typo3temp/pics/add6b9b646.jpg 29
13 http://rsbweb.nih.gov/ij/docs/install/images/imagej-window.gif 29
14 http://www.paraview.org . 29
15 http://www.mevislab.de . 29
16 http://oss.sgi.com/projects/inventor/ . 29
17 http://rsb.info.nih.gov/ij/ . 29
18 http://developer.imagej.net . 30
19 https://www.uitwisselplatform.nl/projects/yacufs (Not accessible anymore) . 30
20 http://hadoop.apache.org . 31
21 http://www.iozone.org . 33
22 http://openbenchmarking.org/s/clang . 44
23 http://freeimage.sourceforge.net . 48
24 http://dicom.offis.de/dcmtk.php.en . 49
25 http://halide-lang.org . 59
26 http://julialang.org . 59
27 http://halide-lang.org . 90

List of URLs XVII

Nomenclature

API Application Programming Interface

CIFS Common Internet File System

DICOM Digital Imaging and Communication in Medicine

DSL Domain Specific Language

FBO Framebuffer Object

FUSE Filesystem in Userspace

googletest Google C++ Testing Framework

HTTP Hypertext Transfer Protocol

IDE Integrated development environment

ITK Insight Segmentation and Registration Toolkit

JPEG Joint Photographic Experts Group

NFS Network File System

OpenCV Open Source Computer Vision Library

PNG Portable Network Graphics

RHEL Red Hat Enterprise Linux

ROI Region of interest

TIFF Tagged Image File Format

TSC Time Stamp Counter

VTK (The) Visualization Toolkit

XVIII List of URLs

1

1 Introduction

1.1 Motivation

Data processing is an important part of clinical diagnostics and medical research. To begin
with, data in this field can appear in different forms and dimensions. Starting with time-based
biosignal measurements, up to 3D+t volumetric data sets acquired over a certain time period.
In the context of this thesis, data primarily means 2D imaging data, commonly reconstructed
from previously acquired CT or MRT data sets.

Processing in this case can happen in forms of pre- or post-processing steps. Pre-processing
is an important part of reconstructing an actual image from raw measurement data. Post-
processing can then digitally improve such images even further [Bankman, 2009]. Thereby
supporting the process of acquiring some form of decision or knowledge from these images.
In this context focus is on the latter.

Generally, few or several of these processing steps are combined in a processing pipeline. In
order to improve and ease the interaction with such processing pipelines, several frameworks
and graphical applications have been developed over time. Usually such frameworks provide
modules with existing functionality that can be reused in order to achieve different effects. In
general these toolkits also provide some form of custom programming interface which can be
used to implemented and integrate new modules. Another aspect of these frameworks is to
simplify the handling of different file formats and specifications. Usually some input and out-
put classes exist that allow reading and writing of certain internal data structures.

By utilizing and integrating functionality of the previously described toolkits, graphical appli-
cations have been built to improve interaction with the end-user. These applications provide
easily usable visual elements in order to interact with processing pipelines in order to achieve
a specific objective. A schematic overview of such an architecture and the communication be-
tween the different layers can be seen in figure 1.

Application

Filesystem I/O Files/Data

External processes

/ Scripting engine

Figure 1: Conventional architecture for data processing pipelines and applications. Modules are bound
to a specific framework by implementing a certain programming interface. These modules can be used
programmatically byutilizing the given framework. Usually graphical applications interactwith theuser
and provide a visual way of interacting with incorporated frameworks. Data is loaded directly from a
persistent filesystem using standardized interfaces.

2 1 Introduction

Quite some effort has gone into simplifying interactionwith these processing pipelines and the
development of custom processing algorithms.

However, combining lots of different frameworks and different programming languages is still
a difficult task. So often the only feasible way of sharing data is by using a mutual storage
and data format. Usually this involves the persistent storage of data in some image format
within the filesystem. When implementing customprocessing code it is usually only feasible to
implement a single interface. This limits newmodules to a certain framework, thereby causing
a considerable amount of fragmentation.

1.2 Proposal

The major issue of the previously described architecture is the self-contained integration of
functionality into individual applications. Due to this kind of integration, extensibility and ac-
cess to the processing pipeline is only possible by implementing the specific interface used by
the application. There havebeen attempts to solve this problemwith the utilization ofweb ser-
vices and ensemble languages. This way, the functionality is provided by a central service and
invoked using a specific, mostly loose, interface. However, web-services also have the general
problem that client applications need to implement a specific transfer interface or communi-
cation protocol in order to send or receive data. For instanceWSDL andHTTP specifications are
being used in this field.

There is also theDICOMstandardwhich strives to cover the field of transferring anddistributing
medical images in a standardizedway. However, processingof the imagedata is not considered
in this context and generally only specialized medical applications implement this protocol.
There have been approaches to combine the DICOM standard andworkflowwith web services,
for instance by [Anzböck and Dustdar, 2005]. However, these approaches basically suffer from
the same drawbacks as presented in the preceding paragraph.

This thesis proposes to move substantial parts of the processing code and algorithms from a
framework with custom non-standard interfaces into the filesystem layer itself. This way the
need for a custommodule interface in order to access specific data is unnecessary. This func-
tionality is comparable to general-purpose service oriented filesystems as described and pro-
posed by [Hensbergen et al., 2009]. The evaluation there comes to the conclusion that REST-
ful HTTP interfaces, recently gaining attention by web developers, are "essentially a simpli-
fied web-instantiation of synthetic file system based service interfaces". Thereby, using the file
based approach, similar services can "provide a unified language- and network-neutral inter-
face to its users".

A schematicoverviewof theproposedarchitecture canbeseen in figure2. This architecturehas
been implemented incontextof this thesis. The resulting filesystemhasbeennamed"GrapeFS".

The proposed approach has the benefit that any kind of application or automated processing
application has direct access to the input, output and intermediate processing results without
the need of implementing a specific interface. The application itself is basically reduced to
a graphical user interface which interacts with the filesystem to transfer input data, specify
processing code or variable parameters. Generally spoken, there is not even the need for a
graphical application. For instance the whole computation process could be controlled and
managed solely using shell scripts or scripting languages.

1.2 Proposal 3

Application

Filesystem I/O

External processes

Figure 2: Proposed architecture. Processing algorithms and functionality is implemented in the filesys-
tem layer itself, eliminating the need for a mutual framework API to transfer or access data.

Applications accessing this filesystem interface can be of any kind. An obvious example for
this are research tools and applications for the reasoning process in clinical routine. However,
even intermediate applications like HTTP servers would be able to access this interface, giving
the end-user the ability to transparently access the data using a web browser or other access
solutions.

In order to analyze the needed functionality and specifications for the evaluation of a suitable
implementation, conventionalmedical dataprocessing scenarioswill be considered. This eval-
uation includes aspects of usability, as well as, benefits and drawbacks of the intermediate
filesystem compared to the conventional approach of directly interacting with the processing
functionality. The technical evaluationwill includeprofilingmeasurements inorder to evaluate
the feasibility of performing aforementioned usage scenarios.

4 1 Introduction

1.3 Scope and objectives

The proposed architecture uses the standardized filesystem interface and thus can be utilized
by any kind of data processing application. This thesis concentrates on medical images and
typical processing tasks in this field. Functional and non-functional requirements will be con-
solidated in detail within the analysis. Some explanations of common use cases will be given
in the fundamentals.

The evaluation of the implementation provided in this thesis concentrates on characteristics
with special attention on the following questions:

Possibility of implementing different scenarios

Is it possible to implement the required functionalityusinga filesystem interface? Thisquestion
covers the technical possibility of implementing a certain functionality. In this context themost
promising and efficient way of implementing a certain behavior is being evaluated, including a
consolidation of possible disadvantages.

Comparisonofbenchmarkingdatabetweenthe filesystemandtheconventionalapproach

Certain performance and benchmarking data from the conventional and the filesystem imple-
mentation will be collected, compared and evaluated. Possible characteristics for this are the
filesystem overhead for the input, output and processing operations.

Possible improvements when using the filesystem abstraction

This question analyzes possible improvements when utilizing certain features that are exclu-
sively available when using a filesystem interface. Such improvements could emerge due to
a simplified or transparent interaction with the data when using a filesystem as intermediate
interface.

1.4 Chapter overview

Chapter 2 - Fundamentals

Within the fundamentals the basic knowledge and technical foundations will be introduced.
Additionally some of the essential processing scenarios and their context will be explained.

Chapter 3 - Analysis

The analysis will consolidate functional and non-functional requirements that an ideal imple-
mentation should have in order to comply with the initial proposal.

1.4 Chapter overview 5

Chapter 4 - Related Work

This chapter will feature existing frameworks and applications and highlights some of their
more important features and characteristics. These characteristics will be compared with the
consolidated requirements from the previous chapter.

Chapter 5 - Implementation

The implementation introduces the interaction with the realized filesystem interface and how
to achieve different effects using this interface. Additionally, technical details of some com-
ponents and the role of these components in extending the available functionality will be ex-
plained.

Chapter 6 - Evaluation

In respect of the initial requirements, important profilingmeasurements will be presented and
evaluated in this section. These profiling results have been acquired previously for both, the
conventional and the filesystem implementation, in situations that are as comparable as pos-
sible. Additionally, this chapter will present a recall of evaluating the usability of the realized
interface.

Chapter 7 - Conclusion

The conclusion will begin with a summary of the overall thesis and a final look at the acquired
results. Ultimatelywithin the outlook someof themost promising enhancements and possible
extensions will be highlighted.

Appendix and attachments

The appendix contains some additional attachments like code snippets, build requirements
and a comprehensive list of all test cases.

6 1 Introduction

7

2 Fundamentals

2.1 Image processing

The different types of data and tasks in data processing significantly affect the required func-
tionality of processing applications and services.

Section 2.1.1 starts with an overview of common image processing techniques. The effects of
these techniques will be illustrated by addressing the common reasons for certain processing
operations. This sectionwill also point outwhy these reasons are not just avoidable during im-
age acquisition. To simplify the context in a reasonablemanner this section assumes grayscale
images, based on the measured intensity during image acquisition.

Section 2.1.2 will outline some of the commonly used file formats in this environment. Impor-
tant characteristics of different formats will be featured and where the use of these formats is
reasonable.

The rest of this sectionwill focus on important technical fundamentals regarding the filesystem
interface in general. These explanations should be helpful in order to understand technical
details of theproposed implementationandhow the interactionwith this interface is supposed
to work.

2.1.1 Common processing tasks

Image visualization

Image visualization covers all operations that are used to improve the visibility and recogniz-
ability of certain components within the image. Typically these parts are certain anatomical
structures of interest. The visualization can be done using a single image or by combiningmul-
tiple images from an image series.

Based on the imaging modality or the physiology of certain body parts the interesting aspects
may only occupy a certain grayscale range. Depending on the remaining image this intensity
range could be relatively small. There are two common operations that canmap the grayscale
values from the original image to the visualized values. Windowing and histogram operations.

Intensity windowing

By applying a windowing operation, certain parts of the image can be masked. This is usually
used to remove information that do not contain any additional knowledge. For instance the
result of a windowing operation to remove bright bone structures is illustrated in figure 3. Win-
dowing operations are quite effective when the important parts exclusively occupy a certain
intensity range. Furthermore, this operation can be combined with histogram operations to
maximize usage of the available output contrast [Pisano et al., 2000].

8 2 Fundamentals

Figure 3: Example of an intensity basedwindowing operation. The intensity range from the bright bone
structures has been cut off, only leaving larger parts of the darker tissue.

Histogram equalization

Histogram equalization is a global operation that strives to maximize usage of the displayable
output contrast, thereby improving the visibility of structures with limited intensity variation.
This is basically a stretchoperationon thegrayscalemapping thathas twoeffectson theoverall
histogram. The first is that the available grayscale range will be utilized completely. Unused
ranges, e.g. as they occurwhen applying an intensitywindow,will be removed completely. The
second effect stretches the grayscale range based on their actual utilization within the image
[Galatsanos et al., 2003].

An example of the influence of histogram equalization on the histogram distribution can be
seen in figure 4.

Figure 4: Example of linear histogram equalization. The more utilized intensity ranges take up a wider
grayscale range. This is also indicated by the linear increase of the cumulative histogram. All available
grayscale values are being utilized.

2.1 Image processing 9

Volume visualization

The concept of visualizing volumes based on the measured intensity or segmented regions by
itself is not a recent invention [W.Wallis and Miller, 1990]. However, in recent years the compu-
tation capabilities of hardware devices has increased significantly. This has created an actual
possibility of using these techniques interactively in daily routine.

Figure 5: Examples for intensity-based visualizations using a maximum intensity projection. Rays are
casted through the image series while taking the gathered intensities into account.

Ray casting and tracing are among themost commonly usedmethods for volumetric visualiza-
tion. The increased computing potency generally allows the use of more advance techniques.
The presentation of surfaces can be improved even further by considering the effects of reflec-
tion and refraction.

Avolumetric visualizationgeneratedusing theso-called"MaximumIntensityProjection" is shown
in figure 5.

There are recent developments in increasing the speed of such visualization techniques, for
example by using sphere tracing in combination with distance fields [Quilez, 2008].

Digital image enhancements

Noise reduction is a common pre-processing step in digital image enhancement. Generally
the purpose is to reduce distortions within the image and provide an improved and clearer
visibility of fine structures. This process is supposed to ease the distinction between normal
and abnormal tissue or other pathological findings [Bankman, 2009].

There are two reasons why noise reduction is necessary as a standard method in image pro-
cessing. These reasons cause different types of noise, therefore also requiring different noise
reduction techniques.

The first kind of noise is naturally caused by the imaging procedure. This type of noise has
characteristics similar to Gaussian white noise. CT imaging measurements implies Poisson

10 2 Fundamentals

noise, alsoknownas shotnoise. Noise introducedbyMR imagingcanbecharacterizedasRician
noise [Gravel et al., 2004].

Lowering this kind of noise is possible. However, this usually implies longer imaging times. In
case of CT imaging this comes down to higher or longer exposure and thereby higher radiation
damage.

Figure 6: Examples for different types of noise. Left: Gaussian-like noise as commonly introduced by
the imaging process. Right: Salt and pepper noise as caused by digital transfer errors or data loss.

The second kind of noise is characterized as Salt and pepper noise. Themost prominent char-
acteristics of this noise are very bright (white) or very dark (black) pixels. This type of noise
is commonly caused by digital errors during image transfer, data loss during storage or faulty
detector elements.

Examples for both types of noise can be seen in figure 6.

Methods

Generally digital image enhancement can be done in spatial or spatial frequency domain.

Processing in spatial domain directly interacts with the image pixels as seen in the normal im-
age visualization. Modifications within this domain have a local effect within the image.

Processing in frequency domain interacts with the magnitude and phase components of each
frequency within the image. Modifications in frequency domain have global effects within the
actual image. Transformation into frequency domain can be done using the Fourier transfor-
mation and inverted the same way.

A simple way of handling Gaussian noise in spatial domain is by using a simple mean filter,
results of this operation are far from perfect though. On the other side salt and pepper noise
can be treated very effectively using order-statistics filtering like a media filter.

See figure 7 for two examples of different effects that can be achieved using these filter opera-
tions.

2.1 Image processing 11

Figure 7: Examples for common noise reduction methods. Left: Reduction of Gaussian noise using a
simple mean filter. The noise is reduced but the image becomes blurry. Right: Reduction of salt and
pepper noise using a median filter. This noise reduction is very efficient and yields very good results.

Some types of noise are clearly visible in spatial frequency domain. Figure 8 illustrates the
potential effect of high frequency noise in frequency domain. There is a possibility that these
types of noise can be reduced in frequency domain without affecting the important image in-
formation excessively. As a standard method low-pass and high-pass filters can be performed
quite efficiently in frequency domain.

Figure 8: Example for the visibility of noise in spatial frequency domain. The ratio of high frequency
parts is increased clearly.

12 2 Fundamentals

Image segmentation

Segmentation is the process of separating relevant from irrelevant structures. Contrary to hu-
man capabilities this process can be quite challenging for algorithmic approaches, especially
when functioning in an automated environment [Bankman, 2009]. The ultimate result is the
contour or volume of a certain region (ROI). ROIs are commonly used for further analysis in the
reasoning process, registration of multiple images or visualization.

Methods

The easiest way of segmenting regions is based on the absolute pixel value. These values can
be analyzed globally or locally by using the similarity of multiple pixel values.

Figure 9: Examples of image segmentation. Left: Intensity-based binarization. Right: Region growing
based on intensity and a single seed point. 1

A potential way to globally segment structures with a very limited intensity range is by apply-
ing a binarization filter using a certain threshold. All pixels within this threshold range will be
marked as foreground (while) and all remaining pixels will be assumed as background (black).

Local segmentation is possible using a region growingmethod. Regions with a higher variance
ofpixel values canbe segmentedby includingpixelswitha value similar to their neighbors. This
method usually requires a seed point that is used as the initial start for the growing process.

Examples of these two basic methods can be seen in figure 9.

Image registration

Registration is the process of aligning identical structures and image regions of two or more
images. There are two common reasons why this process in unavoidable [Bankman, 2009].

• Images have been acquired using the samemodality but at different times.
1URL http://www.barre.nom.fr/medical/samples/ (Image source)

2.1 Image processing 13

• Images have been acquired using different modalities and at different times.

Using images from different modalities poses a special challenge. Due to the differences in
image acquisition even identical structures may result in completely different intensity distri-
butions.

Methods

Registration of two images is generally done by optimizing a certain similarity measure. When
comparing images from the samemodality thismeasure can be simply based onmutual inten-
sity values. When comparing images from different modalities this is not possible. In this case
the measure for image similarity can be based on certain anatomical features that have been
segmented and tagged identically in both images.

There are different type of registration. Rigid registration for example only considers the offset
and rotation against each other. However, it is not unusual that image distortions need to be
considered. In this case the registration need to find a more complex transformation that also
allows other kinds of deformations.

2.1.2 Image files and formats

Imaging files and formats

Image files, formats and containers are always involved when transferring, accessing and stor-
ing medical data. Demand and complexity of the latter has increased particularly due to the
requirement of storing medical images over a long time. Also collaborative efforts have raised
the need to conveniently exchange and access medical data [Bankman, 2009].

Compressed file formats usually provide two different categories of image compression tech-
niques. Lossless (reversible) and lossy (irreversible).

Lossless compressionmethods provide a lower compression ratio but ensure that every detail
and original information within the image will be preserved. After compression and decom-
pression the image will be fully identically.

Lossy compression can provide significant higher compression ratios. Unfortunately this im-
plies the loss of smaller details within the image which can be a significant drawback, espe-
cially for medical reasoning. An exaggerated example of a possible loss of detail is shown in
figure 10.

Most file formats are restricted to a specific set of compression techniques. Examples for this
are the lossy JPEG format and the lossless PNG format. However, some container formats like
TIFF or DICOM are able to utilize different compression methods. Therefore these containers
can be usedmore flexibly by using lossy/lossless compression depending on the current needs
and requirements [Graham et al., 2005].

Image compression

In medical diagnostics image compression can be problematic as fine structures and aberra-
tions can be degraded by compression algorithms easily. Lossy compression methods are es-

14 2 Fundamentals

pecially suitable in situationswhere the transfer rate is limited or the data size has a noticeable
impact. This is of importance in remote and network scenarios. Therefore, possible uses for
lossy compression methods can be in teleradiology [Erickson, 2002]. Image archiving in situa-
tions with limited storage space could be another possible scenario.

Figure 10: Dramatized example of irreversible image compression. Fine structures are completely un-
recognizable due to the block artifacts. (JPEG compression with quality <10)

General-purpose image formats

General-purpose image formats are usually the only option when data is supposed to be ac-
cessed by non-medical applications. These applications typically do not support the DICOM
format at all. General-purpose formats can also be considered as a valid optionwhen exchang-
ing images without a specific need of preserving patient or modality information.

Table 1 lists some of the more important general-purpose formats and characteristics accord-
ing to [Wiggins et al., 2001].

Parameter GIF89a JPEG TIFF PNG
Maximum color depth 8-bit (256) 24-bit (millions) 48-bit (trillions) 48-bit (trillions)
Compression technique Lossless Lossy Lossless (lossy) Lossless
Interlacing Yes (1D) No No Yes (2D)
Gamma correction No No Yes Yes
Patent issues Yes No (yes) Yes No

Table 1: Characteristics of some general purpose image formats.

DICOM

The DICOM standard is more than a container format for storing images and acquisition infor-
mation. Additionally DICOM specifies a well defined protocol for the exchange, storage and

2.2 Filesystems and the VFS 15

printing of images between different devices. This standard is available online as a digital doc-
ument 2 [Association, 2011].

1 0008,0008 Image Type: DERIVED\PRIMARY\RECON TOMO\EMISSION
2 0008,0022 Acquisition Date: 1993.11.24
3 0008,0023 Image Date: 1995.05.30
4 0008,0032 Acquisition Time: 09:53:00
5 0008,0033 Image Time: 11:14:39
6 0008,0060 Modality: NM
7 0008,0070 Manufacturer: ACME Products
8 0010,0010 Patient's Name: Anonymized
9 0018,0015 Body Part Examined: HEART
10 0018,0050 Slice Thickness: 6.231669
11 0028,0008 Number of Frames: 13
12 0028,0009 Frame Increment Pointer: T
13 0028,0010 Rows: 64
14 0028,0011 Columns: 64

Listing 1: Partial example of a DICOM header

However, in this context focus will be on DICOM as a file format for the storage and exchange of
images. Some of the information about the patient and the image modality stored in a DICOM
header can be extracted from listing 1.

