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Preface

Past Global Optimization Workshops have been held in Sopron (1985 and 1990), Szeged (WGO,
1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO,
2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse
(TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stim-
ulating discussion between senior and junior researchers on the topic of Global Optimization.

In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is orga-
nized by three researchers from the University of Minho. Two of them belong to the Systems
Engineering and Operational Research Group from the Algoritmi Research Centre and the
other to the Statistics, Applied Probability and Operational Research Group from the Centre
of Mathematics. The event received more than 50 submissions from 15 countries from Europe,
South America and North America.

We want to express our gratitude to the invited speaker Panos Pardalos for accepting the
invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16
would not have been possible without the valuable contribution from the authors and the
International Scientific Committee members. We thank you all.

This proceedings book intends to present an overview of the topics that will be addressed in
the workshop with the goal of contributing to interesting and fruitful discussions between the
authors and participants. After the event, high quality papers can be submitted to a special
issue of the Journal of Global Optimization dedicated to the workshop.

Ana Maria A. C. Rocha
M. Fernanda P. Costa
Edite M. G. P. Fernandes

GOW’16 Organizers
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On the Passage from Local to Global in Optimization:
New Challenges in Theory and Practice

Panos M. Pardalos 1

1Center for Applied Optimization, ISE Department,
303 Weil Hall, University of Florida, Gainesville, FL 32611,
http://www.ise.ufl.edu/pardalos, pardalos@ise.ufl.edu

Abstract Large scale problems in the design of networks and energy systems, the biomedical field, finance,
and engineering are modeled as optimization problems. Humans and nature are constantly opti-
mizing to minimize costs or maximize profits, to maximize the flow in a network, or to minimize the
probability of a blackout in the smart grid.

Due to new algorithmic developments and the computational power of computers, optimization
algorithms have been used to solve problems in a wide spectrum of applications in science and engi-
neering. In this talk I am going to address new challenges in the theory and practice of optimization.
First, we have to reflect back a few decades to see what has been achieved and then address the new
research challenges and directions.

Keywords: Global optimization,Local optimization, Complexity issues, Challenging problems

1. Global Optimization Problem

f∗ = f(x∗) = global minx∈Df(x) (or maxx∈Df(x)) (1)

For these global optimization problem we are going to address the following tasks:

Compute a globally optimal solution.

Compute "good" locally optimal solutions (or feasible points that satisfy the optimality
conditions).

Compute "better" solutions than "known" solutions.

Check feasibility of the constraints.

For the first case we will discuss complexity issues and the need of certificates of optimality.
In addition, we are going to discuss classes of problems where only globally optimal solutions
are needed (or make sense). Furthermore, we are going to discuss recent progress and open
questions regarding exact algorithms.

The next two cases are of great practical significance. We can use approximation algorithms
or heuristics. We are going to discuss issues regarding the evaluation of the performance of
heuristics and the complexity of approximation algorithms.

For the last case, checking feasibility of the constraints is an important problem. In the
case of infeasibility, we may need to make a minimum data perturbation so that the problem
becomes feasible.

2. Why are Optimization Problems Difficult?

Different complexity theories have tried to classify problems as easy or hard. The main focus
of computational complexity is to analyze the intrinsic difficulty of optimization problems and
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to decide which of these problems are likely to be tractable. The pursuit of developing efficient
algorithms also leads to elegant general approaches for solving optimization problems, and
reveals surprising connections among problems and their solutions.

What do we know about the phase transition from easy to hard problems? In addition, what
are the classes of problems between the easy and hard instances? The general optimization
problem is NP-hard. Furthermore, checking if a feasible point is a local optimum is also an
NP-hard problem. Is it the "hardness of checking convexity", or the "exponential number of
local mimina" that make a global optimization problem difficult to solve? We are going to
discuss recent attempts to answer some of these questions.

3. Classes of Global Optimization Problems

There is a huge literature that deals with many important classes of global optimization prob-
lems such as multi-level (or hierarchical optimization), problems with equilibrium constraints,
Lipschitz optimization, DC (different of convex functions) and DM (difference of monotoni-
cally increasing functions) optimization.

In addition, "black box" optimization is an important class of hard optimization problems
that appear very often in practice. Black box optimization is connected with machine learning
and we are going to discuss some challenging issues regarding black box optimization.

4. Global Optimization Software

Some of the first optimization books (for continuous and discrete optimization) have been
written by chemical engineers because of the significance of optimization in solving problems
in the oil industry. There is a state of the art software for problems that can be expressed
or approximated by mixed linear zero-one models. Such approaches are in particularly very
practical for separable optimization.

In addition, there are several optimization packages that are very efficient for problems with
a special structure. However, there is still a need for general purpose optimization software.
We are going to address several issues regarding testing, automatic parameter identification,
and evaluation of global optimization software.

5. Research Directions and New Challenges in Optimization

In many practical cases, uncertainty of the data is a key problem in optimization. Over the
years parametric optimization and stochastic programming approaches have been used to ad-
dress issues of uncertainty. In the last few years, robust optimization has been a very promis-
ing alternative. In particular, in data sciences robust optimization algorithms can have a great
impact in several applications.

Optimization with massive data sets remains a very challenging area of research. For ex-
ample, new algorithms and new computer environments are needed to solve optimization
problems with massive networks External memory algorithms and new data structures have
been developed only for a few such optimization problems.

"Multi-objective optimization" is the final frontier. The search for a Pareto optimal solution
remains a challenge, although several sophisticated heuristics have been developed in the last
few decades. In nature, "cooperative systems" manage to optimize in certain ways. We may
need the synergy of the two fields to lead us to new paths for developing novel approaches in
multi-objective optimization.
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The Cluster Problem in Constrained Global Optimization∗

Rohit Kannan and Paul I. Barton

Process Systems Engineering Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA {rohitk, pib}@mit.edu

Abstract One of the key issues in continuous deterministic global optimization is the cluster problem wherein
a large number of boxes may be visited in the neighborhood of a global minimizer [3, 4, 5, 6]. It
is well-known in the unconstrained global optimization literature that, in the worst case, at least
second-order Hausdorff convergence of lower bounding schemes is necessary to avoid the cluster
problem when the minimizer sits at a point of differentiability of the objective function. In this
work, a definition of convergence order for lower bounding schemes for constrained problems is
proposed. Based on the proposed definition, the cluster problem for constrained global optimization
is analyzed and sufficient conditions for first-order convergent lower bounding schemes to eliminate
the cluster problem are provided.

Keywords: Cluster problem, Convergence-order, Branch-and-bound, Constrained global optimization

1. Introduction

Consider the problem

min
x∈X

f(x) (P)

s.t. g(x) ≤ 0,

h(x) = 0,

where X ⊂ Rnx is a nonempty open bounded convex set, and the functions f : X → R,
g : X → RmI , and h : X → RmE are continuous on X . We make the following assumptions.

Assumption 1. The functions f , g, and h are twice continuously differentiable on X , and the con-
straints g(x) ≤ 0 and h(x) = 0 define a nonempty compact set contained in X .

Assumption 2. Let x∗ ∈ X be a global minimum for Problem (P), and assume that the branch-and-
bound algorithm has found the upper bound UBD = f(x∗) sufficiently early on. Let ε > 0 be the
termination tolerance for the branch-and-bound algorithm, and suppose the algorithm fathoms node k
when UBD − LBDk ≤ ε, where LBDk is the lower bound on node k.

Denote by IZ the set of nonempty bounded interval subsets of Z ⊂ Rn, by f̄(Z) the image
of Z ⊂ X under the function f : X → Rm, and by N p

α(x) the set {z ∈ X : ‖z− x‖p< α}
corresponding to the α-neighborhood of x in X with respect to the p-norm.

Definition 3 (Width of an Interval). Let Z = [zL
1 , z

U
1 ] × · · · × [zL

n, z
U
n ] be an element of IRn. The

width of Z, denoted by w(Z), is given by w(Z) = maxi=1,···,n (zU
i − zL

i ).

Definition 4 (Distance Between Two Sets). Let Y,Z ⊂ Rn. The distance between Y and Z, denoted
by d(Y,Z), is defined as d(Y,Z) = inf(y,z)∈Y×Z ‖y − z‖2.

The reader is directed to the work of Mitsos and coworkers [1, 2] for the definition of
schemes of relaxations, and the notions of Hausdorff and pointwise convergence of such

∗The authors gratefully acknowledge financial support from BP. This work was conducted as a part of the BP-MIT conversion
research program.
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schemes. The following definition extends the notion of convergence order [1, 2, 6] to lower
bounding schemes for constrained problems.

Definition 5 (Convergence Order of a Lower Bounding Scheme). Consider Problem (P) satisfy-
ing Assumption 1. For any Z ∈ IX , letF(Z) = {x ∈ Z : g(x) ≤ 0,h(x) = 0} denote the feasible set
of Problem (P) with x restricted to Z. Let (f cv

Z )Z∈IX and (gcv
Z )Z∈IX denote continuous schemes of con-

vex relaxations of f and g, respectively, in X , and let (hcv
Z ,h

cc
Z )Z∈IX denote a continuous scheme of re-

laxations of h inX . For anyZ ∈ IX , letFcv(Z) =
{
x ∈ Z : gcv

Z (x) ≤ 0,hcv
Z (x) ≤ 0,hcc

Z (x) ≥ 0
}

denote the feasible set of the convex relaxation-based lower bounding scheme. The convex relaxation-
based lower bounding scheme is said to have convergence of order β > 0 at

1. a feasible point x ∈ X if there exists τ ≥ 0 such that for every Z ∈ IX with x ∈ Z,

min
z∈F(Z)

f(z)− min
z∈Fcv(Z)

fcv
Z (z) ≤ τw(Z)β.

2. an infeasible point x ∈ X if there exists τ̄ ≥ 0 such that for every Z ∈ IX with x ∈ Z,

d(ḡ(Z),RmI− )− d(ḡcv
Z (Z),RmI− ) ≤ τ̄w(Z)β, and

d(h̄(Z), {0})− d(IE(Z), {0}) ≤ τ̄w(Z)β,

where IE(Z) is defined by

(IE(Z))Z∈IX := ({w ∈ RmE : hcv
Z (x) ≤ w ≤ hcc

Z (x) for some x ∈ Z})Z∈IX .

The scheme of lower bounding problems is said to have convergence of order β > 0 on X if it has
convergence of order (at least) β at each x ∈ X , with the constants τ and τ̄ independent of x.

Suppose the convex relaxation-based lower bounding scheme has convergence of order
β∗ > 0 on F(X) with prefactor τ∗ > 0, and convergence of order βI > 0 at infeasible points
with prefactor τ I > 0. Furthermore, suppose the scheme (f cv

Z )Z∈IX has convergence of order
βf > 0 at infeasible points with prefactor τ f > 0. Define δ, tolerances εI and εf such that(
εI

τI

) 1

βI =
(
εf

τf

) 1

βf =
(
ε
τ∗

) 1
β∗ = δ, and consider the following partition of X :

X1 =
{
x ∈ X : max

{
d({g(x)},RmI− ), d({h(x)}, {0})

}
> εI

}
,

X2 =
{
x ∈ X : max

{
d({g(x)},RmI− ), d({h(x)}, {0})

}
∈ (0, εI ] and f(x)− f(x∗) > εf

}
,

X3 =
{
x ∈ X : max

{
d({g(x)},RmI− ), d({h(x)}, {0})

}
∈ (0, εI ] and f(x)− f(x∗) ≤ εf

}
,

X4 =
{
x ∈ X : max

{
d({g(x)},RmI− ), d({h(x)}, {0})

}
= 0 and f(x)− f(x∗) > ε

}
,

X5 =
{
x ∈ X : max

{
d({g(x)},RmI− ), d({h(x)}, {0})

}
= 0 and f(x)− f(x∗) ≤ ε

}
.

By virtue of the definitions of δ, εI , and εf , nodes with domains X̄1 ∈ IX1, X̄2 ∈ IX2, and
X̄4 ∈ IX4 will be fathomed when or before their widths are δ. However, nodes X̄5 ∈ IX5 may,
in the worst case, need to be covered by boxes of width δ before they are fathomed. Further-
more, nodes X̄3 ∈ IX3 may also need to be covered by a large number of boxes depending on
the convergence properties of the lower bounding scheme on X3.

2. Analysis of the Cluster Problem

We assume that Problem (P) has a finite number of global minimizers, and ε is small enough
that both X3 and X5 are contained in neighborhoods of the global minimizers.
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Definition 6 (Nonisolated Feasible Point). A feasible point x ∈ F(X) is said to be nonisolated if
∀α > 0, ∃z ∈ N 1

α(x) ∩ F(X) such that z 6= x.

Definition 7 (Set of Active Inequality Constraints). Let x ∈ F(X) be a feasible point for Prob-
lem (P). The set of active inequality constraints at x, denoted by A(x), is given by

A(x) = {j ∈ {1, · · · ,mI} : gj(x) = 0} .

2.1 Estimates for the number of boxes required to cover X5

An estimate for the number of boxes required to cover some α-neighborhood, N 1
α(x∗), of

x∗ which contains the subset of X5 around x∗ is provided under suitable assumptions. We
assume that x∗ is a nonisolated feasible point; otherwise ∃α > 0 such thatN 1

α(x∗)∩X5 = {x∗}
which can be covered using a single box of width δ.

Lemma 8. Suppose x∗ is a nonisolated feasible point for Problem (P) and ∃α > 0 such that L :=

inf
{d:‖d‖1=1, ∃t>0 s.t. (x∗+td)∈N1

α(x∗)∩F (X)}
∇f(x∗)Td > 0. Then, ∃α̂ ∈ (0, α] such that N 1

α̂(x∗) ∩X5 is

overestimated by X̂5 =
{
x ∈ N1

α̂(x∗) : L‖x− x∗‖1≤ 2ε
}
.

Theorem 9. Suppose the assumptions of Lemma 8 hold. Define r = 2ε
L and recall δ =

(
ε
τ∗

) 1
β∗ .

1. If δ ≥ 2r, let N = 1.

2. If 2r
m−1 > δ ≥ 2r

m for some m ∈ N with m ≤ nx and 2 ≤ m ≤ 6, then let N =
∑m−1

i=0 2i
(
nx
i

)
+

2nx
⌈
m−3

3

⌉
.

3. Otherwise, let N =
⌈

2ε
Lδ

⌉nx−1 (⌈ 2ε
Lδ

⌉
+ 2nx

⌈
ε
Lδ

⌉)
.

Then, N is an upper bound on the number of boxes with width δ required to cover X̂5.

Remark 10. Under the assumptions of Lemma 8, the dependence of N on ε disappears when the lower
bounding scheme has first-order convergence on X5, i.e., β∗ = 1. Therefore, the cluster problem may be
eliminated even using first-order convergent lower bounding schemes with sufficiently small prefactors.
This is in contrast to unconstrained global optimization where at least second-order convergent lower
bounding schemes are required to eliminate the cluster problem.

2.2 Estimates for the number of boxes required to cover X3\X̂5

An estimate for the number of boxes required to cover some α-neighborhood, N 1
α(x∗), of

x∗ which contains the subset of X3 around x∗ is provided under suitable assumptions. We
assume that x∗ is a constrained global minimizer; otherwise ∃α > 0 such thatN 1

α(x∗)∩X3 = ∅.
Furthermore, we assume x∗ is at the center of a box of width δ placed while covering X̂5.

Lemma 11. Consider Problem (P) satisfying Assumption 1. Suppose x∗ is a constrained minimizer,
and ∃α > 0 and a set D1 such that Lf := inf

d∈D1∩DI
∇f(x∗)Td > 0, where DI is defined as DI :={

d : ‖d‖1= 1, ∃t > 0 s.t. (x∗ + td) ∈ N 1
α(x∗) ∩ FC(X)

}
and SC denotes the complement of S in

X , LI := inf
d∈DI\D1

max

{
max
j∈A(x∗)

{
∇gj(x∗)Td

}
, max
k∈{1,···,mE}

{∣∣∣∇hk(x∗)Td
∣∣∣}} > 0. Then, ∃α̂ ∈

(0, α] such that the regionN 1
α̂(x∗)∩X3 ∩

{
(x∗ + td) ∈ N 1

α̂(x∗) ∩ FC(X) : d ∈ D1 ∩ DI , t > 0
}

is

overestimated by X̂1
3 =

{
x ∈ N 1

α̂(x∗) : Lf‖x− x∗‖1≤ 2εf
}
, and

N 1
α̂(x∗)∩X3∩

{
x = (x∗ + td) ∈ N 1

α̂(x∗) ∩ FC(X) : d ∈ DI\D1, t > 0
}

is overestimated by X̂2
3 ={

x ∈ N 1
α̂(x∗) : LI‖x− x∗‖1≤ 2εI

}
.
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Furthermore, suppose x∗ is at the center of a box, Bδ, of width δ placed while covering X̂5. Then for
ε small enough, the regionN 1

α̂(x∗)∩X3∩
{

(x∗ + td) ∈ N 1
α̂(x∗) ∩ FC(X) : d ∈ DI\D1, t > 0

}
\Bδ

is overestimated by
{
x ∈ N 1

α̂(x∗) : max
{
d({g(x)},RmI− ), d({h(x)}, {0})

}
∈
(
LI
4 δ, ε

I
]}

whenever

LIδ < 4εI .

Theorem 12. Suppose the assumptions of Lemma 11 hold. Define δf = δ, δI =
(
LIδ
4τI

) 1

βI , rI = 2εI

LI
,

and rf = 2εf

Lf
. Then for j ∈ {I, f}

1. If δj ≥ 2rj , let Nj = 1.

2. If 2rj
mj−1 > δj ≥ 2rj

mj
for some mj ∈ N with mj ≤ nx and 2 ≤ mj ≤ 6, then let Nj =∑mj−1

i=0 2i
(
nx
i

)
+ 2nx

⌈
mj−3

3

⌉
.

3. Otherwise, let Nj =
⌈

2εj

Ljδj

⌉nx−1 (⌈
2εj

Ljδj

⌉
+ 2nx

⌈
εj

Ljδj

⌉)
.

Then, NI is an upper bound on the number of boxes with width δI required to cover X̂2
3\X̂5, and Nf

is an upper bound on the number of boxes with width δf required to cover X̂1
3 .

Remark 13. Under the assumptions of Lemma 11, the dependence of NI on εI disappears when the
lower bounding scheme has first-order convergence on X3, i.e., βI = 1, and the dependence of Nf on
εf disappears when the scheme (fcv

Z )Z∈IX has first-order convergence on X , i.e., βf = 1. Therefore,
the cluster problem on X3 can be eliminated even using first-order convergent lower bounding schemes
with sufficiently small prefactors.

3. Summary

A definition of convergence order for lower bounding schemes for constrained problems has
been proposed, and an analysis of the cluster problem for constrained global optimization has
been presented. It has been shown that first-order convergence of lower bounding schemes
may be sufficient to eliminate the cluster problem under certain conditions. Conditions un-
der which second-order convergence may be sufficient to avoid clustering can be similarly
developed.
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Distance Geometry: Too Much is Never Enough
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Abstract Two years after presenting the distance geometry problem (DGP) as "the most beautiful problem
I know" at the last Global Optimization Workshop in Malaga, one of the authors of this abstract
(LL) confirms his DGP-mania by proposing lots of fun, weird, innovative, elegant and sometimes
also practically useful methods for solving this problem, while drawing an unsuspecting Ph.D. stu-
dent (GD) in the addiction. We present counterintuitive results which only make sense in very high
dimensional spaces, adapt the celebrated Isomap heuristic to the DGP setting, and apply some re-
cent techniques for finding feasible solutions of semidefinite programs using a linear programming
solver. In short, we do all we can to solve very large DGP instances, albeit approximately.

Keywords: Random projections, Principal component analysis, Diagonally dominant matrix, Smoothing

1. Introduction

The Distance Geometry Problem (DGP) consists of “drawing” a weighted graph in a Eu-
clidean space of given dimension, so that a drawn edge is as long as its weight. More pre-
cisely, given an integer K > 0 and a simple undirected weighted graph G = (V,E, d), where
d : E → R+, the DGP asks whether there exists a realization x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖22= d2
ij . (1)

This problem is NP-hard [13] but is not known to be in NP [2] for K > 1.
A deceptively similar problem called Euclidean Distance Matrix Completion Problem (ED-

MCP), where K is not given, and the problem asks whether there exists a K > 0 such that
Eq. (1) holds, is currently not known to be in P nor NP-hard.

The DGP arises in all applications where one can measure the distances but not the posi-
tions of entities: clock synchronization protocols (where K = 1 represents the timeline, and
one is given time differences but needs to compute absolute clock times), localization of wire-
less sensors (whereK = 2 represents e.g. a city block, or an office floor, and pairwise distances
are estimated by the amount of battery power consumed in communication), protein confor-
mation (where K = 3, and distances are estimated using Nuclear Magnetic Resonance exper-
iments, and the protein binds to a site according to the relative position of its atoms), control
of unmanned underwater vehicles (where again K = 3, distances are estimated by sonar, and
the position cannot be verified directly since GPS signal does not reach underwater). See [8]
for more information.

Our favorite method for solving DGPs is Branch-and-Prune (BP) [7]. It scales up to huge
sizes [12], is blazingly fast, incredibly accurate [5], polynomial-time “on proteins” [9], and
potentially finds all incongruent solutions. But it does not gracefully adapt to distance errors
[3] and, most importantly, only works on graphs with a special structure [4]. And so we turn
to approximate methods, heuristics, and relaxations.

In this abstract we summarize some of the recent efforts in solving very large DGP instances
approximately. We accept approximate solutions because (a) applications usually provide us
distances with some errors, and (b) because exact methods do not necessarily scale up to large
sizes.



