568 research outputs found

    Reconciling critical zone science with ecosystem and soil science—a personal-scientist perspective

    Get PDF
    The critical zone has been the subject of much discussion and debate as a term in the ecosystem, soil and earth system science communities, and there is a need to reconcile how this term is used within these disciplines. I suggest that much like watershed and soil ecosystems, the critical zone is an ecosystem and is defined by deeper spatial and temporal boundaries to study its structure and function. Critical zone science, however, expands the scope of ecosystem and soil science and more fully embraces the integration of earth sciences, ecology, and hydrology to understand key mechanisms driving critical zone functions in a place-based setting. This integration of multiple perspectives and expertise is imperative to make new discoveries at the interface of these disciplines. I offer solid examples highlighting how critical zone science as an integrative science contributes to ecosystem and soil sciences and exemplify this emerging field

    Climate Change and Restoration of Degraded Land

    Get PDF
    The United Nations Climate Change Conference, Durban 2011, delivered a breakthrough on the international community's response to climate change. In the second largest meeting of its kind, the negotiations advanced, in a balanced fashion, the implementation of the Convention and the Kyoto Protocol, the Bali Action Plan, and the Cancun Agreements. The outcomes included a decision by Parties to adopt a universal legal agreement on climate change as soon as possible, and no later than 2015. One of the decisions adopted by COP 17 and CMP 7 regard to the land use, land-use change and forestry, and invites the Intergovernmental Panel on Climate Change to review and, if necessary, update supplementary methodologies for estimating anthropogenic greenhouse gas emissions by sources and removals by sinks resulting from land use, land-use change and forestry activities under Article 3, paragraphs 3 and 4, of the Kyoto Protocol. Land degradation is a human-induced or natural process which negatively affects the productivity of land within an ecosystem. The direct causes of land degradation are geographically specific. Climate change, including changes in short-term variation, as well as long-term gradual changes in temperature and precipitation, is expected to be an additional stress on rates of land degradation. Book Topics: • Introduction to Climate Change and Land Degradation • Change Mitigation • Climate Change and Waste Land Restoration • Water Management and Planning • Erosion and Hydrological Restoration • Forest Fire Land Restoration • Polluted Soils Restoration • Combating Climate Change by Restoration of Degraded Land • Research Matters – Climate Change Governance • Advanced Statistics Climate Change and Restoration of Degraded Land is of interests to academics, engineers, consultans, designers and professionals involved in restoration of degraded lands projects

    Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons.

    Get PDF
    While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions

    Ideas and perspectives: strengthening the biogeosciences in environmental research networks

    Get PDF
    Many scientific approaches are improving our understanding and management of the rapidly changing environment. Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintained the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long Term Ecological Research programs (ILTERs), the Critical Zone Observatories (CZOs), the Earth and Ecological Observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and grown by interdisciplinary scientists, the preponderance of expertise and funding have gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    From Soils to Streams: Connecting Terrestrial Carbon Transformation, Chemical Weathering, and Solute Export Across Hydrological Regimes

    Get PDF
    Soil biota generates carbon that exports vertically to the atmosphere (CO2) and transports laterally to streams and rivers (dissolved organic and inorganic carbon, DOC and DIC). These processes, together with chemical weathering, vary with flow paths across hydrological regimes; yet an integrated understanding of these interactive processes is still lacking. Here we ask: How and to what extent do subsurface carbon transformation, chemical weathering, and solute export differ across hydrological and subsurface structure regimes? We address this question using a hillslope reactive transport model calibrated using soil CO2 and water chemistry data from Fitch, a temperate forest at the ecotone boundary of the Eastern temperate forest and mid-continent grasslands in Kansas, USA. Model results show that droughts (discharge at 0.08 mm/day) promoted deeper flow paths, longer water transit time, carbonate precipitation, and mineralization of organic carbon (OC) into inorganic carbon (IC) (∼98% of OC). Of the IC produced, ∼86% was emitted upward as CO2 gas and ∼14% was exported laterally as DIC into the stream. Storms (8.0 mm/day) led to carbonate dissolution but reduced OC mineralization (∼88% of OC) and promoted DOC production (∼12% of OC) and lateral fluxes of IC (∼53% of produced IC). Differences in shallow-versus-deep permeability contrasts led to smaller difference (\u3c 10%) than discharge-induced differences and were most pronounced under wet conditions. High permeability contrasts (low vertical connectivity) enhanced lateral fluxes. Model results generally delineate hillslopes as active CO2 producers and vertical carbon transporters under dry conditions, and as active DOC producers and lateral carbon transporter under wet conditions

    State of the knowledge on European marine habitat mapping and degraded habitats

    Get PDF
    During the last decades, several EU Directives and other international legislations have generated a large number of national initiatives (e.g. marine atlases) and EU programmes on habitat mapping. Nevertheless, the outcomes of these initiatives are fragmented and, to our best knowledge, to date there is no systematic assessment regarding the nature, quality and availability of information across the European seas. One of the main goals of the MERCES project (www.merces-project.eu) is to produce a census of available maps of European key marine habitats, along with their degradation status and restoration potential in the European Seas, providing a potential basis for future discussion on restoration activities. MERCES is producing a census of European marine key habitat maps, degraded habitat maps and investigating key habitat restoration potential. To do this MERCES has i. reviewed known existing habitat maps of European regional seas and provided source citations for all of the information ii. reviewed degraded habitat map resources by regional sea and habitat type (e.g. seagrass, macroalgae, coral gardens, sponge aggregations, seamounts, vents), associated habitat deterioration (e.g. extent of decline), the most common human activities and pressures reported, and the recovery and restoration potential of these habitats iii. reviewed 6 key habitats (including kelp and macroalgal forests, seagrass meadows, coralligenous assemblages, coral gardens and deep-sea bottom communities) and linked 6 major habitat features, such as dynamics, connectivity, structural complexity and vulnerability, to consequences for restoration and the likelihood of restoration succes

    Soil biodiversity: functions, threats and tools for policy makers

    Get PDF
    Human societies rely on the vast diversity of benefits provided by nature, such as food, fibres, construction materials, clean water, clean air and climate regulation. All the elements required for these ecosystem services depend on soil, and soil biodiversity is the driving force behind their regulation. With 2010 being the international year of biodiversity and with the growing attention in Europe on the importance of soils to remain healthy and capable of supporting human activities sustainably, now is the perfect time to raise awareness on preserving soil biodiversity. The objective of this report is to review the state of knowledge of soil biodiversity, its functions, its contribution to ecosystem services and its relevance for the sustainability of human society. In line with the definition of biodiversity given in the 1992 Rio de Janeiro Convention, soil biodiversity can be defined as the variation in soil life, from genes to communities, and the variation in soil habitats, from micro-aggregates to entire landscapes. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment

    Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-arid Areas

    Get PDF
    This Special Issue (SI) aims to investigate the relationships between hydrological and ecological processes and how these interactions can contribute to the optimization of water resources in arid and semi-arid areas. This SI collected 10 original contributions on sustainable land management and the optimization of water resources in fragile environments that are at elevated risk due to climate change. The topics mainly concern transpiration, evapotranspiration, groundwater recharge, deep percolation, and related issues. The collection of manuscripts presented in this SI represents a contribution of knowledge in ecohydrology

    Program and Book of Abstracts of the IUFRO 3rd Restoring Forest

    Get PDF
    corecore