2.2 Filesystems and the VFS

2.2.1 The Virtual Filesystem (VFS) interface

The overall idea of the proposed architecture is to utilize an interface for the processing service
that is implemented and supported by every existing application. Fortunately such an inter-
face exists and is widely used: The filesystem. Any application is able to access and modify
data in the filesystem by using a standardized and mutually known interface. To be precise,
applications use a specific API, for instance implemented by glibc in Linux. This API calls the
VFS interface provided by the kernel. An illustration of this interaction is shown in figure 11.
This VFS interface has certain semantics that can be assumed as valid for every filesystem im-
plementation utilizing this interface [Galloway et al., 2009].

2URL ftp://medical.nema.org/medical/dicom/2011

16 2 Fundamentals

VFS

glibc

Application

Kernel space

User space

Figure 11: Interaction between applications in user-space and the VFS layer in kernel-space.

Most filesystems implementing this interfaceprovideapassive lookatdata that ismostly static.
But this is no necessity at all. So-called "pseudo" filesystems apply an active data model that
provides a dynamic view on anything expressible as bits and bytes [Minnich, 2005].

2.2.2 Synthetic/Pseudo filesystems

The idea of pseudo or synthetic filesystems is to utilize the mutual filesystem interface to pro-
vide a viewonanactive datamodel. This basicallymeans that not all datawithin the filesystem
is user-provided or static. Instead the files within a synthetic filesystem provide an abstract
view on arbitrary data structures or interfaces. This way data can even change over time with-
out any user interaction at all.

Such functionality is not limited to user-space filesystems. For example this approach is used
by the sys and proc filesystems in Linux [Mochel, 2005]. These filesystems provide an interface
to access andmodify kernel variables and information of running processes.

There are also several examples of such filesystems in user-space. For instance a filesystem
that provides transparent access to aMySQL database [Ordulu, 2010] or XCPU2which provides
functionality to manage virtualized environments [Ionkov and Hensbergen,].

2.2.3 User-space filesystems

The usual approach of providing a VFS implementation is by directly implementing the inter-
face in kernel-space. However, it is also possible to provide an implementation in user-space.
Following this approachhasadvantagesaswell asdisadvantages. Themostprominentof these
will be presented in the rest of this section.

2.2 Filesystems and the VFS 17

Advantages

Features available in user-space

Use of existing user-space libraries and frameworks is a lot easier when done directly in user-
space. Thereby, user-space filesystems can provide an elegant way of providing access to a
variety of different processing functionality. Also access to GPUhardware is usually easier from
user-space, as interfaces like OpenGL or CUDA are accessed through a user-space library.

Stability

The actual filesystem implementation is executed in user-space and only the filesystem part of
the FUSE driver is hosted in kernel-space. Therefore, any faults or errors within the implemen-
tation have no severe effect on the kernel execution itself.

In contrast to this, memory faults and other undefined behavior in a kernel-space implementa-
tion can have serious consequences like system crashes or any possible kind of data loss/cor-
ruption.

Licensing

The Linux kernel itself is distributed using the GPLv2 license. This also applies to any module
within the kernel tree, basically imposing extensive licensing constraints. When using a user-
space filesystem, only the FUSE driver needs to comply with the GPL license. The user-space
implementation itself can be distributed using arbitrary licenses.

Disadvantages

There is some general criticismabout user-space filesystemsmainly in the area of performance
when compared to native in-kernel filesystems. [Torvalds, 2011] This issue will be considered
when analyzing the individual throughput needs and evaluating profiling information from the
filesystem implementation.

2.2.4 FUSE and 9P

A very common way of implementing a user-space filesystem this is by using the FUSE library.
FUSE provides a proxy-like interface between the kernel and the filesystem implementation.
This interfacecanbe implemented inuser-spaceand ispassed through themutual VFS inkernel-
space. GrapeFS uses FUSE to provide its filesystem interface, the reasons for this will be ex-
plained later in the implementation (section 5.1).

Figure 12 illustrates an overview of the interaction between the VFS call in user-space and the
GrapeFS implementation on the other side.

18 2 Fundamentals

VFS

glibc

Kernel space

User space

FUSE

libFUSE

GrapeFS

Figure 12: Interaction architecture between the kernel VFS and the FUSE library.

The FUSE concept has been adapted by other operating systems as well. ReFUSE is a port
for BSD based [Kantee and Crooks, 2007] systems. Dokan provides a similar concept for Win-
dows based systems 3. A recent example for the Dokan driver is provided by the glassfs project
[CodiceSoftware, 2012]. FUSE implementations are also available for Mac OS X. The most re-
cent by the OSXFUSE project 4.

A frequently updated list of FUSE examples ismaintainedon the correspondingWikipedia page
5. A brief overview of common filesystems using the FUSE library is shown in table 2.

Name Description
SSHFS [Hoskins, 2006] Transparently access remote data using a SSH tunnel.
ZFS-FUSE FUSE implementation for ZFS pools.
TrueCrypt 6 Transparent encryption.
NTFS-3g NTFS implementation in user-space

Table 2: Userspace filesystems based on FUSE.

There are other ways of providing a filesystem interface in user-space as well. For example by
implementing the distributed resource protocol used in the Plan 9 operating system [Minnich,
2005]. These services can be mounted into the filesystem structure the same way as FUSE. A
modern implementation of this protocol is available in Linux as well as the 9P2000 revision
[Van et al., 2005]. For instance, using the 9P2000.L protocol, a filesystempassthrough has been
developed with support for paravirtualization. This project, called VirtFS, has been built into
the QEMU project [Jujjuri et al., 2000].

2.3 Relevant architectural patterns

Most important design patterns described here have their origin in the well known book "De-
sign Patterns: Elements of Reusable Object-Oriented Software" or are similar to architectural
patterns introduced there [Gammaet al., 1994]. Section 5.1.3 contains a description of the spe-
cific implementation in GrapeFS.

3URL http://dokan-dev.net/en/
4URL http://osxfuse.github.com/
5URL http://en.wikipedia.org/wiki/Filesystem_in_Userspace#Examples
6Unclear if still using FUSE for XTS encryption mode. But used for older LRW and CBCmodes.

2.3 Relevant architectural patterns 19

Pipes and filters

The approach in many different frameworks like VTK and ITK is based on the pipeline pattern.
The overall processing pipeline consists of several individual nodes. Each node can receive
input data from other nodes while providing output data to connected nodes.

The first node can receive input data from sources outside the individual pipeline. The last out-
put nodeprovides theprocessing result to the caller. Nodes canhavemultiple input andoutput
connections. Cycles areusually not allowed. Figure 13 illustrates the commonutilizationof this
pattern and the communication between the different filters.

Input Processing 1 Processing 2 Output

Figure 13: Pipes and filters design pattern.

This pattern is similar to the "Chain of Responsibility" pattern from "Design Patterns" [Gamma
et al., 1994]. However, within the pipeline pattern every node is expected to handle the data.
Data is not supposed to be passed through the pipeline and only processed by a single respon-
sible node.

Composite pattern

The composite pattern describes how the structure of a child/parent pattern is seen by inter-
acting external objects. Using this pattern thedistinctionbetween leaf and intermediate nodes
within a tree-like structure is usually avoided.

Component

+ operation()

Leaf

+ operation()

Composite

+ operation()

+ add()

+ remove()

+ getChild()

1

0..*

parent

child

Figure 14: Composite design pattern. 7

In order to simplify the interfaces within the tree structure, all classes are based on a single
base class and therefore share a common interface. An example of such a class hierarchy in
UML notation is shown in figure 14.

7URL http://en.wikipedia.org/wiki/File:Composite_UML_class_diagram_(fixed).svg

20 2 Fundamentals

Decorator pattern

The decorator pattern is used to extend an existing class (structure) with additional function-
ality from outside the actual class structure.

Component

+ operation()

ConcreteComponent

+ operation()

Decorator

- component

+ operation()

ConcreteDecorator

+ operation()

Figure 15: Decorator design pattern. 8

In contrast to inheritance from existing classes, the decorator pattern allows to extend classes
without interfering with the existing inheritance structure. This allows for additional flexibil-
ity when extending existing structures with additional, possibly optional, functionality. This
also provides a way of usingmultiple decorators for different functionality without the need of
solving conflicts betweenmultiple decorators.

An example of the interaction within such a class hierarchy in UML notation can be seen in
figure 15.

Double dispatch

Double dispatch is a special caseofmultiple dispatch that is used inpolymorphic programming
situations to dynamically mapmethod calls to the correct argument type. This pattern is used
in situationswhere the specific object type cannot bededuceddirectly from theargument type
and type lookup, like�typeof�, is to be avoided.

8URL http://en.wikipedia.org/wiki/File:Decorator_UML_class_diagram.svg

2.3 Relevant architectural patterns 21

FirstObject SecondObject

Call(Object) Dispatch(Object)

Call(SecondObject)

Figure 16: Double dispatch architecture overview.

Due to the unknown type, the first call dispatches to a genericmethodusingObject as the argu-
ment type. Thismethod calls the actualmethod on the target object. As the object itself knows
the correct type the second call is dispatched using the correct argument type at runtime. An
example of this call structure is illustrated in figure 16

22 2 Fundamentals

23

3 Analysis

This chapter elaborates on the needed functional and non-functional requirements. These re-
quirements will be evaluated with respect to typical usage scenarios and requirements. For
instance, froma technical perspective this covers the need for different file formats and certain
capabilities of data processing.

Afterwards, based on this functionality, different evaluation and success criteria will be speci-
fied. This includes profiling measurements which will be collected from the conventional and
the filesystem implementation. Thesemeasurementswill later beused for a comparisonbased
on the success criteria defined in this chapter.

3.1 Functional requirements

Format transparency

The intermediate data processing is required to be independent of the actual input and output
format of the data.

This imposes some restrictions on the internal data handling:

Whenever the user transfers data into the processing pipeline, the format of this data needs
to be handled transparently. The encoded data needs to be translated into a common and
processable data representation.

Within the processing pipeline the data is only accessed and processed using this common rep-
resentation. Also, the preceding and subsequent pipeline elements must not have any influ-
ence on this behavior.

The aforementioned transparency also applies to the output data when being accessed by an
external process. The output format needs to be definable independently from the processing
operations or the initial input format.

Listing 2 lists some of the important file formats from [Wiggins et al., 2001].

• DICOM

• PNG

• JPEG

• TIFF

Listing 2: List of important file and container formats.

Access transparency

Access to intermediate processing results needs to be provided at any stagewithin the process-
ing pipeline, not only to the final result. Of course, this applies to the data transfer between
different processing nodes, as well as, access from external processes.

24 3 Analysis

Processing

From a functional perspective, the processing pipeline must be at least capable of performing
common imageprocessing tasks. These tasks havebeen listed anddescribed in the fundamen-
tals section. The data processing should be implementable using conventional programming
languages andmethods. Reuse of functionality fromexisting frameworks is beneficial and pro-
vides a great way of extending the base functionality without excessive effort.

3.2 Non-functional requirements

Extensibility

The implementation needs to be as extensible as possible. This includes support for different
file formats, programming languages and frameworks.

Interactivity

The processing operations and settings must be thoroughly controllable using the standard
(filesystem) interface.

Either the input data format needs to be detected automatically, or the user must be able to
specify the type of input data. The format of the output data needs to be specifiable as well.

The processing pipeline must not be in any way static or pre-defined. Definition of processing
nodes and the algorithms performed by these nodes should be specifiable at runtime. If ap-
plicable, variable parameters should be accessible directly using the filesystem. Likewise this
also applies to the connection and data transfer between different processing nodes.

3.3 Evaluation and success criteria

3.3.1 Functional requirements

Functional correctness of the implementation will be validated using a comprehensive set of
automated test cases. These test cases should cover all mandatory requirements from the fol-
lowing paragraphs.

The following scenarios will be highlighted as minimal requirements:

Req. #1: Image data input and data processing

• Import of a single image file in a format as described in listing 2, page 23.

• Grayscale image data modification (Exemplary using noise reduction).

• Export of the processeddata todifferent formats, independent of the initial input format.

3.3 Evaluation and success criteria 25

Req. #2: Image combination

• Import of multiple images.

• Combining the input images in a processing operation (Exemplary by computing the cor-
relation between two images).

• Exporting the resulting image to different image formats.

Req. #3: Visualization/Rendering

There is a definite need of supporting hardware accelerated visualization techniques. Interac-
tive speed for the visualization of 3-dimensional imaging data has been achieved for some time
using accelerated surface based rendering. Also especially when visualizing volumetric data it
is necessary to utilizemodern hardware. For instance, by utilizing GPU hardware to fully accel-
erate ray casting, as done by [Heng and Gu, 2005], it is possible to achieve interactive visualiza-
tion of volumetric data. However, all of thesemethods require some kind of hardware acceler-
ation. Techniques to achieve this may range from the old deprecated 9 fixed function OpenGL
rendering to more recent techniques like GLSL based OpenGL rendering or CUDA/OpenCL ac-
celeration.

• Import of a volumetric image series dataset.

• Hardware accelerated visualization with frame latencies applicable for interactive use.

Req. #4: Transparent access

Access to intermediate processing results at any stage within the processing pipeline must be
possible using existing applications without specific adaptions or extensions.

3.3.2 Profiling comparison

Profiling and performance measurements will be acquired from the filesystem as well as the
conventional implementation. The methodology of this process will be described later and
should be as accurate as possible.

The interactivity and interactionwith existing applications is testedandevaluatedwithmanual
hands-on tests.

The following situations will be focused when evaluating and comparing the runtime behavior
andmeasurements:

Perf. #1: Initial input and output times

The times needed to perform the following actions are considered:

• Import of image data

• Data processing of a single image

• Export of an individual image in some file format
9URL http://www.opengl.org/wiki/Legacy_OpenGL

26 3 Analysis

Perf. #2: Repeated computations using parametric arguments

• Dynamic modification of certain processing parameters

• Repeateddataprocessingusingdata that is already imported into theprocessingpipeline

Perf. #3: Visualization throughput

Evaluation of the overhead that is induced by the following steps:

• Transfer of a rasterized visualization into systemmemory.

• Output of the data as image format.

27

4 Related Work

4.1 Frameworks and Toolkits

There are several frameworks that provide existing functionality, even exceeding the require-
ments as presented in chapter 3. Most of these frameworks provide interfaces to many differ-
ent programming languages like C/C++ and Java. Even interpreted languages for scripting pur-
poses, like Python, are supported by most of them.

The more important parts however, like transparent and interactive access, are usually not in-
tended by design. Usually only a programmable interface is provided. Therefore, integration
of different frameworks, as well as existing applications, needs to be donemanually. In case of
closed source applications this can even be difficult or not possible at all.

Nevertheless, current and future functionality provided by these frameworks can be reused in
GrapeFS.

4.1.1 VTK/ITK

The Visualization Toolkit (VTK) 10 is, as the name suggests, mainly focused on the visualization
of data [Schroeder et al., 1996]. TheVTKhas support for compiled languages, likeC++. Bindings
for Java as well as interpreted languages for scripting exist. Using this scripting support, VTK is
well suitable for rapid development [Caban et al., 2007].

Especially for the visualization of big datasets the architecture provides a streaming pipeline
architecture [Kitware, 2012b].

Figure 17: Overview of the data pipeline as used in VTK and ITK [Caban et al., 2007].

The InsightSegmentationandRegistrationToolkit (ITK) 11 is anessentially imagebased toolkit
[Ibáñez et al., 2005]. The ITK heavily relies on C++ templates but also provides support for Java
bindings and Python scripting as well [Caban et al., 2007]. ITK algorithms are concentrated on
segmentation of structures and image registration with focus onmedical use [Kitware, 2012a].
Visualization is generally not accounted by the ITK.

The interaction of both toolkits is based upon a pipeline architecture. An example of how the
interaction within such an architecture may look like is pictured in figure 17

VTK and ITK, alone or in combined form, are often used as integrated parts in rathermonolithic
applications like ParaView.

10URL http://www.vtk.org
11URL http://www.itk.org

28 4 Related Work

� Req. #1, #2 Image processing functionality provided by ITK.

� Req. #3 Accelerated visualization provided by VTK.

� Req. #4 Only programmable access to data and pipeline using
VTK or ITK API.

� Perf. #1, #2, #3 VTK and ITK designed for use in interactive scenarios.

4.1.2 OpenCV

The Open Source Computer Vision Library (OpenCV) is a C/C++ based framework with an ex-
tensive variety of algorithms frommanydifferent areas of expertise. Languagebindings to Java
and Python scripting support are provided.

Providedalgorithmscover the fieldsof imageprocessing, image transformation, patternmatch-
ing and object detection, contour finding, segmentation, (motion) tracking and camera inter-
action. Even algorithms for machine learning exist [Bradski and Kaehler, 2008].

� Req. #1, #2 All important image processing functionality provided
by OpenCV.

� Req. #3 OpenCV seems to lack support forOpenGLaccelerated
visualization. However, combination with VTK is pos-
sible as well.

� Req. #4 Only programmable access to data and processing
functionality using OpenCV API.

� Perf. #1, #2, #3 OpenCV designed for use in realtime scenarios.

4.2 Interfaces

Despite the aforementioned programmable interfaces and the proposed filesystem interface,
there are other interfaces as well. Some of the more important of these interfaces will be pre-
sented in the following paragraphs.

4.2.1 Applications

Graphical user interfaces are the most common instrument used by desktop applications in
order to provide control over existing functionality. These software solutions are usually self-
contained. Extensibility with custom modules is usually only intended using a specific frame-
work or scripting interface. With respect to the requirements of standardized access, graphical
applications usually inherit the same problems as previously described for the frameworks. An
overview of how the interface of such applications may look like is presented in figure 18.

4.2 Interfaces 29

Figure 18: Overview of interactive applications based on different frameworks. From left to right: Par-
aView 12, MeVisLab 13, ImageJ 14

ParaView 15 is an open-source application developed by Kitware Inc., Sandia National Labora-
tory and the Los AlamosNational Laboratory. Its intendeduse is in the area of visualization and
pre-processing of large data sets [Laboratory et al., 2012]. ParaView has the capability of utiliz-
ing a remote rendering interface using a client/server architecture [Par, 2011]. As the backing
framework ParaView is mainly based upon the VTK while providing a graphical user interface
using the cross-platform Qt framework.

MeVisLab 16 is a commercial closed-source application developed by Frauenhofer MEVIS and
MeVis Medical Solutions AG. MeVisLab provides visualization capabilities using the OpenInven-
tor 3D toolkit 17. However, it also provides extensive image processing functionality, called ML.
VTK and ITK integration is available as well [Koenih et al., 2006].

MeVisLab has an extensible plugin architecture that supports the development of custom plu-
gins in C++ [Rexilius et al., 2006]. Writing scripts and macros in Python is supported as well
[Heckel et al., 2009].

Thegraphical interfaceprovides adirect and interactivewayof initializing, connectingandcon-
figuring plugins.

ImageJ 18 is a Java based application and framework that can be used for the visualization and
processing of imaging data. By default ImageJ has capabilities for different general-purpose
image file formats. DICOM containers and image sequences are supported as well. ImageJ
also provides basic tools for the manipulation of images. It also integrates algorithms for the
segmentation and registration of structures [Abràmoff et al., 2004].

ImageJ itself canbeextendedwithmacros andplugins in the Javaprogramming language [Fer-
reira and Rasband, 2012], therefore it is often used in teaching and prototyping of algorithms.
It is also possible to embed and use ImageJ within other Java applications. Up to now it is

12URL http://ait.web.psi.ch/services/visualization/paraview.html
13URL http://www.mevislab.de/typo3temp/pics/add6b9b646.jpg
14URL http://rsbweb.nih.gov/ij/docs/install/images/imagej-window.gif
15URL http://www.paraview.org
16URL http://www.mevislab.de
17URL http://oss.sgi.com/projects/inventor/
18URL http://rsb.info.nih.gov/ij/

30 4 Related Work

however not possible to utilize ImageJ as a pure processing toolkit without the graphical appli-
cation layer. This is likely to improve with the development of a new upcoming major ImageJ
revision 19. Language support however seems to be restricted to Java furthermore.

� Req. #1, #2, #3 All required functionality is provided by common ap-
plications.

� Req. #4 Interaction limited to the user interface or program-
matically by extensions using the specific API.

� Perf. #1, #2, #3 Applications commonly designed for use in interactive
scenarios.

4.2.2 (Web-)Services

Web-Services are another approach on providing functionality to the user by utilizing prolifer-
ated network and web-based technologies 20.

The functionality and interactivity of such services is comparable to the proposed approach.
However, theway of accessing data and functionality is very different by utilizing network tech-
nologies like HTTP and WSDL interfaces [Anzböck and Dustdar, 2005]. In comparison to the
frameworks from section 4.1, web-service interfaces are usually more loose, however applica-
tions would still have to implement the capabilities of using the previously described network
technologies.

� Req. #1, #2, #3 Processing functionality depends on the backend be-
hind the web-service. The interface by itself does not
limit this functionality.