14 Gustavo Dias and Leo Liberti

2. Random projections

High dimensional spaces are host to some weird, counterintuitive and somewhat magical-
looking phenomena [6]. The one we are specifically interested in is the Johnson-Lindenstrauss
Lemma (JLL), which states that if you have a realization x of n points in RK and some ε ∈
(0, 1), then there exists a k = O((1/ε2) log n) and a k ×K matrix T such that:

∀i, j ∈ V (1− ε)‖xi − xj‖22≤ ‖Txi − Txj‖22≤ (1 + ε)‖xi − xj‖22. (2)

In fact, if you sample each component of T from N(0,
√

1/k), Eq. (2) holds with probability
which approaches 1 exponentially fast as k grows. If you try this out in small dimensional
spaces, you will soon see that this is hopeless, which adds a touch of magic to the JLL. We find
it even more surprising that the target dimension k is independent of the original dimension
K.

Note that the JLL provides a dimensionality reduction mechanism, rather than a solution
method for the DGP. Finding a DGP solution in a high dimensional space, however, is easier
than finding one with fewer degrees of freedom. So we can project high-dimensional solutions
to lower dimensions while keeping the pairwise distances approximately equal. Note that the
target dimension k cannot be given: so the JLL applies to the EDMCP rather than the DGP.

Other types of random projections exist, such as Matoušek’s, which we also consider.

3. Isomap

The Isomap method [14] is a heuristic method best known for dimensionality reduction, much
like the JLL. It works as follows: from a set of n points X ⊆ RK we derive a weighted graph
G = (V,E, d) from all distances smaller than a given threshold (chosen so as to make the graph
connected and reasonably sparse). Note that every edge is weighted with the corresponding
Euclidean distance. Next, we complete G to a clique Ḡ by computing the missing distances
using an all (weighted) shortest path algorithm such as Floyd-Warshall. The complete graph
Ḡ is encoded in a symmetric matrix D̄ which is an approximation of the (squared) Euclidean
Distance Matrix of X . Then we perform classic Multi-Dimensional Scaling (MDS) on D̄:

G = −1

2
JD̄J, (3)

where G is an approximation of the Gram matrix of X , J = I − 1/n, and 1 is the all-one n× n
matrix. Since Gram matrices are positive semidefinite (PSD), their eigenvalue matrix Λ has
non-negative diagonal, and they can be factored into Y Y > where Y = P

√
Λ. G is not a Gram

matrix, however, but only an approximation: so we zero all the negative eigenvalues in Λ (so√
Λ is real). Finally, we perform a Principal Component Analysis (PCA) step, and discard all

but the first K largest eigenvalues of Λ. This yields a set Y of n points in RK .
Note that Isomap is almost a method for solving the DGP. Our “adaptation” consists in a

simpe remark: just start Isomap from the weighted graph G.

4. Diagonally dominant programming

In a ground-breaking result, Ahmadi and Hall [1] showed that it is possible to find feasible
Semidefinite Programming (SDP) solutions using a Linear Programming (LP) solver. Since
SDP solution technology has a considerable computational bottleneck, this result has the po-
tential for unlocking more SDP power. This result is based on the observation that a diagonally
dominant (DD) n× n matrix X = (Xij), namely one such that

∀i ≤ n Xii ≥
∑
j 6=i
|Xij |, (4)
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is also PSD. Note that Eq. (4) can be written linearly by introducing a matrix Y and the con-
straints:

∀i ≤ n
∑
j 6=i

Yij ≤ Xii

−Y ≤ X ≤ Y.

This means that the PSD constraint X � 0 in any SDP can be replaced by the LP constraints
above. Programming over those constraints is known as Diagonally Dominant Programming
(DDP).

Note that DD implies PSD but not vice-versa. Hence a DDP formulation provides an inner
approximation of the SDP feasible region. If the original SDP is used to compute bounds,
the guarantee is lost; but since SDP has strong duality, it suffices to apply DDP to the SDP
dual. Moreover, the DDP might be infeasible even if the original SDP is feasible. To overcome
this issue, Ahmadi and Hall provide an iterative improvement algorithm which enlarges the
feasible region of the DDP at each step.

We provide and test DDP formulations for the DGP and EDMCP.

5. The DGSol algorithm

This algorithm was proposed around 20 years ago [10], but it is still very competitive in terms
of speed (also thanks to a very good implementation). For smaller scale instances the accuracy
of the solutions is not impressive. What is impressive, however, is how well DGSol scales with
size in both speed and accuracy. In this sense, DGSol is a truly “big data” kind of method.

The algorithm behind DGSol has an outer and an inner iteration. The outer iteration starts
from a smoothed convexified version of the penalty objective function,

f(x) =
∑
{i,j}∈E

(
‖xi − xj‖22−d2

ij

)2
obtained via a Gaussian transform

〈f〉λ(x) =
1

πKn/2λKn

∫
RKn

f(y) exp(−‖y − x‖22/λ2)dy,

which tends to f(x) as λ→ 0.
For each fixed value of λ in the outer iteration, the inner iteration is based on the recursion

x`+1 = x` − α`H`∇f(x`),

for ` ∈ N, where α` is a step size, and H` is an approximation of the inverse Hessian matrix of
f . In other words, the inner iteration implements a local NLP solution method which uses the
optimum at the previous value of λ as a starting point.

Overall, this yields a homotopy method which traces a trajectory depending on λ → 0,
where a unique (global) optimum of the convex smoothed function 〈f〉λ for a high enough
value of λ (hopefully) follows the trajectory to the global minimum of the multimodal, non-
convex function 〈f〉0 = f .

We use DGSol as a benchmark for comparison. We also borrow its local NLP subsolver for
efficiently improving the approximate methods discussed above in a post-processing phase.

6. Conclusion

Our investigations in alternative methods for the DGP are focused towards identifying the
best methods for solving very large scale instances of the DGP and EDMCP. Aside from being
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interesting in their own right, we eventually plan to use them within the BP algorithm in order
to provide a better extension for dealing with imprecise data.
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Abstract We study the problem of checking pseudoconvexity of a twice differentiable function on an inter-
val domain. Based on several characterizations of pseudoconvexity of a real function, we propose
sufficient conditions for verifying pseudoconvexity on a domain formed by a Cartesian product of
real intervals. In the sequel, we will carry out numerical experiments to show which methods per-
form well from two perspectives – the computational complexity and effectiveness of recognizing
pseudoconvexity.

Keywords: Interval computation, Pseudoconvexity

1. Introduction

Some methods in deterministic global optimization [6, 7, 8] are based on a branch-and-bound
scheme and utilizing interval methods for rigorous inner and outer approximations, among
others. In particular, αBB method and its variants [6, 9] create convex underestimators of non-
convex functions on interval regions. Convexity is very convenient property in the context
of optimization, however, not always it is achieved. That is why diverse generalized con-
cepts of convexity were thoroughly investigated in the past. In particular, quasiconvexity and
pseudoconvexity are among the most commonly used generalizations.

Pseudoconvex objective functions have some nice properties in the context of optimization:
On the convex feasible set, each stationary point is a global minimum, each local minimum is
a global minimum, and the optimal solution set is convex.

The aim of this paper is to develop methods for checking pseudoconvexity on an interval
domain.

1.1 Interval computation

Interval notation. An interval matrix is defined as

A := {A ∈ Rm×n; A ≤ A ≤ A},
where A and A, A ≤ A, are given matrices and the inequality is understood entrywise. The
midpoint and radius matrices are defined as

Ac :=
1

2
(A+A), A∆ :=

1

2
(A−A).

The set of all interval m × n matrices is denoted by IRm×n. Interval vectors are defined as
one-column interval matrices. For interval arithmetic see, e.g., [7].

Other notation and definitions. The diagonal matrix with entries s1, . . . , sn is denoted by
diag(s), and the spectral radius of A ∈ Rn×n by ρ(A). For a symmetric A ∈ Rn×n, we sort its
eigenvalues as λ1(A) ≥ . . . ≥ λn(A).

Let f :Rn → R be twice differentiable and S ⊂ Rn an open convex set. Then f(x) is pseudo-
convex on S if for every x, y ∈ S we have

∇f(x)T (y − x) ≥ 0 ⇒ f(y) ≥ f(x).
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1.2 Problem formulation

Throughout this paper, x ∈ IRn is a given box with nonempty interior, and f :Rn → R is a
differentiable function on an open set containing x. The question studied is whether f(x) is
quasiconvex on x.

Even though x is not an open set, by using one-sided derivatives, we can extend character-
ization of quasiconvexity and pseudoconvexity to x.

Ahmadi et al. [1] showed that deciding pseudoconvexity is NP-hardness on a class of quar-
tic polynomials. This result indicates that our problem considering any differentiable function
is also difficult.

1.3 Characterizations of pseudoconvexity

We review some known [2, 3, 4, 5, 10] second order characterizations of pseudoconvexity
that seem to be convenient for interval-based methods for recognizing pseudoconvexity. The
statements below are adapted to our problem.

Using the characterization by Mereau and Paquet [10], we have:

Theorem 1 (Mereau and Paquet, 1974). The function f(x) is pseudoconvex on x if there is α ≥ 0
such that

Mα(x) := ∇2f(x) + α∇f(x)∇f(x)T

is positive semidefinite for all x ∈ x.

Denote

D(x) :=

(
0 ∇f(x)T

∇f(x) ∇2f(x)

)
,

and byD(x)r we denote the principal leading submatrix (i.e., left top submatrix) of size r. The
condition by Ferland [4, 5] follows.

Theorem 2 (Ferland, 1972). The function f(x) is pseudoconvex on x if det(D(x)r) < 0 for every
r = 2, . . . , n+ 1 and for all x ∈ x.

Another condition is by Crouzeix and Ferland [3].

Theorem 3 (Crouzeix and Ferland, 1982). The function f(x) is pseudoconvex on x if for each
x ∈ x either ∇2f(x) is positive semidefinite, or ∇2f(x) has one simple negative eigenvalue and there
is b ∈ Rn such that∇2f(x)b = ∇f(x) and∇f(x)T b < 0.

Eventually, we mention a condition by Crouzeix [2].

Theorem 4 (Crouzeix, 1998). The function f(x) is pseudoconvex on x if for each x ∈ x the matrix
D(x) is nonsingular and has exactly one simple negative eigenvalue.

2. Interval methods for testing pseudoconvexity

LetH ∈ IRn×n and g ∈ IRn such that

∇2f(x) ∈H ∀x ∈ x,
∇f(x) ∈ g ∀x ∈ x.

Such interval enclosures of the Hessian matrix and the gradient can be computed, e.g., by
interval arithmetic using automatic differentiation. Of course, the tighter enclosure used the
better, however, computing a tight enclosure is a computationally hard problem in general.

If every H ∈ H is positive semidefinite, then f(x) is convex and we are done. Therefore,
we focus on problems such that not every H ∈H is positive semidefinite.
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We will also use the symmetric interval matrix

D :=

(
0 gT

g H

)
.

2.1 Method based on Theorem 1

Theorem 1 suggests that pseudoconvexity of f(x) can be checked by verifying positive semidef-
initeness of matrices

Mα(H, g) := H + αggT , H ∈H, g ∈ g

for a suitable α ≥ 0.
The direct approach is to evaluate

M(α) := H + αggT

by interval arithmetic and for a suitable α ≥ 0. Then we check whether M(α) is positive
semidefinite, i.e., whether every Mα ∈ M(α) is positive semidefinite. It was proved by [11]
that checking this property is co-NP-hard. Sufficient and necessary condition is that all matri-
ces of the form

M(α)c − diag(z)M(α)∆ diag(z) (1)

where z ∈ {±1}n−1 × {1}, are positive semidefinite. An easy to verify sufficient condition is
λn(M(α)c) ≥ ρ(M(α)∆) (see, e.g., [12]).

2.2 Method based on Theorem 2

By Theorem 2, for pseudoconvexity of f(x) on x, it is sufficient to check that for each symmet-
ric D ∈ D and for each r = 2, . . . , n+ 1 we have det(Dr) < 0. This is, however, a co-NP-hard
problem.

Theorem 5. It is co-NP-hard to check whether det(D) < 0 for every symmetric D ∈D.

Due to co-NP-hardness, the problem might be computationally expensive in the worst case,
so we propose an efficient sufficient condition instead. Let r ∈ {2, . . . , n+ 1}. Then the condi-
tion that det(Dr) < 0 for each symmetric Dr ∈ Dr can be checked by showing det((Dr)c) < 0
and ρ(|(Dr)

−1
c |(Dr)∆) < 1. The former says that determinant of the midpoint matrix is neg-

ative, and the second one guarantees nonsingularity. If every symmetric Dr ∈ Dr is nonsin-
gular, then Dr has constant number of positive and negative eigenvalues, and so has constant
sign of the determinant.

2.3 Method based on Theorem 3

After a small modification, the condition for pseudoconvexity based on Theorem 3 can be
expressed as follows.

Theorem 6. The function f(x) is pseudoconvex on x if for each symmetricD ∈D we have det(D) <
0, and each symmetric H ∈H is nonsingular and has at most one simple negative eigenvalue.

In view of Theorem 5, the above condition is hard to verify exactly, so we show a sufficient
condition as well.

Theorem 7. The function f(x) is pseudoconvex on x if

det(Dc) < 0, ρ(|D−1
c |D∆) < 1, and 0 < λn−1(Hc)− ρ(H∆).
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2.4 Method based on Theorem 4

SinceD(x) has at least one negative eigenvalue by [2], it is sufficient to check that the (n−1)th
largest eigenvalue is positive. In the interval context, we have to check that the (n − 1)th
largest eigenvalue of every symmetric matrix D ∈D is positive. A sufficient condition is:

Theorem 8. The function f(x) is pseudoconvex on x if 0 6∈ g and λn(Dc) > ρ(D∆).

3. Conclusion

We considered the problem of testing pseudoconvexity of a general differentiable function on
an interval domain. We utilized various second order characterizations of pseudoconvexity,
and proposed several methods.

We will make a thorough numerical comparisons to find out which methods are the best
from the computational point of view and which methods have the highest success rate for
checking pseudoconvexity.
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Abstract Multi-objective preference-based evolutionary algorithms approximate the part of the Pareto front
that meets the preference information expressed by the Decision Maker. However, only a few of such
algorithms are able to obtain well-distributed solutions covering the complete “region of interest”.
In this work a preference-based evolutionary algorithm for approximating the region of interest of
multi-objective optimization problems is proposed. The efficiency of the proposed algorithm has
been experimentally evaluated and compared to another state-of-the-art multi-objective preference-
based evolutionary algorithm by solving a set of multi-objective optimization benchmark problems.

Keywords: Multi-objective Optimization, Evolutionary Algorithms, Preference-based Algorithms

1. Introduction

Many real-world optimization problems are multi-objective, where several conflicting objec-
tives should be optimized. Let us have k ≥ 2 conflicting objectives, described by the functions
f1(x), f2(x), . . . , fk(x), where x = (x1, x2, . . . , xn) is a vector of variables (decision vector), and
n is the number of variables. A multi-objective minimization problem is formulated as fol-
lows [8]:

minimize f(x) = [f1(x), f2(x), . . . , fk(x)], (1)
subject to x ∈ S. (2)

where z = f(x) ∈ Rk is the objective vector function, and S ⊂ Rn is called the feasible region.
A decision vector x’ ∈ S is a Pareto optimal solution if there no exists another x ∈ S such that

fi(x) 6 fi(x’) for all i and fj(x) < fj(x’) for at least one j. Objective vectors are defined as
Pareto optimal if none of their elements can be improved without worsening at least one of
the other elements. An objective vector f(x’) is Pareto optimal if the corresponding decision
vector x’ is Pareto optimal. The set of all Pareto optimal decision vectors is called the Pareto
set. The region defined by all the objective function values of the points of the Pareto set is
called the Pareto front. For two objective vectors z, z’ ∈ Rk, z’ dominates z (or z’ � z) if z′i 6 zi
for all i = 1, . . . , k, and there exists at least one j such that z′j < zj .

The majority of multi-objective optimization problems are NP-hard. That is why algorithms
that approximate the Pareto front are widely-used. Evolutionary Multi-objective Optimiza-
tion (EMO) approaches are commonly employed for this task [2, 12]. The set of obtained

∗Juana López Redondo is a fellow of the Spanish ‘Ramón y Cajal’ contract program, co-financed by the European Social Fund.
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solutions approximating the entire Pareto front is presented to the Decision Maker (DM).
However, such EMO algorithms are computationally expensive and time consuming. Ad-
ditionally, only a reasonable number of solutions should be given to the DM so that he/she
can make an adequate decision avoiding the usually complex analysis of a large amount of
information and reducing cognitive burden. Moreover, the DM is commonly interested only
in a certain part of the Pareto front and prefers to explore that part deeper. Thus, incorpo-
ration of DM’s preferences into EMO algorithms has become a relevant trend during the last
decade [4, 7, 9, 10, 11].

The DM’s preference information is usually expressed as a reference point (RP), therefore
a preference-based EMO algorithm, during its execution, emphasises solutions close to the
RP. In particular, the so-called “region of interest” is a part of the Pareto front determined by
the RP provided by the DM (see Figure 1). However, only a few preference-based EMO ap-
proaches are able to obtain well-distributed solutions covering the complete region of interest.

In this paper, we propose a preference-based EMO algorithm called NSGA-NBI that consid-
ers the DM’s preference information expressed by means of a reference point. The solutions
obtained by the algorithm are well-distributed and cover the complete region of interest.

f2

f1

Reference point

1

10

Region of interest

Pareto front

Figure 1. Region of interest.

f2

f1

Pareto front

Reference point

1

10

CHIM line

Boundary points

CHIM line poin

Figure 2. CHIM line of the region of interest.

2. Preference-based EMO algorithm NSGA-NBI

We combine ideas of the well-known EMO algorithm NSGA-II [3] and the NBI method [1].
As we deal with a preference-based approach, before running the NSGA-NBI algorithm, the
DM is asked to provide a RP. Then the boundary points (see Figure 2) of the region of interest
are obtained by a suitable single-objective optimization algorithm.

The steps of the NSGA-NBI algorithm are as follows:

1. A random initial population P0 consisting of N decision vectors is randomly generated.

2. At iteration t, a new offspring population Qt is created by applying genetic operators
(crossover and mutation) to the individuals of the parent population.

3. The parent and offspring populations are combined into one joint population Pt .

4. The new population is sorted into different non-domination levels (so-called fronts) by
a non-dominated sorting procedure (as in NSGA-II algorithm).

5. The obtained joint population is reduced to the size N of the parent population by leav-
ing the individuals from the best non-domination levels. If not all individuals from the
last level can be selected for the next generation, then CHIM line points are generated (as
in NBI method) and the individuals closest to those points are selected. The CHIM line
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points are evenly distributed between the boundary points (see Figure 2). The number
of points on the CHIM line is equal to the number of points to be selected for the new
population from the last non-dominated level that cannot be completely selected.

6. If the termination condition is not satisfied, then the process is repeated from Step 2
considering the reduced population as the parent population in the next iteration.

3. Results and conclusions

The proposed algorithm has been experimentally compared with a recently developed WAS-
FGA algorithm [9] also designed to approximate the region of interest. The performance of
the preference-based EMO algorithms has been evaluated using the following metrics: Gen-
erational Distance (GD) [2] for estimating convergence to the true Pareto-front, Spread [2] for
estimating the distribution evenness of the solutions, Hypervolume (HV) [13] for estimating
both convergence and distribution. The new PR metric [5] is also considered – it evaluates
the percentage of solutions that lie into the DM’s region of interest. The set of well-known
2-objective test problems ZDT1–ZDT4, ZDT6 with different complexity and characteristics
(convexity, concavity, discontinuity, non-uniformity, . . . ) has been considered [6].

Each algorithm has been run 30 times using different initial populations and average results
have been evaluated. We selected a population size of 100 individuals and 100 generations.
Those values are enough to obtain a good approximation of a region of the Pareto front in
reasonable computational time.

Preference information provided by the DM that is expressed as a RP is required for the
evaluated algorithms, therefore various RPs (achievable as well as unachievable) have been
selected. The used RPs, the numbers of objectives and variables for each test problem consid-
ered are presented in Table 1.

We can see in Tables 2 and 3 that the proposed NSGA-NBI algorithm is superior in most of
the cases (better values are marked in bold). In all the analysed cases, and according to the GD
metric, the proposed algorithm approximates the region of interest better than the WASFGA
algorithm. The values of Spread metric show that the solutions obtained by the NSGA-NBI al-
gorithm are better evenly distributed in most of the cases. The proposed algorithm is superior
for all analysed cases according to the HV metric. The PR metric indicates that the proposed
algorithm is able to obtain sufficiently high number of solutions in the region of interest for
all analysed problems unlike the WASFGA algorithm. When solving the ZDT6 problem with
achievable RP the WASFGA algorithm could not obtain any solutions in the region of inter-
est, therefore the mean values of GD, Spread, and HV metrics could not be calculated – we
show these values as NaN (see Table 2). In conclusion, the proposed algorithm NSGA-NBI has
shown promising results, as it has obtained competitive values for all the quality indicators
considered.

