13,442 research outputs found

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    How to Design More Empathetic Recommender Systems in Social Media

    Get PDF
    Social media’s value proposition heavily relies on recommender systems suggesting products to buy, events to attend, or people to connect with. These systems currently prioritize user engagement and social media providers’ profit generation over individual users’ well-being. However, making these systems more “empathetic” would benefit social media providers and content creators as users would use social media more often, longer, and increasingly recommend it to other users. By way of a design science research approach, including twelve interviews with system designers, social media experts, psychologists, and users, we develop user-centric design knowledge on making recommender systems in social media more “empathetic.” This design knowledge comprises a conceptual framework, four meta-requirements, and six design principles. It contributes to the research streams “digital responsibility” and “IS for resilience” and provides practical guidance in developing socially responsible recommender systems as next-generation social media services

    Analysis and assessment of a knowledge based smart city architecture providing service APIs

    Get PDF
    Abstract The main technical issues regarding smart city solutions are related to data gathering, aggregation, reasoning, data analytics, access, and service delivering via Smart City APIs (Application Program Interfaces). Different kinds of Smart City APIs enable smart city services and applications, while their effectiveness depends on the architectural solutions to pass from data to services for city users and operators, exploiting data analytics, and presenting services via APIs. Therefore, there is a strong activity on defining smart city architectures to cope with this complexity, putting in place a significant range of different kinds of services and processes. In this paper, the work performed in the context of Sii-Mobility smart city project on defining a smart city architecture addressing a wide range of processes and data is presented. To this end, comparisons of the state of the art solutions of smart city architectures for data aggregation and for Smart City API are presented by putting in evidence the usage semantic ontologies and knowledge base in the data aggregation in the production of smart services. The solution proposed aggregate and re-conciliate data (open and private, static and real time) by using reasoning/smart algorithms for enabling sophisticated service delivering via Smart City API. The work presented has been developed in the context of the Sii-Mobility national smart city project on mobility and transport integrated with smart city services with the aim of reaching a more sustainable mobility and transport systems. Sii-Mobility is grounded on Km4City ontology and tools for smart city data aggregation, analytics support and service production exploiting smart city API. To this end, Sii-Mobility/Km4City APIs have been compared to the state of the art solutions. Moreover, the proposed architecture has been assessed in terms of performance, computational and network costs in terms of measures that can be easily performed on private cloud on premise. The computational costs and workloads of the data ingestion and data analytics processes have been assessed to identify suitable measures to estimate needed resources. Finally, the API consumption related data in the recent period are presented

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    A Framework for Exploiting Internet of Things for Context-Aware Trust-based Personalized Services

    Get PDF
    In the last years, we have witnessed the introduction of Internet of Things as an integral part of the Internet with billions of interconnected and addressable everyday objects. On the one hand, these objects generate massive volume of data that can be exploited to gain useful insights into our day-to-day needs. On the other hand, context-aware recommender systems (CARSs) are intelligent systems that assist users to make service consumption choices that satisfy their preferences based on their contextual situations. However, one of the major challenges in developing CARSs is the lack of functionality providing dynamic and reliable context information required by the recommendation decision process based on the objects that users interact with in their environments. Thus, contextual information obtained from IoT objects and other sources can be exploited to build CARSs that satisfy users’ preferences, improve quality of experience and recommendation accuracy. This article describes various components of a conceptual IoT based framework for context-aware personalized recommendations. The framework addresses the weakness whereby CARSs rely on static and limited contextual information from user’s mobile phone, by providing additional components for reliable and dynamic contextual information, using IoT context sources. The core of the framework consists of context recognition and reasoning management, dynamic user profile model incorporating trust to improve accuracy of context-aware personalized recommendations. Experimental evaluations show that incorporating context and trust in personalized recommendations can improve its accuracy
    • …
    corecore