464 research outputs found

    Localization Algorithm with On-line Path Loss Estimation and Node Selection

    Get PDF
    RSS-based localization is considered a low-complexity algorithm with respect to other range techniques such as TOA or AOA. The accuracy of RSS methods depends on the suitability of the propagation models used for the actual propagation conditions. In indoor environments, in particular, it is very difficult to obtain a good propagation model. For that reason, we present a cooperative localization algorithm that dynamically estimates the path loss exponent by using RSS measurements. Since the energy consumption is a key point in sensor networks, we propose a node selection mechanism to limit the number of neighbours of a given node that are used for positioning purposes. Moreover, the selection mechanism is also useful to discard bad links that could negatively affect the performance accuracy. As a result, we derive a practical solution tailored to the strict requirements of sensor networks in terms of complexity, size and cost. We present results based on both computer simulations and real experiments with the Crossbow MICA2 motes showing that the proposed scheme offers a good trade-off in terms of position accuracy and energy efficiency

    Hybrid RSS-RTT Localization Scheme for Indoor Wireless Networks

    Get PDF
    [EN]Nowadays, a variety of information related to the distance between two wireless devices can be easily obtained. This paper presents a hybrid localization scheme that combines received signal strength (RSS) and round-trip time (RTT) information with the aim of improving the previous localization schemes. The hybrid localization scheme is based on an RSS ranging technique that uses RTT ranging estimates as constraints among other heuristic constraints. Once distances have been well estimated, the position of the mobile station (MS) to be located is estimated using a new robust least-squared multilateration (RLSM) technique that combines the RSS and RTT ranging estimates mitigating the negative effect of outliers. The hybrid localization scheme coupled with simulations and measurements demonstrates that it outperforms the conventional RSS-based and RTT-based localization schemes, without using either a tracking technique or a previous calibration stage of the environment.Dirección General de Telecomunicaciones de la Consejería de Fomento de Castilla y Leó

    SomBe:Self-Organizing Map for Unstructured and Non-Coordinated iBeacon Constellations

    Get PDF
    Bluetooth Low Energy (BLE) devices such as iBeacons have been popularly deployed for Location Based Services (LBS), including indoor infrastructure monitoring, positioning, and navigation. In these applications, the positions of iBeacons are assumed to be known. However, the location information is often unavailable or inaccurate as most iBeacons were deployed by different external parties. In addition, manual localizing the already-deployed iBeacons is costly and even impractical, especially in large-scale and complex indoor environments. Therefore, we propose a novel method, namely SomeBe, which can localize deployed iBeacons with a minimal effort and invasiveness to existing infrastructures. Specifically, our approach uses cooperative multilateration based on Received Signal Strength (RSS) of available smartphones and WiFi access points (APs) in the environment. Both Bluetooth signal strengths (between smartphones and iBeacons) and WiFi signal strengths (between smartphones and APs) are jointly employed in a single optimization cost function to surpass the local minima. Requiring that the positions of the APs are known only, the proposed cost function can also localize the iBeacons without knowing the positions of smartphones. To improve the localization accuracy, we employ a clustering method based on the RSS values for the coarse estimation of iBeacons' positions. SomBe also can be used to simplify iBeacon deployment as it can localize the iBeacons with a minimal effort. The performance evaluation results of our testbed experiments as well as realistic simulations show that SomBe outperforms non-cooperative approaches with 85% better in terms of accuracy

    3-D Hybrid Localization with RSS/AoA in Wireless Sensor Networks: Centralized Approach

    Get PDF
    This dissertation addresses one of the most important issues present in Wireless Sensor Networks (WSNs), which is the sensor’s localization problem in non-cooperative and cooperative 3-D WSNs, for both cases of known and unknown source transmit power PT . The localization of sensor nodes in a network is essential data. There exists a large number of applications for WSNs and the fact that sensors are robust, low cost and do not require maintenance, makes these types of networks an optimal asset to study or manage harsh and remote environments. The main objective of these networks is to collect different types of data such as temperature, humidity, or any other data type, depending on the intended application. The knowledge of the sensors’ locations is a key feature for many applications; knowing where the data originates from, allows to take particular type of actions that are suitable for each case. To face this localization problem a hybrid system fusing distance and angle measurements is employed. The measurements are assumed to be collected through received signal strength indicator and from antennas, extracting the received signal strength (RSS) and angle of arrival (AoA) information. For non-cooperativeWSN, it resorts to these measurements models and, following the least squares (LS) criteria, a non-convex estimator is developed. Next, it is shown that by following the square range (SR) approach, the estimator can be transformed into a general trust region subproblem (GTRS) framework. For cooperative WSN it resorts also to the measurement models mentioned above and it is shown that the estimator can be converted into a convex problem using semidefinite programming (SDP) relaxation techniques.It is also shown that the proposed estimators have a straightforward generalization from the known PT case to the unknown PT case. This generalization is done by making use of the maximum likelihood (ML) estimator to compute the value of the PT . The results obtained from simulations demonstrate a good estimation accuracy, thus validating the exceptional performance of the considered approaches for this hybrid localization system