Table 1. Test problems and reference points used in the evaluated algorithms

Problem Number of Number of Achievable Unachievable
objectives variables reference point reference point

ZDT1 2 30 (0.80, 0.60) (0.20, 0.40)
ZDT2 2 30 (0.80, 0.80) (0.50, 0.30)
ZDT3 2 30 (0.30, 0.80) (0.05, 0.00)
ZDT4 2 10 (0.80, 0.60) (0.08, 0.25)
ZDT6 2 10 (0.78, 0.61) (0.39, 0.21)
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Table 2. Values of performance metrics for achievable RPs

GD Spread HV PR
Problem NSGA-NBI WASFGA NSGA-NBI WASFGA NSGA-NBI WASFGA NSGA-NBI WASFGA
ZDT1 0.0004 0.0160 0.0049 0.0064 0.1760 0.1612 98.47 100.00
ZDT2 0.0018 0.0344 0.0065 0.0331 0.0687 0.0513 98.17 95.97
ZDT3 0.0005 0.0101 0.0062 0.0066 0.0689 0.0590 99.43 100.00
ZDT4 0.0003 0.1345 0.0046 0.0202 0.1758 0.0649 98.57 55.50
ZDT6 0.0004 NaN 0.0012 NaN 0.0162 NaN 98.87 0.00

Table 3. Values of performance metrics for unachievable RPs

GD Spread HV PR
Problem NSGA-NBI WASFGA NSGA-NBI WASFGA NSGA-NBI WASFGA NSGA-NBI WASFGA
ZDT1 0.0003 0.0107 0.0047 0.0078 0.0127 0.0101 98.80 81.13
ZDT2 0.0009 0.0214 0.0054 0.0066 0.0716 0.0592 97.44 80.20
ZDT3 0.0006 0.0085 0.0207 0.0078 0.1150 0.1049 93.77 93.93
ZDT4 0.1048 0.1938 0.1048 0.0520 0.2167 0.0411 88.83 36.43
ZDT6 0.0002 0.1769 0.0017 0.0320 0.1354 0.0299 98.90 28.27
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Abstract Large-scale multi-objective optimization problems with many criteria have a need for Ultrascale
computing to solve them within a reasonable amount of time. Current evolutionary multi-objective
optimization algorithms as well as their parallel versions being designed for this goal do not con-
sider energy consumption and savings – only the execution time is treated as main criterion of an
algorithm efficiency.

In this research we focus on the most computationally expensive part of the state-of-the-art evo-
lutionary NSGA-II algorithm – non-dominated sorting procedure – which consumes most of the
computational burden. The impact of CPU and GPU workloads on power consumption and energy
efficiency is experimentally investigated for our recently developed parallel versions of the Fast
Non-Dominated Sorting (FNDS) procedure when solving the multi-objective optimization prob-
lems. Estimation of the balance between energy consumption and performance is also carried out,
and the recommendation of usage of the developed parallel version of non-dominated sorting pro-
cedure depending on the specific platform and architecture are provided as well. The results of
this research will help to design the NSGA-II based energy aware algorithms for solving large-scale
multi-objective optimization problems.

Keywords: Multi-objective Optimization, Evolutionary Algorithms, NSGA-II, Green Computing,
High-Performance Computing

1. Introduction

The main goal of Multi-Objective Optimization (MOO) is to provide the set of solutions that
determine the Pareto front. Due the complexity of the majority of MOO problems it is im-
possible to obtain the exact Pareto front, therefore Evolutionary Multi-objective Optimization
(EMO) algorithms are commonly-used to approximate the Pareto front [2, 15, 18]. There are
many works where EMO algorithms are successfully applied for solving relatively the small
multi-objective optimization problems with small number of objectives, where the popula-
tion size do not exceed 1,000 individuals. It is obvious that when the number of objectives in-
creases very large populations should be used in EMO algorithms to represent the Pareto front
informatively. However, is such cases computational load of the EMO algorithms strongly in-
creases. Recently, several parallel versions of EMO algorithms have been developed, which
can exploit the resources of Ultrascale computing platforms, with the unique goal of to im-
prove the performance of these methods [9, 13, 14].

Nowadays, the energy efficiency is another target in several computational contexts. Specif-
ically, in Ultrascale computation large data centres the energy consumption has a strong im-
pact in the management cost and reliability. As consequence, an intensive effort is being de-
veloped to design approaches for improving the energy/power efficiency of computational

∗This work has been partially supported by the Spanish Ministry of Science throughout project TIN15-66680, by J. Andalucía
through projects P12-TIC-301 and P11-TIC7176, and by the European Regional Development Fund (ERDF)
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devices and platforms [1, 7, 10, 12, 16]. Currently, energy costs represent a relevant share of
the total costs of High Performance Computing (HPC) systems. They include several kinds
of processing units, such as CPU cores and GPU, whose energy consumption depends on the
kind of processing which is performing. The energy consumed by a computational process
can be get as the product of its run-time and the average electrical power during its execution.
It plays a key role for evaluating the efficiency of the systems in terms of performance and
power/energy.

In this work we focus on development of energy-aware EMO algorithms. The majority
of the EMO approaches in the literature are based on Pareto dominance ranking, which is
computed by a Non-Dominated Sorting (NDS) procedure [3, 4, 5, 8, 19], etc. As shown in [9,
14], it consumes most of the computational burden of the EMO algorithm.

NSGA-II, as a representative EMO algorithm based on NDS procedure, is analysed in this
work in terms of energy efficiency. We have developed three parallel versions of NSGA-II
which accelerate the NDS procedure on: (1) a multicore processor, (2) a GPU card and (3) both.
Our main goal is to define the computational resources (number of cores and/or GPU) what
optimize the energy efficiency. Therefore, for every combination platform-resources/problem-
size the energy E is evaluated for a analysed test problem. The analysis of the results allows
us: (1) to evaluate the energy consumption of NSGA-II when it is computed on several com-
putational resources and test problems and (2) to select appropriate resources of platforms to
compute NSGA-II, according to the number of individuals in the populations (N ), number of
objective functions (M ) and number of CPU cores/ GPU cards of the available computational
platforms. Therefore, this work results a methodology to optimize the energy consumption of
the NSGA-II on platforms with several CPU cores and GPU cards.

2. Multi-objective optimization problems

A multi-objective minimization problem is formulated as follows [11]:

min
x∈S

f(x) = [f1(x), f2(x), . . . , fM (x)]T (1)

where z = f(x) is an objective vector, defining the values for all objective functions f1(x), f2(x),
. . . , fM (x), fi : RV → R, i ∈ {1, 2, . . . ,M}, where M ≥ 2 is the number of objective func-
tions; and x = (x1, x2, . . . , xV ) is a vector of variables (decision vector) and V is the number of
variables S ⊂ RV is search space, which defines all feasible decision vectors.

A decision vector x′ ∈ S is a Pareto optimal solution if fi(x′) 6 fi(x) for all x ∈ S and fj(x′) <
fj(x) for at most one j. Objective vectors are defined as optimal if none of their elements can
be improved without worsen at least one of the other elements. An objective vector f(x′) is
Pareto optimal if the corresponding decision vector x′ is Pareto optimal. The set of all the
Pareto optimal decision vectors is called the Pareto set. The region defined by all the objective
function values for the Pareto set points is called the Pareto front.

For two objective vectors z and z′, z′ dominates z (or z′ � z) if z′i 6 zfi for all i = 1, . . . ,M
and there exists at most one j such that z′j < zj . In EMO algorithms, the subset of solutions in a
population whose objective vectors are not dominated by any other objective vector is called
the non-dominated set, and the objective vectors are called the non-dominated objective vectors.
The main aim of the EMO algorithms is to generate well-distributed non-dominated objective
vectors as close as possible to the Pareto front.

NSGA-II [4] is the most widely-used and well-known EMO algorithm for approximating
the Pareto front that is based on NDS. Thus, it is selected to analyse the energy efficiency of
EMO algorithms when different number of CPU cores and/or GPU cards are exploited.

The steps of NSGA-II are described in Algorithm 1. The Step 2 of the algorithm is devoted
to the NDS procedure which is the most computationally expensive in the NSGA-II.
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Step 1: Generate a random initial population P0 of size N .
Step 2: Sort the population to different non-domination levels (fronts) using, and assign
each individual a fitness equal to its non-domination level (1 is the best level).
Step 3: Create an offspring population of size N using binary tournament selection,
recombination and mutation operations (parents with larger crowding distance are
preferred if their non-domination levels are the same).
Step 4: Combine the parent and the offspring populations and create a population R.
Step 5: Reduce the population R to the population P of size N : sort the population R
into different non-dominated fronts; fill the population P with individuals from
population R starting from the best non-dominated front until the size of P is equal to N ;
if all the individuals in a front cannot be picked fully, calculate a crowding distance and
add individuals with the largest distances into the population P .
Step 6: Check if the termination criterion is satisfied. If yes, go to Step 7, else return to
Step 2.
Step 7: Stop.

Algorithm 1: NSGA-II.

3. Energy efficiency evaluation of NSGA-II

In this section, a preliminary study of NSGA-II energy consumption is carried out. The
widely-used DTLZ2 benchmark problem [6] has been considered as it suits well for experi-
mental evaluation in this context. The test platform has been a Bullx R421-E4 Intel Xeon E5
2620v2 (12 CPU-cores, 64-GB RAM and 1-TB HDD) with a NVIDIA K80 (Kepler GK210) GPU.
The NSGA-II algorithm has been implemented in MATLAB and it can call to several paral-
lel NDS routines (multicore or GPU version). The multicore version is based on C++ and
Pthreads and the GPU version is developed on CUDA 7.5. All the test have been executed
with a number of generations equal to 100. The size of the population ranges from 200 to
5,000. The power measurements on CPU (or GPU) have been sampled by an external monitor
program that queries RAPL register using the PAPI library [17] (or NVML interface).

Figure 1. Runtime in seconds (left) and the consumed energy in KJ (right) when the NSGA-II is executed with
several populations sizes (200, 500, 1,000, and 5,000) for solving the DTLZ2 problem on several resources of Bullx
R421-E4 Intel Xeon E5 2620v2 (12 CPU-cores) with a NVIDIA K80 GPU.

Figure 1 shows the runtime (in seconds) and the consumed energy (KJ) when the NSGA-
II is executed with different population sizes solving the DTLZ2 problem with 5 objective
functions on several resources of the test computational platform (1-12 cores, 1GPU). As it
can be observed, the runtime and energy strongly increase with the size of the population.
Moreover, runtime and energy vary with the selection of the resources. For instance, when the
population size is 5,000, the optimal execution is on the GPU in terms of energy consumption.
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When the problem size is 500, the subset of 8 cores minimizes the energy consumption. So,
for a specific platform (with a set of available resources) and several instances of problems of
the NSGA-II algorithm, it is necessary to define approaches to identify what is the subset of
resources to optimize the energy consumption.
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Abstract Locating a facility is a strategic decision which usually requires a massive investment. In a com-
petitive environment, where other facilities offering the same goods or products exist, the location
and quality of a facility may determine its success or failure. The profit that a facility obtains largely
depends on the market share that it captures, and this depends on the attraction that the customers
feel for the facility and on the patronizing behavior of the customers. In this work we assume that
the former can be appropriately computed, and we concentrate on the latter. In this paper we con-
sider that a customer only patronizes those facilities for which he/she feels an attraction greater than
or equal to a threshold value. Implicitly, this implies that there may be some unmet demand. We
apply this new rule to the problem of locating a single new facility in the plane, where the quality of
the new facility to be located is also considered as a variable of the problem to be determined. The
threshold value provokes discontinuities in the objective function of the problem. Both exact and
heuristic methods are proposed to solve the location problem with the new choice rule.

Keywords: Continuous location, Competition, Customer choice rule, Interval branch-and-bound method, Pa-
tronizing behavior, Evolutionary Algorithms, Computational study

1. Introduction

The patronizing behavior of customers is one of the core inputs in many business and eco-
nomic indicators. This is the case for the estimation of the market share captured by the
facilities in a competitive environment. When there exist several facilities offering the same
product, the way in which customers decide to spend their buying power among them may
determine the success or the failure of the facilities. Consumer behavior is a function of the
attraction that consumers feel for the facilities. This attraction is the result of several factors,
but the two most important forces are the location of the facilities and their quality: the closer
the facility to the customer and the higher its quality, the greater the attraction of the customer
towards the facility. In fact, when a company wants to enter a market or to expand its presence
by opening new facilities, both the location and the quality of the new facilities are chosen so
as to maximize the revenues obtained by the chain, which largely depend on the market share
that it captures.

∗This research has been supported by grants from the Spanish Ministry of Economy and Competitiveness (MTM2015-70260-P,
TIN2015-66680-C2-1-R), Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14), Junta
de Andalucía ( P11-TIC7176 and P12-TIC301 ), in part financed by the European Regional Development Fund (ERDF). This work
is also funded by the Hungarian National Research, Development and Innovation Office âĂŞ NKFIH, OTKA grant PD115554
and also by the project ICT COST Action TD1207 (EU). Juana López Redondo is a fellow of the Spanish ‘Ramón y Cajal’ contract
program.
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The new customer choice rule introduced here is an extension of the classical probabilistic
choice rule. According to the new rule, called partially probabilistic choice rule, a customer,
in order to satisfy his/her demand, only patronizes those facilities for which he/she feels an
attraction greater than or equal to a threshold value, and the demand is split among them pro-
portionally to their attraction. employed in literature, the threshold value implicitly implies
that there may be some unmet demand.

The influence of the choice rule in the location of competitive facilities has been analyzed.
In particular, the problem of locating a single new facility in the plane has been considered.
The corresponding location problem for profit maximization has been formulated, and an
exact interval branch-and-bound method (iB&B), as well as a heuristic evolutionary algorithm
(UEGO) have been proposed to cope with the problem.

2. The partially probabilistic location problem

We will assume the following particular scenario (see [1] for more details). A single new
facility is going to be located in a given region of the plane by a chain. There already exist
m facilities around selling the same goods or product; k of those facilities may belong to the
locating chain. The demand to be served, known and fixed, is concentrated at some demand
points, whose locations are known. The location and quality of the existing facilities is also
known. The attraction function of a demand point towards a facility is modeled as perceived
quality divided by perceived distance. The maximization of the profit obtained by the chain
after the location of the new facility is the objective to be achieved, to be understood as the
income due to the market share captured by the chain minus its operational costs. The aim is
to find both the location and the quality of the new facility to be located.

It is important to have effective methods for solving the location problems. Usually com-
petitive location problems lead to hard-to-solve global optimization problems. The challenge
of the location problem with the partially probabilistic choice rule is that it also presents dis-
continuities as a consequence of the threshold value (see Figure 1). For the problem at hand,
the usefulness of the interval branch-and-bound algorithm iB&B [1] and the evolutionary al-
gorithm UEGO [5, 6] has been investigated.
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Figure 1. Projections of the objective function of an instance with setting (imax = 71, jmax = 5, k = 2) when the
threshold value is equal to 2. On the left, when α = 1.545898. On the right, when (x1 = 3.989257, x2 = 7.065429)

Interval B&B methods have been successfully applied to solve other location problems (see
for instance [2, 8] and the references therein). In particular, in [1] such a method was applied
to solve the corresponding probabilistic problem. A similar method can handle the partially
probabilistic model, thanks to the use of the interval tools employed to compute the bounds.
However, only the discarding tests described in [1] which do not make use of the differentia-
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Table 1. UEGO results for problems with n = 10000 demand points.

(m, k)prob Time Distance Minimum Average Maximum Deviation
(100, 25)1 763.1 0.010 14026.9 14026.9 14026.9 0.006
(100, 25)2 631.9 0.006 13059.7 13059.7 13059.7 0.012
(100, 25)3 629.2 0.046 14092.3 14092.4 14092.4 0.043
(100, 25)4 480.3 0.145 15650.1 15650.4 15650.6 0.165
(100, 25)5 534.0 0.002 12688.1 12688.1 12688.1 0.013
average 607.7 0.042 13903.4 13903.5 13903.5 0.048
(100, 50)1 729.4 0.002 24672.3 24672.3 24672.3 0.000
(100, 50)2 857.6 0.009 27241.9 27241.9 27241.9 0.012
(100, 50)3 435.3 0.010 27092.0 27092.1 27092.1 0.038
(100, 50)4 678.0 0.081 24517.4 24517.4 24517.4 0.013
(100, 50)5 837.9 0.000 29174.6 29174.6 29174.6 0.002
average 707.6 0.020 26539.6 26539.6 26539.7 0.013
(200, 50)1 527.3 0.000 12684.2 12684.2 12684.2 0.000
(200, 50)2 660.7 0.051 12102.1 12102.3 12102.3 0.074
(200, 50)3 679.8 0.108 12447.8 12447.9 12448.0 0.072
(200, 50)4 529.6 0.220 12572.6 12572.8 12572.9 0.110
(200, 50)5 691.1 0.105 14112.2 14112.2 14112.3 0.051
average 617.7 0.097 12783.8 12783.9 12784.0 0.061
(200, 100)1 903.4 0.098 25274.8 25274.8 25274.9 0.007
(200, 100)2 912.4 0.128 26845.2 26845.2 26845.3 0.037
(200, 100)3 884.9 0.000 24426.4 24426.4 24426.4 0.000
(200, 100)4 626.4 0.003 23853.1 23853.1 23853.1 0.001
(200, 100)5 594.2 0.059 27100.8 27100.8 27100.9 0.015
average 784.3 0.058 25500.1 25500.1 25500.1 0.012

bility of the objective function can be used for the new problem, namely, the cut-off and the
feasibility tests. In addition to this, inclusion functions for piece-wise functions have had to
be designed.

UEGO is a general heuristic able to solve many global optimization problems. In fact, it has
also been applied to other competitive location problems as well (see for instance [4]). Only the
local search procedure used within UEGO needs to be adapted for each particular problem.
In view of its success in solving different competitive location problems, UEGO has also been
adapted to the problem with the partially probabilistic choice rule. It was first implemented
using a Weiszfeld-like algorithm as a local search, following the lines in [5]. However, the
obtained results were not as good as expected. It is with the stochastic hill climber SASS [7]
that UEGO can solve the problem effectively and efficiently as we will see. The use of SASS
as the local optimizer within UEGO has also worked fine for other location problems with
discontinuities (see for instance [3]).

3. Computational results

A comprehensive computational study has been carried out. In all, 80 problems have been
solved, i.e., 20 instances for 4 different number of demand points n =500, 1000, 5000 and
10000.

The exact iB&B can manage instances with up to 1000 demand points without difficulties,
but it starts experiencing problems with instances with 5000 demand points. This clearly
shows the difficulty of the problem at hand, and the need for a heuristic method to cope
with large-size problems. Regarding UEGO, it is quite robust. It has 100% success in all the
problems solved by iB&B, i.e, in all the problems and in all the runs, the solution provided
by UEGO was always included in one of the solution boxes provided by iB&B. In fact, the
minimum, average and maximum objective function values obtained by UEGO are always
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about the same. Not only is the objective function value the same in all the runs, but the
solution point offered by the algorithm is also the same. And this using a tiny fraction of the
CPU time employed by iB&B.

On the other hand, UEGO is a reliable heuristic method, able to solve problems with up to
10000 demand points without difficulties, solving them in less than 13 minutes. Table 1 shows
the results obtained by UEGO for the 20 instances with 1000 demand points and different
values for m and k. The actual settings employed can be seen in Table 1. Notice that UEGO
is a stochastic algorithm, and hence each run may lead to a different solution. To take this
fact into account, each problem has been solved 5 times, and the following values have been
computed: the average CPU time employed in solving the problem in the 5 runs, the maxi-
mum Euclidean distance between any pair of solutions, the minimum, average and maximum
objective function values of the solutions and the corresponding standard deviation.

4. Summary

In this work, a new location problem is studied. It has been solved by means of an interval
Branch & Bound method and an evolutionary algorithm. From the computational study, it can
be concluded that iB&B can solve problems with up to 1000 demand points exactly. For larger
instances, the use of the evolutionary algorithm UEGO is recommended, as it is a reliable and
robust method.
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Abstract In Branch and Bound (BnB) algorithms, the branching rule plays an important rule in order to reduce
the number of evaluated sub-problems and points. Recent studies addressed the unit simplex refine-
ment with regular simplices. When the achieved accuracy is related on the distance among sampled
points, a common method is to stop the refinement when the size of a sub-problem, measured as
the largest distance among its evaluated vertices, is smaller or equal to a given precision. The worst
case was studied: the complete tree is generated, which is determined by the size of its leafs. In such
scenario, 2USC (two-uniform-simplex cover) on a mesh grid showed a better performance than LEB
(longest edge bisection) in terms of number of simplices and vertices evaluations. Due to the over-
lapping of sub-simplices, termination criterion in 2USC can be relaxed but the largest precision to
cover the mesh grid depends on the dimension. This work focus on the study of the 2MUSC division
method, where regular sub-simplices may have different orientation, in order to know if 2MUSC can
cover the mesh grid for larger precisions than 2USC does.

Keywords: Unit simplex, Refinement Regular division, Mesh grid.

1. Introduction

The unit simplex is defined as

S1 = {x ∈ Rd |
d∑
j=1

xj = 1; xj ≥ 0, ∀j}. (1)

This search region is widely used for mixture design problems, equilibria and fixed point
problems with application in economy, game theory and nonlinear systems of equations [10],
co-positivity detection of matrices [1], stability in biological population dynamics [9] and oth-
ers [7]. We studied these problems with quadratic constraints for practical mixture design in
lubricant industry [6] and for the design of fat blends in food production [3, 5].

The main question is how to design a refinement strategy for a unit simplex such that the
number of evaluated sub-problems and vertices is minimized taking explicitly the equidistant
grid with relative mesh size α into account. The size of a sub-problem is defined as w(S), that
is the width of the simplex S defined as the length of its longest edge. We assume a user
given relative accuracy ε. A sub-problem S is not further divided when w(S) ≤ εw(S1). The
BnB algorithm returns the set of final and not rejected sub-problems. In this way, the problem
solution is guaranteed to be in one of the final sub-simplices with a size less than εw(S1).

