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Abstract

We produce a decidable classical normal modal logic of internalised negation-complete and thus disjunc-
tive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or
instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete
(maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic) and enjoy the
disjunction property (like Intuitionistic Logic). In other words, internalised proof theories are ultrafilters
and all internalised proof goals are definite in the sense of being either provable or disprovable to an agent
by means of disjunctive internalised proofs (thus also called epistemic deciders). Still, LDiiP itself is clas-
sical (monotonic, non-constructive), negation-incomplete, and does not have the disjunction property. The
price to pay for the negation completeness of our interactive proofs is their non-monotonicity and non-
communality (for singleton agent communities only). As a normal modal logic, LDiiP enjoys a standard
Kripke-semantics, which we justify by invoking the Axiom of Choice on LiiP’s and then construct in terms of
a concrete oracle-computable function. LDiiP’s agent-centric internalised notion of proof can also be viewed
as a negation-complete disjunctive explicit refinement of standard KD45-belief, and yields a disjunctive but
negation-incomplete explicit refinement of S4-provability.

Keywords: agents as proof checkers, constructive Kripke-semantics, disjunctive explicit doxastic and
epistemic logic, epistemic deciders as decisive evidence, interactive and oracle computation, multi-agent
systems, negation as failure, proofs as sufficient evidence, proof terms as truth values.

1 Introduction

The subject matter of this paper is classical normal modal logic of non-monotonic

interactive proofs, i.e., a novel modal logic of negation-complete and thus disjunctive

interactive proofs (LDiiP) and an existing modal logic of non-disjunctive and thus

negation-incomplete interactive proofs (LiiP) (cf. [20] and [19]). (We abbreviate

interactivity-related adjectives with lower-case letters.)

Our goal here is to produce LDiiP axiomatically as well as semantically from

LiiP. Note that like in [20,19,17], we still understand interactive proofs as sufficient

evidence for intended resource-unbounded proof-checking agents (who are though
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unable to guess), and leave probabilistic and polynomial-time resource bounds for

future work.

1.1 Motivation

Our immediate motivation for LDiiP is first the theoretical concept and second

the practical application of a negation-complete variant of our interactive proofs

[20,19,17]. The overarching motivation for LDiiP is to serve in an intuitionistic

foundation of interactive computation. See [17] for a programmatic motivation.

1.1.1 Theoretical concept

Like in the non-interactive setting of a single prover-verifier agent, the motivation

for negation-complete (maximal) and consistent logical theories (or ultrafilters [6])

and their external and internalised notions of proof is to gain cognitive, constructive,

and computational content.

Recall that a logical theory T is negation-complete by definition if and only if

(written “:iff” hereafter) for all formulas φ in the language (say L) of T, φ ∈ T or

¬φ ∈ T, and that T is consistent :iff ⊥ �∈ T (so T �= L), where ‘¬’ designates nega-
tion (complementation) and ⊥ falsehood (bottom). Notice that each such logical

theory (a filter 1 of propositions) is defined in terms of a characteristic property and

thus independently of how it is generated (e.g., based on some proof system or sat-

isfaction relation), and that inconsistent theories are trivially negation-complete as

well as classical. Classic examples of non-trivial negation-complete (first-order) the-

ories (with equality, but without sets) are: Tarski’s fragment of Euclidean Geometry,

Presburger (natural-number) Arithmetic, and elementary real-number arithmetic.

Given a recursive axiomatisation 2 of and thus an external notion of proof for T,

negation completeness and consistency corresponds to the meta-theorem schema

�T φ or �T ¬φ (NC) and ��T ⊥ , respectively. That is, for all φ ∈ L, φ or ¬φ is

a theorem of T, or, model-theoretically speaking, a validity, i.e., a universal truth.

For negation-complete consistent modal theories, this incidentally means that there

is no local truth that is not also a global truth, and thus the point of their modality

(which is non-trivial local truth, i.e., truth in some but not all of their pointed

models) is nullified. (If �T φ then φ is a universal and thus global truth; if ��T φ

then �T ¬φ by the negation completeness of T, and thus ¬φ is a universal and

thus global truth, and hence φ cannot be a local truth by the consistency of T.)

So in some sense, negation-complete modal theories are trivial, even if they are

consistent. Fortunately here, our modal LDiiP is negation-incomplete. It is only

the notion of proof that LDiiP internalises that is negation-complete. Compared

with LDiiP’s internalised agent-centric notion of proof, negation completeness and

consistency corresponds to the axiom schema �LDiiP (M �a φ) ∨ (M �a ¬φ) and

�LDiiP ¬(M �a⊥), respectively, where M designates a proof (message) and a an

1 A subset in a (logical) lattice is a filter by definition if and only if it is closed under meet (conjunction)
and the lattice ordering (implication) [6, Lindenbaum-Tarski algebra].
2 I.e., T has an algorithmically decidable set of axioms. This is a minimal requirement for any practical
logical theory; it guarantees the recognizability of its axioms.
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intended proof-checking agent. Notice how meta-logical negation and disjunction

internalise as their object-logical counterparts. Also, observe that our internalisa-

tion is more concrete than its external counterpart in the sense that the first speaks

about a concrete (internalised) proof (sufficient evidence) M whereas the latter only

speaks about an abstract (external) provability �T. Negation completeness means

that M represents sufficient data (e.g., a completion of the local system history

recorded as a log file) for deciding whether some statement (e.g., about the cur-

rent system state given by the global history) is true or false. Hilbert hoped for

a negation-complete consistent theory for the whole of mathematics, because, in

his word, there is no ignorabimus in negation-complete consistent theories; in some

sense, they are cognitively ideal: All (internalised) proof goals are definite [23], here

in the sense that their truth or falsehood can be determined unambiguously (and

here even effectively by an agent) by means of (internalised) proofs (thus also called

epistemic deciders). Moreover, negation-complete theories, though necessarily non-

intuitionistic (!), nevertheless enjoy the disjunction property of Intuitionistic Logic

(IL), 3 which is that if �IL φ ∨ φ′ then �IL φ or �IL φ′ (DP) [30]. Thus they have

considerable constructive content, and this even by conserving the deductive conve-

nience of the law of the excluded middle! To see why negation-complete theories are

necessarily classical, suppose that there is a non-classical negation-complete theory

T (i.e., ��T φ ∨ ¬φ, and �T φ or �T ¬φ) and derive an immediate contradiction

therefrom by considering the law of right and left ∨-introduction (set φ′ := ¬φ),
which asserts that if �T φ or �T φ′ then �T φ ∨ φ′ (and is also valid in IL). In fact,

for classical logical theories, negation completeness is classically equivalent to the

disjunction property. This is a well-known result, which we recall here.

Theorem 1.1 For classical logical theories (filters in Boolean algebras or lattices),

negation completeness (maximality or being an ultrafilter) is classically equivalent

to the disjunction property (the property of being a prime filter).

Proof. See Appendix A.1. �

Internalising negation-complete proof theories, LDiiP thus internalises their disjunc-

tion property, as the theorem schema �LDiiP (M �a (φ ∨ φ′)) →
((M �a φ)∨ (M �a φ

′)), which is why we call our internalised proofs also disjunctive.

Yet given first, the classicality (and normality) of LDiiP, and second, Theorem 1.1,

which applies to the theories that LDiiP internalises, we could as well have stipu-

lated the internalised disjunction property as axiom schema and then derived the

internalised negation completeness therefrom as theorem schema. That is, in ar-

bitrary classical normal modal logics, we can make the following deduction, where

the universal meta-quantification over φ and φ′ in Line 1 is left implicit:

(i) � �(φ ∨ φ′) → (�φ ∨�φ′) assumed internalised disjunction property

(ii) � �(φ ∨ ¬φ) → (�φ ∨�¬φ) 1, particularisation (set φ′ := ¬φ)
(iii) � φ ∨ ¬φ classical tautology

3 See [5] for a survey of other, so-called super-intuitionistic or intermediate logics strictly below classical
propositional logic that also enjoy the disjunction property.
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(iv) � �(φ ∨ ¬φ) 3, necessitation (normality)

(v) � �φ ∨�¬φ 2, 4, modus ponens. (internalised negation completeness)

To see also the computational content in negation-complete consistent theories with

a recursive axiomatisation as previously claimed, recall from classical recursion the-

ory [22] that such theories are actually also recursive (algorithmically decidable) as

a whole, i.e., not only in their set of axioms: The recursiveness of the axioms of a

theory implies the recursive enumerability of its theorems. So in order to decide

whether or not φ ∈ T for a given φ ∈ L in the language L of such a theory T, start

the enumeration process of the members of T. By the negation completeness of T,

either φ or ¬φ will pop up in the process. If φ pops up then stop, and conclude that

φ ∈ T; if ¬φ pops up then stop, and conclude that φ �∈ T by the consistency of T.