� Req. #4 Access easier than pure application interfaces but not
sufficient to comply with the requirements.

� Perf. #1, #2, #3 The reaction time inducedby network latency and ser-
vice requests is likely to exceed reasonable limits.

4.2.3 Userspace filesystems

There are few filesystem interfaces that really perform some kind of data processing by provid-
ing a virtual directory structure. Themost related approach is likewise implemented by filesys-
tems like YacuFS 21 orMP3FS 22. These filesystemsprovide a transparent layer on topof another
persistent filesystems by transparently converting the formats of the available files. However,
this transparently layer ismostly static andconfiguredat filesystemstartup. Besides the format
conversion no other data processing is done or considered by design.

19URL http://developer.imagej.net
20Examples: HTML5, CSS3 and JavaScript
21URL https://www.uitwisselplatform.nl/projects/yacufs (Not accessible anymore)
22Transparent access of FLAC files as MP3

4.2 Interfaces 31

� Req. #1, #2, #3 Only very specific data is supported. No processing or
required extensibility is considered by design beneath
file conversion.

� Req. #4 Access possible through the filesystemby any applica-
tion.

� Perf. #1, #2, #3 Evaluation of the performance is not possible due to
the missing functionality.

4.2.4 HDFS/MapReduce

An interesting approach is provided by the Apache Hadoop 23 project or more specifically the
MapReduce architecture as promoted by Google [Dean and Ghemawat, 2004]. The specific
goals of processing very large datasets in a distributed computing architecture however are
different from the specified requirements. It is possible to access the stored HDFS data using a
FUSEmount [Had, 2012] though. Such adistributed architecture couldbe an interesting option
for future development.

� Req. #1, #2, #3 Thenecessary data processing functionality, similar to
the frameworks (cf. 4.1), canbe implementedusing the
MapReduce paradigm.

� Req. #4 Access to HDFS data is possible using FUSE. However,
interactionwith the data processing seems only possi-
ble by deploying Java code using the Hadoop/MapRe-
duce API.

� Perf. #1, #2, #3 The distributed data storage/processing is not specif-
ically designed for realtime access where every mil-
lisecond counts.

23URL http://hadoop.apache.org

32 4 Related Work

33

5 Implementation

The proposed interface has been implemented and tested in various situations. This section
contains details about the capabilities and the implementation, aswell as, information on how
the different requirements have been implemented.

Section 5.1 shortly explains the utilized methodology and the general environment of the im-
plementation. The successive sections illustrate in which way the different requirements have
been implemented and how this functionality can actually be used. The concluding chapters
contain some of the more important details about the architecture and technical details.

The prototypical implementation has been named GrapeFS and thus will be called so when
being mentioned.

5.1 Methodology

5.1.1 Programming language and filesystem interface

As mentioned, there are two ways of implementing a filesystem interface. Directly within the
kernel or using a user-space implementation.

The latter has been chosen due to the need of various different frameworks (LLVM, DCMTK,
FreeImage, OpenGL, ..) and hardware features. One of the first steps therefore is to evaluate a
suitable programming language and, more importantly, an adequate library for the filesystem
implementation. Regarding the initial requirements any user-space filesystem library should
be able to provide the necessary functionality in order to realize the desired interface. To get
a rough impression of the most promising choices, FUSE and 9P, initial testing has been done
using the iozone benchmarking utility 24. The results can be found in the appendix in section C.

The tests have been performed using a single thread. The first measurement has been done
using a pure tmpfsmount in order to evaluate the upper limits that are set due to CPU ormem-
ory throughput limitations. The other twomeasurements have been performed using a simple
passthrough filesystem, both using a FUSE and a 9P implementation. The FUSE interface pro-
duces better results in nearly all tests. The 9P throughput however would be generally high
enough to be usable in this context. Most bottlenecks will probably be due to CPU limitations
when executing the processing code.

The final decision has been made in favor of FUSE. Due to the potentially better performance
and the more widespread use in existing projects this approach is more reasonable. Also sup-
port for some modern filesystem features will be necessary. This includes features like user
access permissions, symbolic links and extended attributes. In contrast, regarding the 9P2000
protocol, these features would only be available using the latest Linux specific 9P2000.L exten-
sion [Garlick, 2011].

FUSE generally requires the implementation of a C interface. However, in respect of maintain-
ability and compatibility to potential third-party libraries, the core application will be imple-
mented in C++. Particularly, the implementation will make use of some more important fea-
tures of the most recent C++11 standard [ISO, 2011]. Several C++11 features are being used to
improve overall code structure and readability, for instance nullptr, overrides, type deduction
and constructor delegation. Atomics are used to already ensure a certain amount of thread

24URL http://www.iozone.org

34 5 Implementation

safety. Lambdas and std::function are used for a flexible implementation of the double dis-
patch pattern.

5.1.2 Goals and requirements

This thesis strives to answer a fewmajor questions regarding the proposed architecture.

Themost important step is to assess the technical possibility of the proposed implementation
andoutlinepotential problems. This implementation is thereforeused tocollectprofiling infor-
mation. These information are successively used to evaluate the possible use of this approach
in a variety of different situation. The required situations have been described in the analysis
(cf. section 3.3.2, page 25). The necessary measurement requirements will be determined in
the evaluation and compared with the measurement data.

A secondary goal is to assess the flexibility and possibility of extending the proposed architec-
ture and implementation for various other scenarios.

5.1.3 Implemented design patterns

This section contains a brief overview of the different patterns from the fundamentals (sec-
tion 2.3, p. 18) and how these patterns are applied in GrapeFS.

Pipes and filters Overall structure of the filesystem. The folders represent the fil-
ters. The argument files, especially when used as symbolic links,
represent the pipes that transfer the data.

Composite Internal realization of the filesystem tree, especially when map-
ping the filesystem path to specific objects. For FUSE requests,
the exact type of a filesystem object is of no importance.

Decorator Used to attach different types of filesystem decorators to the
internal filesystem implementation. This allows to replace the
FUSE interface with other filesystem interfaces without modifi-
cation of classes within the GrapeFS hierarchy.

Double dispatch Utilized in dispatching the FUSE calls to the correct FUSE deco-
rator implementation.

5.2 Design and user interaction

5.2.1 Startup and initialization

The GrapeFS filesystem can be mounted on any empty directory within the local filesystem
tree, assuming write access is available. The output of this startup process, as shown in fig-
ure 19, contains some information about loaded plugins for language frontends and data for-
mats.

5.2 Design and user interaction 35

Figure 19: Mounting GrapeFS. Anymount point can be chosen as a startup parameter. The "-s" option is
mandatory to preventmultiple FUSE threads. Currently not all components of GrapeFS are thread-safe.
The "big_writes" option significantly improves write throughput by reducing the number of write calls
to user-space.

From this point on, themounteddirectorywill provide theprocessing functionality through the
filesystem interface. By default the directory will be empty. A hidden .libs folder is available at
any timewithin themounted root directory by default and therefore poses an exception to this.
This special directory will be explained later.

Folders and filters

Filters to process data are represented by folders within the GrapeFS filesystem. Folders can
be created by the user anywhere within the filesystem as shown in figure 20. Nesting of several
folders within each other is possible and can represent a meaningful structure. Folders can
have arbitrary names specified by the user. However, similar to files, every processing folder
needs to have a specific extension that specifies which kind of programming interface will be
used to specify the actual processing code.

Figure 20: Folder creation in GrapeFS using a ".c" extension. This specifies that the processing code
within this folder contains C syntax.

Depending on this extension the folder will be associated with a certain executor. This associ-
ation also affects the default content of the folder.

36 5 Implementation

Within the .c folder a file called Kernel.c exists automatically. This file must be used to provide
the processing source code to GrapeFS. The code within this file is the only place where data
modification can be done. This forces a minimal amount of structure within the filesystem.
Figure 21 contains an example of a newly created folder.

Figure 21: Every newly created folder automatically contains files that are necessary to specify the ac-
tual source code for the data processing. This file can not be deleted by the user.

Within these folders other special files and folders can exist as well. Files are generally used to
transfer image data and arguments to the processing function. A special Output folder is used
to provide user access to the processing result. This folder is visible as soon as any result data
is available. These special files and folders, among other interaction details, will be examined
more closely within the following paragraphs.

Processing code and result

The most direct and native way of specifying the filter kernel is by using C code. Any editor
or character stream can be used to write this code to the Kernel.c file. GrapeFS specification
dictates that the code needs to define a compute function. This function will be called by the
filesystem to perform the data processing. For the data transfer between the filesystem and
the processing code a lightweight structure, called gdata, is used. This structure is declared in
the GrapeFS.h header. The gdata structure solely contains the number of image dimension-
s/channels and the actual data as raw (unsigned) bytes.

After processing, the compute function is required to return such a structure as well. The re-
turned value will be used as the processing result.

Figure 22 shows an example and the result of a simple "passthrough" filter. The result of this
filter is accessible by the user using the output folder. An extended version of this filter is shown
in figure 23 which iterates and inverts all data values.

5.2 Design and user interaction 37

Figure 22: Example for the most simple processing code that can be passed to GrapeFS. The compute
function receives a single image and just returns the data without any modification.

Within the output folder a file is provided that contains the raw result data. To visualize the raw
data, a special imaging application has been used. Further explanations on file formats will
follow later.

Figure 23: Example for a more advanced processing filter. This filter iterates over the width and height
of the image and inverts all pixel values. The return statement is unchanged.

Any folder, or processing filter, can only provide a single result using the Output folder. The
Output folder is mapped directly to the returned gdata structure.

38 5 Implementation

Files and arguments

Up to now the processing code has only received imaging data as input arguments. Addition-
ally, the sameway of using files as a transfermethod can be used to specify other arguments as
well. These arguments can be additional images, but also other plain data like numeric values.
From the user perspective, it is sufficient to simply declare these arguments in the function def-
inition. The specified arguments will be automatically provided as files in the filesystem and
passed to the data processing upon execution. An example of processing code that receives an
additional argument and the influence on the folder structure is shown in figure 24.

Figure 24: Example for numeric input arguments. The int argument is taken from the parser andmade
available as a file. The associated argument name is used as the file name.

Any text editor or script can be used to write values to these argument files. The output result
will be updated as soon as an input argument has changed.

Data transfer

Writing data to files is not the only way of transferring data into the filesystem. Any file repre-
senting an argument can be replaced with a symbolic link to user-defined files. GrapeFS will
read the content of these files and pass the content as argument values, just as if the content
had been written to the file directly. An illustration of these two ways of transferring data is
shown in figure 25.

This is not only useful to avoid unnecessary I/O overhead but is also the way to go when con-
necting processing folders with each other. To access the result of other filters the symbolic
link can just point to the corresponding processing folder itself. An example of this is shown in
listing 3. The processing result of this folder will then be used as the passed argument value,
just as manually transferring the Output content to the file.

5.2 Design and user interaction 39

/data
Locally available

input data.

MRTDenoised.cxx

Kernel.cxx
(Implementation of image denoising)

Kernel.cxx
(Implementation of image denoising)

CTDenoised.cxx

MRT Image

CT Image

< iostream >< symlink > ... or ...

(Possibility to specify parameters)
radius

(Imaging data)
data

(Possibility to specify parameters)
radius

/
Local filesystem

Figure 25: Options to transfer data to the GrapeFS filesystem. Data can be written to the argument
file directly or by replacing the file with a symbolic link. These two ways are illustrated by #1 and #2.
*1 represents locally available data. #1 symbolizes the process of writing data directly to the data file.
This data transfer must be managed by a process outside the filesystem, e.g. as pictured using the cat
command. #2 symbolizes the use of symbolic links. The file is removed and replaced with a symbolic
link to the target data. The filesystem reads this data by itself without the need of an external process.

To pass data from one processing directory to another a directory listing would look like the
following:

1 [spx@rapture-arch32 output.c]$ ls -lisa
2 total 0
3 6 0 drwxr-xr-x 2 spx spx 0 Oct 12 10:03 .
4 1 0 drwxr-xr-x 2 spx spx 0 Oct 12 10:03 ..
5 18 0 lrw-r--r-- 1 spx spx 20 Oct 12 10:05 data -> /tmp/GrapeFS/input.c
6 7 0 ---------- 1 spx spx 277 Oct 12 10:03 Kernel.c
7 9 0 drwxr-xr-x 2 spx spx 0 Oct 12 10:05 Output

Listing 3: Example listing to connect two processing folders

5.2.2 Types and file formats

Images are usually stored and transferred using some type of image format. This applies to the
transfer of images into the filesystem aswell as the access of results from theOutput folder. To
copewith this, GrapeFS is able to dynamically parse the format of input data or encode output
results to different formats.

Files and folders can be associated with certain types and formats as well as a user-specified
flag for these formats. For this GrapeFS utilizes the filesystem feature of "extended attributes"
(xattr). These attributes usually have a namespace, a name and a value. The namespace for all
GrapeFS attributes is grapefs. The name to specify the format is encoding. Therefore, a valid
example to set the format for the input data or output result is shown in listing 4.

1 $ setfattr -n grapefs.encoding -v image Output
2 $ setfattr -n grapefs.encoding.flag -v 50 Output

Listing 4: Extended attributes example to set the output format

40 5 Implementation

Further explanations for available formatsand flags canbe found in the implementationdetails
in section 5.4.

When setting such attributes on an input file, the data will be converted immediately after re-
leasing the write handle. The result of the format conversion is then passed to the processing
filters in raw form. Whenseton theOutput folder thebehavior is a littledifferent. Insteadofpro-
viding the raw data as a single file, theOutput folder will contain additional folders. One folder
for every available format from the specified encoder. This folder structure and the content of
the folders can be seen in figure 26. Figure 27 shows an example of the extended attributes in
case of the previous setting.

Figure 26: General-purpose image output. The output folder provides access to different available out-
put formats using additional subfolders. Within these folders the data can be accessed directly using
the appropriate format.

Figure 27: Exemplary output of extended attributes on the output folder. The grapefs.encoding at-
tribute can be set to any value. The content of the output folder will dynamically adapt to formats avail-
able for the set attribute value.

The reason for these additional folders is easily understandable. File listings for the Output
directory, for example as requested by file managers, also include information about the spe-
cific files. Among other information these include the file size. As soon as an external process

5.2 Design and user interaction 41

accesses the folder, the raw data needs to be encoded in order to provide a correct file size. Us-
ing additional subfolders this is only necessary when accessing the specific folder. This saves
a meaningful amount of CPU time as the format encoding happens on-demand and not for all
possible file formats.

5.2.3 Modifications and change notifications

Notifying applications that have accessed or are currently accessing output files upon change
events has been a bit tricky. By default, applications would only be able to detect changes in
theoutputdirectoryusingmanualpolling. However, the implementedsolutionofbroadcasting
change notifications is quite suitable and works reliably.

Upon startup of the GrapeFS filesystem, a subprocess is forked that communicates with the
filesystem using conventional pipes. Every time the result of a filter kernel has changed this
process is notified and issues a utime call, thereby triggering an inotify event within the kernel.
This event can be received by user-space applications in order to react to changes in the output
result. Figure 28 shows a scheme of the call sequence for such an event.

alt

[output

variable

used]

User

FUSE/Kernel<<thread>>

utime

GrapeFS

1.1.1.3.3: inotify

1.1.1.3.1: utime

1.1.1.3: utime call

1.1.1.1: write path to utime pipe

1.1.1: ComputationKernel

1.1: release

1: Release file

(change event)

Figure 28: Sequence diagram that illustrates the interaction between the GrapeFS, the utime process
and the FUSE calls upon change events.

42 5 Implementation

The utime call is only performedwhen the corresponding output folder has been accessed be-
fore. Otherwise the call itself would trigger unnecessary format conversions.

This slightly cumbersome event cascade is needed because of multiple problems.

1. utime call

inotify events are the up-to-date method, issued by the kernel, to notify observing processes
of changes within folders or files. However, these events can only be send for events that are
observable by the kernel itself. As changes in the processing results are usually triggered inter-
nally within the filesystem, there in noway for the kernel of knowing that the actual output has
changed. Because of this the change event has to be triggered manually through the kernel
VFS.

2. Forking

The current GrapeFS implementation has some parts that are generally not thread-safe and
therefore the recommended behavior is to start the filesystem process using a single thread.
The problem is that the previously mentioned trigger would issue another call to the filesys-
tem while the issuing operation is still active. This provokes a reproducible deadlock within
the filesystem. The intuitive way of solving this situation is by issuing the utime call in an inde-
pendent process, letting the original filesystem call return.

5.3 Language frontends

ComputationKernel (API)

All available frontends for different programming languages inherit a mutual interface called
ComputationKernel. Currently these are the ClangKernel, GLKernel and JNIKernel. Explana-
tions to all three will follow in the successive sections. Figure 29 shows an overview of this
inheritance structure.

Figure 29: Class structure of ComputationKernels and the available implementations.

The interface implemented by the language frontends is rather lightweight and tries to make
the process of implementing support for new languages as easy as possible. Basically only two
distinct mechanisms are provided. The first one handles modifiable arguments discovered by
the parser. The second handles execution of the data processing and returning the processing

5.3 Language frontends 43

result. The ComputationKernel interfacemust be implemented by any new language frontend.
Figure 30 shows the important parts of the API.

Every ComputationKernel implementation is compiled to a shared library and loaded at run-
time. Retrieving of suitable directory extensions for a certain implementation is done using a C
interface. An example of an implementation for this interface can be found in the appendix in
section F.

Figure 30: ComputationKernel API. executeAssembly is used to perform the actual data processing.

If the extension of newly created directoriesmaps to a knownComputationKernel, an instance
of this implementation is created and associatedwith the folder object. This associated object
is used to generate the data provided through the output directory. As the format handling for
input and output data is done transparently, this object can assume to solely handle raw data.

As mentioned before, ComputationKernel provides two tasks which can be used in any spe-
cialized frontend implementation. These tasks are explained in the following two paragraphs.

Argument handling

The actual frontend implementation only needs to provide a list of available arguments that
can be modified by the user. These are retrieved using the arguments method. The rest of
the argument handling is completely done internally by the filesystem. The arguments are au-
tomatically exported as files into the filesystem. Also the handling, when the files have been
replaced with symbolic links, is done without any manual work. The results of this automated
handling are then passed to the frontend using setArgument in combination with the associ-
ated argument name. When performing the data processing, the frontend can simply query
this argument mapping for the correct argument value.

Execution

Execution of the data processing is done with a single invocation to executeAssembly. This
method receives nested pointers to the destination and size of the processing result as argu-
ments.

Before performing the previously described action, the processing directory first compares the
modification times of the current processing code and the current output data. If the process-
ing code and the argument mappings have not changed in the meantime, the modification
times of both items will be identical. If this is the case, the current output data is still up-to-
date and the data processing is not performed again. This has the benefit that no processing
time is wasted and the processing is only triggered upon user request or when some change
has to be expected.

44 5 Implementation

5.3.1 C/C++

Insteadof compilingand loading theexecutableprocessingcodeasa relocatable shared library
amore flexible approach has been chosen. The C code is parsed out-of-process using the clang
compiler and translated to LLVM bytecode using the common stdout stream. An illustration of
this process is shown in figure 31.

MRTDenoised.cxx

Kernel.cxx
(Implementation of image denoising)

Kernel.cxx
(Implementation of image denoising)

CTDenoised.cxx

LLVM .bc ...

x86

Runtime data computation.

Not accessible or visible to the user.

Decided and executed dynamically at runtime.

...
(Possibility to specify parameters)

clang

Frontend

radius

(Imaging data)
data

(Imaging data)
data

Figure 31: Schematic visualization of the C parsing and execution process. The processing code is
parsed using the Clang compiler front-end and translated to LLVM code. The LLVMmodule is used to re-
trieve the arguments of the compute function. When executed, the arguments are dynamically passed
to the LLVM execution engine. The compute function is executed using the LLVM JIT engine.

The LLVM bytecode is then loaded as an executable module and optimized using LLVM passes
and the LLVM JIT compiler. In this context, no extensive investigations have been done on
all available passes, so performance of the filter execution could possibly be improved at this
point. However, this is not an actual problem. Also clang and LLVMas a compiler and execution
environment is constantly improving, getting close to the optimizations provided by the GCC
compiler. 25

Resolving external libraries and symbols at runtime

The current GrapeFS implementation has an initial mechanism to load and resolve external
symbols. Symbolic links to external libraries can be created in the special .lib directory in the
filesystem root. The shared library this link points to is opened and imported globally. When
loading external libraries using this mechanism all exported functions can be used within the
C or C++ processing kernels.

5.3.2 Java

Processing codeusing Java canbe specified just as C or C++ code. TheGrapeFS executor is able
to find the processing code as long as a static compute method is defined within a class called
Kernel. An example of utilizing this processing frontend is shown in figure 32. Contrary to C/C++
and GLSL filters there is currently no parser support for Java code. Therefore, specification
states that the input data is passed as aByteBuffer to thismethod. This buffer can bemodified

25URL http://openbenchmarking.org/s/clang

5.3 Language frontends 45

directly. However, thereby it is currently not possible to define additional arguments that will
be passed through the filesystem interface.

When the Java source code changes, it will be dynamically compiled to Java bytecode and ex-
ecuted using JNI.

