23,592 research outputs found

    Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana

    Get PDF
    Degradation, a reduction of the ecosystem’s capacity to supply goods and services, is widespread in tropical forests and mainly caused by human disturbance. To maintain the full range of forest ecosystem services and support the development of effective conservation policies, we must understand the overall impact of degradation on different forest resources. This research investigates the response to disturbance of forest structure using several indicators: soil carbon content, arboreal richness and biodiversity, functional composition (guild and wood density), and productivity. We drew upon large field and remote sensing datasets from different forest types in Ghana, characterized by varied protection status, to investigate impacts of selective logging, and of illegal land use and resources extraction, which are the main disturbance causes in West Africa. Results indicate that functional composition and the overall number of species are less affected by degradation, while forest structure, soil carbon content and species abundance are seriously impacted, with resources distribution reflecting the protection level of the areas. Remote sensing analysis showed an increase in productivity in the last three decades, with higher resiliency to change in drier forest types, and stronger productivity correlation with solar radiation in the short dry season. The study region is affected by growing anthropogenic pressure on natural resources and by an increased climate variability: possible interactions of disturbance with climate are also discussed, together with the urgency to reduce degradation in order to preserve the full range of ecosystem functions

    Spreading of Antarctic Bottom Water in the Atlantic Ocean

    Get PDF
    This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Brazil Basin splits. Part of the water flows through the Romanche and Chain fracture zones. The other part flows to the North American Basin. Part of the latter flow propagates through the Vema Fracture Zone into the Northeast Atlantic. The properties of bottom water in the Kane Gap and Discovery Gap are also analyzed

    Plant phenology supports the multi-emergence hypothesis for ebola spillover events

    Get PDF
    Ebola virus disease outbreaks in animals (including humans and great apes) start with sporadic host switches from unknown reservoir species. The factors leading to such spillover events are little explored. Filoviridae viruses have a wide range of natural hosts and are unstable once outside hosts. Spillover events, which involve the physical transfer of viral particles across species, could therefore be directly promoted by conditions of host ecology and environment. In this report we outline a proof of concept that temporal fluctuations of a set of ecological and environmental variables describing the dynamics of the host ecosystem are able to predict such events of Ebola virus spillover to humans and animals. We compiled a dataset of climate and plant phenology variables and Ebola virus disease spillovers in humans and animals. We identified critical biotic and abiotic conditions for spillovers via multiple regression and neural networks based time series regression. Phenology variables proved to be overall better predictors than climate variables. African phenology variables are not yet available as a comprehensive online resource. Given the likely importance of phenology for forecasting the likelihood of future Ebola spillover events, our results highlight the need for cost-effective transect surveys to supply phenology data for predictive modelling efforts

    Impact of Climate Trends and Drought Events on the Growth of Oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) within and beyond Their Natural Range

    Get PDF
    Due to predicted climate change, it is important to know to what extent trees and forests will be impacted by chronic and episodic drought stress. As oaks play an important role in European forestry, this study focuses on the growth response of sessile oak (Quercus petraea (Matt.) Liebl.) and pedunculate oak (Quercus robur (L.)) under contrasting climatic conditions. Analyses cover both site conditions of their natural occurrence (Southern Germany and Northeast Italy) and site conditions beyond their natural range (South Africa). The sites beyond their natural range represent possible future climate conditions. Tree-ring series from three different sites were compared and analysed using dendrochronological methods. The long-term growth development of oak trees appears to be similar across the sites, yet the growth level over time is higher in the drier and warmer climate than in the temperate zone. When compared with previous growth periods, growth models reveal that oak trees grew more than expected during the last decades. A recent setback in growth can be observed, although growth is still higher than the model predicts. By focusing on the short-term reactions of the trees, distinct drought events and periods were discovered. In each climatic region, similar growth reactions developed after drought periods. A decline in growth rate occurred in the second or third year after the drought event. Oaks in South Africa are currently exposed to a warmer climate with more frequent drought events. This climatic condition is a future prediction also for Europe. In view of this climate change, we discuss the consequences of the long- and short- term growth behaviour of oaks grown in the climate of South Africa for a tree species selection that naturally occurs in Europe

    Global and regional importance of the direct dust-climate feedback.

    Get PDF
    Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia

    Census and ear-notching of black rhinos (Diceros bicornis michaeli) in Tsavo East National Park, Kenya

    Get PDF
    This paper updates the status of the black rhino population in Tsavo East National Park (NP). Data were acquired through aerial counts of the black rhino between 3 and 9 October 2010 using three fixed-wing husky aircrafts and a Bell 206L helicopter in an area of about 3,300 km2. Based on previous sightings of rhinos, the area was divided into 14 blocks, with each block subdivided into 400 m transects. An aircraft flying at about 500 m above the ground was assigned to carry out the aerial survey following these transects within each block. Observers scanned for rhinos about 200 m on either sides of the flight paths. Intensive searches in areas with dense vegetation, especially along the Galana and Voi Rivers and other known rhino range areas was also carried out by both the huskies and the helicopter. The count resulted in sighting of 11 black rhinos. Seven of these individuals were ear notched and fitted with radio transmitters and the horns were tipped off to discourage poaching. Three of the seven captured rhinos were among the 49 animals translocated to Tsavo East between 1993 and 1999. The other four animals were born in Tsavo East. Two female rhinos and their calves were not ear-notched or fitted with transmitters. It is recommended that another count be carried out immediately after the wet season as the rhinos spend more time in the open areas while the vegetation is still green. The repeat aerail count is to include blocks north of River Galana

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Global Ecosystem Response Types Derived from the Standardized Precipitation Evapotranspiration Index and FPAR3g Series

    Get PDF
    Observing trends in global ecosystem dynamics is an important first step, but attributing these trends to climate variability represents a further step in understanding Earth system changes. In the present study, we classified global Ecosystem Response Types (ERTs) based on common spatio-temporal patterns in time-series of Standardized Precipitation Evapotranspiration Index (SPEI) and FPAR3g anomalies (1982–2011) by using an extended Principal Component Analysis. The ERTs represent region specific spatio-temporal patterns of ecosystems responding to drought or ecosystems with decreasing severity in drought events as well as ecosystems where drought was not a dominant factor in a 30-year period. Highest explanatory values in the SPEI12-FPAR3g anomalies and strongest SPEI12-FPAR3g correlations were seen in the ERTs of Australia and South America whereas lowest explanatory value and lowest correlations were observed in Asia and North America. These ERTs complement traditional pixel based methods by enabling the combined assessment of the location, timing, duration, frequency and severity of climatic and vegetation anomalies with the joint assessment of wetting and drying climatic conditions. The ERTs produced here thus have potential in supporting global change studies by mapping reference conditions of long term ecosystem changes.JRC.H.5-Land Resources Managemen
    • …
    corecore