In summary, the cognitive, constructive, and computational content of recur-

sively axiomatised negation-complete consistent theories is distilled in their max-

imal consistency, disjunction property, and algorithmic decidability, respectively.

However, their scope is far from the one of Hilbert’s hope: Gödel ascertained the

negation-incompleteness of any recursively axiomatised consistent theory contain-

ing the Peano-Arithmetic (PA) part of mathematics [22,10]. 4 Worse, consistent

theories containing PA are also algorithmically undecidable [22]. Notwithstand-

ing, recursively axiomatised negation-complete consistent theories, which are thus

strictly weaker than PA, are crucial for practical applications. (Maximally consis-

tent sets are also crucial for theoretical applications such as the canonical-model

construction for axiomatic completeness proofs, cf. Appendix A.4.2.)

1.1.2 Practical application

Both the external as well as the internalised form of negation completeness have

important practical applications. Important practical applications of the external

form “� φ or � ¬φ ” of negation completeness, which have become classics in

computer science and engineering, are logic databases and programming. There,

the external form “� φ or � ¬φ ” classically corresponds to the principle of negation

as failure “ �� φ implies � ¬φ ”, i.e., ¬φ can be inferred if every possible proof of φ fails

[4,27]. Another important practical application of a modal-logical variant “ �� Ka(φ)

implies � ¬Ka(φ) ” of negation as failure is artificial intelligence [25], where Ka(φ)

reads as “agent a knows that φ (is true).” There, this epistemic variant of negation

as failure produces a non-monotonic logic of knowledge for multi-agent distributed

systems. (This is also the only piece of related work that we are aware of.) An

important practical application of our internalised form �LDiiP (M �a φ)∨M �a ¬φ
of negation completeness is accountability for dependable multi-agent distributed

systems (e.g., electronic voting systems [16], and, more generally, the whole Internet

[21]). A multi-agent distributed system S is accountable by definition if and only if

S is abuse-free and auditable [15]: For all agents b in S, (abuse-freeness), whenever

b behaves correctly (as an agent in S), b can prove to all agents a (including to

4 Although the natural numbers form a strict subset of the real numbers, the negation-incomplete PA
cannot be a subset of the negation-complete elementary real-number arithmetic (R) mentioned earlier; the
natural numbers are not definable in the language of R [11].
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herself) in S that she does so, and, (auditability), whenever b behaves incorrectly

(and thus is faulty), every or at least one other agent c in S will eventually be able

to prove to all agents a in S (including to herself and b) that b is faulty, (cf. [15] for

a formal transcription of this natural-language formulation). In such a system S,

each agent b’s behaviour in terms of her past actions can be recorded in a log file [3]

(say M) that is broadcast; and it is this log file M that must be constructed so as

to have sufficient evidential strength to constitute a negation-complete proof with

respect to the proof goal of b behaving correctly (expressed with an atomic formula

correct(b)):
(M �a correct(b)) ∨M �a ¬ correct(b)

In other words, M must constitute decisive evidence or, in yet other words, be an

epistemic decider to a about the (ephemeral) issue of b’s correctness. (b can change

her behaviour!) That is, LDiiP is a formal theory of epistemic deciders. For abuse-

freeness (auditability), the prover b (c) must (eventually) know such an M , written

b kM (c kM). We will present formal definitions in Section 2 and a full formal case

study in future work (cf. [15] for a preliminary, non-axiomatic accountability case

study). Finally, note that a piece of decisive evidence M for correct(b) brought to

the attention of a judge a can be viewed as a kind of forensic trace, since M allows

a to decide whether or not b is correct and thus to decide whether or not b is guilty

of behaving incorrectly.

1.2 Contribution

Conceptual contributions

Our conceptual contributions in this paper are the following. First, we produce

a novel modal logic of negation-complete and thus disjunctive interactive proofs (cf.

Theorem 2.17), which internalises agent-centric negation-complete consistent proof

theories (enjoying the disjunction property) and has important theoretical and prac-

tical applications. Second, we offer the insights that the price to pay for negation

completeness and disjunctiveness is the non-monotonicity and non-communality of

the resulting agent-centric notion of proof (cf. Fact 2.5 and 2.14, respectively), which

turns out to be also a negation-complete disjunctive explicit refinement of standard

KD45-belief (cf. Corollary 2.9). Third, we contribute a disjunctive but negation-

incomplete explicit refinement of S4-provability (cf. Corollary 2.10), constructed

from our notion of proof.

Technical contributions

Our technical contributions are the following. First, we provide a standard

but also oracle-computational and set-theoretically constructive Kripke-semantics

for LDiiP (cf. Section 2.2). Like in [20,19], we endow the proof modality with a

standard Kripke-semantics [1], but whose accessibility relation MRa we first define

constructively in terms of elementary set-theoretic constructions, 5 namely as MRa,

5 in loose analogy with the set-theoretically constructive rather than the purely axiomatic definition of num-
bers [7] of ordered pairs (e.g., the now standard definition by Kuratowski, and other well-known definitions
[23])
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and then match to an abstract semantic interface in standard form (which abstractly

stipulates the characteristic properties of the accessibility relation [9]). We will say

that MRa exemplifies (or realises) MRa. (A simple example of a set-theoretically

constructive but non-intuitionistic definition of a modal accessibility is the well-

known definition of epistemic accessibility as state indistinguishability defined in

terms of equality of state projections [8].) The Kripke-semantics for LDiiP is oracle-

computational in the sense that (cf. Definition 2.11) the individual proof knowledge

(say M) can be thought of as being provided by an imaginary computation oracle,

which thus acts as a hypothetical provider and imaginary epistemic source of our

interactive proofs. Second, we prove Theorem 2.8, which establishes the proof-

terms-as-truth-values view as well as a normal form for the special case of a singleton

agent universe. Third, we prove the finite-model property (cf. Theorem 2.18) and

the algorithmic decidability of LDiiP (cf. Corollary 2.19). (Negation completeness

implies algorithmic decidability as seen in Section 1.1.1, but not vice versa as LDiiP

testifies.)

1.3 Roadmap

In the next section, we introduce our Logic of Disjunctive instant interactive Proofs

(LDiiP) axiomatically by means of a compact closure operator that induces the

Hilbert-style proof system that we seek. We then gain the (syntactic) insight that

negation completeness implies non-monotonicity (cf. Fact 2.5), and prove the above-

mentioned Theorem 2.8 as well as Corollary 2.9 and 2.10 within the obtained system.

Next, we introduce the concretely constructed semantics as well as the standard

abstract semantic interface for LDiiP (cf. Section 2.2), and prove the axiomatic

adequacy of the proof system with respect to this interface (cf. Theorem 2.17).

We justify the existence of the constructive semantics of LDiiP by invoking the

Axiom of Choice on LiiP’s (cf. Table 1) and then also construct it in terms of a

concrete oracle-computable function, from which we gain the (semantic) insight

that negation completeness implies non-communality (cf. Fact 2.14). Last but not

least, we prove the finite-model property (cf. Theorem 2.18) and, therefrom, the

algorithmic decidability (cf. Corollary 2.19) of LDiiP.

2 LDiiP

2.1 Syntactically

Like the Logic of instant interactive Proofs (LiiP), the Logic of Disjunctive in-

stant interactive Proofs (LDiiP) provides a modal formula language over a generic

message term language. The formula language of LDiiP offers the propositional

constructors, a relational symbol ‘ k ’ for constructing atomic propositions about

individual knowledge (e.g., a kM), and a modal constructor ‘�a ’ for propositions

about proofs (e.g., M �a φ). In brief, LDiiP is a minimal extension of classical

propositional logic with an interactively generalised additional operator (the proof

modality) and proof-term language. Note, the language of LDiiP is identical to
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the one of LiiP [20,19] modulo the proof-modality notation, which in LiiP is ‘ ::Ca ’,
where a acts as proof checker, like in LDiiP, and C as a’s peer group, unlike in LDiiP

(non-communality).