Two points x, y on the α-grid over the unit simplex are neighbour if ∃i, j, i 6= j such that,
yi = xi + α, yj = xj − α and yk = xk, for k 6= i, j. It is a challenge to find a refinement in

∗This work has been funded by grant from the Spanish Ministry (TIN2015-66688), Junta de Andalucía (P11-TIC-7176) and in
part financed by the European Regional Development Fund (ERDF).
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the BnB algorithm that only generates sample points as vertices of the sub-sets that coincide
with grid points on S1. Given an accuracy ε, the largest value for the mesh size is α = 1

G ,
with G = d1

ε e parts on each axis and G+ 1 grid point per axis, whereas two of them represent
vertices of S1. For the unit simplex, the number of α-grid points is given by [3]:

d−1∑
k=1

(
G+ 1
k

)(
d− 2
k − 1

)
. (2)

According to [2], one can take the α mesh size to guide the refinement using regular simplices
of same size and orientation (2USC) and the improvement in the number of evaluated sub-
problems and vertices is significant when is compared to longest edge bisection (LEB). The
drawback of the 2USC refinement on the grid is that the smallest G value of the accuracy
needed to completely visit the grid depends on the dimension. This work studies the 2MUSC
(2 Mixed Unit Simplex Cover) refinement of the unit simplex which uses the so-called 2USC
and 2∇USC refinement, see [4]. 2∇USC generates regular sub-simplices of different size and
orientation on the grid.

2. 2USC on grid

The two-uniform-simplex-cover refines a regular simplex in d overlapping regular sub-sim-
plices with two sub-simplices per edge (see Figures 1 and 2). A reduction factor β ≥ d−1

d
guarantees the covering of the refined simplex. Considering that sub-simplices overlap, the
refinement method only evaluates an overlapped region once, see [4].

Figure 1. 2USC in R3. Dots represent the vertices
and the centre of a sub-simplex.

Figure 2. 2USC in R4.

The main characteristics of the 2USC on α-grid are the following:

Let S` be a sub-simplex leaf of the d-ary tree. The general termination criterion w(S) ≤
εw(S1) can be relaxed to w(S`) = α(d− 1)w(S1) ≤ εw(S1).
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The sequence of sub-simplex size αki on each level i of the tree can be determined taking
into account that the size of every sub-simplex should be a multiple of α:

w(S1 = S0) = αk0 k0 = G

w(S1) = αk1, k1 =

⌈
k0
d− 1

d

⌉
w(S2) = αk2, k2 =

⌈
k1
d− 1

d

⌉
. . .

w(S`−2) = αk`−2, k`−2 =

⌈
k`−3

d− 1

d

⌉
w(S`−1) = αk`−1, k`−1 = d =

⌈
k`−2

d− 1

d

⌉
w(S`) = αk`, k` = d− 1 =

⌈
k`−1

d− 1

d

⌉
.

(3)

The minimum G value to force covering of the α-grid by the set of generated vertices in
2USC refinement depends on the dimension d: G ≥ (d− 1)2.

3. 2MUSC on grid

2-mixed-uniform-simplex-cover refinement (2MUSC) combining 2USC and 2∇USC in the re-
finement of the unit simplex. The 2∇-uniform-simplex-cover (2∇USC) introduced in [4] re-
fines a regular simplex in d+ 1 regular sub-simplices. In contrast to 2USC, d of them have the
same orientation using a reduction factor d−2

d−1 ≤ ρ < d−1
d and one non-overlapped inverted

sub-simplex has a reduction factor % = d(1− ρ)− 1. Figure 3 shows an example of 2∇USC for
d = 3, where ρ = % = 1/2. Figure 4 shows an example for d = 4 where ρ = 2/3 and % = 1/3.

Figure 3. 2∇USC and α-grid with G = 2 and d =
3. Big boxes are α-grid points and little boxes are
vertices of simplices.

Figure 4. 2∇USC for d = 4.

In 2∇USC, the sub-simplices overlap less than in 2USC, but the sub-simplices are not equally
oriented and sized. 2∇USC requires a delicate choice of the reduction factor ρ. In order to have
a value for ρ being a multiple of α, ρ should be greater or equal to (d − 1)/d. In that case, the
reduction factor of the inverted simplex % ≤ 0. This means that the inverted sub-simplex does
not exist and 2∇USC reduces to 2USC. Therefore, 2MUSC uses 2USC or 2∇USC depending
on the current simplex, either a reduction factor ρ or β is applied to force vertices of the gen-
erated sub-simplices to be on the α-grid. The main characteristics of the 2MUSC on α-grid are
the following:

Assuming that last refinement is 2∇USC, the termination criterion can be relaxed to
w(S`) = α(d− 2)w(S1).
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The sequence of sub-simplex size αri on each level i of the tree are determined by:

w(S0) = αr0 r0 = G

w(S1) = αr1, r1 =

⌈
r0
d− 2

d− 1

⌉{
2∇USC, if

⌈
r0
d−2
d−1

⌉
< r0

d−1
d

2USC, otherwise.

w(S2) = αr2, r2 =

⌈
r1
d− 2

d− 1

⌉{
2∇USC, if

⌈
r1
d−2
d−1

⌉
< r1

d−1
d

2USC, otherwise.

. . .

w(Sl−1) = αrl−1, rl−1 =

⌈
rl−2

d− 2

d− 1

⌉{
2∇USC, if

⌈
rl−2

d−2
d−1

⌉
< rl−2

d−1
d

2USC, otherwise.

w(Sl) = αrl, rl =

⌈
rl−1

d− 2

d− 1

⌉
(2∇USC),

(4)

where rl−1 = d− 1 and rl = d− 2.
Due to the existence of different sequences depending on d andG, the minimumG value
to force covering of the α-grid has still to be determined.

4. Conclusions

This paper presentes the 2MUSC on grid refinement for the unit simplex, with less overlap
than 2USC on grid. Numerical results and the minimum number of segments G per axis to
cover the α-grid will be outlined at GOW’16. The evaluation of these refinement methods for
a real problem on a BnB algorithm will be also discussed in GOW’16 [8].
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Abstract A novel approach to metabolic network analysis using a Nash equilibrium formulation is proposed.
Enzymes are considered to be players in a multi-player game in which each player attempts to min-
imize the dimensionless Gibbs free energy associated with the biochemical reaction(s) it catalyzes
subject to elemental mass balances. Mathematical formulation of the metabolic network as a set
of nonlinear programming (NLP) sub-problems and an appropriate solution methodologies are de-
scribed. A small example representing part of the production cycle for acetyl-CoA is used to demon-
strate the efficacy of the proposed Nash equilibrium framework and that it represents a paradigm
shift in metabolic network analysis.

Keywords: Metabolic pathway analysis, Nash equilibrium, Global optimization

1. Introduction

Flux balance analysis (FBA) has been the mainstay for understanding and quantifying meta-
bolic networks for many years. See, for example, [1, 2, 3, 4, 5, 6], and others. The basic idea
behind FBA is to represent a given metabolic network at steady-state in the form of a graph
with nodes that define specific biochemical reactions and fluxes that connect nodes. The con-
straints for the network constitute a set of under-determined steady-state linear mass balance
equations. To complete the representation, a linear objective function relevant to the particu-
lar biological task at hand (e.g., maximizing the output flux [5]; minimizing the cardinality of
the flux vector [4]; minimum nutrient intake; minimum ATP production minimal knockout,
etc.) is selected, which together with the mass balance constraints, results in a linear pro-
gramming (LP) formulation. Many variants and extensions to FBA have also been proposed
over the years, including Mixed Integer Linear Programming (MILP) formulations [7], the
incorporation of linearized thermodynamic constraints [8] or thermodynamic metabolic flux
analysis (TMFA), dynamic FBA [9], and others. In addition to FBA, the other main approach
to metabolic network analysis involves a time-dependent or dynamic formulation that incor-
porates chemical reaction kinetics.

Both the kinetic model and FBA approaches suffer from a number of significant modeling
and biological limitations. For example, kinetic models require a large number of parameters
that are not ‘directly’ measurable and thus must be determined by model regression. Also, all
FBA-based approaches are constrained only by reaction stoichiometry, which often results in
degenerate solutions that lie on the user-specified flux bounds. Additional modeling limita-
tions stem from the inability of either approach to accurately capture the inherent complex-
ities within a crowded cellular environment. In particular, natural competition/cooperation
among enzymes exists for the pool of continuously produced metabolites and neither ap-
proach takes into consideration the population distribution and/or heterogeneity of protein-
metabolite interactions that form the basis for these reactions. Moreover, from a biological
perspective, these approaches also fail to model the phenotypic consequence of overproduc-
ing a given product and the subsequent regulation of overproduction in these organisms. For
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instance, it is well known that excess quantities of a given protein or small molecule can lead
to ‘higher order’ interactions, which can be non-specific or the result of adaptive evolutionary
pressures that activate alternative pathways to deplete these excess pools.

2. Nash Equilibrium Approach

This paper takes a radically different approach to metabolic network analysis by formulat-
ing the problem as a Nash Equilibrium (NE) problem using first principles (i.e., conservation
of mass and rigorous reaction thermodynamics). The key idea behind our proposed NE ap-
proach is to view enzymes as ‘players’ in a multi-player game, in which each enzyme pursues
a strategy that can be quantified using a payoff or objective function. More specifically, the
goal of each enzyme is to minimize the dimensionless Gibbs free energy of the biochemical
reaction it catalyzes subject to appropriate elemental mass balances (i.e., conservation of mass
of carbon, hydrogen, oxygen, nitrogen, phosphorous, sulfur, etc.). Thus the overall goal of the
network is to find the best value of

G(v)

RT
= min

N∑
j=1

Gj(vj)

RT
(1)

where Gj
RT , the dimensionless Gibbs free energy, is the objective function associated with the

appropriate enzymes involved in a particular set (or number) of metabolic reactions at a given
node j in the network, v is a vector of unknown metabolic fluxes, R is the gas constant and
T is the temperature. The solution, called a NE point, optimizes the ’payoff’ of all players
simultaneously, is the best solution for all players taken together, and not necessarily best for
any one player. This NE approach, in our opinion, is a more accurate representation of the
evolutionary-defined competition/cooperation observed in complex metabolic pathways.

Let the unknown variables, v, be partitioned into N subsets, v = [v1, v2, ..., vN ]. Each variable
partition, vj , has nj unknown variables and there are N total unknowns. The Nash Equi-
librium formulation for an arbitrary metabolic network is different from that for FBA and is
given by j = 1, 2, ..., N nonlinear programming (NLP) sub-problems of the form:

min
Gj(vj ,v

∗
j )

RT (2)
subject to conservation of mass

v∗j

The conservation of mass constraints are elemental mass balances and represent the flow of
metabolic material in and out of any node. Finally, the vector, v∗j , denotes the minima of all
other sub-problems, k = 1, 2, .., j − 1, j + 1, ..., N . In this article the words “sub-problem” and
“node” mean the same thing.

3. Example

Figure 1 is a simplified metabolic network for the production of acetyl-CoA whose Nash Equi-
librium formulation and solution were determined by specifying the input flux to the network
(i.e., the pyruvate flux) and breaking the acetate feedback to the acetyl-CoA pool. Initial es-
timates of the acetate flux and co-enzyme A (CoA) allows the NLP sub-problems associated
with the following bio-chemical reaction equilibria to be solved in the order shown below.

1. Acetyl-CoA production from pyruvate and acetate:

C3H3O3 + C2H3O2 + 2C21H32N7O16P3S ⇀↽ 2C23H34N7O17P3S + CO2 + H2O
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Figure 1. Simplified metabolic network for the production of acetyl-CoA based on the iJO1366 E. coli network
[10].

2. Acetyl phosphate production from acetyl-CoA:

C23H34N7O17P3S + HO4P ⇀↽ C2H3O5P + C21H32N7O16P3S

3. Acetate production from acetyl phosphate:

C2H3O5P ⇀↽ C2H3O
−
2 + PO3−

3

The solution of the acetate biochemical equilibrium provides new values for the acetate and
CoA fluxes, which are compared to their initial estimates. If the initial and calculated values
do not match, the calculated values are used for the next iteration, and this process is repeated
until convergence is achieved.

Table 1 gives a complete summary of the NE iterations and solution per nmol/h of pyruvate
starting from an initial estimate of acetate flux of vac = 1 nmol/h and stoichiometric CoA.
Note that the NE iterations converge linearly and, after the first iteration, maintain a mono-
tonically decreasing sequence of values of G/RT . In addition, the numerical results clearly
reveal that the objective function, G/RT , drives the solution to one that is best for the en-
zymes lpd, acs, and aldB but not best for the enzyme pta. Table 2 presents a comparison of
the NE predicted relative fluxes for the network and shows that the calculated results are in
fair agreement with available experimental data [11].

4. Summary

A Nash Equilibrium approach to metabolic pathway analysis was proposed. The key idea be-
hind this approach is to view enzymes as players in a multi-player game, where each player
optimizes a specific objective function. A small proof-of-concept example consisting of a sim-
plified network for the production of acetyl-CoA with four players was presented. Predicted
fluxes at the NE point were found to compare favorably with existing experimental data.
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Table 1. Nash Equilibrium Iterates and Solution to Acetyl-CoA Production.

Iter. G/RT ∗ vactp vac vPO3 vaccoa vcoa vpi vco2 vh2o Error

1 -12.48 0.0348 0.0844 0.0844 0.4330 1.5670 0.4330 0.5143 1.0380 0.9155
2 -12.30 0.0952 0.6787 0.1269 0.5889 1.4111 0.3303 0.8707 0.9403 0.5942
3 -14.34 0.1262 0.9593 0.1653 0.7754 1.2246 0.2608 1.1221 0.9449 0.2806
4 -15.46 0.1456 1.1275 0.1897 0.8792 1.1208 0.2171 1.2684 0.9461 0.1682
5 -16.07 0.1564 1.2223 0.2032 0.9380 1.0620 0.1927 1.3509 0.9467 0.0948
6 -16.39 0.1621 1.2752 0.2104 0.9704 1.0296 0.1799 1.3963 0.9465 0.0529
7 -16.57 0.1651 1.3045 0.2140 0.9879 1.0121 0.1732 1.4210 0.9460 0.0293
8 -16.67 0.1667 1.3206 0.2159 0.9972 1.0028 0.1698 1.4342 0.9456 0.0161
9 -16.72 0.1675 1.3294 0.2168 1.0022 0.9978 0.1680 1.4413 0.9452 0.0088
10 -16.74 0.1679 1.3341 0.2173 1.0048 0.9952 0.1671 1.4451 0.9450 0.0047
11 -16.76 0.1681 1.3367 0.2176 1.0063 0.9937 0.1666 1.4471 0.9448 0.0026
12 -16.77 0.1683 1.3381 0.2177 1.0070 0.9930 0.1664 1.4482 0.9448 0.0014
13 -16.77 0.1683 1.3388 0.2178 1.0074 0.9926 0.1662 1.4488 0.9447 0.0007

∗G/RT = min
∑3
j=1Gj/RT

Table 2. Comparison of Relative Flux Values Between Experimental Data [11] and Predictions using NE Model
(Table 1).

Component Experimentally Measured Fluxes NE Predicted Fluxes

Acetyl-CoA 0.5443 0.4006
Acetyl phosphate 0.0000 0.0669
Acetate 0.4557 0.5324
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Abstract In several areas like Global Optimization using branch-and-bound (B&B) methods for mixture de-
sign, the unit n-simplex is refined by longest edge bisection. This process provides a binary search
tree. For n > 2, simplices appearing during the refinement process can have more than one Longest
Edge (LE). The size of the resulting binary tree depends on the specific sequence of bisected longest
edges. The question is how to choose the LE to bisect. In a previous work, a set of LE indices gener-
ating the minimum number tree size was presented for n = 3 under the so-calledmk-valid condition
by means of a deterministic method that examined the whole set of minimum Binary Trees (BTs). We
are interested in find out new sets of rules for dimensions higher than 3. However, full enumeration
of all possibilities is memory consuming, which makes it inappropriate for the problem at hand. In
view of this situation, the use of a metaheuristic appears to be appropriate. In this work, the initial
problem is reformulated as a combinatorial optimization problem, where the objective is to find the
optimal subset of rules (among a finite and predefined set) to minimize the number of simplices in
the BT. The problem is then solved through a stochastic algorithm based on the principles of the
Tabu Search method.

Keywords: Simplex, Branch and bound, Longest edge bisection, Bisection sequence

1. Introduction

Global Optimization deals with finding the minimum or maximum value of an objective func-
tion f on a closed set with a non-empty interior. We focus here on the standard n-simplex
defined in the (n+ 1)-dimensional space

S =

x ∈ Rn+1 |
n+1∑
j=1

xj = 1; xj ≥ 0

 . (1)

We study the binary tree (BT) implicitly generated by the refinement of the n-simplex where
the simplex division is defined by the Longest Edge Bisection rule (LEB) [5, 7, 9]. LEB is a
popular way of iteratively refining a simplex in the context of the finite element method, since
it is very simple and can easily be applied in higher dimensions [3]. It is based on splitting
a simplex using the hyperplane that connects the mid point of the longest edge of a simplex
with the opposite vertices, as illustrated in Figure 1.

In principle, the refinement process can continue infinitely. Nevertheless, for the problem
at hand, a stopping criterion has been defined, i.e., the branching process continues until the
size of the simplex is smaller than or equal to the desired accuracy ε.

∗This work is funded by grants from the Spanish Ministry (TIN2015-66680) and Junta de Andalucía (P11-TIC7176 and P12-
TIC301), in part financed by the European Regional Development Fund (ERDF). J.M.G. Salmerón is a fellow of the Spanish FPU
program. Juana López Redondo is a fellow of the Spanish ‘Ramón y Cajal’ contract program, co-financed by the European Social
Fund.
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Figure 1. Example of the first Longest Edge Bisection (LEB) on a regular 3-simplex.

During the refinement algorithm, decisions on which longest edge should be bisected have
to be carried out. As can be seen in Figure 1, initially, it does not matter which edge is selected,
because all generated sub-simplices differ only in orientation. However, notice that after the
first subdivision, the generated sub-simplices are irregular and have three (out of six) edges
with the longest length.

Calculation of distances between vertices to determine the longest edges is a computation-
ally intensive operation in the partition process. This computation can be avoided by pre-
computing a set of LE indices to be bisected. Each LE is stored as a pair of vertex indices for
a simplex in the BT. It is desirable to find sets with an appropriate repetition of LE indices,
because their computational management is more efficient than distance calculation. We look
for sets of LEs with a high repetition of longest edge indices per level of any of the smallest
BTs.

A set of LE indices generating the minimum number of classes of simplices [4], was pre-
sented in [2], for n = 3.

This set was validated in [1] as the best one under the so-called mk-valid condition, by
considering a deterministic method that explores the whole set of minimum BTs.

This exact method, aside from being very time consuming, has to be executed in architec-
tures with high memory resources. In fact, the computer can run out of memory for larger
instances.

In this work, we are interested in generating a new set of rules for dimensions higher than 3.
To this aim, now we formulate the problem as a combinatorial optimization problem, where
the objective is to seek the optimal subset of rules (among a finite and predefined set) that
minimizes the number of simplices in the BT. To be more specific, the set of rules defining
the domain of the problem is composed by all the possible ones based on mk-valid condition
for k = 2, 4-valid [1]. The cardinal of this set is not negligible and therefore, facing this new
optimization problem with an exhaustive search cannot be feasible. To deal with this hard-to-
solve optimization problem, a metaheuristic method has been designed.

2. Minimizing the tree size

To measure how good a subset R of rules is, Algorithm 1 is used. Such an algorithm returns
the size of the binary tree, i.e. the number of simplices obtained when the subset R is applied
from an initial simplex S1 and a required precision ε is considered as a termination criteria.
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Input: S: simplex, ε: accuracy, R: Set of rules.
Output: ns
Λ := {S1} // Set of simplices not yet split

ns := 1 // Number of simplices

while Λ 6= ∅ do
Extract first simplex Si from Λ
if (w(Si) > ε) // Final accuracy not reached

then
{j,k}:=SelectLE(Si, R) // Select the longest edge from R
{S2i, S2i+1} := Bisect(Si, j, k)
Append simplices 2i and 2i+ 1 in Λ.
ns := ns+ 2.

Algorithm 1: TreeSize(S1, ε, R).

3. The optimization algorithm

The proposed metaheuristic consists of an iterative process, which guides the search toward
feasible solutions by using techniques inherited from the Tabu Search (TS) [8]. The Tabu
Search (TS) has traditionally been used on combinatorial optimization problems, as the one
considered in this work. Many of the applications in literature concern to scheduling, telecom-
munications, design, production, inventory and investment, location and allocation, routing,
logical and artificial intelligence, graph optimization, technology and general combinational
optimization.

Similarly to TS, the proposed algorithm exploits an adaptive memory framework as a way
of taking advantage of the history of the search. Information is collected through the use of
a Tabu List (TL), usually identified as short term memory in literature. The TL keeps track of
the most recently visited solutions and excludes them from the neighbourhood of the current
solution. The use of a short term memory helps the algorithm to escape from local optima and
avoids cycles (sequences of moves that constantly repeat themselves) [6].

A comprehensive computational study is carried out. From the results, it can be concluded
that the designed heuristic provides useful and practical solutions for the problem at hand.

4. Summary

In this work, a metaheuristic optimization algorithm, based on the principles of the Tabu
Search, is presented. Such a method provides a subset of rules with the aim at minimizing the
number of simplices in a BT. The preliminary results are promising and place the stochastic
method as a good alternative to deal with this problem.
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Abstract The blending problem is studied as a problem of finding cheap robust feasible solutions on the unit
simplex. Usually longest edge bisection is used in the simplex refinement process, because it is an
easy division method that guarantees finding a solution. However, with this method more than one
longest edge could appear in the simplex and the behaviour of the search is different depending on
the selected longest edge. In this work, an alternative division method using regular simplices is
studied for blending problems.
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1. Introduction

The mixture design (blending) problem consists in identifying mixture products (raw materi-
als), each represented by a vector x ∈ Rn, which meet certain requirements. The set of possible
mixtures is mathematically defined by the unit simplex

S =

x ∈ Rd :
d∑
j=1

xj = 1; 0 ≤ xj ≤ 1

 , (1)

where the variables xj represent the fraction of the components in a product x. In mixture
design problems, the objective is to minimise the cost of the product maintaining quality ex-
pectations.