Figure 32: Example for data processing using the GrapeFS Java front-end. The processing folder has
been created using the .java extension. Java code is written to the Kernel.java file. Within the Java code
the data is handled using a ByteBuffer. As with every other processing front-end the processing result
can be accessed using the output folder.

5.3.3 OpenGL/GLSL

The visualization support using accelerated OpenGL rendering needs some kind of offscreen
rendering as the filesystem by itself does not have any window handle for direct rendering.
There are two ways of achieving such a desired behavior. The pbuffer extension allows the
creation of a valid OpenGL context without requiring a window handle at all. A different, and
partially more compatible, approach is to use a framebuffer object (FBO) in combination with
a hidden window. However, in both cases a running window system is needed.

The current implementation uses the pbuffer approach in combination with the GLX protocol
which is the standard API for X11/Linux applications to use OpenGL acceleration. The same
could be achieved using Windows WGL as well. However, pbuffers have been deprecated in
Mac OS X 10.7, hence FBOs could be a viable option for future adaptions. A schematic of the
overall architecture is shown in figure 33.

46 5 Implementation

Visualization.gl

pbuffer

Figure 33: Architecture of the OpenGL visualization. The vertex and fragment shader are compiled
within the OpenGL kernel and rendered to a pbuffer. After rendering this output is read into system
memory and exported through the output folder. Naturally other processing code could use this output
as well by using a symbolic link to the .gl folder.

The folder of OpenGL/GLSL kernels provides two files to specify the actual processing code.
These files represent the common vertex and fragment shaders within the OpenGL processing
pipeline. In most cases the more important part will be the fragment shader which eventually
assigns the result to the image coordinates. Examples of two basic shaders for this purpose are
shown in figure 34. Figure 35 shows the previously described folder structure and the process-
ing result of these shaders.

Figure 34: Simple GLSL shader for the image visualization using GLSL. The input data is an image series
that is passed to the shader as a GLSL sampler3D texture. The name of this GLSL uniform is used as the
associated file within the processing folder.

5.4 File formats and flags 47

Figure 35: Example output visualization for the previous GLSL shaders. The image is accessed using the
output folder.

The overall approach is similar to the remote rendering approach described in [Engel et al.,
2000]. As described in figure 34 the input data is read as DICOM format while the result is
accessed using general-purpose image formats. Figure 36 illustrates the interaction with ex-
tended attributes in this particular situation.

Figure 36: Example use of the extended attributes to specify different formats for the input and output
data. The input data is read fromaDICOM image and converted to a raw image series. The output folder
is set to provide the visualization result using general-purpose image files.

5.4 File formats and flags

DataFormat (API)

New file formats can be added by implementing a single interface, called DataFormat. This
implementation is translated into a shared library which is loaded at runtime.

EveryDataFormat has a name, a list of file extensions and twomethods to read andwrite data.
Figure 37 shows the important parts of this API

48 5 Implementation

Figure 37: API to implement formats in GrapeFS.

The name of the DataFormat is used for the grapefs.encoding attribute mapping. When this
attribute is set on a file or output directory this namewill be used to look up the correct format
implementation.

General-purpose formats

Aparser for general-purpose image formats has been implementedusing the FreeImage library
26. An example of utilizing this implementation to access the output data as an JPEG image is
presented in figure 38.

The following list shows the most important file formats supported by this implementation.
However, this is only a small part of all supported formats.

• BMP (reading, writing)

• GIF (reading, writing)

• JPEG/JIF (reading, writing)

• JPEG-2000 (reading, writing)

• PBM/PGM/PPM (reading, writing)

• PNG (reading, writing)

• TARGA (reading, writing)

• TIFF (reading, writing)

Listing 5: Partial list of supportedgeneral-purpose file formats using the FreeImagebasedparser.

Tosimplify the computationprocess in this context, all inputdata is converted to8-bit grayscale
values. However, this is an artificial limitation to initially simplify some aspects of the proto-
type.

The grapefs.encoding.flag attribute is used to pass additional encoding flags to the format
writer. For instance this flag is used by the JPEG compression in order to determine the desired
quality factor ranging from 1 to 100. The effect of using this flag to reduce the compression
quality is shown in figure 39.

26URL http://freeimage.sourceforge.net

5.4 File formats and flags 49

Figure 38: Use of extended attributes to specify the compression ratio for the JPEG format. The
grapefs.encoding.flag attribute has been used to set the best possible quality (100).

Figure 39: Example of lowering the output quality. The worst quality has been chosen by setting the
grapefs.encoding.flag to 1. Severe degradation of fine structures are clearly visible.

DICOM

Due to the initial requirements, anadditional formatparser hasbeen implemented. This parser
has the capability of readingDICOM files using theDCMTK 27 library. In theprocess of evaluating
the implementation theDICOMparser hasbeenmainly used to read3dimensional image series
as input data for the OpenGL based visualization.

27URL http://dicom.offis.de/dcmtk.php.en

50 5 Implementation

5.5 Tools to improve user interaction

grapefs.dlopen

Synopsis: grapefs.dlopen MNTPOINT LIB

The grapefs.dlopen command is basically syntactic sugar around the manual linking of exter-
nal libraries within the .libs directory. The symbolic link within the .libs directory is created
automatically by specifying the mount point and external library.

1 ln -s "$2" "$1/.libs"

Listing 6: grapefs.dlopen code

grapefs.mkdir

Synopsis: grapefs.mkdir DIRECTORY TEMPLATE

The grapefs.mkdir command simplifies the creation of processing folders for a specific pro-
gramming language and processing template. As with the commonmkdir command, the first
parameter specifies the path and name of the destination directory. The programming lan-
guage is taken from the folder extension as usual. Additionally a code template is specified us-
ing the second parameter. GrapeFS ships with a few templates for every language. Assuming
the specified template exists the code is automatically written to the adequate files contain-
ing the processing code. The user can then simply modify the data processing based on this
template code. The shell code to achieve this effect is illustrated in listing 7.

1 if [-d /etc/GrapeFS]; then
2 tmpldir="/etc/GrapeFS"
3 elif [-d /usr/local/etc/GrapeFS]; then
4 tmpldir="/usr/local/etc/GrapeFS"
5 fi
6
7 if test "${tmpldir+set}" != set; then exit 1; fi
8
9 filename=$(basename "$1")
10 extension="${filename##*.}"
11 filename="${filename%.*}"
12
13 mkdir "$1"
14 if [$? -ne 0]; then exit 1; fi
15
16 tmpldir="$tmpldir/Templates/$extension/$2"
17
18 if [! -d "$tmpldir"]; then exit 1; fi
19
20 for f in `find "$tmpldir/" -type f`; do
21 fbase=`basename "$f"`
22
23 cat "$f" > "$1/$fbase"
24 done
25
26 data="$1/data"
27 output="$1/Output"
28

5.6 Implementation of the requirements 51

29 if [-f "$data"]; then
30 setfattr -n grapefs.encoding -v image "$data"
31 fi
32 if [-d "$output"]; then
33 setfattr -n grapefs.encoding -v image "$output"
34 fi

Listing 7: grapefs.mkdir code

Table 3 lists the templates that are currently available for direct creation.

Extension Template Description
c passthrough Simple input data passthrough
cxx passthrough Simple input data passthrough
cxx opencv Wrapping of the input image into an OpenCV structure
java passthrough Simple input data passthrough
gl plain Image series projection onto a plain
gl circle Example rendering of a circle gradient

Table 3: Available filter templates

5.6 Implementation of the requirements

Inorder toacquire somehands-onexperiencesof the implemented functionality and theactual
filesystem behavior, several example filters have been implemented and evaluated. Of course
this also serves the purpose of showing that the prototype is able to actually fulfill the required
functionality from section 3.3.1. The example code covers the C kernels, aswell as, the OpenGL
accelerated visualization.

Blur filter

To demonstrate the general handling of input data in combination with variable arguments a
blur filter has been implemented. This filter receives a single input image as well as a numeric
radius parameter and replaces every data value with the mean of all values within the given
radius. To simplify the handling of the borders all values outside the actual data range are
assumed as black. The effect of this filter is shown in figure 40.

This processing code implements the functionality required by "Req #1".

52 5 Implementation

→
Original image data Blur result data

Figure 40: Example results for Blur filtering (radius=3).

1 struct gdata * compute(struct gdata *data, int radius) {
2 if (data->dimensions != 3)
3 return 0;
4 if (data->size[2] != 1)
5 return 0;
6
7 unsigned char *result = (unsigned char *) malloc(data->size[0] * data->size[1]);
8
9 const unsigned int opSize = pow(radius*2+1, 2);
10
11 int x, y, tmp_x, tmp_y;
12 unsigned int tmp;
13
14 for (x = 0; x < data->size[0]; ++x) {
15 for (y = 0; y < data->size[1]; ++y) {
16 tmp = 0;
17
18 for (tmp_x = -radius; tmp_x <= radius; ++tmp_x) {
19 for (tmp_y = -radius; tmp_y <= radius; ++tmp_y) {
20 tmp += getValue(data, x+tmp_x, y+tmp_y);
21 }
22 }
23
24 result[y*data->size[0]+x] = tmp/opSize;
25 }
26 }
27
28 return gdata_new(
29 (size_t[]) {
30 data->size[0],
31 data->size[1],
32 1,
33 0
34 }, result);
35 }

Listing 8: Example code for blur filter

5.6 Implementation of the requirements 53

Image correlation

Toprocess thecombinationofmultiple imagesaspatial cross-correlationhasbeen implemented.
The first input data is used as the base image. The second input data is used as amovable cor-
relation mask. This implementation, especially as being implemented in spatial domain, is far
from being fast. However, it demonstrates the potential usage and combination ofmultiple in-
put images. Figure 41 shows the file structure for the multiple input images. The result of this
operation in presented in figure 42.

This processing code implements the functionality required by "Req #2".

Figure 41: File manager view of the GrapeFS folder and file structure.

→
Source image and correlation mask Result image

Figure 42: Example result for the combination of multiple images.

54 5 Implementation

Visualization support

A simple shader code for the programmable OpenGL filter pipeline has been implemented in
order to demonstrate the accelerated visualization of image series. This has been donemainly
for the purpose of evaluating the throughput of the critical transfer paths in order to retrieving
the rendering result. The result of this visualization can be seen in figure 43

This processing code implements the functionality required by "Req #3".

1 attribute vec3 position;
2 attribute vec3 texcoord;
3
4 uniform mat4 ModelViewProjectionMatrix;
5 uniform mat4 TextureViewProjectionMatrix;
6 uniform float z;
7
8 varying vec3 uv;
9
10 void main() {
11 texcoord.z = z;
12
13 uv = vec4(TextureViewProjectionMatrix * vec4(texcoord-vec3(0.5,0.5,0.5), 1.0)).xyz +

vec3(0.5,0.5,0.5);
14
15 gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);
16 }

Listing 9: GLSL vertex shader used to transfer the xyz image series coordinates

1 uniform sampler3D imageTex;
2
3 varying vec3 uv;
4
5 void main() {
6 float r = texture3D(imageTex, uv.xyz).r;
7
8 gl_FragColor = vec4(r, r, r, r);
9 }

Listing 10: GLSL fragment shader used to map the image data

5.6 Implementation of the requirements 55

Figure 43: Example output using the preceding GLSL shaders.

56 5 Implementation

57

6 Evaluation

The evaluation will begin with a comprehensive look at the experiences made during the ac-
tual use of the implementation. Positive experiences and advantages due to the implemented
access interface will be highlighted. This includes expected capabilities which were now verifi-
able in actual real-world scenarios. However, this sectionwill also containpossibleweaknesses
in usability that have been experienced in this context. These difficulties do in no way implic-
itly cause any conflicts with the necessary requirements but instead should give some hints on
what could be possibly improved in future development.

The subsequent sections contain objective profiling measurements that have been acquired
using the actual implementation. Thesemeasurements are timing results andprocessed event
data providing internal measurements from the implementation itself. This allows for a rea-
sonable comparison between the format handling anddata processing between the filesystem
implementation and a conventional implementation that directly interacts with the data.

6.1 Interface and user interaction

6.1.1 Overview

To set up a context for the experiences figure 44 summarizes the structure of the processing
structure and dataflow between the different layers.

/data
Locally available

input data.

Correlation.cxx

Output (.png, .jpg, ...)
(Result of image correlation)

MRT Image
CT Image

(Existing applications, no adaption necessary)

(GrapeFS)

Processing folder.

Implemented using composite

and decorator patterns.

HTTP ServerImage ViewerMeVisLabParaview

(Imaging data)
data

(Imaging data)
mask

/
Local filesystem

Figure 44: Overview of the overall GrapeFS filesystem structure. Top: Application layer; Center:
Mounted GrapeFS filesystem; Bottom: Local filesystem/Persistent data

The layer at the top represents the user-space applications. These can be represented by any
existing application run by the user. The application accesses the processing result using the
provided general-purpose image format within the output folder. No adaption within the ap-
plication itself is necessary in order to achieve this.

58 6 Evaluation

Themiddle layer represents theGrapeFS filesystem implementation. All files and folders in this
layer are generated at runtime and represent a "virtual" structure. It is thereby possible for any
application from the top layer to access the dynamically generated processing result using the
provided filesystem interface.

The bottom layer represents the locally available data. This data contains the available images
that are stored in some persistent format. These images are used as the input data for the
processing tasks.

6.1.2 Advantages

The subjective experiences that have been made during the development and evaluation of
the finished implementation were quite positive. The advantages that have been anticipated
at the very beginning have shown to be possible and realizable by the implementation.

Figure 45: Real-world example usingMeVisLab (left) andParaView (right) to access the processing result
in JPEG format. The image is transparently generated using the GLSL visualization from the implemen-
tation on page 54.

Interacting with the data and interactively performing the data processing was more fluent
than expected. Due to the filesystem interface the processing results were accessible from any
available application, fromplain image viewing applications, up to specialized editing andpro-
cessing applications. An example of accessing the processing result canbe seen in figure 45. In-
teracting with the actual processing code and prototyping algorithms was very handy. Having
access to view the results in realtime while changing the algorithms alleviates the prototyping
of new algorithms while pursuing a desired result.

Even access fromWindows applications and applications running on other machines was pos-
sible using a simple network share. This situation is shown in figure 46. Noproblemshave been
encountered with such a setup.

6.1 Interface and user interaction 59

Figure 46: Real-world example using "Windows Internet Explorer" and "Windows Photo Viewer". The
image is transparently generated using the GLSL visualization from the implementation on page 54. The
"Internet Explorer" access is realized using a simple HTTP interface provided by an Apache server. The
"Photo Viewer" access uses direct filesystem access with NFS.

From a technical viewpoint the whole processing pipeline has shown to be simpler to extend
than planned. In many cases, extending the filesystem with new processing frontends only
requires a few hundred lines of code, for instance, in case of the Java implementation. This is
also likely to reveal additional advantages when pursuing other data processing methods like
Halide 28 or Julia 29.

6.1.3 Usability issues

Despite themanypositive aspects that have beendescribed in the previous section, therewere
also a few negative aspects. These are no technical difficulties, but rather possible optimiza-
tions in the user interaction.

One uncomfortable aspect is the mechanism used to communicate feedback back to the user.
Precisely, the problem ismore to be found in the lack of such amechanism. For example when
the user specifies some processing code that is syntactically incorrect there is no natural way
of signaling error messages back to the user through the filesystem interface. Also, currently
there are no standarddebugging capabilities that allows the user to gain additional insight into
the individual execution steps when the data processing happens.

Additionally, a problemwith existing applications has been noticed. Apparentlymany of these
applications do not utilize the filesystem notification capabilities in order to be noticed of file
changes. Many image viewing applications do not monitor inotify events. Some react with a
noticeable delay because of detecting changes using polling instead. Few even require aman-
ual refresh to actually see the result of changed processing code.

28URL http://halide-lang.org
29URL http://julialang.org

60 6 Evaluation

6.2 Measurement methodology

6.2.1 Gathering of measurement data

Types of profiling and timing data

For the purpose of gathering a reliable impression of the achievable filesystem performance
and profiling characteristics, data has been collected from different types of situations.

The first and more general type is the observation as a black-box view of the overall perfor-
mance characteristics. The aggregated time that is needed in order to complete a certain op-
eration has been observed for important operations like accessing a certain file type or visual-
ization result. In this context these results will not be broken down to different subroutines.

In order to gain a more specific view on the particular operations, a more comprehensive col-
lection of measurement data has been acquired in immediate proximity of certain routines as
well. For instance, by breaking down the time needed to access the result of a certain filtering
operation to the basic operations: Generation of the corresponding LLVMmodule, execution of
the LLVM JIT compiler and conversion of the data to the requested output format.

The data collected for the latter is stored andmade available using a special ".perf" directory,
accessible in the filesystem root itself.

Measurement methods

Themeasurement has been done using themost accuratemethods provided by the operating
system. Timing results were acquired using the processor time stamp counter (TSC). Addition-
ally, CPU usage and memory information has been collected using the Linux rusage mecha-
nism.

Tominimize the effect of themeasurement on the runtimebehavior, the profiling data is stored
in a preallocated data structure. Only upon completion of a certain operation the data is stored
in theglobal "perf"directory. Afterwards, thedirectory is refreshedwithupdatedvariables/files
containing the newly acquired measurement results.

In order to not interfere with the usage in a real scenario or the black-box observations, the
measurement can be toggled at compile time. This ensures that there is no performance loss
due to unnecessary storage operations.

Exact TSC timings

Acquisition of the TSC from the processor must distinguish between x86 and x86_64 architec-
tures. The code to retrieve the current TSC is shown in listing 11.

1 __inline__ uint64_t rdtsc(void) {
2 uint32_t lo, hi;
3 __asm__ __volatile__ (
4 " xorl %%eax,%%eax \n"
5 #ifdef __x86_64__
6 " push %%rbx\n"
7 #else
8 " push %%ebx\n"

6.2 Measurement methodology 61

9 #endif
10 " cpuid\n"
11 #ifdef __x86_64__
12 " pop %%rbx\n"
13 #else
14 " pop %%ebx\n"
15 #endif
16 :::"%rax", "%rcx", "%rdx");
17 __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
18 return (uint64_t) hi << 32 | lo;
19 }

Listing 11: Code to acquire TSC time stamps for the evaluation measurements

In order to minimize the influence of certain processor power saving features on the accuracy
of measured timings, the system has been started without sleep states (Fixed C0 state) and
frequency changes. Also usage of a tickless kernel has been disabled for this purpose.

1 Command line:
2 processor.max_cstate=0
3 nohz=off
4
5 Fast TSC calibration using PIT
6 Refined TSC clocksource calibration: 1994.999 MHz.
7 Switching to clocksource tsc

Listing 12: Kernel output to ensure a reliable TSC counter

Measuring the load and CPU usage

Inaddition to the timingmeasurements someprocessdatahasbeencollected that contains the
cumulated CPU usage (both in user and systemmodes), as well as, the overall virtual memory
usage. The interface of this data is presented in listing 13. It is however not certain if this data
will give additional insight into certain questions.

1 SYNOPSIS
2 int getrusage(int who, struct rusage *usage);
3
4 RUSAGE_SELF: Return resource usage statistics for the calling process
5
6 DATA
7 struct rusage {
8 struct timeval ru_utime; /* user CPU time used */
9 struct timeval ru_stime; /* system CPU time used */
10 ...
11 };

Listing 13: System specific load and system usage measurement method

6.2.2 Example measurements for the profiling data

To demonstrate and test the interpretation of the aforementioned measurement data the ex-
ample code from listing 14 has been used to obtain some initialmeasurement data. This exam-
ple code uses the GRAPEFS_PERF_ALLmacro which is the essential way of storing the current

62 6 Evaluation

profilingdata inmemory. This includeprocess information from /procaswell as thecurrentTSC
value. The exact definitions of this and other available macros are available in the appendix in
section F.

1 GRAPEFS_PERF_ALL;
2
3 sleep(2);
4
5 GRAPEFS_PERF_ALL;
6
7 timeval startTime;
8 timeval currentTime;
9 gettimeofday(&startTime, nullptr);
10 gettimeofday(¤tTime, nullptr);
11
12 while (((currentTime.tv_sec * 1000.0 + currentTime.tv_usec / 1000.0) -
13 (startTime.tv_sec * 1000.0 + startTime.tv_usec / 1000.0)) < 2000)
14 {
15 gettimeofday(¤tTime, nullptr);
16 }
17
18 GRAPEFS_PERF_ALL;
19
20 void *mem = malloc(10 * 1024 * 1024);
21 memset(mem, 1, 10 * 1024 * 1024);
22
23 GRAPEFS_PERF_ALL;
24
25 free(mem);
26
27 GRAPEFS_PERF_ALL;

Listing 14: Code to obtain exemplary profiling measurements

The five GRAPEFS_PERF_ALL operations lead to the following measurement data as shown in
listing 15.

1 0 0 3624960 22382476233690
2 0 0 3624960 22386466499270 (after sleep)
3 97 102 3624960 22390456648080 (after while-spin)
4 97 102 14114816 22390477584990 (after malloc)
5 97 102 3624960 22390479195540 (after free)

Listing 15: Exemplary profiling measurements results

Operation: sleep

Naturally, the sleep operation has no effect on the CPU usage counters, both in user as well
as system mode. Also the virtual memory size does not change due to this operation. How-
ever, there is a change of 3990265580 in the TSC timer. This concludes from the clock speed of
1994.999. In the time span of two seconds the TSC timer increases by an amount of 2 ∗ 1000 ∗
1994999 = 3989998000 ms.