Definition 2.1 [The language of LDiiP] Let

• A �= ∅ designate a non-empty finite set of agent names a, b, c, etc.

• M designate a language of message terms M such that a ∈ M
• P designate a denumerable set of propositional variables P constrained such that

for all a ∈ A and M ∈ M, (a kM) ∈ P (for “a knows M”) is a distinguished

variable, i.e., an atomic proposition, (for individual knowledge)

(So, for a ∈ A, a k · is a unary relational symbol.)

• L 	 φ ::= P
∣∣ ¬φ ∣∣ φ ∧ φ

∣∣ M �a φ designate our language of logical formulas

φ, where M �a φ reads “M can disjunctively prove that φ to a” in the sense that

“M can prove whether or not φ (is true) to a.”

Note the following macro-definitions: � := a�a a k a, ⊥ := ¬�, φ ∨ φ′ := ¬(¬φ ∧
¬φ′), φ → φ′ := ¬φ ∨ φ′, and φ ↔ φ′ := (φ → φ′) ∧ (φ′ → φ).

Then, LDiiP has the following axiom and deduction-rule schemas, where grey-

shading indicates the remaining essential differences to LiiP (cf. [20] and [19]).

Definition 2.2 [The axioms and deduction rules of LDiiP] Let

• Γ0 designate an adequate set of axioms for classical propositional logic

• Γ1 designate some appropriate set of axioms for a kM

• Γ2 := Γ0 ∪ Γ1 ∪ {
· M �a a kM (self-knowledge)

· (M �a (φ → φ′)) → ((M �a φ) → M �a φ
′) (Kripke’s law, K)

· (M �a φ) → (a kM → φ) (epistemic truthfulness)

· ¬(M �a⊥) (proof consistency)

· (M �a φ) ∨M �a ¬φ (negation completeness) }
designate the axiom schemas of LDiiP.

Then, LDiiP := Cl(∅) :=
⋃

n∈NCln(∅), where for all Γ ⊆ L:

Cl0(Γ) := Γ2 ∪ Γ

Cln+1(Γ) :=Cln(Γ) ∪
{ φ′ | {φ, φ → φ′} ⊆ Cln(Γ) } ∪ (modus ponens, MP)

{ M �a φ | φ ∈ Cln(Γ) } ∪ (necessitation, N).

We call LDiiP a base theory, and Cl(Γ) an LDiiP-theory for any Γ ⊆ L.
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Notice the logical order of LDiiP, which like LiiP’s is, due to propositions about

(proofs of) propositions, higher-order propositional. From LiiP (cf. [20] and [19]),

we recall the discussions of Kripke’s law (K), the law of epistemic truthfulness, and

the law of necessitation (N): The key to the validity of K is that we understand inter-

active proofs as sufficient evidence for intended resource-unbounded proof-checking

agents (who are though still unable to guess). Clearly for such agents, if M is suf-

ficient evidence for φ → φ′ and φ then so is M for φ′. Then, the significance of

epistemic truthfulness to interactivity is that in truly distributed multi-agent sys-

tems, not all proofs are known by all agents, i.e., agents are not omniscient with

respect to messages. Otherwise, why communicate with each other? So there being

a proof does not imply knowledge of that proof. When an agent a does not know

the proof and the agent cannot generate the proof ex nihilo herself by guessing

it, only communication from a peer, who thus acts as an oracle, can entail the

knowledge of the proof with a. Next, the justification for N is that in interactive

settings, validities, and thus a fortiori tautologies (in the strict sense of validities

of the propositional fragment), are in some sense trivialities [17]. To see why, recall

that modal validities are true in all pointed models (cf. Definition A.1), and thus

not worth being communicated from one point to another in a given model, e.g., by

means of specific interactive proofs. (Nothing is logically more embarrassing than

talking in tautologies.) Therefore, validities deserve arbitrary proofs. What is worth

being communicated are truths weaker than validities, namely local truths in the

standard model-theoretic sense (cf. Definition A.1), which may not hold universally.

Otherwise why communicate with each other? We continue to discuss the remain-

ing, new axioms and rules. As mentioned, the message language M of LDiiP is

generic, and thus a kM will require axioms that are appropriate to the term struc-

ture of the chosen M ∈ M (such as those required for LiiP [20,19]). The validity of

the axiom schema of self-knowledge is justified by oracle computation: “if a were

to receive M , e.g., from an oracle, then a would know M” (cf. Definition 2.11).

(The law of self-knowledge is also valid in LiiP, where it corresponds to the theo-

rem [but not axiom] schema M ::∅a a kM .) The axiom schema of proof consistency

and negation completeness internalises (external theory) consistency and negation

completeness, respectively (cf. Section 1.1.1). Observe that internalised negation

completeness is defined independently of the proof-term structure (M is abstract),

just as (external) negation completeness of a logical theory is defined independently

of its possible proof-system structure. However, this abstract definition is an in-

direct, structural constraint: after all, not any proof-system structure generates a

negation-complete theory.

Proposition 2.3 (Hilbert-style proof system) Let

• Φ �LDiiP φ :iff if Φ ⊆ LDiiP then φ ∈ LDiiP

• φ ��LDiiP φ′ :iff {φ} �LDiiP φ′ and {φ′} �LDiiP φ

• �LDiiP φ :iff ∅ �LDiiP φ.

In other words, �LDiiP ⊆ 2L × L is a system of closure conditions in the sense of

[28, Definition 3.7.4]. For example:
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(i) for all axioms φ ∈ Γ2, �LDiiP φ

(ii) for modus ponens, {φ, φ → φ′} �LDiiP φ′

(iii) for necessitation, {φ} �LDiiP M �a φ.

(In the space-saving, horizontal Hilbert-notation “Φ �LDiiP φ”, Φ is not a set of

hypotheses but a set of premises, cf. modus ponens and necessitation.) Then �LDiiP

can be viewed as being defined by a Cl-induced Hilbert-style proof system. In fact

Cl : 2L → 2L is a standard consequence operator, i.e., a substitution-invariant

compact closure operator.

Proof. Like in [17]. That a Hilbert-style proof system can be viewed as induced

by a compact closure operator is well-known (e.g., see [12]); that Cl is indeed such

an operator can be verified by inspection of the inductive definition of Cl; and

substitution invariance follows from our definitional use of axiom schemas. 6 �

Corollary 2.4 (Normality) LDiiP is a normal modal logic.

Proof. Jointly by Kripke’s law, modus ponens, necessitation (these by definition),

and substitution invariance (cf. Proposition 2.3). �

Note that in LDiiP, an analog of the primitive LiiP-rule

{a kM ↔ a kM ′} �LiiP (M ′ ::Ca φ) ↔ M ::Ca φ (see [20,19])

would be invalid (because incompatible with negation completeness) and thus is not

admitted in LDiiP. A fortiori, an analog of the stronger primitive LiP-rule

{a kM → a kM ′} �LiP (M ′ :Ca φ) → M :Ca φ (see [20,17])

by which proof monotonicity �LiP (M :Ca φ) → (M,M ′) :Ca φ under paired data M ′

can be deduced, would be invalid and thus is not admitted in LDiiP either. We

thus assert the following negative fact about our negation-complete proofs.

Fact 2.5 Negation completeness implies non-monotonicity.

Note that if we introduced a pairing constructor for proof terms into the message

language M of LDiiP (as with LiiP, cf. Table 1), Fact 2.5 would mean that

��LDiiP (M �a φ) → (M,M ′)�a φ .

Fact 2.6

(i) {φ → φ′} �LDiiP (M �a φ) → M �a φ
′ (regularity)

(ii) �LDiiP ¬(M �a⊥) ↔ ((M �a φ) → ¬(M �a ¬φ))
(iii) �LDiiP (M �a ¬φ) ↔ M �a (φ → ⊥)

6 Alternatively to axiom schemas, we could have used axioms together with an additional substitution-rule
set { σ[φ] | φ ∈ Cln(Γ) } in the definiens of Cln+1(Γ).
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Proof. 1 and 2 are well-known for necessity modalities in arbitrary normal modal

logics. For 3, consider that �LDiiP ¬φ ↔ (φ → ⊥) since ¬φ ↔ (φ → ⊥) is a classical

tautology, and then deduce the conclusion by 1. �

Lemma 2.7

(i) �LDiiP M �a ((M �a φ) → φ) (self-proof of truthfulness)

(ii) �LDiiP (M �a (M �a φ)) → M �a φ (proof density)

Proof. See Appendix A.2 �

The laws of self-proof of truthfulness and proof density also hold in LiiP [20,19].