In practical situations, such problems are solved on a daily base in industry where require-
ments are often modelled by linear inequalities [2, 3, 4]. Due to a large project on product
design, a study was done on how to deal with quadratic requirements, with semi-continuity
and how to generate robust products [5, 6]. The semi-continuous quadratic mixture design
problem (SCQMD) is described as a problem with linear, quadratic and semi-continuity con-
straints. Moreover, a linear cost objective and an integer valued objective are introduced. The
goal is to deal with the SCQMD problem from a branch-and-bound perspective generating
robust solutions.

The semi-continuity of the variables is related to a minimum acceptable dose md that the
practical problems reveal, i.e. either xj = 0 or xj ≥ md. Figure 1 shows a graphical example
of the search space in 2D (left hand side) and 3D (right hand side) consisting of unit simplices
removing the space where the minimum dose constraint is not satisfied.

In many Branch and Bound (BnB) algorithms, the division of the simplex is usually per-
formed by Longest Edge Bisection (LEB). The consequence of using bisection, are i) there
exist evaluated vertices of subsimplices which do not belong to a mesh-grid, ii) the size of

∗This work is funded by grants from the Spanish Ministry (TIN2015-66680) and Junta de Andalucía (P11-TIC7176 and P12-
TIC301), in part financed by the European Regional Development Fund (ERDF). J.M.G. Salmerón is a fellow of the Spanish FPU
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Figure 1. 2D and 3D simplices removing the minimum dose region.

the complete tree is larger than using regular simplices division, and iii) subsimplices storage
requirements are larger because irregular simplices appear when bisection is used and all ver-
tices are required to be stored (for regular simplicial division, to store the centre and radius is
enough). This paper proposes to apply a division method that splits the initial unit simplex in
regular subsimplices to evaluate the improvements of the BnB algorithm in terms of evaluated
simplices, vertices and memory requirements.

The basic idea in BnB methods consists of a recursive decomposition of the original prob-
lem into smaller disjoint subproblems until the solution is found. However, for our case of
study with Regular by Regular (RbR) simplex division, overlapping between subsimplices
occurs to completely cover the divided simplex by subsimplices. To avoid re-evaluation of
overlapped region, a subsimplex is not generated when it is overlapped by other that need to
be divided [1].

2. Longest edge bisection

Reference [6] shows some results of blending problems using LEB as division method in the
BnB algorithm. Table 1 shows an example for a hard-to-solve problem, showing the number of
simplices and vertices evaluated when LEB is used. We are looking for an alternative simplex
division method in order to reduce the evaluations, memory requirements and execution time.

The meaning of table notation is:

Problem: Problem name.
NSimplex: Number of evaluated simplices.
NVertex: Number of evaluated vertices.
End NSimplex: Number of simplices in the solution list.
End NVertex: Number of vertices associated to simplices in the solution list.
N.Sol.: Binary vector which shows if for a given number of raw materials the algorithm
found a solution.

We focus on different test problems to benchmark the algorithm. The first one (RumCoke)
has two linear constraints and two quadratic constraints. The second one (Case 2) was taken
from an industrial example having five quadratic constraints. Both are three dimensional
problems. Additionally, the algorithm was tested with the two seven dimensional problems
(UniSpec1 and UniSpec5b) provided by Unilever Research based on similar quadratic func-
tions, but with different requirements. UniSpec1 has one linear constraint and five quadratic
constraints and UniSpec5b has four quadratic constraints. Complete specifications about the
problems can be found in [6].
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Table 1. Numerical results using LEB

Problem RumCoke Case2 UniSpec1 UniSpec5b
NSimplex 881 561 72,805 144,929,859
NVertex 340 231 31,841 32,162,536
End NSimplex 201 105 3,104 27,959,718
End NVertex 127 72 953 1,205,184
Time 00:00:00 00:00:00 00:00:00 00:21:03
Memory 4.6 KB 2.9 KB 1.2 MB 1.5GB
N.Sol. 0,0,0 0,0,1 0,1,1,0,0,0,0 0,0,1,1,0,0,0

As Table 1 shows, the number of evaluations is huge for the UniSpec5b problem, as well as
the memory requirements and execution time. So, the aim of this study is to evaluate RbR
division methods in order to know if the performance of the algorithm improves.

3. Regular by regular division

Simplex refinement by regular simplex division was presented in [1]. Now we are interested
in applying this new simplex refinement method to a blending problem, comparing the RbR
with LEB results [7].

Based on the considerations in [8], a refinement of the unit simplex should use hyperplanes
parallel to the initial facets and generate subproblems having edges of size multiple of α = 1

G ,
where G = d1

ε e is the number of grid segments per axis.
Regular simplices facilitate the effectiveness of rejection tests based on covering by infeasi-

ble spheres because all vertices are at the same distance.
These refinement methods are introduced next and they are described in depth in [9].

3.1 2USC

The two-uniform-simplex-cover refines a regular simplex in d overlapping regular subsim-
plices with two subsimplices per edge (see Figure 2b). A reduction factor β ≥ d−1

d guarantees
the covering of the refined simplex.

Figure 2a. 2USC in R3. Dots represent the vertices
and the centre of a subsimplex. Figure 2b. 2USC in R4.

3.2 2MUSC

We now introduce 2-mixed-uniform-simplex-cover refinement (2MUSC) which combine 2USC
and 2∇USC in the refinement of the unit simplex. The 2∇-uniform-simplex-cover (2∇USC)
introduced in [1] refines a regular simplex in d+ 1 regular subsimplices. In contrast to 2USC,
d of them have the same orientation using a reduction factor d−2

d−1 ≤ ρ < d−1
d and one non-

overlapped inverted subsimplex has a reduction factor % = d(1 − ρ) − 1. Figure 3 shows an
example for d = 4 where ρ = 2/3 and % = 1/3.
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Figure 3. 2∇USC for d = 4.

In 2∇USC, the subsimplices overlap less than in 2USC, but the subsimplices are not equally
oriented and sized. 2∇USC requires a delicate choice of the reduction factor ρ. In order to
have a value for ρ being a multiple of α, ρ may be greater of equal to (d − 1)/d. In that case,
the reduction factor of the inverted simplex % ≤ 0. This means that the inverted subsimplex
does not exist and 2∇USC reduces to 2USC. Consequently, the overlap of the subsimplices is
larger. Depending on the current simplex, either a reduction factor ρ or β is applied to divide
the simplex using one of both methods presented before.

Results of LEB, 2USC, and 2MUSC for the problems presented in Table 1 will be shown in
the talk.

4. Summary

Regular by regular division of the unit simplex seems to be appealing, because only the grid
points are evaluated, the number of subsimplices in the complete tree are smaller than us-
ing LEB, and memory requirements are also smaller for that case. Previous arguments are
valid for the complete tree, and the question is if they are still valid for a BnB algorithm with
pruning. Numerical comparison of different division rules will be shown at the talk.

References

[1] G.-Tóth, B., Hendrix, E.M.T., Casado, L.G., García, I. On refinement of the unit simplex using regular sim-
plices. Journal of Global Optimization, 64(2):305–323, 2016.

[2] Ashayeri J., van Eijs A.G.M., Nederstigt P. Blending modelling in a process manufacturing: A case study.
European Journal of Operational Research, 72(3):460–468, 1994.

[3] Bertrand J.W.M., Rutten W.G.M.M. Evaluation of three production planning procedures for the use of recipe
flexibility. European Journal of Operational Research, 115(1):179–194, 1999.

[4] Williams H.P. Model building in mathematical programming. Wiley, Chichester. 1993.

[5] Casado L.G., Hendrix E.M.T., García I. Infeasibility spheres for finding robust solutions of blending problems
with quadratic constraints. Journal of Global Optimization 39(4):577–593, 2007.

[6] Hendrix E.M.T., Casado L.G., García I. The semi-continuous quadratic mixture design problem: Description
and branch-and-bound approach. European Journal of Operational Research 191(3):803–815, 2008.

[7] Herrera J.F.R., Casado L.G., Hendrix E.M.T., García I. Pareto optimality and robustness in bi-blending prob-
lems. TOP, 22(1):254–273, 2012.

[8] Casado L.G., Hendrix E.M.T., Salmerón J.M.G., G.-Tóth, B., García, I. On grid aware refinement in branch and
bound. Submitted to Journal of Global Optimization, 2016.

[9] Casado L.G., Salmerón J.M.G., G.-Tóth B., Hendrix E.M.T. and García I. On regular refinement of unit simplex
by just visiting grid points. In: Proceedings of GOW’16: XIII Global Optimization Workshop, Braga, Portugal, 2016.



Proceedings of GOW’16, pp. 49 – 52.

Strengthening Convex Relaxations of
Mixed Integer Non Linear Programming Problems with
Separable Non Convexities∗

Claudia D’Ambrosio1, Antonio Frangioni2 and Claudio Gentile3

1LIX UMR 7161, École Polytechnique, Palaiseau, France, dambrosio@lix.polytechnique.fr

2DI, Università di Pisa, Pisa, Italy, frangio@di.unipi.it

3IASI, Consiglio Nazionale delle Ricerche, Rome, Italy, gentile@iasi.cnr.it

Abstract In this work we focus on methods for solving mixed integer non linear programming problems with
separable non convexities. In particular, we propose a strengthening of a convex mixed integer non
linear programming relaxation based on perspective reformulations. The relaxation is a subproblem
of an iterative global optimization algorithm and it is solved at each iteration. Computational results
confirm that the perspective reformulation outperforms the standard solution approaches.
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1. Introduction and motivation

We consider the following Mixed Integer Non Linear Programming (MINLP) problem:

min
∑
j∈N

Cjxj

fi(x) +
∑
k∈Hi

gik(xk) ≤ 0 ∀i ∈M

Lj ≤ xj ≤ Uj ∀j ∈ N
xj integer ∀j ∈ I

where:

fi : Rn → R are convex functions ∀i ∈M ,

gik : R→ R are non convex univariate function ∀i ∈M,∀k ∈ Hi,

Hi ⊆ N ∀i ∈M , and

I ⊆ N .

For j ∈ Hi we assume that the bounds are finite ∀i ∈ M . Note also that, if Hi is empty,
the corresponding i-th constraint defines a convex set. The problem, that we will call P in
the following, is an MINLP problem with separable non convexities represented by terms∑

k∈Hi gik(xk) ∀i ∈M with Hi non-empty.
In D’Ambrosio et al. [2, 3], the authors proposed a global optimization algorithm called

Sequential Convex MINLP (SC-MINLP) based on the definition of a convex MINLP problem

∗The first author acknowledges the partial financial support provided by MINO Initial Training Network (ITN) under the Marie
Curie 7th European Framework Programme and the partial financial support under grant ANR 12-JS02-009-01 “ATOMIC”.
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that provides a lower bound to P and a non convex NLP problem that provides an upper
bound to P . Both problems were solved through solvers used as “black-box”.

Here we focus on the lower bounding problem and propose alternative solution methods.

2. Convex MINLP relaxation

For simplicity, let us consider a term of the form g(xk) := gik(xk) such that g : R → R is a
univariate non convex function of xk , for some k (k ∈ N ).

As the term g(xk) is univariate, it is possible to automatically detect the concavity/convexity
intervals and to compute the following parameters and sets:

[Pp−1, Pp] := the p-th subinterval of the domain of g (p ∈ {1 . . . p});

Ȟ := the set of indices of subintervals on which g is convex;

Ĥ := the set of indices of subintervals on which g is concave.

The main idea is to find a relaxation of P that keeps the convex parts of g(xk) while replaces
the concave intervals with a piece-wise linear relaxation, see Figure 1.
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Figure 1. Univariate function g(xk) on the left and its convex MINLP relaxation on the right

To do this, we replace the term g(xk) with:∑
p∈Ȟ g(Pp−1 + δp) +

∑
p∈Ĥ(αpg(Pp) + (1− αp)g(Pp−1))−

∑p−1
p=1 g(Pp) ,

and we include the following set of new variables

δp: a continuous variable assuming a positive value iff xk ≥ Pp−1 (p ∈ {1, . . . , p̄});

zp ∈ {0, 1}: binary variable taking value 1 iff xk ≥ Pp (p ∈ {1, . . . , p̄− 1});

αp ∈ [0, 1]: the weight of the breakpoints of subinterval p (p ∈ Ĥ);

and new constraints:

xk = P0 +

p∑
p=1

δp

δp ≥ (Pp − Pp−1)zp ∀p ∈ Ȟ ∪ Ĥ
δp ≤ (Pp − Pp−1)zp−1 ∀p ∈ Ȟ ∪ Ĥ
δp = (Pp − Pp−1)αp ∀p ∈ Ĥ

with two dummy variables z0 := 1, zp := 0. Note that in [2, 3] the piece-wise linear part of
the relaxation is improved iteration by iteration by adding other breakpoints. However, we
do not discuss this aspect as it is not the focus of this work.
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2.1 Convex MINLP relaxation strengthening

We now strengthen the convex MINLP relaxation thanks to Perspective Reformulation (PR),
see [4], that can be applied as the lower bounding problem is a piece-wise convex problem. In
particular, we use a PR of each convex piece.

Let us consider a convex piece p ∈ Ȟ and let us define ∆p = Pp − Pp−1. The relevant parts
of the convex MINLP relaxation are g(Pp−1 + δp) − g(Pp−1) and ∆pzp ≤ δp ≤ ∆pzp−1 with
zp−1 ∈ {0, 1} and zp ∈ {0, 1} that define the non convex function

g(δp, zp−1) =


0 if zp−1 = 0 and δp = 0

g(Pp−1 + δp)− g(Pp−1) if zp−1 = 1 and δp ≤ ∆p

+∞ otherwise

and its convex envelope

g̃(δp, zp−1) =


0 if zp−1 = 0 and δp = 0

zp−1g(Pp−1 +
δp
zp−1

)− g(Pp−1) if zp−1 ∈ (0, 1] and δp ≤ ∆p

+∞ otherwise.

We use the function g̃(δp, zp−1) to define the PR of the lower bounding problem that is stronger
than the one presented in the previous section.

3. Preliminary computational results

In this section we present preliminary computational results that were performed on instances
of the non linear knapsack problem, see [2, 3] for details on this problem and related instances.

In Tables 1 and 2 we show the results on 10 instances with 200 and 10 with 500 objects,
respectively. We compare:

Bonmin: the open source solver [1];

lin-PR: the linearization of perspective reformulation of the lower bounding problem,
solved via IBM CPLEX solver [5];

lin-MINLP: the linearization of original LB problem, solved via IBM CPLEX.

The first column represents the instance number. For each method we report the objective
function value of the best solution found and the CPU time needed (or the percentage gap if
the time limit of 1 hour was reached).

In Table 1 the 3 methods find the same optimal value. However, the CPU time needed by
Bonmin is of at least 3 orders of magnitude larger than the other two methods. In particular,
Bonmin takes 1, 554.36 seconds to solve the 10 instances while lin-PR and lin-MINLP take 1.37
and 6.51 seconds, respectively. On the contrary, instances with 500 objects cannot be solved
by Bonmin within the time limit (Table 2). Method lin-PR outperforms lin-MINLP as the
same optimal value is found but the CPU time needed is of 1 order of magnitude smaller. In
particular, the 10 instances can be solved in 4.65 vs 41.12 seconds.

4. Conclusions and perspectives

We presented an iterative algorithm aimed at solving MINLPs where the non convexity in the
objective and constraint functions is manifested as the sum of non convex univariate func-
tions. In particular, we focus on alternative ways to provide a solution of the lower bounding
problem that is solved at each iteration, i.e., using perspective reformulation of the lower
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Bonmin lin-PR lin-MINLP

instance n. f∗ CPU time f∗ CPU time f∗ CPU time
0 -6,118.10 32.40 -6,117.78 0.07 -6,118.10 0.63
1 -7,420.28 32.99 -7,420.28 0.23 -7,420.02 0.56
2 -6,514.60 109.47 -6,514.60 0.08 -6,514.60 0.76
3 -6,668.10 55.28 -6,668.10 0.20 -6,668.10 1.22
4 -7,362.95 32.84 -7,362.95 0.09 -7,362.95 0.16
5 -6,387.83 284.17 -6,387.71 0.16 -6,387.83 0.66
6 -7,449.27 837.77 -7,449.12 0.17 -7,449.27 1.20
7 -7,172.44 27.89 -7,172.44 0.13 -7,172.44 0.31
8 -6,513.91 33.18 -6,513.91 0.11 -6,513.91 0.20
9 -6,373.31 108.37 -6,373.31 0.13 -6,373.31 0.81

Table 1. Tests on the non linear knapsack problem instances with 200

Bonmin lin-PR lin-MINLP

instance n. f∗ % gap f∗ CPU time f∗ CPU time
0 -16,728.73 0.07705940 -16,728.73 0.55 -16,728.73 3.14
1 -17,356.28 0.02726800 -17,356.27 0.20 -17,356.28 1.03
2 -17,609.40 0.14382956 -17,609.40 0.44 -17,608.85 5.02
3 -16,302.00 0.04943574 -16,302.03 0.29 -16,302.00 0.73
4 -17,709.62 0.09751765 -17,692.19 0.55 -17,693.81 4.36
5 -18,785.43 0.16382116 -18,785.72 0.66 -18,785.44 4.38
6 -17,348.88 0.11963388 -17,348.88 0.83 -17,348.88 5.50
7 -16,884.16 0.05327008 -16,884.50 0.20 -16,884.06 5.39
8 -16,796.44 0.16412216 -16,796.44 0.54 -16,796.44 9.20
9 -16,605.13 0.10884773 -16,605.13 0.39 -16,604.69 2.37

Table 2. Tests on the non linear knapsack problem instances with 500 objects (1h time limit)

bounding problem in order to generate cuts. Preliminary computational results show that
this approach outperform the standard algorithm implemented in Bonmin and the standard
linearization of convex MINLPs solved via Cplex.

In the future, we plan to take advantage of the fact that we can reuse the PR cuts to solve
the lower bounding problem at each iteration. We think also that the relaxation could be
strengthened even further by considering the convex hull of a larger set as the structure of the
lower bounding problem is well defined. Moreover, we plan to explore how to improve also
the concave part of the relaxation by adding breakpoints on the fly.
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Abstract The considered algorithms are based on several statistical models and two main optimality crite-
ria: maximum one-step average improvement, and maximum improvement probability. The per-
formance of algorithms of both types is investigated experimentally applying them for the sample
functions of the true statistical model and for the sample functions generated according to a different
model.
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1. Introduction

Global optimization algorithms based on statistical models of objective functions are aimed
at the so called class of expensive black box objective functions. Since the information on
the properties of objective functions are scarce, and the computation of an objective function
value is expensive (i.e. requires much computing time and possibly other resources), a nat-
ural idea, for the theoretical substantiation of global optimization algorithms, is to refer to
the theory of rational decision under uncertainty. Because of the space limitation, we refer
here only to [1] for the review of origins of this approach in global optimization, and to [2]
for the discussion on the recent results. In the talk, more detailed review will be presented
showing that the problem of selection of an appropriate statistical model is far from a reason-
able solution. In this abstract we discuss the model selection limiting ourselves with the case
of one-dimensional optimization but in the talk a discussion will be extended to the general
case.

The problem minx∈A f(x) is considered where A is a closed interval, and f(x) is a continu-
ous function. An optimization algorithm for planning a current iteration uses as an input f(x)
values computed at previous iterations. To substantiate the development of an algorithm, a
statistical model ξ(x), x ∈ A is used, i.e. the considered objective function is interpreted as a
sample function of ξ(x).

2. Selection of a statistical model

The models of functions under uncertainty considered in probability theory are stochastic
functions, in particular, one-dimensional case, stochastic processes. In the majority of pub-
lications, statistical models were selected from the stochastic processes well researched by
the probability theoreticians. Specifically, the selected models were Gaussian stochastic pro-
cesses, such as Wiener process, stationary Ornstein Uhlenbeck process, and in few cases a

∗This work was supported by the Research Council of Lithuania under Grant No. MIP-051/2014.
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process with smooth sample functions. However, the available information about an aimed
problem and about important for global optimization properties of sample functions of avail-
able stochastic functions is not sufficient for a satisfactory substantiation of the selection of
an appropriate statistical model. For a heuristic satisfaction of a selection, the visual analysis
of graphics of sample functions of the considered stochastic processes can be reasonable; for
some examples we refer to Figure 1. Let a type of a stochastic process be selected. Next, the
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Figure 1. Examples of sample functions of the Wiener process with σ = 1 (on the left), and examples of
sample functions of the Gaussian stationary random process with zero mean and covariance function ρ(τ) =
exp(−(τ/c)1.8), c = 0.07, (on the right).

parameters should be either somehow defined or estimated using statistical techniques. This
problem also is not trivial.

3. The considered algorithms

To define the considered algorithms we need the following notation. At the k + 1 step of
search, the objective function values yj are computed at the points xj , j = 1, . . . , k, and the
current minimum computed value is denoted yo,k.