6.3 Performance evaluation 63

Operation: spinning while-loop

The spinning while loop has another increase of 3990148810 in the TSC timer. Due to the spin-
ning behavior of the loop, the CPU counters have additionally increased by an approximate
value of 100. These CPU counters are measured in jiffies. In order to interpret these values, ev-
ery profiling operation collects the value of SC_CLK_TCKwhich in this case is 100. When sum-
ming up the CPU time spent in user and systemmode an expected average of 200 is observed
when spinning for two seconds. As expected the memory measurement has not changed.

Operation: malloc/free

After acquiring and using 10 ∗ 1024 ∗ 1024 bytes using the malloc operation the memory
measurement has increased by expected 10489856 bytes. After releasing thememorywith free
the virtual memory counter drops to the exact previous value.

6.2.3 Subsequent data processing

To gain meaningful results for the profiling data, multiple iterations have been performed in
two nested loops. The outer loop represents a complete restart of the processing operation,
therefore avoiding caching of intermediate data or CPU instructions. For instance, within this
loop the filesystem is unmounted completely and the input data and processing code is trans-
ferred into the filesystemwithout any prior knowledge.

The inner loop represents the processing operationwith the possibility of some caching behav-
ior within the filesystem subsystem or the CPU cache. Within this loop, the data processing is
forcefully triggered without transferring the input data or processing code into the filesystem
again.

6.3 Performance evaluation

In order to achieve mostly interactive processing speed and interaction, the overall bench-
marking timings target a common goal of 1000

60 ' 16.6 ms or 1000
30 ' 33.3 ms per processed

frame. Naturally, this only allows for a very lightweight processing of the data andmostly cov-
ers the data passthrough and format conversions. A more complex data processing approach
is unlikely to achieve such low processing times per frame.

The analysis of the profiling results has been done using the R language. The R code used for
the evaluation can be found in the appendix in section D.

To improve reproducibility of theacquiredprofilingdataandbenchmarking results, the evalua-
tion has been performedusing recent stable long-term2.6.32 RedHat Enterprise Linux (RHEL6)
Kernel in a setup similar to [Padala et al., 2007].

6.3.1 Preliminary optimizations

After initial profiling and benchmarking results somepreliminary optimizations have been per-
formed inorder to improve the significanceandoverall valueof the final profiling results. These
optimizations have initially shown to have a considerable impactwith respect to the overall re-
sult.

64 6 Evaluation

Avoiding memory allocations/fragmentation

Havingmanyand smallmemoryoperations can slowdown theoverall behavior noticeable and
when done on the heap can also lead to memory fragmentation. Also memory reallocation
caused by very many small write operations have shown to cause a considerable slowdown in
throughput. The path mapping has been identified as one of the most often called methods.
Therefore, heap allocations during the path mapping have been avoided.

Separating white-box and black-box observations

To get exact timing results for certainmethods the alreadymentioned .perf structure has been
established as a compile time option.

When enabled, these additional profiling instructions have at least a measurable impact in
overall performance. Therefore, theobservationof selectedmethodshasbeendoneseparately
from the overall benchmarking.

This way, when comparing the filesystemand the conventional approach, the profiling instruc-
tions do not interfere with the comparison results. Furthermore, this is no particular problem
as the results for selected methods are examined individually.

Increasing throughput using big sector size (big_writes)

A useful capability of recent FUSE versions is the possibility of using considerable big block
sizes, not only for read, but also for write operations. This avoids the negative overhead effects
of many very small write operations. For the evaluation we have chosen on using a block size
of 512 KiB.

6.3.2 Notes about the native and filesystem comparison

Ignoring input throughput/speed

The time needed to transfer the initial input data into the processing pipeline is not consid-
ered in the following comparisons. The problem with this particular operation is, that there
is no standard value that could be assumed as "correct". Depending on the storage method
or device, realistic transfer rates may range from a few 10 MiB/s up to several 100 MiB/s. How-
ever, this is less of a problem for comparing both approaches as both of these implementations
would be affected by the exact same transfer throughput and latency for the initial data input.

There is a single exception to this. In section 6.3.7 the feasibility of using the filesystem to trans-
parently compress image data on-demand has been evaluation. In this context the achievable
speeduphasbeencalculateddependingondifferent transfer rates. Therefore, several common
transfer rates have been considered, ranging from slow internet connection up to fast access
using local storage.

Parser/Memory consistency between native and filesystem interfaces

In theory, theprocessofhandling the image formats canbedonedifferently forbothapproaches.
For example, FreeImage offers a way of parsing the image based on a file path. For the filesys-

6.3 Performance evaluation 65

tem implementation this is not possible as the data in only available in memory and need to
be read from there. To avoid variations in the evaluation due to different parsing methods in
the FreeImage library, handling of the image format has been done identically for both ap-
proaches. Differences thatwouldhavebeen inducedby implementationdetails in these format
handling methods should not be considered for the evaluation of both interfaces.

66 6 Evaluation

6.3.3 Raw data throughput

For an impression of the overall throughput and performance of the realized implementation
an iozone benchmark has been performed. This is the same benchmark as done for the initial
filesystem library decision.
> perftest.grapefs.j1 <- read.table("Benchmarks/perftest.grapefs.j1.csv", sep=",")
> perftest.grapefs.j1 / 1024

x
Initial write 479.7358
Rewrite 326.8572
Read 1090.1213
Re-read 1081.2109
Reverse Read 931.8533
Stride read 1021.4606
Random read 1009.0621
Mixed workload 998.7510
Random write 337.7044
Pwrite 485.0719
Pread 1090.8105
Fwrite 290.8584
Fread 1083.7395

Measurement 1: Raw GrapeFS data throughput

These initial iozone results show that theGrapeFS implementation can thoroughly compete in
terms of performance. There are no obvious input/output bottlenecks for certain operations.
It should be noted that these results are not comparable with the results of the passthrough
FUSE filesystem. This is due to the usage of the big_writes mount options, combined with a
suitable block size. For the passthrough filesystem a common 4k block size has been used.

6.3.4 Format and data encoding

The initial paragraphs will take a separate look at the time that is needed for the transfer of
the input and output of data. This basically covers the time needed to transfer existing data
into the processing pipeline and retrieve the results from the processing pipeline using another
application. To get a complete picture, two possible transfer methods have been taken into
account. The parsing and encoding of formatted data, as well as, the processing of raw data. It
is to be expected that the relative overhead inducedby the additional filesystem is higherwhen
processing raw data, especially when raw data is read and only passed through the filesystem
without any modification.

Listing 16 presents a schematic of the processing loops that have been used to generate the
measurement data used for the first paragraphs.

1 OUTER_LOOP
2
3 CREATE FILESYSTEM STRUCTURE, SET INPUT XATTR, WRITE KERNEL.C
4
5 INNER_LOOP
6 SETUP
7 COPY INPUT FILE / READ INPUT FILE + FREEIMAGE DECODE
8 SETUP
9
10 EXECUTE
11 STAT OUTPUT FILE / DIRECTLY EXECUTE C COMPILED FUNCTION

6.3 Performance evaluation 67

12 EXECUTE
13
14 TEARDOWN
15 SET OUTPUT XATTR, READ OUTPUT FILE / FREEIMAGE ENCODE
16 TEARDOWN
17 INNER_LOOP
18 OUTER_LOOP

Listing 16: Schematic presentation of measuring the black-box results

In the schematic above operations performed by the filesystem benchmarks have been sepa-
rated by the direct handling using the "/" character. The left side is performed when utilizing
the filesystem, the right side when directly handling the data.

TheFreeImage/xattr steps in the schematic areoptional. Whenomitting the format conversion,
the measurement result is identified as "raw" in the following paragraphs.

68 6 Evaluation

6.3.5 Data input (black-box)

This initial comparison highlights how severe the filesystem overhead of the GrapeFS imple-
mentation is compared to the direct data handling. This context focuses solely on the input of
the data. Neither the processing, nor the output, have any influence within this context. This
comparison is part of estimating the suitability of the proposed approach for different situa-
tions.

The following plot shows the time needed to transfer a single MiB of data into the processing
pipeline. The results used for this comparison are the measured time span that has been used
upon beginning until completion of the SETUP operation from the schematic in listing 16.

> boxplot(GrapeFS.Perf.Perf$throughput_setup, GrapeFS.Perf_Raw.Perf$throughput_setup,
Perf.Passthrough.Perf$throughput_setup, Perf.Passthrough_Raw.Perf$throughput_setup,
names=c('GrapeFS (enc.)', 'GrapeFS (raw)', 'Native (enc.)', 'Native (raw)'),
xlab='Method', ylab='ms/MiB', ylim=c(0, 28))

●

●

●

●

●
●●●●●●●●●●●●●●

GrapeFS (enc.) GrapeFS (raw) Native (enc.) Native (raw)

0
5

10
15

20
25

Method

m
s/

M
iB

Measurement 2: GrapeFS data input (encoded and raw)

The timingmeasurements in the preceding plot are separated into raw and encodedmeasure-
ments. The "raw" data is measured for the direct transfer of raw data. This means that the
comparison is solely based on the transfer overhead without any format conversion. The "en-
coded" data additionally performs a format conversion using the input data.

This initial profiling timings show that the difference in data input can be considered even
smaller than expected.

> summary(GrapeFS.Perf.Perf$throughput_setup-Perf.Passthrough.Perf$throughput_setup)

6.3 Performance evaluation 69

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.028 2.547 2.875 3.043 3.208 10.710

> summary(GrapeFS.Perf_Raw.Perf$throughput_setup-Perf.Passthrough_Raw.Perf$throughput_setup)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.652 2.837 3.048 8.305 3.851 256.600

Per MiB of data approximately 3 ms of additional time is required in order to process the input
data. The relative difference of this overhead is a bit higher when looking at the raw data with-
out the format parsing. However, considering the aforementioned timing aims, the overhead
of the data input for the GrapeFS implementation is rather negligible.

70 6 Evaluation

6.3.6 Result output (black-box)

Comparable with the input data, the following profiling data gives an initial overview of the
necessary time to retrieve the result data from the GrapeFS implementation. The results used
for this comparison are the measured time spans that has been used upon beginning of the
TEARDOWN operation until completion.

The context of this operation is as described in the schematic in the initial paragraph. The rea-
sons for this comparison are nearly identical to the previous one. In fact, both are used in com-
bined form within the next comparison.

> boxplot(GrapeFS.Perf.Perf$throughput_teardown, GrapeFS.Perf_Raw.Perf$throughput_teardown,
Perf.Passthrough.Perf$throughput_teardown, Perf.Passthrough_Raw.Perf$throughput_teardown,
names=c('GrapeFS (enc.)', 'GrapeFS (raw)', 'Native (enc.)', 'Native (raw)'),
xlab='Method', ylab='ms/MiB', ylim=c(0, 28))

GrapeFS (enc.) GrapeFS (raw) Native (enc.) Native (raw)

0
5

10
15

20
25

Method

m
s/

M
iB

Measurement 3: GrapeFS data output (encoded and raw)

Overall, the time needed for this kind of operation is a bit lower. This is to be expected as read
operations are generally faster and easier to perform than write operations. This is also visible
in the iozone results at the very beginning.

> summary(GrapeFS.Perf.Perf$throughput_teardown-Perf.Passthrough.Perf$throughput_teardown)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.224 4.216 4.550 4.685 5.525 5.727

> summary(GrapeFS.Perf_Raw.Perf$throughput_teardown-Perf.Passthrough_Raw.Perf$throughput_teardown)

6.3 Performance evaluation 71

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.790 2.009 2.031 2.214 2.758 3.564

Dependingon thenecessityof anadditional formatencoding, theadditional timeneededwhen
using the GrapeFS implementation is between 2 and 4ms per MiB.

Overall, the relative overhead for the data output is higher than the data input. This is to be
expected, as the teardown operation of the conventional implementation does not involve
any filesystem operation at all. For both cases (encoded and raw) the data is already available
in memory and can be processed further in-place. In comparison, when using the GrapeFS
implementation, the data has to be retrieved from the processing result memory using VFS
calls. This is different to the preceding input situation where both implementations need to
use VFS calls in order to transfer the input data into memory.

72 6 Evaluation

6.3.7 Overall filesystem input and output overhead (black-box)

Based on the previous two paragraphs the data can be consolidated into the overall overhead
(additional time in ms) induced by the GrapeFS implementation.

> boxplot(GrapeFS.Overhead, xlab='Format', ylab='ms', ylim=c(0,16))

●

●

●

●

●●

●●

●

enc raw

0
5

10
15

Format

m
s

Measurement 4: GrapeFS data throughput (input and output)

> summary(GrapeFS.Overhead)

enc raw
Min. : 3.781 Min. : 4.663
1st Qu.: 7.532 1st Qu.: 4.845
Median : 8.000 Median : 4.886
Mean : 7.728 Mean : 10.519
3rd Qu.: 8.217 3rd Qu.: 6.661
Max. :15.250 Max. :260.118

As expected from the first two paragraphs, the overhead of a complete data passthrough using
GrapeFS can be estimated as about 5-8 ms. There is a small additional overhead of approxi-
mately 3 ms when accessing the data as general-purpose image format. This could be due to
additional complexity in the object structure within the filesystem implementation when the
file format needs to be handled.

The relative ratio of this overhead may vary among the raw and encoded scenarios. However,
compared to the usual time needed for most processing operations, the additional time spent
for the data transfer is considerably small. Common processing operations probably require a
few 100 ms, up to several seconds.

6.3 Performance evaluation 73

Compression using image formats (white-box)

Within this paragraph we will estimate if the overhead induced by the GrapeFS interface and
format handling can cope with the time that is being saved by dynamically compressing data.

For the following comparisons common throughput rates, beginning at a few 100 KiB/s up to
multiple 100 MiB/s have been considered. The necessary time needed to transfer rather small
imaging data with this throughput is used as the reference data. These rates will be compared
with the necessary time to transfer the same, but compressed, image data in combinationwith
the necessary time to transparently compress this data.

The necessary time to actual transfer the raw or compressed data has been calculated artifi-
cially and was not measured in a real test situation. Assuming a stable transfer connections,
this should cause no noticeable difference, uncertainties from the compressionmeasurements
have been propagated to the speedup calculations. However, the necessary times for the com-
pression have been measured in an actual test situation. The visualized range in the compari-
son indicates the variance in speedup by using different compression qualities (1-100).

> df <- data.frame(speed=df_comp_speed, mean=df_comp_mean, sd=df_comp_sd)
> limits <- aes(ymin=mean-sd, ymax=mean+sd)

> ggplot(df, aes(x=speed, y=mean)) +
scale_x_log10(breaks=round(df_comp_speed, digits=2)) + theme_bw() +
theme(plot.title=element_text(face="bold")) +
geom_errorbar(limits, width=0.1) +
theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) +
xlab("Speed MiB/s") + ylab("Speedup ratio") +
ggtitle("Date retrieval speedup with different transfer throughputs")

0

10

20

30

250.0060.0013.001.950.980.24
Speed MiB/s

S
pe

ed
up

 r
at

io

Date retrieval speedup with different transfer throughputs

Measurement 5: GrapeFS compression overhead

74 6 Evaluation

When assuming very high throughput for the data transfer (250 MiB/s) and small file sizes, the
additional time that is needed for the formathandlingnaturally slowsdown theoverall transfer
nearly by a factor of 5.

However, when assuming a slower connection for the data transfer, like a common 13 MiB/s
(about 100 Mbit/s) network connection, the acquired timing data shows that the additional
time needed for the data handling can easily cope with the slow transfer speed. Thereby, pro-
viding an overall speedup of 2 up to 2.5 for compression ratios with acceptable/high quality.
This factor increases even more when assuming slower internet connections or a higher file
size.

6.3 Performance evaluation 75

6.3.8 Filtering using JIT-compiled C kernels (white-box)

To get an impression of the design parameters of the data processing using C kernels the fol-
lowing benchmarking data has been acquired.

This paragraph visualizes the profiling results for the updateAssembly and executeAssembly
operations. TheupdateAssemblyoperation is executedwhen theprocessingcodehaschanges.
This causes the code to be parsed and translated to LLVM code. Additionally, optimization
passes are performed and the code is loaded into a JIT execution engine. The executeAssem-
bly operation is executed when some parameter or input data has changed. This causes an
updated of the processing result using the already available LLVMmodule. The pure execution
should be a lot more lightweight than the complete translation of the source code.

The updateAssembly results are only shown for the sake of completeness. There is no knowl-
edge of interest that can be deduced from these measurements within this context. The ex-
ecuteAssembly results can give some insight into the efficiency of the LLVM implementation
used by the ClangKernel. These information do not contain any statement about the filesys-
tem approach in general but about this particular implementation.

> boxplot(updateAssembly, executeAssembly,
names=c('updateAssembly', 'executeAssembly'),
xlab='Operation', ylab='ms')

●
●

●

●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

updateAssembly executeAssembly

0
10

20
30

40
50

Operation

m
s

Measurement 6: GrapeFS profiling data for LLVM operations

> summary(updateAssembly)

Min. 1st Qu. Median Mean 3rd Qu. Max.
44.13 44.49 44.66 45.30 45.09 57.71

76 6 Evaluation

> summary(executeAssembly)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5214 0.9448 1.5480 2.2540 1.5960 17.5200

While the updateAssembly results are comparatively high, this only causes a delay of about 45
ms when the processing code changes. This delay is unique for any change and is therefore
completely acceptable.

Also the execution of the LLVM-based processing only induces a delay of approximately 1.5ms.
This is probably higher than the time needed for a simple function call. However, compared
to the processing times and the requirements in most situations, this is not likely to cause any
troubles. Also this is an implementation detail of the GrapeFS implementation and not repre-
sentative for this architecture.

6.3 Performance evaluation 77

6.3.9 Visualization/Filesystem throughput (black-box)

The following calculations estimate the number of frames per seconds that can be achieved
when transferring data of varying size through the GrapeFS implementation. These estima-
tions are deduced from the data used in the initial analysis of the filesystem overhead but bro-
ken down into different file sizes.

> boxplot(GrapeFS.Perf_Raw.Perf[!GrapeFS.Perf_Raw.Perf$data_width==256,]$fps ~
GrapeFS.Perf_Raw.Perf[!GrapeFS.Perf_Raw.Perf$data_width==256,]$data_width,
xlab='Image width/height', ylab='fps',
main="Max. achievable frames per second (raw)")

●
●

●●

●
●

512 1024 2048

50
10

0
15

0

Max. achievable frames per second (raw)

Image width/height

fp
s

Measurement 7: GrapeFS filesystem throughput (Raw)

> summary(GrapeFS.Perf_Raw.Perf[GrapeFS.Perf_Raw.Perf$data_width==512,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
19.55 163.80 164.30 155.70 165.40 167.60

> summary(GrapeFS.Perf_Raw.Perf[GrapeFS.Perf_Raw.Perf$data_width==1024,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
16.22 52.20 52.24 49.94 52.30 52.45

> summary(GrapeFS.Perf_Raw.Perf[GrapeFS.Perf_Raw.Perf$data_width==2048,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
8.924 13.350 13.400 13.080 13.440 13.460

Evenwhen considering very big images (2048x2048), roughly 15 frames could be processed per
second. This assumes that every image is streamed into the filesystem separately. Looking at
common image sizes of 1024x1024 or 512x512 the achievable throughput of 50 or 155 frames

78 6 Evaluation

per second is even higher. However, these calculations assume that no format parsing or en-
coding is necessary.

> boxplot(GrapeFS.Perf.Perf[!GrapeFS.Perf.Perf$data_width==256,]$fps ~
GrapeFS.Perf.Perf[!GrapeFS.Perf.Perf$data_width==256,]$data_width,
xlab='Image width/height', ylab='fps',
main="Max. achievable frames per second (with encoding)")

●

●

●
●

512 1024 2048

10
20

30
40

50
60

70

Max. achievable frames per second (with encoding)

Image width/height

fp
s

Measurement 8: GrapeFS filesystem throughput (Uncompressed TGA format)

> summary(GrapeFS.Perf.Perf[GrapeFS.Perf.Perf$data_width==512,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
62.33 64.56 65.16 65.84 66.67 73.06

> summary(GrapeFS.Perf.Perf[GrapeFS.Perf.Perf$data_width==1024,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.56 14.63 14.67 14.87 14.69 18.09

> summary(GrapeFS.Perf.Perf[GrapeFS.Perf.Perf$data_width==2048,]$fps)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.575 3.601 3.609 3.658 3.614 4.435

When taking the format conversion, for the input and output data, into account the situation
has shifted a bit. However, for instance images with a dimension of 2048x2048 can still be pro-
cessed at nearly 4 frames per second.

6.3 Performance evaluation 79

6.3.10 OpenGL/Filesystem throughput (white-box)

This paragraph presents themeasurement information from the OpenGL visualization. Specif-
ically, the time that has been used in order to transfer the visualization from the graphics hard-
ware into systemmemory for further processing. This is the most interesting of these profiling
information as it presents the limiting factor when using the GLSL implementation to visualize
imaging data.

This process assumes that the input data only needs to be read once. Therefore, only the setup
of the rendering and the data transfer into systemmemory is considered.