We continue to present the first important result about LDiiP.

Theorem 2.8 (Proof terms as Truth values)

(i) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) (maximal consistency)

(ii) �LDiiP (M �a (φ ∧ φ′)) ↔ ((M �a φ) ∧M �a φ
′) (proof conjunctions bis)

(iii) �LDiiP (M �a (φ ∨ φ′)) ↔ ((M �a φ) ∨M �a φ
′) (IDP bis)

(iv) �LDiiP (M �a (φ → φ′)) ↔ ((M �a φ) → M �a φ
′) (K bis)

(v) �LDiiP (M �a (φ ↔ φ′)) ↔ ((M �a φ) ↔ M �a φ
′) (Bi-K)

(vi) �LDiiP (M �a (M �a φ)) ↔ M �a φ (modal idempotency)

(vii) �LDiiP b kM → ((M �b (M �a φ)) ↔ M �a φ) (modal idempotency bis)

Proof. See Appendix A.3 �

“IDP” abbreviates “Internalised Disjunction Property.” The laws are enumerated

in a (total) order that respects their respective proof prerequisites. Notice that The-

orem 2.8.2–2.8.5 are modal distributivity laws. They assert that the proof modality

of LDiiP is fully distributive over (binary) Boolean operators. While the laws of

proof conjunction bis and modal idempotency also hold in LiiP [20,19], only the

if-direction of the laws IDP bis and K bis hold in LiiP. Notice also that modal

idempotency combines proof density (cf. Lemma 2.7.2) and proof transitivity (cf.

Line l of the proof of modal idempotency). Like in LiiP and LiP, the key to the

validity of modal idempotency is that each agent (e.g., a) can act herself as proof

checker, see [17, Section 3.2.2] for more details. The law of modal idempotency bis

is a generalisation of modal idempotency. Observe that when |A| = 1, Theorem 2.8

implies that all occurrences of the proof modality in a compound LDiiP-formula

can be compiled away in the sense that all these occurrences can be pushed in front

of possibly negated atomic sub-formulas (i.e., literals) of the compound formula,

with the axiom formula M �a a kM acting as base case. Hence in this case, we

can understand proof terms as truth-values in the spirit of a form of realizability

interpretation of constructive logic [29, Section 7.8]. Otherwise, i.e., when |A| > 1

(recall from Definition 2.1 that A �= ∅), it is possible that not all such occurrences

in a compound formula can be compiled away (cf. Theorem 2.8.7).

The following corollary asserts that our negation-complete and thus disjunc-

tive proof modality is also an explicit refinement of the standard (implicit) belief
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modality [24].

Corollary 2.9 (Negation-complete Disjunctive Explicit Belief)

‘M �a ·’ is a negation-complete disjunctive KD45-modality of explicit agent belief,

where M represents the explicit evidence term that can justify agent a’s belief.

Proof. Consider that ‘M �a ·’ satisfies Kripke’s law (K, cf. Definition 2.2), the D-

law (called “proof consistency” in Definition 2.2), the 4-law (cf. the only-if part of

Theorem 2.8.6), necessitation (cf. Definition 2.2), and negation completeness (cf.

Definition 2.2), and thus the internalised disjunction property (cf. the if-part of

Theorem 2.8.3). That ‘M �a ·’ also satisfies the 5-law can be proved as follows:

(i) �LDiiP ¬(M �a φ) → (M �a ¬φ) only-if-part of Theorem 2.8.1

(ii) �LDiiP (M �a ¬φ) → M �a (M �a ¬φ) only-if-part of Theorem 2.8.6[¬φ]
(iii) �LDiiP ¬(M �a φ) → M �a (M �a ¬φ) 1, 2, transitivity of →
(iv) �LDiiP (M �a ¬φ) → ¬(M �a φ) if-part of Theorem 2.8.1

(v) �LDiiP (M �a (M �a ¬φ)) → M �a ¬(M �a φ) 4, regularity

(vi) �LDiiP ¬(M �a φ) → M �a ¬(M �a φ) 3, 5, transitivity of →.

�

Thanks to epistemic truthfulness, a kM is a sufficient condition for ‘M �a ·’ to
behave like a standard S5-knowledge modality [24,8,14], which not only obeys the

D-law but also the stronger T-law, in the sense that

�LDiiP a kM → ((M �a φ) → φ︸ ︷︷ ︸
T-law

).

In the following corollary, we construct also a disjunctive but negation-incomplete

explicit refinement of (implicit) S4-provability.

Corollary 2.10 (Disjunctive Explicit Provability) ‘a kM ∧ M �a ·’ is a dis-

junctive but negation-incomplete S4-modality of explicit agent provability, where

M represents the explicit evidence term that does justify agent a’s knowledge.

Proof. By Corollary 2.9 and the fact that the truth law �LDiiP (a kM∧M �a φ) → φ

for the modality ‘a kM ∧M �a ·’ is equivalent to the law of epistemic truthfulness

(cf. Definition 2.2). Note that although the modality ‘a kM ∧M �a ·’ is evidently

disjunctive, i.e., �LDiiP (a kM ∧ M �a (φ ∨ φ′)) → ((a kM ∧ M �a φ) ∨ (a kM ∧
M �a φ

′)), it is negation-incomplete in that ��LDiiP (a kM ∧ M �a φ) ∨ (a kM ∧
M �a ¬φ), because ��LDiiP a kM , in turn because of the arbitrariness of Γ1 (cf.

Definition 2.2). Fixing Γ1 so that a resource-unbounded agent a unable to guess

knows all messages M could only make sense for A = {a}. Otherwise, i.e., when all

agents know all messages, why interact with each other? �
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2.2 Semantically

We continue to present the concretely constructed semantics as well as the standard

abstract semantic interface for LDiiP, and prove the axiomatic adequacy of the proof

system with respect to this interface. We justify the existence of the constructive

semantics of LDiiP by invoking the Axiom of Choice on LiiP’s [20,19] and then also

construct it in terms of a concrete oracle-computable function.

2.2.1 Concretely

The ingredients for the concrete semantics of LiiP, from which we will construct the

concrete semantics of LDiiP, are displayed in Table 1. Therefrom, we will only need

a concrete instance of S and msgsa, and an abstract instance of clsa as ingredients for

LDiiP. Observe there that the concrete accessibility MR
C
a of LiiP is a totally defined

proper (non-functional) relation. Yet we do need a concrete accessibility relation for

LDiiP that is functional, because LDiiP’s negation-completeness axiom corresponds

to the functionality property of such a relation. (LDiiP’s proof consistency axiom

corresponds to the totality property of such a relation.) Fortunately, the concrete

accessibility MR
C
a of LiiP is totally defined, and so we know by the Axiom of Choice

AC[MR
C
a ], which we may thus apply to MR

C
a , that MR

C
a can be “functionalised,” that

is [23],

for all s ∈ S, there is s′ ∈ S such that s MR
C
a s′︸ ︷︷ ︸

MRC
a is totally defined

implies

there is f : S → S such that for all s ∈ S, s MR
C
a f(s)︸ ︷︷ ︸

MRC
a can be “functionalised”

. (AC[MR
C
a ])

Notice that the Axiom of Choice is non-constructive in that it abstractly asserts

the conditional existence of a certain f but without actually providing a concrete

example of such an f . Thus our problem now is to find such an f for MR
C
a , which will

allow us to construct a functional concrete accessibility for LDiiP. In Definition 2.11,

we construct such an f as an oracle-computational function σM
a on concrete states

constructed inductively in terms of certain generalised successor functions. The

essential differences in Definition 2.11 to Table 1 are grey-shaded.