The P-algorithm computes the next objective function value at the point

xk+1 = arg max
x∈A

P(ξ(x) 5 yo,k − εk|xj , yj , j = 1, . . . , k), (1)

meaning that it is aimed at maximal probability of the improvement of the current estimate
of global minimum; here P(·|·) denotes the conditional probability, yo,k = min1≤i≤kyi, εk > 0.
For the Gaussian stochastic function, the algorithm (1) is defined by a simpler formula

xk+1 = arg max
x∈A

yo,k − εk −m(x|xj , yj , j = 1, . . . , k)

σ(x|xj , yj , j = 1, . . . , k)
, (2)

where m(x|xj , yj , j = 1, . . . , k) and σ(x|xj , yj , j = 1, . . . , k) denote the conditional mean and
conditional standard deviation of the stochastic function at the point x. By the definition of
the sequence εk, the strategy of search can be regulated, e.g. search is more global with larger
εk. The formula (2) corresponds to the probability maximization not only for the Gaussian
model but also for a large class of probability distributions.

The one-step Bayesian algorithm computes the next objective function where the expected
improvement is maximum

xk+1 = arg max
x∈A

∆Yk+1(x),

∆Yk+1(x) = E(max{yo,k − ξ(x), 0}|xj , yj , j = 1, . . . , k), (3)
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where ∆Yk+1(x) means expected improvement at k + 1 step in case of computing function
value at the point x, E(·|·) denotes the conditional expectation. This algorithm in later papers
was called also ‘kriging’ and ‘EGO’ (efficient global optimization). The reasons for renaming
remained without an explanation. We note only, that the term ’kriging’ originally was used
to call the prediction method by the name of its author D.G.Krige; to our best knowledge
Krige has not considered statistical models based global optimization methods. On the other
hand, the substantiation for adding the pretentious attribute ’efficient’ was needed, at least the
theoretical analysis of conditions of the real efficiency and of the limitations of the algorithm;
unfortunately such results were not presented by the inventors of the name EGO.

In the implementations of the one-step Bayesian algorithm with a Gaussian stochastic func-
tions for a statistical model, the computations normally are performed according to the fol-
lowing formula

xk+1 = arg max
x∈A

(
vk(x)Φ(vk(x)) +

1√
2π

exp(−
v2
k(x)

2

)
, (4)

vk(x) =
yo,k −m(x|xj , yj , j = 1, . . . , k)

σ(x|xj , yj , j = 1, . . . , k)
, Φ(z) =

1√
2π

∫ z

−∞
exp{−t2/2}dt,

where the notation m(x|xj , yj , j = 1, . . . , k) and σ2(x|xj , yj , j = 1, . . . , k) has the same mean-
ing as in (2). It was observed the rather frequent selection by this algorithm of a point for
current computing an objective function value in a vicinity of points of best previous compu-
tations. This is related to the very small values of summands in (4) which correspond to the
tails of Gaussian density and cumulative distribution functions. In case of a non-Markovian
model, such a selection at early stage of search causes the instability of the whole process
because the subsequently used covariance matrices become ill-conditioned.

Various modifications of (2), usually with some numerical examples, can be found in nu-
merous publications with ’EGO’ and ’kriging’ in the titles and lists of key words.

4. Experiments in choosing an appropriate statistical model

For the testing of a global optimization algorithm normally is used a set of known test func-
tions. However, by such a methodology the concrete software implementation is tested. It
hardly can explain how much the performance depends on the particular theoretical assump-
tions, and how much on the implementation. For example, the failure of an algorithm based
on a statistical model in the solution of a concrete problem can be caused by the inadequate
statistical model, and can be caused by setting inappropriate parameters of the model. On
the other hand, possibly, the data collected during the optimization do not significantly dis-
agree with the model, and the failure is caused by numerical problems, e.g. errors caused by
inversion of ill conditioned matrix. Therefore we have performed the investigation of perfor-
mance of algorithms (2) and (4) using as objective functions the sample functions of stochastic
processes which were used also as the models for the construction of algorithms.

The detailed description and motivation of the experimentation plan will be commented in
the talk. Here we present particular results to illustrate the proposed methodology. Three sta-
tistical models were used in the experimentation: Wiener process with the variance parameter
equal to 1, and two stationary processes with zero mean, variance equal to 1, and correlation
functions ρ(τ) = exp(−τ/0.06) and ρ(τ) = exp(−(τ/0.07)2) correspondingly; in the tables
below they are referred as ’Wien’,’Exp’, and ’Gauss’. In total, 1000 sample paths were gener-
ated for each of the considered stochastic functions. Each sample path was represented by its
values at the points of the interval [0, 1], T = {tj = j/N}, j = 0, . . . , N , N = 1000.

An algorithm was run not only with objective functions which were the sample functions of
the stochastic process used as the model for the construction of the algorithm but also with the
sample functions of other stochastic functions. In the latter case, to run an optimization algo-



56 Antanas Žilinskas and Gražina Gimbutienė

rithm, that assumes a certain statistical model of the objective function ("assumed model") on
a sample path of extraneous stochastic function ("actual model"), we estimated the parameters
of the assumed models for each generated sample path by the maximum likelihood method.
For the estimation the uniformly-spaced function values at K = {kj = j/M}, j = 0, . . . ,M ,
M = 10, were used; further, by the optimization algorithm these values were not used. Let
us note, that the algorithm (2) based on the Wiener process model is fully data driven; since
the unique parameter of the model can be eliminated in (2) there is no need to estimate that
parameter.

We assumed the global minimum found if for a budget of n = 35 function evaluations some
measurement location xi, i ∈ {1, . . . n}, was generated that satisfied the condition:

|xi − x∗|≤ 0.002.

In the tables below the numbers (out of 1000) of runs are given where global minimum was
not found with the prescribed accuracy.

Table 1. Results of the P-algorithm.

Alg\ Func Wien Exp Gauss

Wien 5.6 26 25.8
Exp 13.5 22.4 18.6

Gauss 56.5 67.2 9.1

Table 2. Results of the one-step Bayesian algorithm.

Alg\ Func Wien Exp Gauss

Wien 6.9 28.4 24.3
Exp 8.6 27.9 33.8

Gauss. 55.4 68.2 6.4

The results presented in the tables clearly show that the algorithms based on the statistical
smooth function model perform more poorly in minimization of stiffly oscillating functions
than vice versa.

In the talk will be presented detailed results of the experiments with variety of statistical
models and corresponding to the results conclusions on selection of statistical models. For
example, the results of experiments show that the algorithms based on the statistical models,
the sample functions of which are more oscillating (larger number of sharp local minima),
distribute points for computing objective function values more globally than those based on
smooth function models.

5. Summary

An experimentation methodology is proposed aimed at the substantiation of selection of an
appropriate statistical model for the construction of a global optimization algorithm.
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Abstract An improved discarding test for a branch-and-bound algorithm for box-constrained bi-objective
optimization problems is presented. The aim of the algorithm is to compute a covering of all global
optimal solutions. We introduce the algorithm which uses selection, discarding and termination
tests. The discarding tests are the most important aspect, because they examine in different ways
whether a box can contain optimal solutions. For this, we are using the αBB-method from global
scalar optimization and present and discuss an improved test compared to those from the literature.
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1. Introduction

Multi-objective optimization problems arise for instance in engineering or economics. In such
problems various objective functions have to be minimized simultaneously. In general there
is no point which minimizes all objective functions at the same time. In this article we are
dealing with box-constrained bi-objective optimization problems. The problem is formulated
as follows:

min
x∈X0

f(x) = (f1(x), f2(x))T (P)

where fi:Rn → R, i = 1, 2, are twice continuously differentiable functions. The set X0 ⊆ Rn
is called box, that is X0 = {x ∈ Rn | x ≤ x ≤ x} with two points x, x ∈ Rn. Thereby we write
x ≤ y if xi ≤ yi for all i = 1, . . . , n. A common optimality concept in bi-objective optimization
is the following:

Definition 1. A point x∗ ∈ X0 is said to be efficient of (P) if there does not exist another x ∈ X0

such that fj(x) ≤ fj(x
∗) for all j = 1, 2 and fk(x) < fk(x

∗) for at least one k ∈ {1, 2}. The set
of all efficient points is called efficient set. We say x1 dominates x2 if x1, x2 ∈ X0, fj(x1) ≤
fj(x

2) for all j = 1, 2 and fk(x1) < fk(x
2) for at least one k ∈ {1, 2}.

We can define similar terms in the image space.

Definition 2. Let x∗ ∈ X0. A point y∗ = f(x∗) is said to be nondominated if x∗ is efficient. The
set of all nondominated points is called nondominated set. We say y1 dominates y2 if y1, y2 ∈ R2,
y1
j ≤ y2

j for all j = 1, 2 and y1
k < y2

k for at least one k ∈ {1, 2}.

Based on the algorithm presented in [3] we determine a covering of the efficient or non-
dominated set. The procedure is a branch-and-bound algorithm which uses bounding criteria
based on interval analysis. The most important step of the algorithm is the discarding test.
For our procedure three tests are applied. The first one uses the αBB-method introduced in
[6] for determining convex underestimators of the considered functions. These can be used to
determine lower bounds of the objective functions similar to those gained directly by interval
arithmetic in [3]. These lower bounds can be used for a discarding test. We improve this test
by using the basic idea of Benson’s outer approximation algorithm for multi-objective convex
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optimization problems, see [1], [2] and [5]. Furthermore we also use the monotonicity test
presented in [3]. In section 2 the main algorithm and the new discarding test are introduced.
Some numerical results are shown and discussed in section 3. We will end with an outlook for
future research.

2. The algorithm

For our procedure we also use interval analysis, which is a well-known tool in global opti-
mization, see for instance [7]. We denote the set of all n-dimensional real boxes with IRn and
the width of a box X = [x, x] ∈ IRn with ω(X), i.e. ω(X) = ‖x− x‖. The midpoint mid(X) of
X is calculated by mid(X) := x+x

2 . The natural interval extension of a function f :Rn → R2 is
denoted by F : IRn → R2.
The principal steps of the algorithm are the following:

main algorithm {
LW := {X0},LS := {},LPNS = {f(mid(X0))}
while LW 6= ∅ do
{

select a box X∗ from LW and delete X∗ from LW ; Selection rule
bisect X∗ perpendicularly to a direction of maximum width→ X1 and X2;
for l = 1, 2 do
{

Store f(mid(X l)) in LPNS and update LPNS ;
if (X l cannot be discarded) Discarding test

if (X l satisfies the termination criteria) Termination rule
Store X l in LS ;

else
Store X l in LW ;

}
}
}

The lists LW , LS and LPNS are respectively the working list, the solution list and a list
with known objective values, which are the nondominated points of the objective values of
the midpoints of the so far considered boxes. As selection and termination rule we use similar
ones to those proposed in [3].

Selection rule: Select the box X∗ ∈ LW with a minimum lower bound of f1.

This lower bound is calculated by underestimating f1 within the considered box. We will
explain this method later. Certainly it is possible to replace f1 by f2.

Termination rule: Store X ∈ LS if the following condition for given ε, δ > 0 holds:
ω(X) ≤ δ and ω(F (X)) ≤ ε

Our main focus is on the discarding tests. We also make use of the monotonicity test from [3].
For the other tests the main idea is to underestimate both objective functions with a convex
function. Such a function can be calculated as explained in [6]. For a given box X = [x, x], a
function g:X → R and a sufficiently large α > 0 a convex underestimating function is

gα(x) = g(x) +
α

2
(x− x)T (x− x).

For computing α we use interval arithmetic applied to the Hessian matrix of g to derive a
lower bound of the smallest eigenvalue on X0.
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A first possibility for a discarding test for a given box X l ∈ IRn is to calculate the convex un-
derestimators for f1 and f2 and search for a minimal value in X l. We denote these minimal
values by aj , j = 1, 2. The ideal point of fα in X l is a := (a1, a2)T , which is a lower bound for
all objective values of f in X l. The test compares a with some known objective values which
are stored in the list LPNS . If a is dominated by such a point, this point dominates all points
of f(X l). Hence we can discardX l. The case thatX l cannot be discarded is shown in Figure 1.
Furthermore, Figure 1 illustrates a case, where all objective values are dominated by at least
one point of LPNS . But a is not dominated by any of them. Therefore we improve the discard-
ing test. We will use the idea of Benson’s outer approximation algorithm ([1], [2]) for convex
multi-objective optimization problems and construct supporting hyperplanes. We use only
one step of Benson’s algorithm and construct only one hyperplane, see Figure 2.

Figure 1. Image set fα(Xl), points of LPNS and
ideal point a

Figure 2. Improved outer approximation of
fα(Xl)

How this works is very similar to one step of the algorithm explained in [2]. More precisely
we have to solve two optimization problems. The first one is a scalar-valued nonlinear convex
problem which computes a point at the boundary of fα(X l). Afterwards we solve a simple
linear problem to get a normal vector of the supporting hyperplane at the calculated boundary
point of fα(X l). With arguments of duality theory we are able to prove the correctness of the
procedure.
Next we test whether the approximation of fα(X l) is dominated by some of the points of
LPNS . If the whole approximation set is contained in the shaded region of Figure 2, we can
discard X l.

3. Numerical results

The algorithm was tested with different options. We use the different discarding tests alone
and in combination with each other. Here, we only present those results which compare the
new improved discarding test with the method using the ideal point from the literature. We
decided to use the monotonicity test at all times, because of its fast eliminating of big boxes.
We used different test functions. By way of example consider the two dimensional nonconvex
Fonseca-Flemming-function [4]

f(x1, x2) =

(
1− exp(−(x1 − 1√

2
)2 − (x2 − 1√

2
)2)

1− exp(−(x1 + 1√
2
)2 − (x2 + 1√

2
)2)

)
defined on X0 = [−4, 4] × [−4, 4]. In Figures 3a and 3b the discarded subboxes of X0 are
shaded in grey in different ways. The white set is the union of all boxes from LS .

The algorithm which used the monotonicity test and the discarding test based on the ideal
point needs 385 box divisions. The improved discarding test using the improved outer ap-
proximation reduces this to only 315 divisions. As one can see in the figures, the improved
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Figure 3a. Feasible region with discarded boxes
based on the monotonicity test (grey) and on the
ideal point (dark grey)

Figure 3b. Feasible region with discarded boxes
based on the monotonicity test (grey), on the ideal
point (dark grey) and on the improved test (light
grey)

test is able to discard much bigger boxes near the solution boxes. Additionally the cover-
ing of the efficient set is tighter. These results were very similar for other test functions and
demonstrate that the new improved test works well.

4. Outlook

In addition to extending the algorithm to problems with convex constraints we plan to gen-
eralize it to more than two objective functions. We also plan to find out in numerical tests
whether improved outer approximations of fα(X l) gained by more steps of Benson’s algo-
rithm improve the speed of the algorithm. Moreover, we want to extend our approaches in
view of [5].
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Abstract The heliostat field of solar tower power plants must be carefully configured to get the maximum
profit of solar energy while keeping the system in a regular operation state. Field control tasks
include both deciding what heliostats need to be activated and assigning each one a certain aiming
point over the receiver. In fact, current plants have hundreds, even thousands, of available heliostats.
In this context, there are desirable flux distributions of the concentrated energy over the receiver
that should be achieved to grant an efficient operation while also avoiding thermal stress, premature
aging and undesirable temperature gradients over the receiver surface. In this work, a meta-heuristic
algorithm is presented to be able to reproduce any desired flux distribution over the receiver, what
implies solving a large-scale optimization problem. It selects both the subset of active heliostats and
their corresponding aim points for a given operational instant on minimizing an error function.

Keywords: Global Optimization, Heliostat field flux distribution, Solar power tower plant, Aiming strategy

1. Introduction

Solar tower power plants (STPP) are one of the most interesting facilities to generate large-
scale clean electricity due to their overall efficiency, their mature technological basis and their
relative stability of production. This kind of systems mainly consist of a set of steerable highly-
reflectance mirrors with solar tracking capabilities, known as ‘heliostats’, which are respon-
sible for concentrating the incident solar radiation over a receiver along the day. Then, the
concentrated energy over the receiver is transferred to a working fluid (the heat transfer fluid
(HTF)) in circulation, whose temperature gets increased, and can be used for electrical en-
ergy generation on a classic thermodynamical cycle. In Figure 1 a basic schema of an STTP is
shown. The interested reader is referred to [2, 7] for further information of this technology.

The operative field of modern STPP is generally formed by a vast set of heliostats as it is
commonly over-dimensioned to face unfavorable operating conditions such as cloudy days.
However, not all of them need to be operated for the nominal case to achieve the expected
power requirements. In fact, the receiver should not be exposed to an excessive or uncon-
trolled income of power over its surface. The flux distribution of the reflected solar radiation
over the receiver must be controlled to avoid dangerous temperature gradients, thermal stress
and premature aging of its components [1, 3, 5, 8]. This is a key factor for increasing the op-
erative life of the receiver, which has a direct influence on the production costs of STTP as
highlighted in [5]. The flux distribution over the receiver is a direct consequence of which
heliostats are active and to which aiming point they are targeting to. In this context, it is nec-
essary to face a two-layered optimization problem in which it must be decided both the subset
of available heliostats to activate and their corresponding aiming point at the receiver. These

∗This work has been funded by grants from the Spanish Ministry of Economy and Competitiveness (TIN2015-66680-C2-1-R and
ENERPRO DPI 2014-56364-C2-1-R), Junta de Andalucía (P11-TIC7176 and P12-TIC301). Nicolás Calvo Cruz is supported by a
FPU Fellowship from the Spanish Ministry of Education. Juana López Redondo and José Domingo Álvarez Hervás are fellows
of the Spanish ‘Ramón y Cajal’ contract program, co-financed by the European Social Fund
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Receiver 
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Heliostats 

Flux distribution 

Heat transfer fluid circuit 

Figure 1. Scheme of a solar tower power plant.

tasks are usually supported by manual human decisions, what is an implicit limitation of the
number of aiming points that can be handled and the adaptability of the field.

In the recent works of [3, 5], two similar optimization problems related to predefined aiming
points assignation are addressed. They are focused on minimizing the standard deviation of
the flux density distribution and flux spread minimization respectively. In [3] a Genetic Algo-
rithm is successfully used while in [5] a TABU search is applied with good results. However,
this work aims two define and solve a two-layered optimization problem in which both the
subset of heliostats to activate and their corresponding aiming points are optimized to achieve
any user-given flux distribution (instead of being linked to static general ideas such as flux
spread minimization) by minimizing an error function. Additionally, the aiming point assign-
ment is expanded to a continuous search-space. By proceeding this way, the field would be
significantly more adaptable and configurable. We have been working with a meta-heuristic
algorithm for heliostat selection and a local gradient-based search procedure for final aiming
points assignation with promising results. In the next section, we introduce the mathematical
formulation of the problem at hand. Then, the optimization procedure is summarized. Finally,
some experimental results are shown and conclusions are drawn.

2. Mathematical formulation

As commented in the previous section, the key idea of the present problem can be summarized
in this sentence: the intention is to replicate a desired flux distribution over a flat plane receiver
by selecting both a subset of heliostats to be activated and their corresponding aiming points
over the receiver. This idea leads to face a complex large-scale optimization problem.

In order to model this problem, we can start by defining the whole heliostat field as an
ordered set H = {h1, h2, · · · , hN} with cardinality N . The reference flux distribution to be
achieved in a certain common instant t is defined by a two-dimensional function F which ex-
presses, for any point (x, y) on the receiver plane, the radiation density (kW/m2) at that point.
We consider the X and Y directions to be positive towards the East and North respectively
over the plane of the receiver, which is due North. Every heliostat h projects a certain flux
distribution fh over the receiver when it is operative, which is also a known two-dimensional
function of the radiation density. A certain candidate solution C can be seen as an ordered se-
quence of length N with the structure C = {c1, c2 · · · , cN}. In C, the position of every element
is directly mapped to the corresponding heliostat in H so ch defines the particular configu-
ration of the heliostat h, which can be ∅ when it is not active or a certain position (x, y) on
the receiver plane. Therefore, there are 2N∗ variables under optimization at the second layer
of the problem, where N∗ is the number of finally active heliostats. In this context, a cer-
tain valid field configuration C defines the corresponding achieved flux distribution F ∗ over
the receiver, which is formed by the convolution of every sub-flux distribution fh (discarding
non-active heliostats). Then, the objective function of the problem at hand can be defined as
the difference between the reference and the achieved flux distributions O = |F − F ∗(C)|.
Consequently, the optimization problem is defined, from a minimization perspective, as:
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min O = min |F − F ∗(C)| (1)

Assuming that the flux distribution expressions are assumed to be continuous, Eq. 1 implies
a de facto discretization for both the reference and the achieved flux distributions, that can be
seen as monochromatic images, in order to study their differences. Therefore, after defining a
discretization grid over the receiver plane, the problem can be formulated as

min O = min

XT∑
x=X1

YT∑
y=Y1

|F (x, y)− F ∗(C)(x, y)| (2)

where {X1, · · · , XT } and {Y1, · · · , YT } are the discrete sets of X and Y coordinates on the
receiver respectively. However, both sets can be defined with different cardinalities.

In relation to the definition of every heliostat-linked flux fh over the receiver plane, we
work with the analytical definition of a bi-dimensional Gaussian density function to model it:

fh(x, y) =
P

2πσxσy
√

1− ρ2
e

(
− 1

2(1−ρ2)

(
(x−µx)2

σ2x
+

(y−µy)2

σ2y
− 2ρ(x−µx)(y−µy)

σxσy

))
(3)

where x and y are the coordinates on the plane defined by the receiver rectangular aperture, P
is the power contribution of the heliostat h over the receiver, ρ is the correlation between x and
y, σx and σy are the standard deviation along x and y respectively and µx and µy, which are the
mean in the Gaussian probability function, define the central point of the flux distribution, i.e.
the aiming point of the heliostat h. This approach is similar to the one selected by [3, 5], where
a specific circular Gaussian density function is applied according to the HFLCAL model [6].

