197 research outputs found

    Feature-Based Correspondences to Infer the Location of Anatomical Landmarks

    Get PDF
    A methodology has been developed for automatically determining inter-image correspondences between cliques of features extracted from a reference and a query image. Cliques consist of up to threefeatures and correspondences between them are determined via a hierarchy of similarity metrics based on the inherent properties of the features and geometric relationships between those features. As opposed to approaches that determine correspondences solely by voxel intensity, features that also include shape description are used. Specifically, medial-based features areemployed because they are sparse compared to the number of image voxels and can be automatically extracted from the image.The correspondence framework has been extended to automatically estimate the location of anatomical landmarks in the query image by adding landmarks to the cliques. Anatomical landmark locationsare then inferred from the reference image by maximizing landmark correspondences. The ability to infer landmark locations has provided a means to validate the correspondence framework in thepresence of structural variation between images. Moreover, automated landmark estimation imparts the user with anatomical information and can hypothetically be used to initialize andconstrain the search space of segmentation and registration methods.Methods developed in this dissertation were applied to simulated MRI brain images, synthetic images, and images constructed from several variations of a parametric model. Results indicate that the methods are invariant to global translation and rotation and can operate in the presence of structure variation between images.The automated landmark placement method was shown to be accurate as compared to ground-truth that was established both parametrically and manually. It is envisioned that these automated methods could prove useful for alleviating time-consuming and tedious tasks in applications that currently require manual input, and eliminate intra-user subjectivity

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San JosĂ© (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and MĂĄlaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International ScientiïŹc Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Stabilisers as a design tool for new forms of Lechner-Hauke-Zoller Annealer

    Full text link
    In a recent paper Lechner, Hauke and Zoller (LHZ) described a means to translate a Hamiltonian of NN spin-12\frac{1}{2} particles with 'all-to-all' interactions into a larger physical lattice with only on-site energies and local parity constraints. LHZ used this mapping to propose a novel form of quantum annealing. Here we provide a stabiliser-based formulation within which we can describe both this prior approach and a wide variety of variants. Examples include a triangular array supporting all-to-all connectivity, and moreover arrangements requiring only 2N2N or Nlog⁥NN\log N spins but providing interesting bespoke connectivities. Further examples show that arbitrarily high order logical terms can be efficiently realised, even in a strictly 2D layout. Our stabilisers can correspond to either even-parity constraints, as in the LHZ proposal, or as odd-parity constraints. Considering the latter option applied to the original LHZ layout, we note it may simplify the physical realisation since the required ancillas are only spin-12\frac{1}{2} systems (i.e. qubits, rather than qutrits) and moreover the interactions are very simple. We make a preliminary assessment of the impact of this design choices by simulating small (few-qubit) systems; we find some indications that the new variant may maintain a larger minimum energy gap during the annealing process.Comment: A dramatically expanded revision: we now show how to use our stabiliser formulation to construct a wide variety of new physical layouts, including ones with fewer than Order N^2 spins but custom connectivities, and a means to achieve higher order coupling even in 2
    • 

    corecore