Definition 2.11 [Semantic ingredients] For the set-theoretically constructive, model-

theoretic study of LDiiP let

• S 	 s ::= 0
∣∣ succMa (s) , where 0 can be understood as a zero data point (repre-

senting an initial state for example), and succMa can be read as “agent a receives

message M (for example from another agent acting as an oracle)”
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Let

• S � s designate the state space—a set of system states s

• msgsa : S → 2M designate a raw-data extractor that extracts (without analysing) the (finite) set
of messages from a system state s that agent a ∈ A has either generated (assuming that only a can
generate a’s signature) or else received as such (not only as a strict subterm of another message);
that is, msgsa(s) is a’s data base in s

• clsa : 2M → 2M designate a data-mining operator such that clsa(D) := cla(msgsa(s) ∪ D) :=⋃
n∈N

clna (msgsa(s) ∪ D), where for all D ⊆ M:

cl0a(D) := {a} ∪ D
cln+1

a (D) := clna (D) ∪
{ (M,M ′) | {M,M ′} ⊆ clna (D) } ∪ (pairing)

{ M,M ′ | (M,M ′) ∈ clna (D) } ∪ (unpairing)

{ {[M ]}a | M ∈ clna (D) } ∪ (personal signature synthesis)

{ (M, b) | {[M ]}b ∈ clna (D) } (universal signature analysis)

• <M
a ⊆ S × S designate a data preorder on states such that for all s, s′ ∈ S, s <M

a s′ :iff

clsa({M}) = cls
′

a (∅), were M can be viewed as oracle input in addition to a’s individual-
knowledge base clsa(∅) (cf. also [17, Section 2.2])

• <M
C := (

⋃
a∈C <M

a )++, where ‘++’ designates the closure operation of so-called generalised

transitivity in the sense that <M
C ◦<M′

C ⊆ <
(M,M′)
C

• ≡a := <a
a designate an equivalence relation of state indistinguishability

• MRC
a ⊆ S × S designate a concretely constructed accessibility relation—short, concrete accessibil-

ity—for the non-monotonic proof modality of LiiP such that for all s, s′ ∈ S,

s MRC
a s′ :iff s′ ∈

⋃

s <M
C∪{a} s̃ and

M ∈ cls̃a(∅)

[s̃]≡a

(iff there is s̃ ∈ S s.t. s <M
C∪{a} s̃ and M ∈ cls̃a(∅) and s̃ ≡a s′).

Table 1
Semantic ingredients for LiiP [20,19] (partially reused here for LDiiP)

• msgsa : S → 2M be such that

msgsa(0) := ∅

msgsa(succ
M
b (s)) :=

{
msgsa(s) ∪ {M} if a = b, and

msgsa(s) otherwise

• cla : 2M → 2M designate a compact closure operator and define clsa : 2M → 2M

such that clsa(D) := cla(msgsa(s) ∪ D) :=
⋃

n∈N clna(msgsa(s) ∪ D)

• σM
a : S → S be so that σM

a (s) :=

{
s if M ∈ clsa(∅), and
succMa (s) otherwise (oracle input)

• MRa ⊆ S × S designate a concretely constructed accessibility relation—short,

concrete accessibility—for the negation-complete disjunctive proof modality such
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that for all s, s′ ∈ S,
s MRa s′ :iff s′ = σM

a (s).

Fact 2.12

(i) σM
a (and thus MRa) is oracle-computable.

(ii) If cla is polynomial-time computable then so is σM
a (and thus MRa).

Proof. Clearly, if cla is computable then σM
a is computable, and similarly for 2.�

In particular when cla = id2M , that is, when cla is the identity function on 2M (a

performs no data-mining operations), MRa is polynomial-time computable.

Fact 2.13 For σM
a , fix cla as in Table 1. Then:

(i) for all s ∈ S, s MR
C
a σM

a (s) ;

(ii) MRa ⊆ MR
∅
a (and MR

∅
a ⊆ MR

C
a [20,19]).

Proof. Fix cla as in Table 1. For 1, consider that s <M
a σM

a (s) and thus s <M
C∪{a}

σM
a (s), M ∈ cl

σM
a (s)

a (∅), and σM
a (s) ≡a σM

a (s) in Table 1. Hence there is s̃ ∈ S such

that s <M
C∪{a} s̃ and M ∈ cls̃a(∅) and s̃ ≡a σM

a (s). (In reverse, σM
a can be used as a

Skolem-function for the existential quantifier in the previous statement and thus in

the definiens of MR
C
a in Table 1.) For 2, inspect 1 and definitions. �

Hence we have indeed found in σM
a an instance of an f for MR

C
a whose existence

AC[MR
C
a ] postulates and thus indeed constructed a functional totally defined sub-

relation MRa of MR
C
a—from MR

C
a itself (as a Skolemnisation of its definiens). How-

ever notice that we have lost C in MRa (non-communality), because σM
a simply

disregards C. This is the price for the functionality of MRa. Actually, MRa (for

LDiiP) is a functional analog of <M
a (for LiiP, see Table 1). And it is impossible

to construct a functional analog of MR
C
a from a union of MRa over C, because such

a union of functions need not be a function anymore. In contrast, it is possible

to construct a functional analog of MR
C
a from an intersection of MRa over C, since

such an intersection of functions is again a function. Yet unfortunately it then need

not be total anymore! We can thus assert the following negative fact about our

negation-complete proofs.

Fact 2.14 Negation-completeness implies non-communality.

This fact could be useful to establish the theoretical and thus also practical impos-

sibility of engineering social procedures [26] for which negation completeness would

be a necessary condition. Due to the same fact, there is no community parameter

C in ‘�a ’ and, in particular, no LDiiP-analog of the LiiP-axiom

�LiiP (M ::C∪C
′

a φ) → M ::Ca φ (see [20,19]).

Note that if we were to mix LiiP- and LDiiP-modalities in a single logic, the formula

(M ::∅a φ) → M �a φ would be a sound axiom in that logic due to Fact 2.13.2.
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Table 2
Satisfaction relation

(S,V), s |= P :iff s ∈ V(P )

(S,V), s |= ¬φ :iff not (S,V), s |= φ

(S,V), s |= φ ∧ φ′ :iff (S,V), s |= φ and (S,V), s |= φ′

(S,V), s |= M �a φ :iff for all s′ ∈ S, if s MRa s′ then (S,V), s′ |= φ

Proposition 2.15

(i) there is s′ ∈ S such that s MRa s′ (seriality/totality)

(ii) if s MRa s′ and s MRa s′′ then s′ = s′′ (determinism/functionality)

(iii) if M ∈ clsa(∅) then s MRa s (conditional reflexivity)

(iv) if s MRa s′ then M ∈ cls
′
a (∅) (epistemic image)

Proof. By inspection of definitions. (For 4, consider that M ∈ cl
succMa (s)
a (∅).) �

2.2.2 Abstractly

We now continue to present the abstract semantic interface for LDiiP, and prove

the axiomatic adequacy of the proof system with respect to this interface.

Definition 2.16 [Kripke-model] We define the satisfaction relation ‘ |=’ for LDiiP

in Table 2, where

• V : P → 2S designates a usual valuation function, yet partially predefined such

that for all a ∈ A and M ∈ M,

V(a kM) := { s ∈ S | M ∈ clsa(∅) }

for S assumed abstract (and thus general) like in Table 1 and clsa like in Defini-

tion 2.11 but with msgsa abstract (and thus general) like in Table 1

• S := (S, {MRa}M∈M,a∈A) designates a (modal) frame for LDiiP with an ab-

stractly constrained accessibility relation—short, abstract accessibility—MRa ⊆
S × S for the negation-complete disjunctive proof modality such that—the se-

mantic interface:

· there is s′ ∈ S such that s MRa s′ (seriality/totality)

· if s MRa s′ and s MRa s′′ then s′ = s′′ (determinism/functionality)

· if M ∈ clsa(∅) then s MRa s (conditional reflexivity)

· if s MRa s′ then M ∈ cls
′
a (∅) (epistemic image)

• (S,V) designates a (modal) model for LDiiP.

Looking back, we recognise that Proposition 2.15 actually establishes the im-

portant fact that our concrete accessibility MRa in Definition 2.11 realises all the

properties stipulated by our abstract accessibility MRa in Definition 2.16; we say
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that

MRa exemplifies (or realises) MRa.

Theorem 2.17 (Axiomatic adequacy) �LDiiP is adequate for |=, i.e.,:

(i) if �LDiiP φ then |= φ (axiomatic soundness)

(ii) if |= φ then �LDiiP φ (semantic completeness).

Proof. Both parts can be proved with standard means: soundness follows as usual

from the admissibility of the axioms and rules (cf. Appendix A.4.1); and com-

pleteness follows by means of the classical construction of canonical models, using

Lindenbaum’s construction of maximally consistent sets (cf. Appendix A.4.2). �

Theorem 2.18 (Finite-model property) For any LDiiP-model M, if M,

s |= φ then there is a finite LDiiP-model Mfin such that Mfin, s |= φ.

