2,781 research outputs found

    Logic of Non-Monotonic Interactive Proofs (Formal Theory of Temporary Knowledge Transfer)

    Full text link
    We propose a monotonic logic of internalised non-monotonic or instant interactive proofs (LiiP) and reconstruct an existing monotonic logic of internalised monotonic or persistent interactive proofs (LiP) as a minimal conservative extension of LiiP. Instant interactive proofs effect a fragile epistemic impact in their intended communities of peer reviewers that consists in the impermanent induction of the knowledge of their proof goal by means of the knowledge of the proof with the interpreting reviewer: If my peer reviewer knew my proof then she would at least then (in that instant) know that its proof goal is true. Their impact is fragile and their induction of knowledge impermanent in the sense of being the case possibly only at the instant of learning the proof. This accounts for the important possibility of internalising proofs of statements whose truth value can vary, which, as opposed to invariant statements, cannot have persistent proofs. So instant interactive proofs effect a temporary transfer of certain propositional knowledge (knowable ephemeral facts) via the transmission of certain individual knowledge (knowable non-monotonic proofs) in distributed systems of multiple interacting agents.Comment: continuation of arXiv:1201.3667 ; published extended abstract: DOI:10.1007/978-3-642-36039-8_16 ; related to arXiv:1208.591

    Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

    Get PDF
    We produce a decidable classical normal modal logic of internalised negation-complete and thus disjunctive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete (maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic) and enjoy the disjunction property (like Intuitionistic Logic). In other words, internalised proof theories are ultrafilters and all internalised proof goals are definite in the sense of being either provable or disprovable to an agent by means of disjunctive internalised proofs (thus also called epistemic deciders). Still, LDiiP itself is classical (monotonic, non-constructive), negation-incomplete, and does not have the disjunction property. The price to pay for the negation completeness of our interactive proofs is their non-monotonicity and non-communality (for singleton agent communities only). As a normal modal logic, LDiiP enjoys a standard Kripke-semantics, which we justify by invoking the Axiom of Choice on LiiP's and then construct in terms of a concrete oracle-computable function. LDiiP's agent-centric internalised notion of proof can also be viewed as a negation-complete disjunctive explicit refinement of standard KD45-belief, and yields a disjunctive but negation-incomplete explicit refinement of S4-provability.Comment: Expanded Introduction. Added Footnote 4. Corrected Corollary 3 and 4. Continuation of arXiv:1208.184

    Logic of Intuitionistic Interactive Proofs (Formal Theory of Perfect Knowledge Transfer)

    Full text link
    We produce a decidable super-intuitionistic normal modal logic of internalised intuitionistic (and thus disjunctive and monotonic) interactive proofs (LIiP) from an existing classical counterpart of classical monotonic non-disjunctive interactive proofs (LiP). Intuitionistic interactive proofs effect a durable epistemic impact in the possibly adversarial communication medium CM (which is imagined as a distinguished agent), and only in that, that consists in the permanent induction of the perfect and thus disjunctive knowledge of their proof goal by means of CM's knowledge of the proof: If CM knew my proof then CM would persistently and also disjunctively know that my proof goal is true. So intuitionistic interactive proofs effect a lasting transfer of disjunctive propositional knowledge (disjunctively knowable facts) in the communication medium of multi-agent distributed systems via the transmission of certain individual knowledge (knowable intuitionistic proofs). Our (necessarily) CM-centred notion of proof is also a disjunctive explicit refinement of KD45-belief, and yields also such a refinement of standard S5-knowledge. Monotonicity but not communality is a commonality of LiP, LIiP, and their internalised notions of proof. As a side-effect, we offer a short internalised proof of the Disjunction Property of Intuitionistic Logic (originally proved by Goedel).Comment: continuation of arXiv:1201.3667; extended start of Section 1 and 2.1; extended paragraph after Fact 1; dropped the N-rule as primitive and proved it derivable; other, non-intuitionistic family members: arXiv:1208.1842, arXiv:1208.591

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches

    Parametric Constructive Kripke-Semantics for Standard Multi-Agent Belief and Knowledge (Knowledge As Unbiased Belief)

    Full text link
    We propose parametric constructive Kripke-semantics for multi-agent KD45-belief and S5-knowledge in terms of elementary set-theoretic constructions of two basic functional building blocks, namely bias (or viewpoint) and visibility, functioning also as the parameters of the doxastic and epistemic accessibility relation. The doxastic accessibility relates two possible worlds whenever the application of the composition of bias with visibility to the first world is equal to the application of visibility to the second world. The epistemic accessibility is the transitive closure of the union of our doxastic accessibility and its converse. Therefrom, accessibility relations for common and distributed belief and knowledge can be constructed in a standard way. As a result, we obtain a general definition of knowledge in terms of belief that enables us to view S5-knowledge as accurate (unbiased and thus true) KD45-belief, negation-complete belief and knowledge as exact KD45-belief and S5-knowledge, respectively, and perfect S5-knowledge as precise (exact and accurate) KD45-belief, and all this generically for arbitrary functions of bias and visibility. Our results can be seen as a semantic complement to previous foundational results by Halpern et al. about the (un)definability and (non-)reducibility of knowledge in terms of and to belief, respectively

    Smart matching

    Full text link
    One of the most annoying aspects in the formalization of mathematics is the need of transforming notions to match a given, existing result. This kind of transformations, often based on a conspicuous background knowledge in the given scientific domain (mostly expressed in the form of equalities or isomorphisms), are usually implicit in the mathematical discourse, and it would be highly desirable to obtain a similar behavior in interactive provers. The paper describes the superposition-based implementation of this feature inside the Matita interactive theorem prover, focusing in particular on the so called smart application tactic, supporting smart matching between a goal and a given result.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    RPP: Automatic Proof of Relational Properties by Self-Composition

    Full text link
    Self-composition provides a powerful theoretical approach to prove relational properties, i.e. properties relating several program executions, that has been applied to compare two runs of one or similar programs (in secure dataflow properties, code transformations, etc.). This tool demo paper presents RPP, an original implementation of self-composition for specification and verification of relational properties in C programs in the FRAMA-C platform. We consider a very general notion of relational properties invoking any finite number of function calls of possibly dissimilar functions with possible nested calls. The new tool allows the user to specify a relational property, to prove it in a completely automatic way using classic deductive verification, and to use it as a hypothesis in the proof of other properties that may rely on it
    corecore