> boxplot(GrapeFS.Visualization[GrapeFS.Visualization$size>128,]$ms_raw ~
GrapeFS.Visualization[GrapeFS.Visualization$size>128,]$size,
xlab='Frame width/height', ylab='ms/Frame')

●

●

256 512 1024 1536

5
10

15
20

25

Frame width/height

m
s/

F
ra

m
e

Measurement 9: GrapeFS OpenGL filesystem throughput (Raw)

> summary(GrapeFS.Visualization[GrapeFS.Visualization$size==1024,]$ms_raw)

Min. 1st Qu. Median Mean 3rd Qu. Max.
13.97 14.28 14.48 14.38 14.51 14.55

For an assumed visualization size of 1024x1024, the necessary time to provide the output data
is approximately 15 ms per frame. This is correlates to approximately 66.6 frames per second.
There will be some additional overhead to access the data through the raw output file. How-
ever, when assuming raw output data a possible rate of 60 frames per second using the GLSL-
based visualization seems feasible.

80 6 Evaluation

> df <- data.frame(size=df_vis_sizes, mean=df_vis_mean, sd=df_vis_sd)
> limits <- aes(ymin=mean-sd, ymax=mean+sd)

> ggplot(df, aes(x=size, y=mean)) +
scale_x_log10(breaks=df_vis_sizes) + theme_bw() +
theme(plot.title=element_text(face="bold")) +
geom_errorbar(limits, width=0.05) +
theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) +
xlab("Frame width/height") + ylab("ms/Frame")

10

20

30

40

50

256 512 1024 1536
Frame width/height

m
s/

F
ra

m
e

Measurement 10: GrapeFS OpenGL filesystem throughput (JPEG format)

> df_vis_mean[df_vis_sizes==1024] # Mean for size 1024

[1] 22.81735

> df_vis_sd[df_vis_sizes==1024] # Standard deviation for size 1024

[1] 1.152584

The above plot is an estimation of the frame times when every rendering result would be ac-
cessed using the JPEG format. The compression times in this context have not beenmeasured
in an actual situation. Instead a linear estimation of the times needed to compress 3 MiB has
been used, which may introduce a smaller bias.

Taking this compression into account, it could still be possible to achieve roughly 43 frames per
second for frame sizes of 1024x1024.

6.4 Functional correctness 81

6.4 Functional correctness

When developing a product of higher complexity, at some point the interaction between differ-
ent components may yield unexpected results or simply break at all. Especially for a product
where a certain amount of functionality is not used on a regular basis this can cause a variety
of serious problems. Up to the situation of measuring the behavior of a system that simply
produces wrong output or no realistic output at all.

As the GrapeFS implementation was not able to mature for several years, the overall devel-
opment has been based on a test-driven approach. This basically means that all functionality
that is required by the preceding analysis, or themeasurement process, is verified using one or
more test cases.

Usually distinct functionality is verifiedbya trinity of test cases, described in the followingpara-
graphs.

The first case verifies the functionality by making direct use of the implemented object struc-
ture. This can be basically broken down to the manual instantiation of a certain object struc-
ture, invocation of a certain operation and assertion of the acquired result.

Thesecond testutilizes thebehaviorof the implemented filesystem/FUSE interfaceas if itwould
be used by an external process. Instead of directly instantiating the objects, the filesystem op-
erations for the creation of folders and files, as well as, the read and write operations for files
are used.

The thirdand last testperformsa realworld scenario. Thismeans that the filesystem ismounted
into the running operating system and utilized using the appropriate file operations. These ac-
tions are passed through the actual FUSE implementation. The actual implementation of the
execution and assertion is done by making use of automated shell scripts.

These tests have been integrated into the build system using the CTest functionality of CMake.
The tests have been implemented using the googletest framework.

The following section gives a brief overview of the particular functionality that is covered by
the different test sets. A comprehensive listing of all tests and the result of a complete test run
can be found in section B.

• GrapeTypesTests

• GrapeStructureTests

• GrapeComputationTests

• GrapeAttributeTests

• GrapeParserTests

• GrapeFUSEInterfaceTests

• GrapeFUSETests

Listing 17: List of all implemented test sets.

All test sets as a whole contain approximately 82 test cases.

82 6 Evaluation

6.4.1 Object structure and interaction

These tests focus on the internal data structure and interaction between objects.

GrapeTypesTests Tests the handling of variables and associated values with these
variables. Also the read and write mechanisms for variable han-
dles and the automatic conversion of values to integer and float-
ing point types on write events is tested.

GrapeStructureTests Tests the overall parent and child structurewhenhandling direc-
tories with child objects. This also includes the path mapping
used to find child directories and variables.

GrapeComputationTests Tests the compilation and execution of computation kernels. C
code, as well as OpenGL kernels, are being tested with different
combinations and types of arguments and input data.

GrapeAttributeTests Tests the general handling of attributes onobjects. This includes
setting, retrieving and querying of attributes.

GrapeParserTests Tests the different format parsers by reading input files in differ-
ent formats. If applicable, also the output of data formats is be-
ing tested.

6.4.2 FUSE interface and operation tests

These tests verify the actual filesystem interface.

GrapeFUSEInter-
faceTests

Tests the FUSE operations that are called by the FUSE library.
These tests check the semantics of the FUSE implementation
without the need of actually mounting the filesystem. In case
of failures, these tests can give valuable information about the
origin of an error, especially in conjunction with the FUSE tests
described in the next paragraph, where the filesystem is actu-
ally mounted. Generally these tests build upon the functionality
from theprevious tests and ensure that the filesystemsemantics
work as expected.

6.4 Functional correctness 83

GrapeFUSETests These tests actually mount the filesystem and perform different
kinds of test cases atop the actual filesystem. All calls are passed
through theusual filesystem interfaceand the FUSE libraries. Ev-
ery scenario is implemented by a single shell script and run in-
dependently from the other tests. Basically these tests cover the
same functionality as the pure FUSE interface tests while using
the actual filesystem for the tests.

84 6 Evaluation

6.4.3 Runtime characteristics

Call analysis

With the utilization of kernel performance counters with OProfile, some of the most critical
function calls have been consolidated. The necessary data has been generated during the run
of several test scenarios. The OProfile results consist of four columns. The first column con-
tains the absolute event count that has been observed by OProfile. These numbers need to
be considered relatively to each other. Special focus is given to the second column. This col-
umn contains the relative share of a certain function within the given call trace. This is used to
identify the reasons for the importance of certain code paths. The third column contains the lo-
cation of the symbol which is of no importance here. The last column represents the currently
active function. The indentation of the function illustrates the depth of the nested call. The
function without indentation is focused. Functions above are the callers that have called this
function. Functions underneath are functions that have been called.

The following listings show thecall traces that havebeenobservedas themost importantpaths
due to the OProfile analysis.

Path mapping and attributes

1 1 0.0594 GrapeFS gfs_readlink
2 1 0.0594 GrapeFS gfs_mkdir
3 1 0.0594 GrapeFS gfs_opendir
4 6 0.3563 GrapeFS find_base
5 6 0.3563 GrapeFS gfs_access
6 16 0.9501 GrapeFS gfs_setxattr
7 17 1.0095 GrapeFS gfs_unlink
8 36 2.1378 GrapeFS gfs_truncate
9 45 2.6722 GrapeFS gfs_utime
10 76 4.5131 GrapeFS gfs_open
11 606 35.9857 GrapeFS gfs_getxattr
12 873 51.8409 GrapeFS gfs_getattr
13 103 6.1128 GrapeFS GrapeFS::FUSE::mapPath
14 1176 69.0546 libGrapeFS_Core.so GrapeFS::Directory::mapPath
15 245 14.3864 libstdc++.so.6.0.17 libstdc++.so.6.0.17
16 103 6.0482 GrapeFS GrapeFS::FUSE::mapPath [self]
17 53 3.1122 libc-2.16.so __strlen_sse2_bsf
18 35 2.0552 libGrapeFS_Core.so map<string, GrapeFS::Object*>::find
19 34 1.9965 libGrapeFS_Core.so map<string, GrapeFS::Object*>::end
20 21 1.2331 libc-2.16.so free

Listing 18: oprofile call analysis (mapPath)

Listing 18 shows the callers and callees around the mapPath function. This function, in the
FUSEclass, is calleddue toavarietyof FUSEactions. However, themore importantof the callers
are the open and getattr/getxattr functions. Subsequently, the most time is spent in mapPath
within the Directory class. This function does the actual path mapping. Therefore, in case the
reaction time for the filesystem in general needs to be improved even further, this function
should be a viable place for additional optimization.

6.4 Functional correctness 85

Reading and writing

Beside the pathmapping, the read andwrite operations are among themore important paths.

1 35 2.0772 GrapeFS gfs_write
2 8726 98.2436 libc-2.16.so __memcpy_ssse3
3 82 0.9232 libGrapeFS_Core.so GrapeFS::VariableHandle::write
4 35 0.3941 GrapeFS gfs_write [self]
5 17 0.1914 libGrapeFS_Core.so unsigned long const& max<unsigned long>
6 5 0.0563 libc-2.16.so realloc
7 1 0.0113 libGrapeFS_Core.so GrapeFS::VariableHandle::updateValue
8 1 0.0113 libc-2.16.so malloc

Listing 19: oprofile call analysis (gfs_write)

1 16 0.9496 GrapeFS gfs_read
2 25673 99.6507 libc-2.16.so __memcpy_ssse3
3 34 0.1320 libGrapeFS_Core.so GrapeFS::VariableHandle::read const
4 16 0.0621 GrapeFS gfs_read [self]
5 14 0.0543 libGrapeFS_Core.so unsigned long const& min<unsigned long>
6 10 0.0388 libc-2.16.so __memset_sse2
7 6 0.0233 libGrapeFS_Core.so __shared_ptr<char, const

Listing 20: oprofile call analysis (gfs_read)

However, as shown in listings 19 and 20, most of the time is actually accounted for the mem-
ory operations. There are no obvious optimization possibilities, except for instance using the
big_writesmount option to reduce call counts and perform larger memory operations.

86 6 Evaluation

87

7 Conclusion

7.1 Successes and problems

The experiences that have been collected during the design, implementation and especially
the evaluation within this thesis are being concluded at this point.

The technical feasibility has shown tobemoreuntroubling than expected at the very beginning
of the design. The high flexibility of the implementation enables the use of several processing
frontends andplenty of different file formats. The collectedprofilingdata andhands-on experi-
ences showclearly that the inducedaccess latencyandattainable throughput isunproblematic
for most use cases. The only possible exception from this are high-throughput scenarios that
naturally avoid filesystem calls by any means.

Even when considering the filesystem and format conversion overhead it is likely possible to
achieve about 30 or 60 frames per second in lightweight processing situations. Also remote
interaction was possible without any problems at all. Access using a HTTP connection with a
common web browser or any Windows program using NFS shares was unproblematic.

Theheterogeneoususe of different programming languages and frameworks canwork in away
that is viable for prototyping and all anticipated non-realtime scenarios. Regarding future pos-
sibilities the flexibility and extensibility of the implementation is able to be used for different
types of data as well. For example, by adding support for further file formats or other frame-
works, the functionality of processing folders and argument files could also be used to process
1D signal data.

� Req. #1, #2, #3 The required image processing functionality can be
achieved either using customC,C++ or Java code or by
using the OpenCV framework. Hardware accelerated
visualization is possible using GLSL shaders. General-
purpose images, aswell as, DICOM images canbe read.

� Req. #4 Transparent access to all intermediate processing re-
sults is possible from any existing application using
the filesystem interface. No further adaptions to these
applications are necessary. Applications only need to
support a general-purpose image format in order to
read the output.

� Perf. #1, #2, #3 As shown, the latency induced by the filesystem inter-
faceandGrapeFS implementation is in the rangeof few
milliseconds and therefore negligible for the signifi-
cant interactive scenarios. The achievable throughput
of several hundred MiB is more than enough for the
considered scenarios.

Table 4: Conclusive evaluation of the required and the GrapeFS functionality.

Aspresented in table4all significantaspects fromthe initial requirements (sections3.3.1and3.3.2,
page 24) have been realized using the provided implementation.

88 7 Conclusion

7.2 Availability and licensing

Code repository: https://github.com/crurik/GrapeFS
License: 2-clause BSD (Simplified/FreeBSD) license

1 Redistribution and use in source and binary forms, with or without
2 modification, are permitted provided that the following conditions are met:
3
4 1. Redistributions of source code must retain the above copyright notice, this
5 list of conditions and the following disclaimer.
6 2. Redistributions in binary form must reproduce the above copyright notice,
7 this list of conditions and the following disclaimer in the documentation
8 and/or other materials provided with the distribution.

Listing 21: GrapeFS license terms excerpt

7.3 Are we there yet? (Outlook) 89

7.3 Are we there yet? (Outlook)

While the prototype is already quite mature and usable there are several trends which could
expose special potential. The following chapters describe a few of those fields that have been
encountered during the research and development process.

7.3.1 User interaction and interfaces

While the interactivity for the prototyping of new algorithms and the overall interactivity was
quite inspiring, one actual problem is related to this interaction. Most IDEs are geared towards
usage inmostly static projects, involving a very limited set of programming languages. The task
of implementing small processing kernels in various languages, while simultaneously incorpo-
rating different frameworks or operating on the raw data, can be a bit annoying when there is
hardly any tool support at all.

Even though the direct interactionwith the filesystem interface ismandatory, an interface that
supports the user in directly interacting with the processing code of different folders would be
able to accelerate the interaction with algorithms. Especially in a heterogeneous environment
with many different programming languages it can be quite time consuming to use different
tools to support the development in different languages. This could also be combined with
management tools for input data or processing arguments. Implementation as aweb interface
could be feasible.

For instance, such an interface could display the folders as a flat structure directly next to each
other. The processing code from every folder could be visible andmodifiable directly, assisted
by code highlighting and completion. When modifying any of this processing code the output
would be visualized directly, including the impact on all intermediate results. Symbolic links
could be visualized by connections within this flat structure. Available imaging data could be
written to the input files directly from a repository of available data using drag and drop. Due
to the filesystem interface, parallel access from other applications would still be possible.

7.3.2 Platform compatibility, multithreading and persistence

Window support

Due to the FUSE interface compatibility is currently limited to Linux and Mac OS X. The first
step to support Windows platforms would be the implementation of the Dokan API. At least
from the initial research Dokan seems to be the most promising way of achieving filesystems
with user-space support for Windows. Additionally, some other dependencies would have to
be solved, for instance GLX dependencies for the OpenGL support.

Multithreading support

The use of multithreading for a production ready filesystem would be desirable. The part that
needs the most attention to achieve this is probably the OpenGL implementation which cur-
rently assumes a single active context within a single thread. Either the OpenGL context han-
dling needs to be extended with support of being used in multiple threads, or the OpenGL op-
erations need to be restricted to a specific thread when run in a multithreaded environment.
Generally, the very same also applies to the JNI Java VM.

90 7 Conclusion

Persistence support

Another small issue that would improve actual use ofGrapeFS is support for a persistent struc-
ture. In real-world scenarios it could be important to store the current structure andprocessing
code for multiple reasons. Either to support progressive work on a more complex processing
scenario, or to assist in distributing a specific filesystem state in collaborative situations.

The filesystem would need to accept a configuration file as startup parameter. This file would
be used to store the filesystem structure as XML or JSON structure upon unmounting. When
remounting the filesystem, the persistent file could be used to restore the identical filesystem
structure.

7.3.3 Integration of language frontends, processing toolkits and DSLs

C, C++, Java andGLSL are sufficiently available programming front-ends to achieve some initial
image processing functionality. However, there are other promising ways to gain additional
functionality, even outperforming existing processing applications.

Halide

Halide is "a language for image processing and computational photography [...] designed to
make it easier to write high-performance image processing code on modern machines." 30.
Halide is basically a domain specific language (DSL) that is embedded into C++ code and uti-
lized by linking to a provided library. LLVM is used to target different platforms [Ragan-Kelley
et al., 2012].

This could be used to significantly speed up and simplify the prototyping and structure of new
or existing processing algorithms. The effort of embedding and supporting this in GrapeFS
should be relatively small.

7.3.4 Heterogeneous computing and automated pipeline routing

Inaddition toadding functionalitywithprogramming languages, frameworksand libraries there
are other ways of providing additional use for other existing hardware and execution models.

GPGPU and computing architectures

Recent research, especially in the fieldof the LLVMarchitecture, has ambitions to support trans-
lation of intermediate representations to a variety of platforms. This could be used to pro-
vide transparent support of utilizing completely different kinds of underlying hardware. For
instance transparent utilization of GPU hardware [Rhodin, 2010].

In combination with the previous approach of using different hardware architectures it could
also be interesting to implement a way of dynamically balancing these different target archi-
tectures. Different processing kernels could target different available hardware. At runtime the

30URL http://halide-lang.org

7.3 Are we there yet? (Outlook) 91

achievable throughput through the processing pipeline would be estimated for different tar-
get situations, selecting the most viable combination. However, it is not easy to estimate the
advantage of this approach without further research.

92 7 Conclusion

XIX

A Appendix

References

[ISO, 2011] (2011). Iso/iec 14882:2011.

[Par, 2011] (2011). Setting up a paraview server. http://paraview.org/Wiki/Setting_up_a_Par-
aView_Server [Last access: 03.10.12].

[Had, 2012] (2012). Mounting hdfs. http://wiki.apache.org/hadoop/MountableHDFS [Last ac-
cess: 03.10.12].

[Abràmoff et al., 2004] Abràmoff, D. M. D., Magalhães, D. P. J., and Ram, D. S. J. (2004). Image
processing with imagej. Biophotonics International.

[Anzböck and Dustdar, 2005] Anzböck, R. and Dustdar, S. (2005). Modeling and implementing
medical web services. Data & Knowledge Engineering 55 (2005) 203–236.

[Association, 2011] Association, N. E. M. (2011). Dicom specification (2011). ftp://medi-
cal.nema.org/medical/dicom/2011 [Last access: 08.10.12].

[Bankman, 2009] Bankman, I. H. (2009). Handbook of Medical Image Processing and Analysis.
Academic Press (Elsevier).

[Bradski and Kaehler, 2008] Bradski, G. and Kaehler, A. (2008). Learning OpenCV - Computer
Vision with the OpenCV library. O'Reilly.

[Caban et al., 2007] Caban, J. J., Joshi, A., , and Nagy, P. (2007). Rapid development ofmedical
imaging tools with open-source libraries.

[CodiceSoftware, 2012] CodiceSoftware (2012). Plastic scm - glassfs: plastic made transpar-
ent. http://codicesoftware.blogspot.com/2012/07/glassfs-plastic-made-transparent.html
[Last access: 01.10.12].

[Dean and Ghemawat, 2004] Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified data
processing on large clusters. Technical report, Google, Inc.

[Engel et al., 2000] Engel, K., Sommer, O., and Ertl, T. (2000). A framework for interactive hard-
ware accelerated remote 3d-visualization. Technical report, University of Stuttgart, IfI, Visu-
alization and Interactive Systems Group.

[Erickson, 2002] Erickson, B. J. (2002). Irreversible compression of medical images. Journal of
Digital Imaging, Vol 15, No 1.

[Ferreira and Rasband, 2012] Ferreira, T. and Rasband, W. (2012). Imagej user guide (1.46r).

[Galatsanos et al., 2003] Galatsanos, N. P., Segall, C. A., and Katsaggelos, A. K. (2003). Digital
image enhancement. Encyclopedia of Optical Engineering.

[Galloway et al., 2009] Galloway, A., Lüttgen, G., Mühlberg, J. T., and Siminiceanu, R. I. (2009).
Model-checking the linux virtual file system. 10th International Conference, VMCAI 2009.

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[Garlick, 2011] Garlick, J. (2011). 9p2000.l protocol (diod). http://code.google.com/p/-
diod/wiki/protocol [Last access: 01.10.12].

XX References

[Graham et al., 2005] Graham, R., Perriss, R., and Scarsbrook, A. (2005). Dicom demystified:
A review of digital file formats and their use in radiological practice. Clinical Radiology, 60,
1133–1140.

[Gravel et al., 2004] Gravel, P., Beaudoin, G., and Guise, J. A. D. (2004). A method and for mod-
eling and noise in medical and images. IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23,
NO. 10.

[Heckel et al., 2009] Heckel, F., Schwier, M., and Peitgen, H.-O. (2009). Object-oriented appli-
cation development with mevislab and python.

[Heng and Gu, 2005] Heng, Y. and Gu, L. (2005). Gpu-based volume rendering for medical im-
age visualization. Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th An-
nual Conference.

[Hensbergen et al., 2009] Hensbergen, E. V., Evans, N., and Stanley-Marbell, P. (2009). Service
oriented file systems.

[Hoskins, 2006] Hoskins, M. E. (2006). Sshfs: Super easy file access over ssh. Linux Journal,
Volume 2006 Issue 146.

[Ibáñez et al., 2005] Ibáñez, L., Schroeder, W., Ng, L., Cates, J., and the Insight Software Con-
sortium (2005). The itk software guide second edition. Technical report.

[Ionkov and Hensbergen,] Ionkov, L. and Hensbergen, E. Xcpu2 distributed seamless desktop
extension.