Proof. By the fact that the minimal filtration [13]

Mmin,Γ
flt := (S/∼Γ , {MRmin,Γ

a }M∈M,a∈A,VΓ)

of any LDiiP-model M := (S, {MRa}M∈M,a∈A,V) through a finite Γ ⊆ L is a finite

LDiiP-model such that for all γ ∈ Γ, M, s |= γ if and only if Mmin,Γ
flt , [s]∼Γ |= γ.

Following [13] for our setting, we define

∼Γ := { (s, s′) ∈ S × S | for all γ ∈ Γ, M, s |= γ iff M, s′ |= γ }
MRmin,Γ

a := { ([s]∼Γ , [s
′]∼Γ) | (s, s′) ∈ MRa }

VΓ(P ) := { [s]∼Γ | s ∈ V(P ) } .
We further fix M ∈ cl

[s]∼Γ
a (∅) :iff [s]∼Γ ∈ VΓ(a kM), and choose Γ to be the (finite)

sub-formula closure of φ. Hence, we are left to prove thatMmin,Γ
flt is indeed an LDiiP-

model, which means that we are left to prove that MRmin,Γ
a has all the properties

stipulated by the semantic interface of LDiiP:

• MRmin,Γ
a inherits seriality/totality as well as determinism/functionality from MRa,

as can be seen by inspecting the definition of MRmin,Γ
a ;

• for conditional reflexivity, suppose that M ∈ cl
[s]∼Γ
a (∅). Thus consecutively:

[s]∼Γ ∈ VΓ(a kM) by definition, s ∈ V(a kM) by definition, M ∈ clsa(∅) by defi-

nition, s MRa s by the conditional reflexivity of MRa, and finally [s]∼Γ MRmin,Γ
a

[s]∼Γ by definition;

• for the epistemic-image property, suppose that [s]∼Γ MRmin,Γ
a [s′]∼Γ . Thus con-

secutively: s MRa s′ by definition, M ∈ cls
′
a (∅) by the epistemic-image property

of MRa, s
′ ∈ V(a kM) by definition, [s′]∼Γ ∈ VΓ(a kM) by definition, and finally

M ∈ cl
[s′]∼Γ
a (∅) by definition.

�

Corollary 2.19 (Algorithmic decidability) If the sub-theory generated by Γ1

(cf. Definition 2.2) is algorithmically decidable then LDiiP (over Γ1) is so too.
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Proof. In order to algorithmically decide whether or not φ ∈ LDiiP (that is, �LDiiP

φ), axiomatic adequacy allows us to check whether or not ¬φ is locally satisfiable

(that is, whether or not M, s |= ¬φ for some LDiiP-model M and state s; by

assumption, M ∈ clsa(∅), modelling membership in the theory generated by Γ1, is

decidable.). But then, the finite-model property of LDiiP allows us to enumerate

all finite LDiiP-models Mfin up to a size of at most 2 to the power of the size n of

the sub-formula closure of ¬φ and to check whether or not Mfin, s |= ¬φ. (There

are at most 2n equivalence classes for n formulas.) �

So in some sense, we have proved the algorithmic decidability of the epistemic

decisiveness of the evidence terms in LDiiP. Note that the algorithmic complexity

of LDiiP will depend on the specific choice of Γ1 in Definition 2.2.

3 Conclusion

We have produced LDiiP from LiiP with as main contributions those described in

Section 1.2. In future work, we shall work out dynamic and first-order extensions

of LDiiP as well as the preliminary case study [15] mentioned in Section 1.1.2.
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A Remaining proofs

A.1 Proof of Theorem 1.1

Suppose that T is a classical logical theory with language L (i.e., for all φ ∈ L,
�T φ ∨ ¬φ).
• For the if-direction, suppose that for all φ ∈ L, �T φ or �T ¬φ, and let φ, φ′ ∈ L.
Thus �T φ or �T ¬φ. Let us proceed by case analysis of this disjunction:

· So first suppose that �T φ. Hence �T φ or �T φ′ (from A infer A or B), and thus

�T φ∨φ′ (vacously) implies �T φ or �T φ′ (from A or B infer C implies A or B).

· Now suppose that �T ¬φ. Further suppose that �T φ ∨ φ′ (that is, C). Hence

�T φ′ (that is, B), and thus �T φ or �T φ′ (from B infer A or B). (Thus inferring

C implies A or B.)
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• For the only-if direction, suppose that for all φ, φ′ ∈ L, �T φ∨ φ′ implies �T φ or

�T φ′, and let φ ∈ L. Hence �T φ∨¬φ implies �T φ or �T ¬φ (particularising the

universally quantified φ′ with ¬φ). Hence �T φ or �T ¬φ, since we have initially

supposed T to be classical.

(See also [6].)

A.2 Proof of Lemma 2.7

(i) (a) �LDiiP (M �a φ) → (a kM → φ) epistemic truthfulness

(b) �LDiiP a kM → ((M �a φ) → φ) a, PL

(c) �LDiiP (M �a (a kM)) → M �a ((M �a φ) → φ) b, regularity

(d) �LDiiP M �a a kM self-knowledge

(e) �LDiiP M �a ((M �a φ) → φ) c, d, PL.

(ii) (a) �LDiiP M �a ((M �a φ) → φ) Lemma 2.7.1

(b) �LDiiP (M �a ((M �a φ) → φ)) → ((M �a (M �a φ)) → M �a φ) K

(c) �LDiiP (M �a (M �a φ)) → M �a φ a, b, PL.

A.3 Proof of Theorem 2.8

(i) (a) �LDiiP ¬(M �a⊥) proof consistency

(b) �LDiiP ¬(M �a⊥) ↔ ((M �a φ) → ¬(M �a ¬φ)) Fact 2.6

(c) �LDiiP (M �a φ) → ¬(M �a ¬φ) a, b, PL

(d) �LDiiP (M �a ¬φ) → ¬(M �a φ) c, PL

(e) �LDiiP (M �a φ) ∨M �a ¬φ negation completeness

(f) �LDiiP ¬(M �a φ) → M �a ¬φ e, PL

(g) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) d, f, PL.

(ii) (a) �LDiiP φ → (φ′ → (φ ∧ φ′)) tautology

(b) �LDiiP (M �a φ) → M �a (φ
′ → (φ ∧ φ′)) a, regularity

(c) �LDiiP (M �a (φ
′ → (φ ∧ φ′))) → ((M �a φ

′) → M �a (φ ∧ φ′)) K

(d) �LDiiP (M �a φ) → ((M �a φ
′) → M �a (φ ∧ φ′)) b, c, PL

(e) �LDiiP ((M �a φ) ∧M �a φ
′) → M �a (φ ∧ φ′) d, PL

(f) �LDiiP (φ ∧ φ′) → φ tautology

(g) �LDiiP (M �a (φ ∧ φ′)) → M �a φ f, regularity

(h) �LDiiP (φ ∧ φ′) → φ′ tautology

(i) �LDiiP (M �a (φ ∧ φ′)) → M �a φ
′ h, regularity

(j) �LDiiP (M �a (φ ∧ φ′)) → ((M �a φ) ∧M �a φ
′) g, i, PL

(k) �LDiiP ((M �a φ) ∧M �a φ
′) ↔ M �a (φ ∧ φ′) e, j, PL.

(iii) (a) �LDiiP (M �a (φ ∨ φ′)) ↔ M �a ¬(¬φ ∧ ¬φ′) definition

(b) �LDiiP (M �a ¬(¬φ ∧ ¬φ′)) ↔ ¬(M �a (¬φ ∧ ¬φ′)) Theorem 2.8.1

(c) �LDiiP (M �a (φ ∨ φ′)) ↔ ¬(M �a (¬φ ∧ ¬φ′)) a, b, PL

(d) �LDiiP (M �a (¬φ ∧ ¬φ′)) ↔ ((M �a ¬φ) ∧M �a ¬φ′) Theorem 2.8.2

(e) �LDiiP ¬(M �a (¬φ ∧ ¬φ′)) ↔ ¬((M �a ¬φ) ∧M �a ¬φ′) d, PL

(f) �LDiiP (M �a (φ ∨ φ′)) ↔ ¬((M �a ¬φ) ∧M �a ¬φ′) c, e, PL

(g) �LDiiP ¬((M �a ¬φ) ∧M �a ¬φ′) ↔ (¬(M �a ¬φ) ∨ ¬(M �a ¬φ′)) PL
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(h) �LDiiP (M �a (φ ∨ φ′)) ↔ (¬(M �a ¬φ) ∨ ¬(M �a ¬φ′)) f, g, PL

(i) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) Theorem 2.8.1

(j) �LDiiP ¬(M �a ¬φ) ↔ (M �a φ) i, PL

(k) �LDiiP (M �a ¬φ′) ↔ ¬(M �a φ
′) Theorem 2.8.1

(l) �LDiiP ¬(M �a ¬φ′) ↔ (M �a φ
′) k, PL

(m) �LDiiP (M �a (φ ∨ φ′)) ↔ ((M �a φ) ∨M �a φ
′) h, j, l, PL.