    Cooperative Localization on Computationally Constrained Devices

    Get PDF
    Cooperative localization is a useful way for nodes within a network to share location information in order to better arrive at a position estimate. This is handy in GPS contested environments (indoors and urban settings). Most systems exploring cooperative localization rely on special hardware, or extra devices to store the database or do the computations. Research also deals with specific localization techniques such as using Wi-Fi, ultra-wideband signals, or accelerometers independently opposed to fusing multiple sources together. This research brings cooperative localization to the smartphone platform, to take advantage of the multiple sensors that are available. The system is run on Android powered devices, including the wireless hotspot. In order to determine the merit of each sensor, analysis was completed to determine successes and failures. The accelerometer, compass, and received signal strength capability were examined to determine their usefulness in cooperative localization. Experiments at meter intervals show the system detected changes in location at each interval with an average standard deviation of 0.44m. The closest location estimates occurred at 3m, 4m and 6m with average errors of 0.15m, 0.11m, and 0.07m respectively. This indicates that very precise estimates can be achieved with an Android hotspot and mobile nodes

    Localisation of sensor nodes with hybrid measurements in wireless sensor networks

    Get PDF
    Localisation in wireless networks faces challenges such as high levels of signal attenuation and unknown path-loss exponents, especially in urban environments. In response to these challenges, this paper proposes solutions to localisation problems in noisy environments. A new observation model for localisation of static nodes is developed based on hybrid measurements, namely angle of arrival and received signal strength data. An approach for localisation of sensor nodes is proposed as a weighted linear least squares algorithm. The unknown path-loss exponent associated with the received signal strength is estimated jointly with the coordinates of the sensor nodes via the generalised pattern search method. The algorithm’s performance validation is conducted both theoretically and by simulation. A theoretical mean square error expression is derived, followed by the derivation of the linear Cramer-Rao bound which serves as a benchmark for the proposed location estimators. Accurate results are demonstrated with 25%–30% improvement in estimation accuracy with a weighted linear least squares algorithm as compared to linear least squares solution

    RSS-Based Sensor Localization in the Presence of Unknown Channel Parameters

    Get PDF
    This correspondence studies the received signal strength-based localization problem when the transmit power or path-loss exponent is unknown. The corresponding maximum-likelihood estimator (MLE) poses a difficult nonconvex optimization problem. To avoid the difficulty in solving the MLE, we use suitable approximations and formulate the localization problem as a general trust region subproblem, which can be solved exactly under mild conditions. Simulation results show a promising performance for the proposed methods, which also have reasonable complexities compared to existing approaches

    Unified Fingerprinting/Ranging Localization in Harsh Environments

    Get PDF
    Context-awareness in wireless sensor networks (WSNs) relies mainly on the position of objects and humans. The provision of this positional information becomes challenging in the harsh environmental conditions where WSNs are commonly deployed. With an antagonistic philosophy of design, fingerprinting and ranging have emerged as the key technologies underpinning wireless localization in harsh environments. Fingerprinting primarily focuses on accurate estimation at the expense of exhaustive calibration. Ranging mainly pursues an easy-to-deploy solution at the expense of moderate performance. In this paper, we present a resilient framework for sustained localization based on accurate fingerprinting in critical areas and light ranging in noncritical spaces. Such framework is conceived from the Bayesian perspective that facilitates the specification of recursive algorithms for real-time operation. In comparison to conventional implementations, we assessed the proposed framework in an indoor scenario with measurements gathered by commercial devices. The presented techniques noticeably outperform current approaches, enabling a flexible adaptation to the fluctuating conditions of harsh environments
    corecore