[Jujjuri et al., 2000] Jujjuri, V., Hensbergen, E. V., and Liguori, A. (2000). Virtfs - a virtualization
aware file system pass-through.

[Kantee and Crooks, 2007] Kantee, A. and Crooks, A. (2007). Refuse: Userspace fuse reimple-
mentation using puffs.

[Kitware, 2012a] Kitware (2012a). Nlm's insight toolkit (itk) - technical summary.
http://www.itk.org/ITK/project/technicalsummary.html [Last access: 01.10.12].

[Kitware, 2012b] Kitware (2012b). Vtk - technical overview. http://www.vtk.org/VTK/projec-
t/technical.html [Last access: 02.10.12].

[Koenih et al., 2006] Koenih, M., Spindler, W., Rexilius, J., Jomier, J., Link, F., and Peitgen, H.
(2006). Embedding vtk and itk into a visual programming and rapid prototyping platform.

[Laboratory et al., 2012] Laboratory, S. N., Inc, K., and Laboratory, L. A. N. (2012). Paraview -
features. http://www.paraview.org/paraview/project/features.html [Last access: 03.10.12].

[Minnich, 2005] Minnich, R. (2005). Why plan 9 is not dead yet and what we can learn from it.
Technical report, Advanced Computing Lab, Los Alamos National Lab.

[Mochel, 2005] Mochel, P. (2005). The sysfs filesystem. Linux Symposium.

[Ordulu, 2010] Ordulu, N. (2010). A file system for accessing mysql tables as csv files. Master's
thesis, Massachusetts Institute of Technology.

[Padala et al., 2007] Padala, P., Zhu, X., Wang, Z., Singhal, S., and Shin, K. G. (2007). Perfor-
mance evaluation of virtualization technologies for server consolidation. Enterprise Systems
and Software Laboratory, HP Laboratories Palo Alto.

[Pisano et al., 2000] Pisano, E. D., Cole, E. B., Hemminger, B.M., Yaffe,M. J., Aylward, S. R., Maid-
ment, A. D. A., Johnston, R. E., Williams, M. B., Niklason, L. T., Conant, E. F., Fajardoand, L. L.,

References XXI

Kopans, D. B., Brown, M. E., and Pizer, S. M. (2000). Image processing and algorithms for
digital andmammography: A pictorial essay. IMAGING & THERAPEUTIC TECHNOLOGY.

[Quilez, 2008] Quilez, I. (2008). Renderingworldswith two triangles with raytracing on the gpu
in 4096 bytes. NVScene.

[Ragan-Kelley et al., 2012] Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S.,
and Durand, F. (2012). Decoupling algorithms from schedules for easy optimization of im-
age processing pipelines. ACM Transactions on Graphics, 31.

[Rexilius et al., 2006] Rexilius, J., Kuhnigk, J.-M., Hahn, H. K., and Peitgen, H.-O. (2006). An ap-
plication framework for rapid prototyping of clinically applicable software assistants.

[Rhodin, 2010] Rhodin, H. (2010). A ptx code generator for llvm. Technical report, Saarland
University.

[Schroeder et al., 1996] Schroeder, W. J., Martin, K. M., and Lorensen, W. E. (1996). The design
and implementation of an object-oriented toolkit for 3d graphics and visualization. Techni-
cal report.

[Torvalds, 2011] Torvalds, L. (2011). Linus torvalds on userspace filesystems and fuse.
http://article.gmane.org/gmane.linux.kernel/1153038 [Last access: 08.10.12].

[Van et al., 2005] Van, E., Hensbergen, and Minnich, R. (2005). Grave robbers from outer space
using 9p2000 under linux. (83).

[Wiggins et al., 2001] Wiggins, R. H., Davidson, H. C., Harnsberger, H. R., Lauman, J. R., and
Goede, P. A. (2001). Image file formats: Past, present, and future. RadioGraphics, 21, 789-798.

[W.Wallis and Miller, 1990] W.Wallis, J. and Miller, T. R. (1990). Volume rendering in three-
dimensional display of spect images. The Journal of Nuclear Medicine, Vol. 31.

XXII References

XXIII

B Test results (Functional correctness)

1 Running tests...
2 Test project /home/spx/GrapeFS-thesis
3 Start 1: GrapeTypesTests.VariableValueSet
4 1/87 Test #1: GrapeTypesTests.VariableValueSet
5 .. Passed 0.22 sec
6 Start 2: GrapeTypesTests.VariableValueSetGet
7 2/87 Test #2: GrapeTypesTests.VariableValueSetGet
8 .. Passed 0.19 sec
9 Start 3: GrapeTypesTests.VariableValueSetCOWGet
10 3/87 Test #3: GrapeTypesTests.VariableValueSetCOWGet
11 .. Passed 0.19 sec
12 Start 4: GrapeTypesTests.VariableHandlerChange
13 4/87 Test #4: GrapeTypesTests.VariableHandlerChange
14 .. Passed 0.19 sec
15 Start 5: GrapeTypesTests.TypedVariableBytePositive
16 5/87 Test #5: GrapeTypesTests.TypedVariableBytePositive
17 .. Passed 0.19 sec
18 Start 6: GrapeTypesTests.TypedVariableIntegerPositive
19 6/87 Test #6: GrapeTypesTests.TypedVariableIntegerPositive
20 .. Passed 0.19 sec
21 Start 7: GrapeTypesTests.TypedVariableIntegerNegative
22 7/87 Test #7: GrapeTypesTests.TypedVariableIntegerNegative
23 .. Passed 0.20 sec
24 Start 8: GrapeTypesTests.TypedVariableFloatingPositive
25 8/87 Test #8: GrapeTypesTests.TypedVariableFloatingPositive
26 .. Passed 0.19 sec
27 Start 9: GrapeTypesTests.TypedVariableFloatingNegative
28 9/87 Test #9: GrapeTypesTests.TypedVariableFloatingNegative
29 .. Passed 0.19 sec
30 Start 10: GrapeTypesTests
31 10/87 Test #10: GrapeTypesTests
32 .. Passed 0.20 sec
33 Start 11: GrapeStructureTests.TestMappingNegative
34 11/87 Test #11: GrapeStructureTests.TestMappingNegative
35 .. Passed 0.20 sec
36 Start 12: GrapeStructureTests.TestNodeChildrenEmpty
37 12/87 Test #12: GrapeStructureTests.TestNodeChildrenEmpty
38 .. Passed 0.19 sec
39 Start 13: GrapeStructureTests.TestKernelChildren
40 13/87 Test #13: GrapeStructureTests.TestKernelChildren
41 .. Passed 0.19 sec
42 Start 14: GrapeStructureTests.TestNodeAddChild
43 14/87 Test #14: GrapeStructureTests.TestNodeAddChild
44 .. Passed 0.19 sec
45 Start 15: GrapeStructureTests.TestNodeAddRemoveChild
46 15/87 Test #15: GrapeStructureTests.TestNodeAddRemoveChild
47 .. Passed 0.20 sec
48 Start 16: GrapeStructureTests.TestMappingNode
49 16/87 Test #16: GrapeStructureTests.TestMappingNode
50 .. Passed 0.19 sec
51 Start 17: GrapeStructureTests.TestMappingVariable
52 17/87 Test #17: GrapeStructureTests.TestMappingVariable
53 .. Passed 0.19 sec
54 Start 18: GrapeStructureTests.TestMappingNodeChild
55 18/87 Test #18: GrapeStructureTests.TestMappingNodeChild
56 .. Passed 0.19 sec
57 Start 19: GrapeStructureTests
58 19/87 Test #19: GrapeStructureTests
59 .. Passed 0.19 sec

XXIV B Test results (Functional correctness)

60 Start 20: GrapeComputationTests.NodeComputationSource
61 20/87 Test #20: GrapeComputationTests.NodeComputationSource
62 .. Passed 0.26 sec
63 Start 21: GrapeComputationTests.NodeComputationArgument
64 21/87 Test #21: GrapeComputationTests.NodeComputationArgument
65 .. Passed 0.25 sec
66 Start 22: GrapeComputationTests.NodeComputationArguments
67 22/87 Test #22: GrapeComputationTests.NodeComputationArguments
68 .. Passed 0.25 sec
69 Start 23: GrapeComputationTests.NodeComputationOutputRaw
70 23/87 Test #23: GrapeComputationTests.NodeComputationOutputRaw
71 .. Passed 0.25 sec
72 Start 24: GrapeComputationTests.NodeComputationOutputImage
73 24/87 Test #24: GrapeComputationTests.NodeComputationOutputImage
74 .. Passed 0.25 sec
75 Start 25: GrapeComputationTests.NodeComputationOpenGL
76 25/87 Test #25: GrapeComputationTests.NodeComputationOpenGL
77 .. Passed 0.38 sec
78 Start 26: GrapeComputationTests
79 26/87 Test #26: GrapeComputationTests
80 .. Passed 0.58 sec
81 Start 27: GrapeFUSEInterfaceTests.access_root
82 27/87 Test #27: GrapeFUSEInterfaceTests.access_root
83 .. Passed 0.20 sec
84 Start 28: GrapeFUSEInterfaceTests.find_base
85 28/87 Test #28: GrapeFUSEInterfaceTests.find_base
86 .. Passed 0.20 sec
87 Start 29: GrapeFUSEInterfaceTests.readdir_empty
88 29/87 Test #29: GrapeFUSEInterfaceTests.readdir_empty
89 .. Passed 0.20 sec
90 Start 30: GrapeFUSEInterfaceTests.readdir_output_raw
91 30/87 Test #30: GrapeFUSEInterfaceTests.readdir_output_raw
92 .. Passed 0.25 sec
93 Start 31: GrapeFUSEInterfaceTests.readdir_output_image
94 31/87 Test #31: GrapeFUSEInterfaceTests.readdir_output_image
95 .. Passed 0.25 sec
96 Start 32: GrapeFUSEInterfaceTests.getattr_dir
97 32/87 Test #32: GrapeFUSEInterfaceTests.getattr_dir
98 .. Passed 0.20 sec
99 Start 33: GrapeFUSEInterfaceTests.getattr_file
100 33/87 Test #33: GrapeFUSEInterfaceTests.getattr_file
101 .. Passed 0.20 sec
102 Start 34: GrapeFUSEInterfaceTests.getattr_file_size
103 34/87 Test #34: GrapeFUSEInterfaceTests.getattr_file_size
104 .. Passed 0.20 sec
105 Start 35: GrapeFUSEInterfaceTests.mkdir
106 35/87 Test #35: GrapeFUSEInterfaceTests.mkdir
107 .. Passed 0.20 sec
108 Start 36: GrapeFUSEInterfaceTests.mkdir_rmdir
109 36/87 Test #36: GrapeFUSEInterfaceTests.mkdir_rmdir
110 .. Passed 0.19 sec
111 Start 37: GrapeFUSEInterfaceTests.create
112 37/87 Test #37: GrapeFUSEInterfaceTests.create
113 .. Passed 0.20 sec
114 Start 38: GrapeFUSEInterfaceTests.open_read_overflow
115 38/87 Test #38: GrapeFUSEInterfaceTests.open_read_overflow
116 .. Passed 0.20 sec
117 Start 39: GrapeFUSEInterfaceTests.open_read_overflow_partial
118 39/87 Test #39: GrapeFUSEInterfaceTests.open_read_overflow_partial
119 .. Passed 0.19 sec
120 Start 40: GrapeFUSEInterfaceTests.open_read_release
121 40/87 Test #40: GrapeFUSEInterfaceTests.open_read_release
122 .. Passed 0.20 sec

XXV

123 Start 41: GrapeFUSEInterfaceTests.open_write_release
124 41/87 Test #41: GrapeFUSEInterfaceTests.open_write_release
125 .. Passed 0.20 sec
126 Start 42: GrapeFUSEInterfaceTests.open_rw_release
127 42/87 Test #42: GrapeFUSEInterfaceTests.open_rw_release
128 .. Passed 0.19 sec
129 Start 43: GrapeFUSEInterfaceTests.open_write_release_open_read_release
130 43/87 Test #43: GrapeFUSEInterfaceTests.open_write_release_open_read_release
131 .. Passed 0.20 sec
132 Start 44: GrapeFUSEInterfaceTests.open_read_offset
133 44/87 Test #44: GrapeFUSEInterfaceTests.open_read_offset
134 .. Passed 0.19 sec
135 Start 45: GrapeFUSEInterfaceTests.open_write_offset
136 45/87 Test #45: GrapeFUSEInterfaceTests.open_write_offset
137 .. Passed 0.19 sec
138 Start 46: GrapeFUSEInterfaceTests.create_unlink
139 46/87 Test #46: GrapeFUSEInterfaceTests.create_unlink
140 .. Passed 0.20 sec
141 Start 47: GrapeFUSEInterfaceTests.create_rename
142 47/87 Test #47: GrapeFUSEInterfaceTests.create_rename
143 .. Passed 0.20 sec
144 Start 48: GrapeFUSEInterfaceTests.create_rename_change_parent
145 48/87 Test #48: GrapeFUSEInterfaceTests.create_rename_change_parent
146 .. Passed 0.20 sec
147 Start 49: GrapeFUSEInterfaceTests.computation
148 49/87 Test #49: GrapeFUSEInterfaceTests.computation
149 .. Passed 0.24 sec
150 Start 50: GrapeFUSEInterfaceTests.computation_opengl
151 50/87 Test #50: GrapeFUSEInterfaceTests.computation_opengl
152 .. Passed 0.33 sec
153 Start 51: GrapeFUSEInterfaceTests.computation_readdir_variable
154 51/87 Test #51: GrapeFUSEInterfaceTests.computation_readdir_variable
155 .. Passed 0.25 sec
156 Start 52: GrapeFUSEInterfaceTests.computation_variable
157 52/87 Test #52: GrapeFUSEInterfaceTests.computation_variable
158 .. Passed 0.26 sec
159 Start 53: GrapeFUSEInterfaceTests.computation_variable_change
160 53/87 Test #53: GrapeFUSEInterfaceTests.computation_variable_change
161 .. Passed 0.25 sec
162 Start 54: GrapeFUSEInterfaceTests.computation_variable_arguments
163 54/87 Test #54: GrapeFUSEInterfaceTests.computation_variable_arguments
164 .. Passed 0.25 sec
165 Start 55: GrapeFUSEInterfaceTests.computation_symlink
166 55/87 Test #55: GrapeFUSEInterfaceTests.computation_symlink
167 .. Passed 1.25 sec
168 Start 56: GrapeFUSEInterfaceTests.computation_child
169 56/87 Test #56: GrapeFUSEInterfaceTests.computation_child
170 .. Passed 1.30 sec
171 Start 57: GrapeFUSEInterfaceTests.computation_child_opengl
172 57/87 Test #57: GrapeFUSEInterfaceTests.computation_child_opengl
173 .. Passed 1.38 sec
174 Start 58: GrapeFUSEInterfaceTests.computation_child_change
175 58/87 Test #58: GrapeFUSEInterfaceTests.computation_child_change
176 .. Passed 1.30 sec
177 Start 59: GrapeFUSEInterfaceTests.computation_parser_image
178 59/87 Test #59: GrapeFUSEInterfaceTests.computation_parser_image
179 .. Passed 0.25 sec
180 Start 60: GrapeFUSEInterfaceTests.getxattr
181 60/87 Test #60: GrapeFUSEInterfaceTests.getxattr
182 .. Passed 0.20 sec
183 Start 61: GrapeFUSEInterfaceTests.setxattr
184 61/87 Test #61: GrapeFUSEInterfaceTests.setxattr
185 .. Passed 0.20 sec

XXVI B Test results (Functional correctness)

186 Start 62: GrapeFUSEInterfaceTests.listxattr
187 62/87 Test #62: GrapeFUSEInterfaceTests.listxattr
188 .. Passed 0.20 sec
189 Start 63: GrapeFUSEInterfaceTests.removexattr
190 63/87 Test #63: GrapeFUSEInterfaceTests.removexattr
191 .. Passed 0.20 sec
192 Start 64: GrapeFUSEInterfaceTests
193 64/87 Test #64: GrapeFUSEInterfaceTests
194 .. Passed 5.08 sec
195 Start 65: GrapeAttributeTests.set_get_attribute
196 65/87 Test #65: GrapeAttributeTests.set_get_attribute
197 .. Passed 0.20 sec
198 Start 66: GrapeAttributeTests.list_attributes
199 66/87 Test #66: GrapeAttributeTests.list_attributes
200 .. Passed 0.19 sec
201 Start 67: GrapeAttributeTests.remove_attribute
202 67/87 Test #67: GrapeAttributeTests.remove_attribute
203 .. Passed 0.20 sec
204 Start 68: GrapeAttributeTests
205 68/87 Test #68: GrapeAttributeTests
206 .. Passed 0.20 sec
207 Start 69: GrapeParserTests.image_pgm
208 69/87 Test #69: GrapeParserTests.image_pgm
209 .. Passed 0.20 sec
210 Start 70: GrapeParserTests.object_attribute
211 70/87 Test #70: GrapeParserTests.object_attribute
212 .. Passed 0.19 sec
213 Start 71: GrapeParserTests.object_attribute_change
214 71/87 Test #71: GrapeParserTests.object_attribute_change
215 .. Passed 0.19 sec
216 Start 72: GrapeParserTests.object_attribute_toggle
217 72/87 Test #72: GrapeParserTests.object_attribute_toggle
218 .. Passed 0.19 sec
219 Start 73: GrapeParserTests
220 73/87 Test #73: GrapeParserTests
221 .. Passed 0.19 sec
222 Start 74: GrapeFUSETests.mount_umount
223 74/87 Test #74: GrapeFUSETests.mount_umount
224 .. Passed 0.23 sec
225 Start 75: GrapeFUSETests.file
226 75/87 Test #75: GrapeFUSETests.file
227 .. Passed 0.27 sec
228 Start 76: GrapeFUSETests.directory
229 76/87 Test #76: GrapeFUSETests.directory
230 .. Passed 0.25 sec
231 Start 77: GrapeFUSETests.xattr
232 77/87 Test #77: GrapeFUSETests.xattr
233 .. Passed 0.26 sec
234 Start 78: GrapeFUSETests.parser_image
235 78/87 Test #78: GrapeFUSETests.parser_image
236 .. Passed 0.35 sec
237 Start 79: GrapeFUSETests.parser_image_compression
238 79/87 Test #79: GrapeFUSETests.parser_image_compression
239 .. Passed 0.37 sec
240 Start 80: GrapeFUSETests.computation_source
241 80/87 Test #80: GrapeFUSETests.computation_source
242 .. Passed 0.29 sec
243 Start 81: GrapeFUSETests.computation_opengl
244 81/87 Test #81: GrapeFUSETests.computation_opengl
245 .. Passed 0.36 sec
246 Start 82: GrapeFUSETests.computation_arguments
247 82/87 Test #82: GrapeFUSETests.computation_arguments
248 .. Passed 0.36 sec

XXVII

249 Start 83: GrapeFUSETests.computation_symlink_absolute
250 83/87 Test #83: GrapeFUSETests.computation_symlink_absolute
251 .. Passed 2.39 sec
252 Start 84: GrapeFUSETests.computation_symlink_relative
253 84/87 Test #84: GrapeFUSETests.computation_symlink_relative
254 .. Passed 2.38 sec
255 Start 85: GrapeFUSETests.computation_child
256 85/87 Test #85: GrapeFUSETests.computation_child
257 .. Passed 1.36 sec
258 Start 86: GrapeFUSETests.computation_child_opengl
259 86/87 Test #86: GrapeFUSETests.computation_child_opengl
260 .. Passed 1.43 sec
261 Start 87: GrapeFUSETests
262 87/87 Test #87: GrapeFUSETests
263 .. Passed 10.25 sec
264
265 100% tests passed, 0 tests failed out of 87
266
267 Total Test time (real) = 45.63 sec

Listing 22: CTest execution results

XXVIII B Test results (Functional correctness)

XXIX

C Throughput measurements of selected filesystem interfaces

> perftest.tmpfs.j1 <- read.table("Benchmarks/perftest.tmpfs.j1.csv", sep=",")
> perftest.tmpfs.j1 / 1024

x
Initial write 1064.056
Rewrite 1060.333
Read 1200.235
Re-read 2700.640
Reverse Read 1950.646
Stride read 2833.145
Random read 2449.362
Mixed workload 1430.526
Random write 1421.618
Pwrite 3068.203
Pread 1657.569
Fwrite 3193.481
Fread 1765.518

Measurement 11: Raw tmpfs throughput

> perftest.fuse.j1 <- read.table("Benchmarks/perftest.fuse.j1.csv", sep=",")
> perftest.fuse.j1 / 1024

x
Initial write 130.2664
Rewrite 469.8564
Read 789.5089
Re-read 884.1514
Reverse Read 381.9043
Stride read 788.0487
Random read 353.8197
Mixed workload 225.9207
Random write 215.7021
Pwrite 522.8767
Pread 227.4655
Fwrite 1078.9347
Fread 226.6198

Measurement 12: Raw FUSE throughput

> perftest.9p.j1 <- read.table("Benchmarks/perftest.9p.j1.csv", sep=",")
> perftest.9p.j1 / 1024

x
Initial write 112.17252
Rewrite 107.74214
Read 87.50192
Re-read 126.34160
Reverse Read 127.11728
Stride read 112.77755
Random read 141.14773
Mixed workload 123.94226
Random write 124.92919
Pwrite 114.00226
Pread 110.57054
Fwrite 150.87754
Fread 126.52247

Measurement 13: Raw 9p throughput

XXX C Throughput measurements of selected filesystem interfaces

XXXI

D R profiling/measurement processing code

The following code has been used in order to process the raw profiling data into the results
used in the evaluation.