As previously commented, the flux information of every heliostat needs to be known, what
is usually achieved by using CPU-time demanding ray-tracing or convolution-based simula-
tions as done in [3, 5]. However, for this work, a synthetic fluxes database has been generated
to be used as a plain input for the optimization procedure. Finally, the reference flux distribu-
tion to achieve, F , can be also defined by using Eq. 3 or any other user-given bi-dimensional
expression. The most recommendable testing approach is to form the reference flux by con-
volving a known sub-set of existing heliostat. By proceeding this way it is known that it is
possible to achieve the reference flux with the deployed heliostats.

3. Optimization procedure and preliminary results

The algorithm starts by solving the first layer of the problem, what determines an active subset
of heliostats and their initial starting points, according to the reference flux, for the second
stage. Then, a local gradient-based optimizer is used to sharpen the selected aiming point of
every heliostat to minimize the error between the reference and the obtained flux maps.

At its first stage, the algorithm generates different candidate configurations C and looks for
the most promising one until the termination criteria are satisfied (i.e., an user-defined number
of cycles or a certain threshold). There are two initial solutions that are always considered in
this procedure: the sets formed by the most and less number of available heliostats to achieve
the total power in the reference flux (with independence of its shape). These solutions fix two
thresholds for any other future candidate solution: its number of active heliostats must be
between the two initial. Then, new candidate solutions are formed by mutating and mixing
the existing ones along a search procedure to minimize the objective function O. It must
be noted that the aiming points of candidate solutions at the first stage, which are used for
relative evaluations, are assigned according to the power of the heliostats and the shape of the
reference flux. Then, the second stage of the algorithm takes the best solution obtained from
the first part of the search and tries to improve its quality by applying a gradient-based local
search while minimizing O until the termination criteria are fulfilled (i.e., an user-defined
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a) b)

Figure 2. Result of flux distribution replication of the reference in a) is shown in b).

number of cycles or a certain threshold). At this point, the active heliostats subset will not
been changed any more but only their corresponding aiming points.

In Figure 2 a result for the local optimizer is shown. In that test, the reference flux has been
formed by randomly convolving 50 heliostats over a 6x6 receiver and defining the reference
flux in Figure 2 a). The local optimizer has been able to replicate the desired map by optimiz-
ing the aim point of the original 50 active heliostats from a totally random start as shown in
Figure 2 b). Additional experiments have been carried out up to 200 heliostats with positive
results.

4. Conclusions

A generic two-layered optimization procedure is being developed for STPP which is intended
to be able to configure the heliostat field to achieve a given distribution flux by selecting both
the active heliostats and their aiming points. The preliminary results are promising, i.e. the
flux distribution replication for a defined active set is operative with a good overall perfor-
mance. For future work, the applicability of the procedure in control tasks could be studied.
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Abstract In this paper, we present a new decomposition method, called ADCG (Alternating Direction Column
Generation) method, for globally solving quasi-separable nonconvex MINLPs, which is not based
on the branch-and-bound approach. The basic idea of ADCG is to restrict the feasible set by an
upper bound of the objective value and to check via a (column generation based) globally convergent
alternating direction method if the resulting MINLP is feasible or not. Convergence of ADCG to a
global solution is shown by using the fact that the duality gap of a general nonconvex projection
problem is zero (in contrast to the Lagrangian dual of a general nonconvex program). We discuss
algorithmic details, like checking the infeasibility of the projection problem and updating the target
value and describe how ADCG can be accelerated by an inexact sub-problem solver. Furthermore,
we will report first numerical results with a preliminary implementation of ADCG using Pyomo.

Keywords: Decomposition, Nonconvex optimization, Column generation, Alternating direction method

1. Introduction

We consider a general quasi-separable (or block-separable) (convex or nonconvex) MINLP of the
form:

min{c(x) : x ∈ G ∩ P} (1)

with

P := {x ∈ [x, x] : Ax ≤ b}
G := ×

k∈K
Gk

Gk := {y ∈ [xIk , xIk ] : yi ∈ {0, 1}, i ∈ I int
k , gj(y) ≤ 0, j ∈ Jk}

where c(x) := 〈c, x〉 is a linear objective function and the matrix A ∈ Rm×n, the vector b ∈ Rm
specify the linear coupling constraints, I int

k ⊆ Ik ⊂ [n], Jk ⊂ J and xIk := (xi)i∈Ik denotes the
subvector of x. The (possibly nonconvex) functions gj : Rnk → R with j ∈ Jk specify the
nonlinear constraints of the problem. The restriction to inequality constraints is only for nota-
tional simplicity. Note that a general sparse MINLP can be reformulated as a quasi-separable
optimization problem by adding new variables and copy-constraints, see, e.g., [10].

Most exact algorithms for solving the MINLP (1) are based on the branch-and-bound ap-
proach and variants like branch-cut-and-price [5] or branch-decompose-and-cut [13], see [4, 3]
for an overview of MINLP-solvers. A main difficulty of this approach is a possibly rapidly
growing branch-and-bound tree, which makes it difficult to solve large-scale models in rea-
sonable time.

Parallel decomposition methods, such as Column Generation (CG), can solve huge MINLPs
with up to several hundred millions of variables if the duality gap is not too large, e.g. in crew
and transport planning [1, 11]. However, for many MINLPs the duality gap is not small, and
in this case traditional decomposition methods may be not efficient [10].
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In this paper, we present a recently proposed decompositon method, called ADCG (Alter-
nating Direction Column Generation) method, for globally solving MINLPs (1) with a possibly
large duality gap [12]. Since ADCG is a proximal optimization method, which is not based
on the branch-and-bound approach, the generation of a (possibly huge) branch-and-bound
tree is avoided. Furthermore, it is possible to use fast inexact MINLP-solvers for solving the
sub-problems, and the sub-problems can be solved in parallel. Since processors with many
cores are available, many sub-problems can be solved simultaneously.

2. Alternating direction methods

The Alternating Direction Method (ADM) was originally developed for finite element prob-
lems [6] and is based on Uzawas algorithm [14]. A review of ADMs including a convergence
proof for convex problems is given in [2]. An ADM for solving MIPs is presented in [9]. A
simplified ADM is shown in Figure 1.

1. yi ← project xi−1 onto G regarding c+ATλi−1

2. xi ← project yi onto P regarding c−ATλi−1

3. λi ← update λi−1

Figure 1. Basic steps of an ADM for solving min{c(x) : x ∈ G ∩ P} starting from a point x0 ∈ P (solution of a
convex relaxation). The trial points xi and yi converge towards the solution point x∗.

The projection of a point xi−1 ∈ P onto G is performed by solving the separable program:

yi = argmin
y∈G

c(y) + (λi−1)TAy + ρ
∑
k∈K
‖y − xi−1

Ik
‖2Σk (2)

where Σk is a positive definite scaling matrix. Problem (2) decomposes into low-dimensional
sub-problems, which can be solved in parallel. The projection of a point yi ∈ G onto P is
performed by solving the QP-master-problem

xi = argmin
x∈P

c(x)− (λi−1)TAx+ ρ
∑
k∈K
‖Ak(yiIk − xIk)‖22 (3)

where Ax =
∑

k∈K AkxIk .
Traditional ADMs update λi by a subgradient step and are in general not globally conver-

gent, see [8] for an example.
A globally convergent ADM for (locally) solving quasi-separable nonconvex NLPs, called

ALADIN (Augmented Lagrangian based Alternating Direction Inexact Newton method), is
proposed in [8]. This method updates λi by performing a line search for increasing a dual
function of the following nonconvex projection problem at an iteration point xi−1 ∈ P :

min{c(y) + ρ
∑
k∈K
‖yIk − x

i−1
Ik
‖2Σk : y ∈ G ∩ P} (4)

Global convergence of ALADIN is proved in [8] by using the fact that the duality gap of the
Lagrangian dual of (4) regarding the coupling constraints is zero (in contrast to the Lagrangian
dual of (1)).
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3. The alternating direction column generation method

Motivated by the approach of [8] and by the excellent performance of column generation
methods for solving huge network optimization problems [1, 11], the new method, called
Alternating Direction Column Generation method (ADCG), combines column generation and
the ADM of [8] for globally solving nonconvex MINLPs, see [12] for details.

ADCG is based on adding the target constraint c(x) ≤ σ to the polyhedron P , denoted by
Pσ, and updating the target value σ by increasing σ if G ∩ Pσ is infeasible and decreasing σ
otherwise. In order to make an efficient warm-start after updating σ possible and to check the
feasibility of G∩Pσ, the dual line search of [8] for approximately computing dual solutions of
(4) is replaced by a column generation method.

The column generation master-problem is given by

min c(y) + ρ ·
∑
k∈K

rk + γ · s

Ay ≤ b (5)
c(y) ≤ σ + s

(yIk , rk) ∈ conv(S̄k), k ∈ K
s ≥ 0

where s is a slack-variable. The (extended) column pool S̄k := {(ŷ, ‖ŷ − xi−1
Ik
‖2Σk) : ŷ ∈ Sk} is

defined by the sample set Sk ⊆ Gk consisting of previously generated trial points.
The feasible set G ∩ Pσ is empty, if and only if after convergence of the column genera-

tion method some slack variables s of the solution of (5) are not zero. Assuming that the
sub-problems (2) are solved to global optimality, it is proved in [12] that algorithm ADCG
terminates in finitely many steps with a global ε-minimizer of (1) under mild conditions.

ADCG is a proximal descent method, which computes a solution in the neighborhood of
the starting point (because in each iteration a descent point in the neighborhood of the cur-
rent trial point is computed by approximately solving a projection problem). This makes the
method more robust regarding (near) symmetric optimization problems with many ε-optimal
solutions than branch-and-bound methods, which often need to perform many branching
steps, if the optimization problem has many ε-optimal solutions.

4. pyADCG

We are currently working on a Python-implementation of ADCG using Pyomo [7], called
pyADCG. An initial point x0 ∈ P and inner and outer approximations ofG for starting ADCG
are computed by

1. calculating a point x̂ ∈ conv(G ∩ P ) using traditional column generation

2. driving x̂ towards G ∩ P using a simplified version of ADCG

Numerical results using pyADCG will be presented. Since solving sub-problems in pyADCG
is not much more difficult than solving traditional pricing problems, we expect that the com-
putational cost of pyADCG will be similar to a traditional column generation method.
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Abstract The demand of highest quality foods in terms of taste and their properties preservation without the
use of additives is constantly increasing. Consequently, new approaches to food processing have
been developed, as for example high-pressure technology which has proven to be very valuable
because it allows to maintain good properties of food like some vitamins and, at the same time,
to reduce some undesirable bacteria. This technology avoids the use of high temperatures during
the process (not like Pasteurization), which may have adverse effect on some nutritional proper-
ties of the food, its flavour, etc. The models for some enzymatic inactivations, which depend on
the pressure and temperature profiles are presented. This work deals with the optimization of the
inactivation of certain enzymes when high pressure treatment on food processing is applied. The
optimization algorithms will minimize the inactivation not only of a certain isolated enzyme but
also to several enzymes that can be involved simultaneously in the high-pressure process.

Keywords: High Pressure Processing, Global Optimization, Metaheuristic algorithms, Food Technology

1. Introduction

Nowadays, the demand of safe and minimally processed food prepared for immediate con-
sumption (ready–to–use and ready–to–eat) has increased significantly. High Pressure (HP)
processing is one of the technologies that can be used for the preparation of these products
[4]. This technique is very effective in prolonging the shelf life of some foods and it is already
being applied to industry, though without the use of the optimal configurations of pressure
and temperature.

In this work we model the effect of the combination of high pressure and thermal treat-
ments on food processing, focussing on the inactivation of certain enzymes [2, 3]. It can be
considered that during the food processing two coupled physical phenomena take place: on
the one hand, the evolution of enzymatic activity, which has been described by a first–order
equation, and, on the other hand, the thermal problem given by a partial differential equation.
Then, the optimization problem involves a different Eyring-Arrhenius equation for modelling
each enzymatic inactivation and a heat transfer equation. Considering that for each particular
kind of food and high pressure equipment the problem can be different as the most important
enzymes to be inactivated, in this work we only focus on solving the specific cases of Vitamin
C [9] and bacteria BSAA [1]. In particular, our aim is to optimize the high-pressure process
such that the activity of the bacteria BSAA is minimized and the Vitamin C is maximized. For

∗This work has been funded by grants from the Spanish Ministry of Economy and Competitiveness (TIN2015-66680-C2-1-R,
MTM2011-22658 and MTM2015-64865); Junta de Andalucía (P11-TIC7176 and P12-TIC301), in part financed by the European
Regional Development Fund (ERDF); and the research group MOMAT (Ref. 910480) supported by “Banco de Santander” and
“Universidad Complutense de Madrid”. Juana López Redondo is a fellow of the Spanish “Ramón y Cajal” contract program,
co-financed by the European Social Fund.
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solving these problems, a metaheuristic hybrid method based on a population of solutions
that evolve toward the optimum is applied. The hybridized method uses a gradient-based
local search that can accelerates the convergence to the optima.

2. Mathematical model

When HP is applied in Food Technology, it is necessary to take into account the thermal effects
that are produced by variations of temperature due to the compression/expansion that takes
place in both the food sample and the pressurizing fluid.

Often, in HP processing, the packed food is surrounded by the pressurizing fluid inside a
cylindrical steel pressure vessel. It can be assumed that thermally induced flow instabilities
are almost negligible. Due to axial symmetry of the problem, we can consider reducing its
domain to only half a cross section. Therefore, we use cylindrical coordinates such that our
computational domain is the rectangle Ω = [0, L] × [0, H], where four two–dimensional sub–
domains are distinguished (see Figure 1): the one that contains the food sample, denoted by
ΩF ; the cap of the sample holder (usually it is made of rubber), ΩC ; the domain occupied by
the pressurizing medium, ΩP , and the one of the steel surrounding the previous domains, ΩS .

Figure 1. Computational domain.

2.1 Enzymatic inactivation

The evolution of the activity A of an enzyme is described by the following first–order kinetic
equation:

dA

dt
(t) = −κ(P (t), T (t))A(t), (1)

where t is the time (min), P (t) is the pressure (MPa) at time t, T (t) is the temperature (K)
at time t, κ(P, T ) is the inactivation rate (min−1) corresponding to the pressure–temperature
conditions given by (P, T ) and A(t) is the activity of the enzyme under study.

The effect of temperature and pressure on the inactivation rate is provided by a suitable
combination of Arrhenius equation and Eyring equation [1]:

κ(P, T ) = κref exp

(
−B

(
1

T
− 1

Tref

))
exp (−C(P − Pref)) , (2)

where Tref is a reference temperature (K), Pref is a reference pressure (MPa) and κref is the inac-
tivation rate at reference conditions (min−1). The parametersB andC express the temperature
dependence of κ (K) and the pressure dependence of κ (MPa−1), respectively.

In particular, we use equations (1) and (2) to model the behaviour of each of the following
enzyme and vitamin with appropriate parameters:

Bacillus Subtilis α–Amylase (BSAA): It is produced by a bacteria called Bacillus Sub-
tilis, present in the ground. This enzyme can contaminate food and modify its taste [1].
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Vitamin C: It is present in some fruits and it has good antioxidant properties. Rapid
degradation of this vitamin is produced at high temperatures. Then, HP processing is
being used as preservation technique [9].

2.2 Heat transfer modelling

We focus on solid type foods processed under HP treatment in a cylindrical pressure vessel.
We consider that the filling ratio of the food sample inside the vessel is much higher than the
one of the pressurizing medium. Under these assumptions, the heat transfer by conduction
model is suitable [6]:

ρCp
∂T

∂t
−∇ · (k∇T ) = α

dP

dt
T in Ω× (0, tf), (3)

where ρ = ρ(T, P ) is the density (Kg m−3), Cp = Cp(T, P ) is the heat capacity (J Kg−1K),
k = k(T, P ) is the thermal conductivity (W m−1K−1) and tf is the final time (s). P = P (t)
is the pressure (Pa) applied by the equipment (this is chosen by the user within the machine
limitations) and α = α(T, P ) is the thermal expansion coefficient (K−1) of the food or the
pressurizing fluid, depending on the domain ΩF or ΩP, respectively.

The boundary conditions are: on the refrigeration boundary, Γr ⊂ {L} × {0, H} (see Fig-
ure 1), the temperature is set to a given refrigeration temperature, Tr; on the upper boundary,
Γup = {0, L} × {H}, heat is transferred by convection with the room; the rest, Γ \ {Γr ∪ Γup},
are the symmetry axis and the equipment walls which are isolated, so the heat flux in both is
zero.

Therefore, the following 2D problem results:

ρCp
∂T

∂t
− 1

r

∂

∂r

(
rk
∂T

∂r

)
− ∂

∂z

(
k
∂T

∂z

)
= α

dP

dt
T in Ω× (0, tf),

k
∂T

∂n
= 0 on Γ\(Γr ∪ Γup)× (0, tf),

k
∂T

∂n
= h(Tamb − T ) on Γup × (0, tf),

T = Tr on Γr × (0, tf),

T (0) = T0 in Ω,

(4)

where n is the outward unit normal vector in the boundary of the domain, T0 is the initial tem-
perature, Tamb is the ambient temperature and h (W m−2K−1) is the heat transfer coefficient.

3. Optimization algorithms and preliminary results

Our goal is to optimize the high-pressure process such that the activity of the bacteria BSAA
has been minimized and the Vitamin C has been maximized. The optimization parameter
vector comprises the initial temperature, the refrigeration temperature and the pressure pro-
vided to the equipment. The objective function uses the solution of the previous mathematical
model. It returns the final concentration values of bacteria and vitamin obtained under the HP
processing described by these parameters.

As a first approximation, we study several mono–objective problems derived from the orig-
inal: to minimize the final bacteria concentration or to maximize the vitamin, separately. Also,
we add some constraints and minimize the bacteria maintaining the vitamin concentration
above 97% or maximize the vitamin keeping the bacteria below 40%. Even some temperature
restrictions are considered.

An hybrid global optimization algorithm based on Controlled Random Search (CRS) method
(see [5] and [8]) has been designed for these mono–objective problems. The final hybrid
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method is a combination of three methods: a multi–layer line search [7], CRS and a Steep-
est Descent (SD) algorithm as local optimizer. The first provides a good initial population
and avoids CRS gets stuck in a particular region of the admissible space without exploring
others. The local optimizer (SD) improves the accuracy of the solutions and accelerates the
convergence of the population.

For each individual, its objective function value is compared with the best element found
by CRS algorithm at the previous iteration of the multi-layer method. If this CRS solution
gives a better objective function value, a new individual is generated close to it using the
secant method. Otherwise, the new individual for the population is created also by the secant
method but in another region of the admissible space far enough to explore another solutions.

After analyzing the preliminary results it can be shown that the hybrid algorithm improves
the results and the computational cost of the CRS algorithm when it is used isolated and it is
able to solve the proposed problems with almost 100% success.

4. Summary

In this work, it is optimized the high-pressure process where the activity of the bacteria BSAA
is minimized and the Vitamin C is maximized. A metaheuristic hybrid method has been
devised to this aim. The preliminary results are promising, i.e. for the instances considered,
the proposed algorithm achieves almost 100% success.
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integrality gap.
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1. Introduction

In this work, we address the Binary Mixed Integer NonLinear Programing (BMINLP) prob-
lem:

(P ) min
x, y

f(x, y)

subject to: g(x, y) ≤ 0,
x ∈ X, y ∈ Y ∩ {0, 1}ny ,

(1)

where X and Y are polyhedral subsets of Rnx and Rny , respectively. The functions f : X ×
Y → R and g : X × Y → Rm are convex and twice continuously differentiable.

Finding a feasible solution for an optimization problem with combinatorial nature can con-
stitute a difficult task. In many cases, exact algorithms are not able to provide a feasible so-
lution in reasonable time. Thus, researches on new feasibility heuristics are of fundamental
importance, since they can be very useful for: (a) speeding up the convergence of exact algo-
rithms; (b) allowing the application of local search algorithms; (c) providing feasible solutions
quickly to real problems being represented in an optimization model. In this work, we pro-
pose a new feasibility heuristic to (P ). Our heuristic is based on a Branch-And-Bound (B&B)
procedure, where, at each explored node of the B&B tree, subproblems are solved aiming to
minimize the integrality gap of the solutions obtained. In this way, our approach is able to find
a sequence of feasible solutions until a stopping criterion is satisfied. We call our algorithm
Integrality Gap Minimization Heuristic, or, in short, IGMH.

2. Subproblems of interest

IGMH is based on the fact that the integrality gap of an ordinary solution (x, y) can be mea-
sured by the expression:

gap(y) =

ny∑
i=1

yi(1− yi), (2)
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where the right-hand side of the above expression measures "how far" y is from satisfying
the integrality constraint. We also observe that the function gap(·) is quadratic, concave and
separable, with global minimum at value 0, which is reached when all components of y have
binary values. The function gap(·) was also considered in [3, 4] for the development of (exact)
algorithms to solve particular cases of binary problems. In these previous works, however,
this function is penalized in the objective function, and the authors propose solving the new
problem iteratively, with no partitioning of the space.