(iv) (a) �LDiiP ((M �a φ) → M �a φ
′) ↔ (¬(M �a φ) ∨M �a φ

′) definition

(b) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) Theorem 2.8.1

(c) �LDiiP ((M �a φ) → M �a φ
′) ↔ ((M �a ¬φ) ∨M �a φ

′) a, b, PL

(d) �LDiiP (M �a (¬φ ∨ φ′)) ↔ ((M �a ¬φ) ∨M �a φ
′) Theorem 2.8.3

(e) �LDiiP ((M �a φ) → M �a φ
′) ↔ M �a (¬φ ∨ φ′) c, d, PL

(f) �LDiiP ((M �a φ) → M �a φ
′) ↔ M �a (φ → φ′) e, definition.

(v) by Theorem 2.8.2 and 2.8.4.

(vi) (a) �LDiiP (M �a (M �a φ)) → M �a φ Lemma 2.7.2

(b) �LDiiP (M �a (M �a ¬φ)) → M �a ¬φ Lemma 2.7.2

(c) �LDiiP ¬(M �a ¬φ) → ¬(M �a (M �a ¬φ)) b, PL

(d) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) Theorem 2.8.1

(e) �LDiiP ¬(M �a ¬φ) ↔ (M �a φ) d, PL

(f) �LDiiP (M �a φ) → ¬(M �a (M �a ¬φ)) c, e, PL

(g) �LDiiP (M �a (M �a ¬φ)) ↔ M �a ¬(M �a φ) d, regularity

(h) �LDiiP ¬(M �a (M �a ¬φ)) ↔ ¬(M �a ¬(M �a φ)) g, PL

(i) �LDiiP (M �a φ) → ¬(M �a ¬(M �a φ)) f, h, PL

(j) �LDiiP (M �a ¬(M �a φ)) ↔ ¬(M �a (M �a φ)) Theorem 2.8.1

(k) �LDiiP ¬(M �a ¬(M �a φ)) ↔ M �a (M �a φ) j, PL

(l) �LDiiP (M �a φ) → M �a (M �a φ) i, k, PL; (proof transitivity)

(m) �LDiiP (M �a (M �a φ)) ↔ M �a φ a, l, PL.

(vii) (a) �LDiiP b kM → ((M �b (M �a φ)) → M �a φ) epistemic truthfulness, PL

(b) �LDiiP b kM → ((M �b (M �a ¬φ)) → M �a ¬φ) dito a

(c) �LDiiP b kM → (¬(M �a ¬φ) → ¬(M �b (M �a ¬φ))) b, PL

(d) �LDiiP (M �a ¬φ) ↔ ¬(M �a φ) Theorem 2.8.1

(e) �LDiiP ¬(M �a ¬φ) ↔ (M �a φ) d, PL

(f) �LDiiP b kM → ((M �a φ) → ¬(M �b (M �a ¬φ))) c, e, PL

(g) �LDiiP (M �b (M �a ¬φ)) ↔ M �b ¬(M �a φ) d, regularity

(h) �LDiiP ¬(M �b (M �a ¬φ)) ↔ ¬(M �b ¬(M �a φ)) g, PL

(i) �LDiiP b kM → ((M �a φ) → ¬(M �b ¬(M �a φ))) f, h, PL

(j) �LDiiP (M �b ¬(M �a φ)) ↔ ¬(M �b (M �a φ)) Theorem 2.8.1

(k) �LDiiP ¬(M �b ¬(M �a φ)) ↔ M �b (M �a φ) j, PL

(l) �LDiiP b kM → ((M �a φ) → M �b (M �a φ)) i, k, PL

(m) �LDiiP b kM → ((M �b (M �a φ)) ↔ M �a φ) a, l, PL.
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A.4 Proof of Theorem 2.17

A.4.1 Axiomatic soundness

Definition A.1 [Truth & Validity [1]]

• The formula φ ∈ L is true (or satisfied) in the model (S,V) at the state s ∈ S
:iff (S,V), s |= φ.

• The formula φ is satisfiable in the model (S,V) :iff there is s ∈ S such that

(S,V), s |= φ.

• The formula φ is globally true (or globally satisfied) in the model (S,V), written
(S,V) |= φ, :iff for all s ∈ S, (S,V), s |= φ.

• The formula φ is satisfiable :iff there is a model (S,V) and a state s ∈ S such

that (S,V), s |= φ.

• The formula φ is valid, written |= φ, :iff for all models (S,V), (S,V) |= φ.

Proposition A.2 (Admissibility of LDiiP-specific axioms and rules)

(i) |= M �a a kM

(ii) |= (M �a (φ → φ′)) → ((M �a φ) → M �a φ
′)

(iii) |= (M �a φ) → (a kM → φ)

(iv) |= ¬(M �a⊥)

(v) |= (M �a φ) ∨M �a ¬φ
(vi) If |= φ then |= M �a φ

Proof. 1 follows directly from the epistemic-image property of MRa; 2 and 6 hold

by the fact that LiiP has a standard Kripke-semantics; 3 follows directly from

the conditional reflexivity of MRa, and 4 and 5 from the seriality/totality and the

determinism/functionality of MRa, respectively. �

A.4.2 Semantic completeness

For all φ ∈ L, if |= φ then �LDiiP φ.

Proof. Let

• W designate the set of all maximally LDiiP-consistent sets 7

• for all w,w′ ∈ W, w MCa w′ :iff { φ ∈ L | M �a φ ∈ w } ⊆ w′

• for all w ∈ W , w ∈ VC(P ) :iff P ∈ w.

7 * A set W of LDiiP-formulas is maximally LDiiP-consistent :iff W is LDiiP-consistent and W has no
proper superset that is LDiiP-consistent. A set W of LDiiP-formulas is LDiiP-consistent :iff W is not
LDiiP-inconsistent. A set W of LDiiP-formulas is LDiiP-inconsistent :iff there is a finite W ′ ⊆ W such that
((
∧

W ′) → ⊥) ∈ LDiiP. Any LDiiP-consistent set can be extended to a maximally LDiiP-consistent set by
means of the Lindenbaum Construction [9, Page 90]. A set is maximally LDiiP-consistent if and only if the
set of logical-equivalence classes of the set is an ultrafilter of the Lindenbaum-Tarski algebra of LDiiP [31,
Page 351]. The canonical frame is isomorphic to the ultrafilter frame of that Lindenbaum-Tarski algebra
[31, Page 352].
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Then MC := (W , {MCa}M∈M,a∈A,VC) designates the canonical model for LDiiP.

Following Fitting [9, Section 2.2], the following useful property of MC,

for all φ ∈ L and w ∈ W , φ ∈ w if and only if MC, w |= φ,

the so-called Truth Lemma, can be proved by induction on the structure of φ:

(i) Base case (φ := P for P ∈ P). For all w ∈ W , P ∈ w if and only if MC, w |= P ,

by definition of VC.

(ii) Inductive step (φ := ¬φ′ for φ′ ∈ L). Suppose that for all w ∈ W , φ′ ∈ w if and

only if MC, w |= φ′. Further let w ∈ W . Then, ¬φ′ ∈ w if and only if φ′ �∈ w

— w is consistent — if and only if MC, w �|= φ′ — by the induction hypothesis

— if and only if MC, w |= ¬φ′.