1 library(reshape)
2 library(ggplot2)
3 library(qpcR)
4
5 .wd <- getwd()
6
7 process_tsc <- function(x, var_begin, var_end) {
8 return((x[var_end] - x[var_begin]) / 1994999); # ms
9 }
10
11 process_mem <- function(x, var_begin, var_end) {
12 return((x[var_end] - x[var_begin]) / 1024); # KiB
13 }
14
15 process_time <- function(x, var_begin, var_end, sc_clk_tck) {
16 return((x[var_end] - x[var_begin]) * 1000 / x[sc_clk_tck]); # ms
17 }
18
19 opplot <- function(prefixes, variables, operation, bpp) {
20 res <- data.frame()
21
22 for (i in 1:length(prefixes)) {
23 res <- rbind(res, data.frame(operation=paste(prefixes[i], get(variables[i])[,'

operation'], sep='.'), data=get(variables[i])[,paste('result', operation, 'tsc
', sep='_')]/(get(variables[i])$data_width*get(variables[i])$data_height*(bpp
/8)/1024)))

24 }
25
26 boxplot(res$data*1024 ~ res$operation, xlab="Op.", ylab="ms/MiB", ylim=c(0, 100))
27 }
28
29 timeplot <- function(names, variables, operations, title) {
30 tasks <- c()
31 time_begin <- c()
32 time_end <- c()
33
34 for (i in 1:length(names)) {
35 t <- get(variables[i])
36 tpos <- 0
37
38 for (op in operations) {
39 tasks <- c(tasks, paste(names[i], op, sep='.'))
40
41 time_begin <- c(time_begin, tpos)
42
43 tpos <- tpos + mean(t[op][,1])
44 time_end <- c(time_end, tpos)
45 }
46 }
47
48 dfr <- data.frame(
49 name = factor(tasks, levels = tasks),
50 start.time = time_begin,
51 end.time = time_end
52)
53 mdfr <- melt(dfr, measure.vars = c("start.time", "end.time"))

XXXII D R profiling/measurement processing code

54 ggplot(mdfr, aes(value, name)) +
55 geom_line(size = 6) +
56 xlab("ms") + ylab("Op.") + ggtitle(title) +
57 theme_bw()
58 }
59
60 attrs <- c('cpu_sys', 'cpu_user', 'mem', 'tsc')
61
62 result_dirs <- c('~/GrapeFS-release/Testing/Evaluation/Results', '~/GrapeFS-eval-

release/Testing/Evaluation/Results')
63
64 for (resdir in result_dirs) {
65 setwd(resdir)
66
67 eval_tests <- list.dirs()
68
69 detailEnv <- new.env(hash=TRUE)
70
71 for (i in 2:length(eval_tests)) {
72 files <- list.files(eval_tests[i], full.names=TRUE)
73
74 for (f in files) {
75 vname <- sub('/', '.', substr(f, 3, nchar(f)))
76
77 vobj <- read.table(f, header=T, quote="\"")
78
79 for (mem in colnames(vobj)) {
80 if (substr(mem, 0, 7) == 'before_') {
81 meth <- sub('_.*', '', substring(mem, 8))
82
83 for (attr in attrs) {
84 begin_var <- paste('before', meth, attr, sep='_')
85 end_var <- paste('after', meth, attr, sep='_')
86 result_var <- paste('result', meth, attr, sep='_')
87
88 if ((begin_var %in% colnames(vobj)) && (end_var %in% colnames(vobj))) {
89 if ((attr == 'cpu_sys') || (attr == 'cpu_user')) {
90 vobj[result_var] <- process_time(vobj, begin_var, end_var, 'SC_CLK_TCK

')
91 }
92 else if (attr == 'mem') {
93 vobj[result_var] <- process_mem(vobj, begin_var, end_var)
94 }
95 else if (attr == 'tsc') {
96 vobj[result_var] <- process_tsc(vobj, begin_var, end_var)
97
98 parts <- unlist(strsplit(vname, '.', fixed=TRUE))
99
100 if (is.null(detailEnv[[paste(parts[1], parts[2], sep='.')]])) {
101 env_vobj <- c()
102 env_vobj['name'] <- meth
103 env_vobj['begin'] <- min(vobj[begin_var])
104 env_vobj['end'] <- max(vobj[end_var])
105 }
106
107 detailEnv[[paste(parts[1], parts[2], sep='.')]]['name'] <- c()
108 }
109 else {
110 print(paste('Unknown attr', attr))
111 }
112 }
113 }
114 }

XXXIII

115 }
116
117 assign(vname, vobj)
118 }
119 }
120
121 remove(i)
122 remove(f)
123 remove(files)
124 remove(begin_var)
125 remove(end_var)
126 remove(result_var)
127 remove(vobj)
128 remove(attr)
129 remove(mem)
130 remove(meth)
131 remove(vname)
132 remove(parts)
133 remove(env_vobj)
134 remove(eval_tests)
135 }
136
137 remove(resdir)
138 remove(attrs)
139
140 Perf.Passthrough.Perf$throughput_setup <- Perf.Passthrough.Perf$result_setup_tsc/(Perf

.Passthrough.Perf$data_width*Perf.Passthrough.Perf$data_height*3)*1024*1024
141 Perf.Passthrough.Perf$throughput_execute <- Perf.Passthrough.Perf$result_execute_tsc/(

Perf.Passthrough.Perf$data_width*Perf.Passthrough.Perf$data_height*3)*1024*1024
142 Perf.Passthrough.Perf$throughput_teardown <- Perf.Passthrough.Perf$result_teardown_tsc

/(Perf.Passthrough.Perf$data_width*Perf.Passthrough.Perf$data_height*3)*1024*1024
143 Perf.Passthrough.Perf$throughput <- Perf.Passthrough.Perf$throughput_setup+Perf.

Passthrough.Perf$throughput_teardown
144
145 Perf.Passthrough_Raw.Perf$throughput_setup <- Perf.Passthrough_Raw.

Perf$result_setup_tsc/(Perf.Passthrough_Raw.Perf$data_width)*1024*1024
146 Perf.Passthrough_Raw.Perf$throughput_execute <- Perf.Passthrough_Raw.

Perf$result_execute_tsc/(Perf.Passthrough_Raw.Perf$data_width)*1024*1024
147 Perf.Passthrough_Raw.Perf$throughput_teardown <- Perf.Passthrough_Raw.

Perf$result_teardown_tsc/(Perf.Passthrough_Raw.Perf$data_width)*1024*1024
148 Perf.Passthrough_Raw.Perf$throughput <- Perf.Passthrough_Raw.Perf$throughput_setup+

Perf.Passthrough_Raw.Perf$throughput_teardown
149
150 GrapeFS.Perf.Perf$throughput_setup <- GrapeFS.Perf.Perf$result_setup_tsc/(GrapeFS.Perf

.Perf$data_width*GrapeFS.Perf.Perf$data_height*3)*1024*1024
151 GrapeFS.Perf.Perf$throughput_execute <- GrapeFS.Perf.Perf$result_execute_tsc/(GrapeFS.

Perf.Perf$data_width*GrapeFS.Perf.Perf$data_height*3)*1024*1024
152 GrapeFS.Perf.Perf$throughput_teardown <- GrapeFS.Perf.Perf$result_teardown_tsc/(

GrapeFS.Perf.Perf$data_width*GrapeFS.Perf.Perf$data_height*3)*1024*1024
153 GrapeFS.Perf.Perf$throughput <- GrapeFS.Perf.Perf$throughput_setup+GrapeFS.Perf.

Perf$throughput_teardown
154
155 GrapeFS.Perf_Raw.Perf$throughput_setup <- GrapeFS.Perf_Raw.Perf$result_setup_tsc/(

GrapeFS.Perf_Raw.Perf$data_width*GrapeFS.Perf_Raw.Perf$data_height*3)*1024*1024
156 GrapeFS.Perf_Raw.Perf$throughput_execute <- GrapeFS.Perf_Raw.Perf$result_execute_tsc/(

GrapeFS.Perf_Raw.Perf$data_width*GrapeFS.Perf_Raw.Perf$data_height*3)*1024*1024
157 GrapeFS.Perf_Raw.Perf$throughput_teardown <- GrapeFS.Perf_Raw.Perf$result_teardown_tsc

/(GrapeFS.Perf_Raw.Perf$data_width*GrapeFS.Perf_Raw.Perf$data_height*3)*1024*1024
158 GrapeFS.Perf_Raw.Perf$throughput <- GrapeFS.Perf_Raw.Perf$throughput_setup+GrapeFS.

Perf_Raw.Perf$throughput_teardown
159
160 GrapeFS.Overhead <- data.frame(enc=GrapeFS.Perf.Perf$throughput-Perf.Passthrough.

Perf$throughput, raw=GrapeFS.Perf_Raw.Perf$throughput-Perf.Passthrough_Raw.

XXXIV D R profiling/measurement processing code

Perf$throughput)
161
162 df_comp_speed <- c(250, 60, 13, 16000/8/1024, 8000/8/1024, 2000/8/1024)
163
164 df_comp_mean <- c()
165 df_comp_sd <- c()
166
167 for (speed in df_comp_speed) {
168 through <- GrapeFS.Perf.Perf$throughput_setup
169 comp <- (GrapeFS.Compression.dump$result_size_tsc+GrapeFS.Compression.

dump$result_convert_tsc+GrapeFS.Compression.dump$result_memory_tsc)+(GrapeFS.
Compression.dump$output_size/1024/1024)/(speed/1000)

170
171 throughput <- c(mean(through), sd(through))
172 compression <- c(mean(comp), sd(comp))
173
174 speed <- c(speed, 0)
175
176 DF <- cbind(speed, throughput, compression)
177 EXPR <- expression(((3/(speed/1000))/(3*throughput+compression)))
178
179 res <- propagate(expr=EXPR, data=DF, type="stat", plot=FALSE)
180
181 df_comp_mean <- c(df_comp_mean, res$summary[1,]$Prop)
182 df_comp_sd <- c(df_comp_sd, res$summary[2,]$Prop)
183 }
184
185 GrapeFS.Perf.Perf$throughput_time <- GrapeFS.Perf.Perf$result_setup_tsc+GrapeFS.Perf.

Perf$result_teardown_tsc
186 GrapeFS.Perf.Perf$fps = 1000/GrapeFS.Perf.Perf$throughput_time
187
188 GrapeFS.Perf_Raw.Perf$throughput_time <- GrapeFS.Perf_Raw.Perf$result_setup_tsc+

GrapeFS.Perf_Raw.Perf$result_teardown_tsc
189 GrapeFS.Perf_Raw.Perf$fps = 1000/GrapeFS.Perf_Raw.Perf$throughput_time
190
191 executeAssembly <- rbind(GrapeFS.Compression.executeAssembly, GrapeFS.Conversion.

executeAssembly, GrapeFS.Passthrough.executeAssembly, GrapeFS.Perf.executeAssembly
, GrapeFS.Perf_Raw.executeAssembly, GrapeFS.Reencoding.executeAssembly)

192 executeAssembly <- executeAssembly$result_arguments_tsc +
executeAssembly$result_execution_tsc

193
194 updateAssembly <- rbind(GrapeFS.Compression.updateAssembly, GrapeFS.Conversion.

updateAssembly, GrapeFS.Passthrough.updateAssembly, GrapeFS.Perf.updateAssembly,
GrapeFS.Perf_Raw.updateAssembly, GrapeFS.Reencoding.updateAssembly)

195 updateAssembly <- updateAssembly$result_parse_tsc + updateAssembly$result_bitcode_tsc
+ updateAssembly$result_jit_tsc + updateAssembly$result_arguments_tsc

196
197 GrapeFS.Visualization <- data.frame(ms_raw=GrapeFS.Visualization.

executeAssembly$result_MVP_tsc+GrapeFS.Visualization.
executeAssembly$result_readpixels_tsc,MiB_ps_raw=1000/((GrapeFS.Visualization.
executeAssembly$result_MVP_tsc+GrapeFS.Visualization.
executeAssembly$result_texturebind_tsc+GrapeFS.Visualization.
executeAssembly$result_readpixels_tsc)/((GrapeFS.Visualization.
executeAssembly$width*GrapeFS.Visualization.executeAssembly$height)/1024/1024)),
MiB=((GrapeFS.Visualization.executeAssembly$width*GrapeFS.Visualization.
executeAssembly$height)/1024/1024), size=GrapeFS.Visualization.
executeAssembly$width)

198
199 df_vis_sizes <- c(256, 512, 1024, 1536)
200
201 df_vis_mean <- c()
202 df_vis_sd <- c()
203

XXXV

204 for (size in df_vis_sizes) {
205 tmp_executeAssembly <- GrapeFS.Visualization.executeAssembly[GrapeFS.Visualization.

executeAssembly$width==size,]
206
207 comp <- ((size*size)/1024/1024/3) * ((GrapeFS.Compression.dump$result_size_tsc+

GrapeFS.Compression.dump$result_convert_tsc+GrapeFS.Compression.
dump$result_memory_tsc))

208 vis <- (tmp_executeAssembly$result_MVP_tsc+
tmp_executeAssembly$result_texturebind_tsc+
tmp_executeAssembly$result_readpixels_tsc)

209
210 compression <- c(mean(comp), sd(comp))
211 visualization <- c(mean(vis), sd(vis))
212
213 DF <- cbind(visualization, compression)
214 EXPR <- expression(visualization+compression)
215
216 res <- propagate(expr=EXPR, data=DF, type="stat", plot=FALSE)
217
218 df_vis_mean <- c(df_vis_mean, res$summary[1,]$Prop)
219 df_vis_sd <- c(df_vis_sd, res$summary[2,]$Prop)
220 }
221
222 setwd(.wd)

Listing 23: R evaluation code

XXXVI D R profiling/measurement processing code

XXXVII

E Implementation details and instructions

E.1 Build instructions and external dependencies

E.2 Codemetrics

1 cd . . / Code / GrapeFS
2 s loccount .

SLOC Directory SLOC-by-Language (Sorted)
55739 GTest cpp=42606,sh=10368,python=2765
2517 Testing cpp=1739,sh=614,ansic=151,java=13
1890 top_dir cpp=1890
1190 Kernel cpp=1190
540 FUSE cpp=540
480 Special cpp=480
238 Parser cpp=238
67 Include ansic=67
66 Install sh=27,cpp=18,java=12,ansic=9
19 Virtual cpp=19
0 CMake (none)

Totals grouped by language (dominant language first):
cpp: 48720 (77.65%)
sh: 11009 (17.55%)
python: 2765 (4.41%)
ansic: 227 (0.36%)
java: 25 (0.04%)

Total Physical Source Lines of Code (SLOC) = 62,746
Development Effort Estimate, Person-Years (Person-Months) = 15.43 (185.22)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 1.52 (18.18)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 10.19
Total Estimated Cost to Develop = $ 2,085,004
(average salary = $56,286/year, overhead = 2.40).
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

Listing 24: GrapeFS code metrics.

XXXVIII E Implementation details and instructions

XXXIX

F Selected code extracts

1 const char *kExtensions[] = {
2 ".c",
3 ".cxx",
4 nullptr
5 };
6
7 extern "C" void executor_init()
8 {
9 llvm::InitializeNativeTarget();
10 llvm::llvm_start_multithreaded();
11 }
12
13 extern "C" void executor_deinit()
14 {
15 }
16
17 extern "C" ComputationKernel * executor_create(Directory *parent)
18 {
19 return new ClangKernel(parent);
20 }
21
22 extern "C" const char * executor_extension(int i)
23 {
24 return kExtensions[i];
25 }
26
27 extern "C" const char ** executor_extensions()
28 {
29 return kExtensions;
30 }
31
32 extern "C" void executor_destroy(ComputationKernel *object)
33 {
34 if (object == nullptr)
35 return;
36
37 delete object;
38 }

Listing 25: Exported interface of ComputationKernel implementations

1 const char *pExtensions[] = {
2 "jpg",
3 "png",
4 "pgm",
5 "tga",
6 nullptr
7 };
8
9 extern "C" DataFormat * create_parser()
10 {
11 FreeImage_Initialise();
12
13 return new DataParser;
14 }
15
16 extern "C" void destroy_parser(DataFormat *object)

XL F Selected code extracts

17 {
18 delete object;
19
20 FreeImage_DeInitialise();
21 }

Listing 26: Exported interface of DataFormat implementations

1 [...]
2
3 typedef struct _PerformanceOperation
4 {
5 [...]
6
7 void FillProc()
8 {
9 struct proc_t pusage;
10 look_up_our_self(&pusage);
11
12 values.push_back(PerformanceValue(GrapeFS::ULongLong, pusage.stime));
13 values.push_back(PerformanceValue(GrapeFS::ULongLong, pusage.utime));
14 values.push_back(PerformanceValue(GrapeFS::UInt64, (uint64_t) pusage.vsize));
15 }
16
17 [...]
18 } PerformanceOperation;
19
20
21 #define GRAPEFS_PERF_DEF GrapeFS::PerformanceDirectory *

gfs_perfDirectory
22 #define GRAPEFS_PERF_INIT(x) gfs_perfDirectory = new GrapeFS::

PerformanceDirectory(x)
23
24 #define GRAPEFS_PERF_BEGIN GrapeFS::PerformanceOperation __op(__func__,

m_id)
25 #define GRAPEFS_PERF_CUSTOM(type, value) __op.values.push_back(GrapeFS::

PerformanceValue(type, GrapeFS::PerformanceContent(value)))
26 #define GRAPEFS_PERF_CLOCK __op.values.push_back(GrapeFS::

PerformanceValue(GrapeFS::Clock, GrapeFS::PerformanceContent(clock())))
27 #define GRAPEFS_PERF_TSC __op.values.push_back(GrapeFS::

PerformanceValue(GrapeFS::ULongLong, GrapeFS::PerformanceContent(rdtsc())))
28 #define GRAPEFS_PERF_TIME __op.values.push_back(GrapeFS::

PerformanceValue(GrapeFS::Double, GrapeFS::PerformanceContent::FromTime()))
29 #define GRAPEFS_PERF_CPU_SYS __op.values.push_back(GrapeFS::

PerformanceValue(GrapeFS::Double, GrapeFS::PerformanceContent::FromSystemCPU()))
30 #define GRAPEFS_PERF_CPU_USER __op.values.push_back(GrapeFS::

PerformanceValue(GrapeFS::Double, GrapeFS::PerformanceContent::FromUserCPU()))
31 #define GRAPEFS_PERF_ALL do { __op.FillProc(); GRAPEFS_PERF_TSC; }

while (0)

Listing 27: Macro definitions to acquire the runtime profiling data

XLI

G Digital attachment

CD Attached

Contents

GrapeFS project

	List of Figures
	List of Tables
	List of Measurements
	List of URLs
	Introduction
	Motivation
	Proposal
	Scope and objectives
	Chapter overview

	Fundamentals
	Image processing
	Common processing tasks
	Image files and formats

	Filesystems and the VFS
	The Virtual Filesystem (VFS) interface
	Synthetic/Pseudo filesystems
	User-space filesystems
	FUSE and 9P

	Relevant architectural patterns

	Analysis
	Functional requirements
	Non-functional requirements
	Evaluation and success criteria
	Functional requirements
	Profiling comparison

	Related Work
	Frameworks and Toolkits
	VTK/ITK
	OpenCV

	Interfaces
	Applications
	(Web-)Services
	Userspace filesystems
	HDFS/MapReduce

	Implementation
	Methodology
	Programming language and filesystem interface
	Goals and requirements
	Implemented design patterns

	Design and user interaction
	Startup and initialization
	Types and file formats
	Modifications and change notifications

	Language frontends
	C/C++
	Java
	OpenGL/GLSL

	File formats and flags
	Tools to improve user interaction
	Implementation of the requirements

	Evaluation
	Interface and user interaction
	Overview
	Advantages
	Usability issues

	Measurement methodology
	Gathering of measurement data
	Example measurements for the profiling data
	Subsequent data processing

	Performance evaluation
	Preliminary optimizations
	Notes about the native and filesystem comparison
	Raw data throughput
	Format and data encoding
	Data input (black-box)
	Result output (black-box)
	Overall filesystem input and output overhead (black-box)
	Filtering using JIT-compiled C kernels (white-box)
	Visualization/Filesystem throughput (black-box)
	OpenGL/Filesystem throughput (white-box)

	Functional correctness
	Object structure and interaction
	FUSE interface and operation tests
	Runtime characteristics

	Conclusion
	Successes and problems
	Availability and licensing
	Are we there yet? (Outlook)
	User interaction and interfaces
	Platform compatibility, multithreading and persistence
	Integration of language frontends, processing toolkits and DSLs
	Heterogeneous computing and automated pipeline routing

	Appendix
	References

	Test results (Functional correctness)
	Throughput measurements of selected filesystem interfaces
	R profiling/measurement processing code
	Implementation details and instructions
	Build instructions and external dependencies
	Code metrics

	Selected code extracts
	Digital attachment