(iii) Inductive step (φ := φ′ ∧ φ′′ for φ′, φ′′ ∈ L). Suppose that for all w ∈ W,

φ′ ∈ w if and only if MC, w |= φ′, and that for all w ∈ W , φ′′ ∈ w if and

only if MC, w |= φ′′. Further let w ∈ W . Then, φ′ ∧ φ′′ ∈ w if and only if

(φ′ ∈ w and φ′′ ∈ w), because w is maximal. Now suppose that φ′ ∈ w and

φ′′ ∈ w. Hence, MC, w |= φ′ and MC, w |= φ′′, by the induction hypotheses,

and thus MC, w |= φ′ ∧ φ′′. Conversely, suppose that MC, w |= φ′ ∧ φ′′. Then,

MC, w |= φ′ and MC, w |= φ′′. Hence, φ′ ∈ w and φ′′ ∈ w, by the induction

hypotheses. Thus, (φ′ ∈ w and φ′′ ∈ w) if and only if (MC, w |= φ′ and

MC, w |= φ′′). Whence φ′∧φ′′ ∈ w if and only if (MC, w |= φ′ andMC, w |= φ′′),
by transitivity.

(iv) Inductive step (φ := M �a φ
′ for M ∈ M, a ∈ A, and φ′ ∈ L).

4.1 for all w ∈ W , φ′ ∈ w if and only if MC, w |= φ′ ind. hyp.

4.2 w ∈ W hyp.

4.3 M �a φ
′ ∈ w hyp.

4.4 w′ ∈ W hyp.

4.5 w MCa w′ hyp.

4.6 { φ′′ ∈ L | M �a φ
′′ ∈ w } ⊆ w′ 4.5

4.7 φ′ ∈ { φ′′ ∈ L | M �a φ
′′ ∈ w } 4.3, 4.6

4.8 φ′ ∈ w′ 4.6, 4.7

4.9 MC, w
′ |= φ′ 4.1, 4.4, 4.8

4.10 if w MCa w′ then MC, w
′ |= φ′ 4.5–4.9

4.11 for all w′ ∈ W, if w MCa w′ then MC, w
′ |= φ′ 4.4–4.10

4.12 MC, w |= M �a φ
′ 4.11

4.13 M �a φ
′ �∈ w hyp.

4.14 F = { φ′′ ∈ L | M �a φ
′′ ∈ w } ∪ {¬φ′} hyp.

4.15 F is LDiiP-inconsistent hyp.

4.16 there is {M �a φ1, . . . ,M �a φn} ⊆ w such that

�LDiiP (φ1 ∧ . . . ∧ φn ∧ ¬φ′) → ⊥ 4.14, 4.15
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4.17 {M �a φ1, . . . ,M �a φn} ⊆ w and

�LDiiP (φ1 ∧ . . . ∧ φn ∧ ¬φ′) → ⊥ hyp.

4.18 �LDiiP (φ1 ∧ . . . ∧ φn) → φ′ 4.17

4.19 �LDiiP (M �a (φ1 ∧ . . . ∧ φn)) → M �a φ
′ 4.18, regularity

4.20 �LDiiP ((M �a φ1) ∧ . . . ∧ (M �a φn)) → M �a φ
′ 4.19

4.21 M �a φ
′ ∈ w 4.17, 4.20, w is maximal

4.22 false 4.13, 4.21

4.23 false 4.16, 4.17–4.22

4.24 F is LDiiP-consistent 4.15–4.23

4.25 there is w′ ⊇ F s.t. w′ is maximally LDiiP-consistent 4.24

4.26 F ⊆ w′ and w′ is maximally LDiiP-consistent hyp.

4.27 { φ′′ ∈ L | M �a φ
′′ ∈ w } ⊆ F 4.14

4.28 { φ′′ ∈ L | M �a φ
′′ ∈ w } ⊆ w′ 4.26, 4.27

4.29 w MCa w′ 4.28

4.30 w′ ∈ W 4.26

4.31 ¬φ′ ∈ F 4.14

4.32 ¬φ′ ∈ w′ 4.26, 4.31

4.33 φ′ �∈ w′ 4.26 (w′ is LDiiP-consistent), 4.32

4.34 MC, w
′ �|= φ′ 4.1, 4.33

4.35 there is w′ ∈ W s.t. w MCa w′ and MC, w
′ �|= φ′ 4.29, 4.34

4.36 MC, w �|= M �a φ
′ 4.35

4.37 MC, w �|= M �a φ
′ 4.25, 4.26–4.36

4.38 MC, w �|= M �a φ
′ 4.14–4.37

4.39 M �a φ
′ ∈ w if and only if MC, w |= M �a φ

′ 4.3–4.12, 4.13–4.38

4.40 for all w ∈ W , M �a φ
′ ∈ w if and only if MC, w |= M �a φ

′ 4.2–4.39

With the Truth Lemma we can now prove that for all φ ∈ L, if ��LDiiP φ then

�|= φ. Let φ ∈ L, and suppose that ��LDiiP φ. Thus, {¬φ} is LDiiP-consistent, and

can be extended to a maximally LDiiP-consistent set w, i.e., ¬φ ∈ w ∈ W. Hence

MC, w |= ¬φ, by the Truth Lemma. Thus: MC, w �|= φ, MC �|= φ, and �|= φ. That

is, MC is a universal (for all φ ∈ L) counter-model (if φ is a non-theorem then MC

falsifies φ).

We are left to prove that MC is also an LDiiP-model. So let us instantiate our

data mining operator cla (cf. Page 13) on W by letting for all w ∈ W

msgsa(w) := { M | a kM ∈ w },

and let us prove that:

(i) there is w′ ∈ W such that w MCa w′

(ii) if w MCa w′ and w MCa w′′ then w′ = w′′

(iii) if M ∈ clwa (∅) then w MCa w
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(iv) if w MCa w′ then M ∈ clw
′

a (∅).
For (1), let w ∈ W and φ ∈ L, and suppose that M �a φ ∈ w. For the sake of

deriving the contrary, further suppose that φ �∈ w. Hence ¬φ ∈ w because w is max-

imal, and thus φ → ⊥ ∈ w. Hence (M �a φ) → M �a⊥ ∈ w by regularity. Hence

M �a⊥ ∈ w by the first supposition and modus ponens. Hence ¬(M �a⊥) �∈ w be-

cause w is consistent. Yet since w is maximal, ¬(M �a⊥) ∈ w (proof consistency).

Contradiction. Hence w is actually a w′ such that φ ∈ w′.
For (2), let us first prove the following, so-called Reflection Lemma:

M �a φ �∈ w if and only if M �a ¬φ ∈ w.

So suppose that

• M �a φ �∈ w. Hence ¬(M �a φ) ∈ w because w is maximal. Since w is maximal,

¬(M �a φ) → M �a ¬φ ∈ w (negation completeness). Hence M �a ¬φ ∈ w by

modus ponens.

• M �a ¬φ ∈ w. Since w is maximal, (M �a ¬φ) → ¬(M �a ¬¬φ) ∈ w (proof

consistency). Hence ¬(M �a ¬¬φ) ∈ w by modus ponens. Since w is maxi-

mal, φ → ¬¬φ ∈ w. Hence (M �a φ) → M �a ¬¬φ ∈ w by regularity. Hence

¬(M �a ¬¬φ) → ¬(M �a φ) ∈ w by contraposition. Hence ¬(M �a φ) ∈ w by

modus ponens. Hence M �a φ �∈ w because w is consistent.

Now for (2), let w,w′, w′′ ∈ W and suppose that w MCa w′ and w MCa w′′. That

is, (for all φ ∈ L, if M �a φ ∈ w then φ ∈ w′) and (for all φ ∈ L, if M �a φ ∈ w then

φ ∈ w′′). Now let φ ∈ L and suppose that

• φ ∈ w′. Hence ¬φ �∈ w′ because w is consistent. Hence M �a ¬φ �∈ w by particu-

larisation of the first supposition with ¬φ and modus tollens. Hence M �a φ ∈ w

by the Reflection Lemma. Hence φ ∈ w′′ by the second supposition and modus

ponens.

• φ ∈ w′′. Hence φ ∈ w′—symmetrically.

For (3), let w ∈ W and suppose that M ∈ clwa (∅). Hence a kM ∈ w due to the

maximality of w. Further suppose that M �a φ ∈ w. Since w is maximal,

(M �a φ) → (a kM → φ) ∈ w (epistemic truthfulness).

Hence, a kM → φ ∈ w, and φ ∈ w, by consecutive modus ponens.

For (4), let w,w′ ∈ W and suppose that w MCa w′. That is, for all φ ∈ L, if
M �a φ ∈ w then φ ∈ w′. Since w is maximal,

M �a a kM ∈ w (self-knowledge).

Hence a kM ∈ w′ by particularisation of the supposition, and thus M ∈ clw
′

a (∅) by
the definition of clw

′
a .

�
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