IGMH adopts a B&B procedure to divide the space over the binary variables y. Let Y k be
the partition related to the k-th node in the B&B tree, zu be an upper bound to (P ), possibly
initialized as +∞ and εc > 0 (e.g. 1e-3) be a convergence tolerance parameter. We define the
integrality gap minimization problem in the partition Y k as:

(P̂G(Y k, zu, εc)) min
x, y

ny∑
i=1

yi(1− yi) (3)

subject to: g(x, y) ≤ 0 (4)
f(x, y) ≤ zu − εc (5)
0 ≤ y ≤ 1 (6)
x ∈ X, y ∈ Y k . (7)

Note that problem (P̂G(Y k, zu, εc)) does not have the integrality constraint for y, being, there-
fore, a (continuous) NonLinear Programming (NLP) problem. It minimizes the gap function
gap(·) in an attempt to find a solution that satisfies the integrality constraint. The level cut
constraint (5) for the original objective function aims to guarantee that the obtained solution
has objective value strictly inferior than the current upper bound zu. Observe that, while zu

is defined as +∞, this constraint is always satisfied, and thus it may be omitted from the
problem formulation. It is important to mention that, although problem (P̂G(Y k, zu, εc)) has
convex constraints and a nonconvex (concave) objective function, IGMH can use a (local) NLP
algorithm, which can lead to obtaining a local optimum of this problem.

Assuming that (P̂G(Y k, zu, εc)) is feasible, let (x̄k, ȳk) be an optimal solution (possibly a
local one) obtained by solving this problem. If ȳk is integer, a local search can be performed
around (x̄k, ȳk) by solving the problem:

(P (ȳk)) min
x

f(x, ȳk)

subject to: g(x, ȳk) ≤ 0,
x ∈ X.

(8)

Note that (P (ȳk)) originates from (P ) by fixing the integer variable at value ȳk. In this context,
let x̃k be an optimal solution obtained for (P (ȳk)). We point out that (x̃k, ȳk) is the best solution
for (P ) having ȳk as the value for the integer variable y, and it can be used to update the
current upper bound by setting zu := f(x̃k, ȳk).

The IGMH procedure is presented as Algorithm 1. Observe that the procedure uses a B&B
scheme to divide the solution space over the integer variable y. At each node k of the B&B tree,
problem (P̂G(Y k, zu, εc)) seeks an integer solution that improves the current upper bound zu.
It is worth to say that, since the algorithm uses a local NLP solver, a local optimal solution
can be obtained in this stage. If the obtained solution (x̄k, ȳk) is integer, a local search will be
conducted around ȳk by solving (P (ȳk)). The solution (x̃k, ȳk) is used to update the current
upper bound zu, and, then, problem (P̂G(Y k, zu, εc)) is solved again with this value updated.
These steps are repeated until (P̂G(Y k, zu, εc)) is infeasible or gives a non integer optimal
solution. In the first case, the algorithm prunes the current node k, while, in the second case,
a new branch occurs.



An Integrality Gap Minimization Heuristic for Binary MINLP 75

Input: (P ): addressed BMINLP problem, εc: convergence tolerance
Output: (x∗, y∗): feasible solution of (P ) (or fail)

1 zu =∞ ;
2 Y 0 = Y ;
3 Let N := {0} be the initial set of open nodes on the B&B enumeration tree ;
4 i = 1 ;
5 while N 6= ∅ do
6 Select a node k from N ;
7 if (P̂G(Y k, zu, εc)) is feasible then
8 Let (x̄k, ȳk) be an optimal solution (possibly local) of (P̂G(Y k, zu, εc)) ;
9 while ȳk is integer do

10 Let x̃k be an optimal solution of (P (ȳk)) ;
11 (x∗, y∗) = (x̃k, ȳk) ;
12 zu = f(x̃k, ȳk) ;
13 if (P̂G(Y k, zu, εc)) is infeasible then
14 go to line 21 ;

15 Let (x̄k, ȳk) be an optimal solution (possibly local) of (P̂G(Y k, zu, εc)) ;

// Branching

16 Select a variable yj with non integer value ȳkj ;
17 Y i+1 = Y k ∩ {y ∈ Rny : yj = 0} ;
18 Y i+2 = Y k ∩ {y ∈ Rny : yj = 1} ;
19 N = N ∪ {i+ 1, i+ 2} ;
20 i = i+ 2 ;

21 N = N\{k} ;

Algorithm 1: IGMH Algorithm.

We point out that for the B&B scheme in IGMH, there is no routine to obtain lower bounds
for each partition. For this reason, pruning by bounds cannot be performed. Pruning by
optimality in partitions is also impossible, since obtaining an integer solution in a partition
does not guarantee that there are not better integer solutions in the same partition. In this way,
IGMH can only discard partitions through pruning by infeasibility. However, observe that
the objective level cut constraint (5) generates infeasibility in some partitions where the upper
bound cannot be improved, that is, partitions that would be pruned by bound in a traditional
B&B for integer programming are pruned by infeasibility in our proposed approach. Similarly,
when the best integer solution of a partition is obtained, this constraint will cause infeasibility
in the current partition (or in its subpartitions). So, pruning by optimality that would occur
in a traditional B&B also occurs by infeasibility here. Pruning by infeasibility that occurs in a
traditional B&B occurs in the same way in IGMH.

In the way it is presented in Algorithm 1, it is important to say that IGMH converges to
the optimal solution of the original problem (P ), since it is based on a B&B enumeration
and no partition of space is improperly discarded. However, finding the optimal solution of
the original problem with guarantee of optimality can be a very slow process. Since solving
problems (P̂G(Y k, zu, εc)) tends to give a feasible solution to (P ) very fast, and the focus of this
work is the development of a feasibility heuristic, we can adopt alternative stopping criteria
as a maximum running time, a maximum number of iterations, or a maximum number of
feasible solutions found. Considering the heuristic version of the algorithm, partitions in
which IGMH gets (local) optimal solutions to problem (P̂G(Y k, zu, εc)), at which the objective
level cut (5) is active can be discarded to accelerate the execution of the algorithm. IGMH
assumes, in this way, that if this constraint is active, this is a signal that there is no integer
solution able to improve upper bound in the respective partition. Note that since problem
(P̂G(Y k, zu, εc)) is nonconvex, that assumption is not necessarily true. So, if this strategy is
adopted, the algorithm loses the guarantee of optimality in case it is executed without any
alternative stopping criterion.
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3. Computational results

A total of 152 test instances of the Open source MINLP Project1 were used to compare the
performance of IGMH with 3 other feasibility heuristics found in the literature: (a) Feasibility
Pump [2]; (b) Feasibility Pump based on Outer Approximation (OA-FP) [1]; (c) Diving [2]. All
heuristics were implemented in C++, using: Mosek 7.0 (to solve NLP problems); Cplex 12.6
(to solve the MILP problems in OA-FP). Mosek 7.0 was also used to solve (P (ȳk)) in IGMH.
Since this software cannot be applied to nonconvex problems, we used Ipopt 3.12.4 with
MA27 to solve (P̂G(Y k, zu, εc)). The numerical tests were conducted in a computer with core
i7 4790 (3.6 GHz) processor, 16 GB of RAM memory over the operational system Open Suse
Linux 13.1. The maximum running time was set to 10 minutes for each test instance.

Figure 1a. Best solutions found by the heuristics
for all problems.

Figure 1b. Computational time spent by the
heuristics for all problems.

Figures 1a and 1b show the relative comparison of the performance of the algorithms in
terms of solution quality (Figure 1a) and running time (Figure 1b). Analyzing the first graphic,
we observe that IGMH outperforms the other heuristics in terms of solution quality and in
number of instances in which at least one feasible solution was found (151 instances). FP, OA-
FP and Diving were capable of finding at least one feasible solution for 145, 150 and 128 test
instances, respectively. For 101 test instances, IGMH found the best optimal solution among
all the algorithms evaluated. Concerning FP, OA-FP and Diving, this number was 30, 35 and
51, respectively (note that two or more heuristics could find the best solution for the same
instance in some cases). In contrast, when analyzing Figure 1b, we see that IGMH spends
considerably more computational time than the other heuristics. This is due in part to the fact
that other heuristics stop at the first feasible solution found for not having ways to improve
this solution. IGMH, in turn, has a mechanism that allows it to continue after obtaining a
feasible solution, hoping to achieve feasible solutions even better.
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1. Introduction

In the past two decades, horticultural production has undergone a technological revolution.
Producers around the world have become increasingly competitive with help of the new tech-
nologies available, and so also have producers in the Mediterranean area. Where a few years
ago 100 tons of tomato per hectare was considered impressive, now a harvest of 300 tons per
hectare is quite standard [2]. This exorbitant productivity has been achieved mainly through
the implementation of greenhouses. These are considered ideal for growing crops, as they
provide an enclosed environment which allows for controlled climate and fertigation [8].

The climate affects not only the yield of the crop, but also the quality of the products [8].
To maximize the economic benefit of the horticultural farm, a balance must be found between
improving production and the costs of obtaining the right climatic conditions [8]. Most of
the crops grown in greenhouses are adapted to temperatures between 17-27◦C with a lower
and upper limit of 10◦C and 35◦C [2]. They require a humidity within a range of 60-80% [3].
Temperatures outside this range lead to sub-optimal crop production and even to permanent
crop damage [1]. Too high humidity levels can lead to the development of fungi on the crop,
while a humidity that is too low can cause water stress [2, 8], both of which lead to a decrease
in production.

Inside the greenhouse, the climatic variables which can be controlled are temperature, hu-
midity, Photosynthetically Active Radiation (PAR) and CO2 concentration. Temperature is the
variable that influences crop growth most directly, and is thus traditionally the main focus of
climate control inside the greenhouse [2, 8]. On the other hand, humidity has an indirect effect
on crop growth through its influence on crop transpiration, and should thus also be taken into
consideration. However, humidity and temperature are negatively correlated [8]. To address
this, the general solution is to keep temperature as the main control variable, but to adjust the
desired temperature depending on the relative humidity. Hence, from now on, it is assumed
that climate control refers to temperature control, and that through temperature also humidity
is controlled as sketched in Figure 1.

∗This work has been funded by grant TIN2015-66680-c2-2-R from the Spanish state, in part financed by the European Regional
Development Fund (ERDF).
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Figure 1. Inputs and outputs of climatic conditions in the greenhouse. Taken from [8].

2. Model predictive control

One of the alternatives to control the climate in a greenhouse is Model Predictive Control
(MPC). It takes the future development of the states into account. To include the future in its

Figure 2. Model Predictive Control scheme. Taken from [6].

control strategy, MPC has a certain prediction horizon. This is the number of discrete time
intervals ahead that MPC takes into account to choose a control action [9]. The dynamics of
the MPC algorithm are shown in Figure 2. At a certain time instant, the MPC first samples
the state of the system. It then uses a (nonlinear) model of the process to predict what would
happen to the system for different combinations of control actions over the prediction horizon.
An optimization technique is then used to compute the best control action sequence over the
prediction horizon, based on the minimization of an objective function [6]. From the chosen
control action sequence, only the first control action is actually implemented. After the im-
plementation, MPC moves to the next time instant, the prediction horizon also shifts one time
unit, and the process starts again. For this reason, MPC is also called the receding (or rolling)
horizon principle [9].

Mathematically, MPC can be described as follows. The future system outputs for a certain
prediction horizon PH are predicted at time instant k by using a model of the process [6].
The predicted output values ŷ(k + i), i = 1, . . . , PH depend on the states of the process at the
current time k and on the future control signals u(k+ i), i = 1, . . . , PH−1. The control signals
change only up to the control horizon CH , and remain constant from CH to PH . Therefore,
the last control signal within the control horizon (u(k + CH − 1)) is applied to all intervals
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after CH . So u(k + i) = u(k + CH − 1), for i = CH, . . . , PH − 1 [6]. The optimal sequence of
control actions U(k) must be determined over PH ,

U(k) = [u(k), u(k + 1), ..., u(k + PH − 1)], (1)

U(k) ∈ UPH
where UPH is the set of all sequences of size PH formed as combinations of control alter-
natives [4]. The best sequence of future control signals is found by optimizing an objective
function.

In most cases the objective function is a cost function J(k) describing the control goals [6].
The performance of MPC is highly dependent on the process model used [6]. If a linear time-
invariant model is used, a solution can be obtained analytically. If the optimization problem
is quadratic and the non-linear optimization problem is convex, the problem can be solved
using fast gradient-descent methods, guaranteeing a global solution [6]. However, in most
cases both non-linear models and constraints are used, resulting in a non-convex problem
[6]. In that case, the most relevant solving techniques are Sequential Quadratic Programming [5]
and the simplex method [7]. However, as these methods rely on iterative optimization, in the
presence of non-linear constraints they hamper the application of MPC to fast systems due to
their high computational costs. This makes them unsuitable for systems with short sampling
times, as is the case in a greenhouse. Additionally, the convergence can lead to local minima,
causing poor performance of the MPC algorithm [6].
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Figure 3. Example of branch and bound applied to MPC, PH = 5 and CH = 3.

3. Branch and bound in MPC

The B&B optimization of a MPC problem implicitly builds a search tree. At interval k, each
time interval i, with i = 1, . . . , PH , represents a level in the decision tree (i = 0 at the initial
node) [6]. At each level i within the control horizon CH , i = 1, . . . , CH , the algorithm must
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decide the actuator setting u(k + i − 1). The system has S number of control alternatives for
u(k + i − 1). Therefore, each node will have S number of branches [6]. For the illustration,
consider a greenhouse with a heater as single actuator u, which can be turned off or on, so
u ∈ {0, 1}. Since the problem has only two control alternatives, at each level of i of the tree
each node will branch in two. So u(k + i − 1) can be either 0 or 1. The jth branch, with
j = 1, . . . , S, is represented by ωj [6]. Figure 3 gives a graphical representation of a tree with
two alternative control actions. Figure 3 also shows that no branching takes place beyond the
control horizon (i > CH). Hence, control action u(k + CH − 1) is applied successively until
the PH horizon. In other words, when moment CH is reached, the control action at the last
interval within the CH is simply applied [6].

Our contribution will show how Global Optimization branch and bound can be applied to
a MPC framework.

4. Conclusions

MPC is a concept applied to greenhouse climate control. Optimization of the underlying
process may expose a multimodal behavior. This contribution investigates the potential of
using the branch and bound framework in this context.
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1. Introduction

The spatial branch-and-bound (sBB) algorithm (see [1, 7, 10], for example) is designed to find
a globally-optimal solution of factorable mathematical-optimization formulations (see [4]).
This divide-and-conquer technique works by introducing auxiliary variables to express every
function of the original formulation as a labeled directed graph (DAG). From these DAGs,
relaxations are formed and refined (see [2], for example). For a given function, the DAG
can be constructed in more than one way, and therefore the algorithm has a choice to make.
This choice can have a strong impact on the quality of the convex relaxation obtained from
the formulation, and since sBB obtains bounds from these convex relaxations, this choice can
have a significant impact on the algorithm.

There has been substantial research on how to obtain quality convex relaxations (see [3]
for references), and some consideration has been given to constructing DAGs in a favorable
way. In particular, [11] obtained analytic results regarding the convexifications obtained from
different DAGs for trilinear monomials. [11] compute both the extreme point and inequal-
ity representations of alternative relaxations and calculate their n-dimension volumes as a
comparison measure. Using volume as a measure gives a way to analytically compare formu-
lations and corresponds to a uniform distribution of the optimal solution across a relaxation.

Along with finding good convex relaxations, another important choice in the implementa-
tion of sBB is the branching variable and branching point. There has been extensive computa-
tional research into branching-point selection (e.g., see [2]). The commonly used approaches
(see [9]) are to take the midpoint of the upper and lower bounds of a variable, to branch on the
value of the variable at the current solution, or to take a convex combination of the two. This
last method ensures that the branching point is not too close to a bound. These alternatives are
intuitive and have been supported by empirical evidence. Our work aims to provide analytic
results for branching-point selection.

In our work, we focus on trilinear monomials; that is, functions of the form f = x1x2x3,
where each xi is a simple variable. This is an important class of functions for sBB, because
these results apply to monomials that involve auxiliary variables. This means that whenever
a formulation contains the product of three (or more) expressions (possibly complex them-
selves), our results apply. In addition, the case of non-zero lower bounds is particularly im-

∗The authors gratefully acknowledge partial support from NSF grant CMMI-1160915 and ONR grant N00014-14-1-0315.
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portant; even if an original variable has a lower bound of zero there is no guarantee that this
will also be the case for an auxiliary variable. Furthermore, after branching, the lower bound
of a variable will no longer be zero for at least one child.

Using the same notation as [11], for variables xi ∈ [ai, bi], i = 1, 2, 3, let Oi := ai(bjbk) +
bi(ajak). Then construct a labeling such that O1 ≤ O2 ≤ O3. We can assume (w.l.o.g) that

a1b2b3 + b1a2a3 ≤ b1a2b3 + a1b2a3 ≤ b1b2a3 + a1a2b3. (Ω)

This condition also arises in the complete characterization of the inequality description for
the convex hull of the trilinear monomial f = x1x2x3 (see [6, 5]). The (complicated) inequal-
ity description of the convex hull is directly used by some global-optimization software (e.g.,
BARON and ANTIGONE). However, other software (e.g., COUENNE and SCIP) instead uses the itera-
tive McCormick technique to obtain a (simpler) convex relaxation for the trilinear case. These
alternative approaches reflect the tradeoff between using a more complicated but stronger
convexification and a simpler, weaker one. Furthermore it is not obvious which method will
lead to a faster algorithm for a given problem. [11] use volume to compare the alternative
(equally) simple relaxations arising from double McCormick with the trilinear convex hull.

The classic result of McCormick [4] is used to convexify bilinear monomials. Here, we are in-
terested in the convex hull of the points (f, x1, x2) := (a1a2, a1, a2), (a1b2, a1, b2), (b1a2, b1, a2),
(b1b2, b1, b2); a tetrahedron in R3. To derive the facets of the tetrahedron, we multiply out the
following inequalities and substitute the variable f for all instances of x1x2.

(x1 − a1)(x2 − a2) ≥ 0, (x1 − a1)(b2 − x2) ≥ 0,
(b1 − x1)(x2 − a2) ≥ 0, (b1 − x1)(b2 − x2) ≥ 0.

When we use McCormick iteratively to convexify the trilinear monomial f := x1x2x3, we
have three choices of double-McCormick convexifications corresponding to which pair of
variables we deal with first. For example, we could first group the variables x1 and x2, in-
troduce an auxiliary variable w = x1x2, and convexify, and then convexify f = wx3 also using
the McCormick inequalities. However, we could instead group as x2(x1x3) or x1(x2x3).

Concretely (using the same notation as [11]) consider the monomial f = xixjxk, and as-
sume that we first group the variables xi and xj . We let wij = xixj , and so f = wijxk.

Convexify wij = xixj :

wij − ajxi − aixj + aiaj ≥ 0,

−wij + bjxi + aixj − aibj ≥ 0,

−wij + ajxi + bixj − biaj ≥ 0,

wij − bjxi − bixj + bibj ≥ 0.

Convexify f = wijxk:

f − akwij − aiajxk + aiajak ≥ 0,

−f + bkwij + aiajxk − aiajbk ≥ 0,

−f + akwij + bibjxk − bibjak ≥ 0,

f − bkwij − bibjxk + bibjbk ≥ 0.

For each of the three double-McCormick relaxations, [11] use Fourier-Motzkin elimination
to project out the auxiliary variable and obtain a system in the original variables f, xi, xj and
xk (i.e. in R4). In doing so they are able to compute and compare the volume of the system
resulting from each choice along with the volume of the convex hull (also in R4). A key
result of this paper is that the ‘optimal’ double-McCormick relaxation is obtained when first
grouping variables x1 and x2. We refer to the polytope arising from this relaxation as P3.

From [11], we have formulae for the volume of the convex hull and the best double-McCor-
mick relaxation, parameterized in terms of the upper and lower variable bounds. Let ci ∈
[ai, bi] be the branching point of variable xi. By substituting ai = ci and bi = ci for a given
variable xi into the appropriate formula and summing the results, we obtain the total resulting
volume given that we branch on variable xi at point ci. Using this approach we show that
when using the convex hull and branching on any variable, the midpoint gives the smallest
total volume. In this sense, the commonly-used midpoint is indeed the optimal branching
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point. We compare the results from branching at the midpoint of each variable and show that
branching on the first variable (labeled according to Ω) gives the smallest total volume. We
then show how many steps of branching we can complete before the labeling of the variables
must change and branching on a different variable becomes optimal.

Next, we consider the double-McCormick relaxation, P3. For this, we show that when
branching on variable x3 the optimal branching point is the midpoint. However when we
consider branching on either variable x1 or variable x2 the optimal branching point is not
the midpoint. From [8], any double-McCormick relaxation reduces to the convex hull when
the lower bounds are all zero. However, once we branch we no longer have all zero lower
bounds; hence the difference in the optimal branching point when using a double-McCormick
relaxation compared with the convex hull. We show that even in these cases, the sum of the
two resulting (double-McCormick relaxation) volumes from branching is a convex function
in the branching point over the appropriate domain. We also show that the minimum of this
function always occurs at a point greater than the midpoint. Convexity is nice because we can
then find the optimal branching point via a simple bisection search.

2. Results

2.1 Trilinear hull

From [11], we have that the 4-d volume of the convex hull is given by:

VolPH = (b1 − a1)(b2 − a2)(b3 − a3)×
(b1(5b2b3 − a2b3 − b2a3 − 3a2a3) + a1(5a2a3 − b2a3 − a2b3 − 3b2b3)) /24,

and the volume of the smallest double-McCormick relaxation (referred to as P3) comes from
first grouping variables x1 and x2, and is given by:

VolP3 = VolPH +
(b1 − a1)(b2 − a2)2(b3 − a3)2

(
5(a1b1b2 − a1b1a2) + 3(b21a2 − a2

1b2)
)

24(b1b2 − a1a2)
.

Theorem 1. Let ci ∈ [ai, bi] be the branching point for xi. With the full convex hull, the smallest total
volume after branching is obtained when ci = ai+bi

2 , i.e., branching at the midpoint is optimal.

Theorem 2. With the full convex hull (and branching at the midpoint of a variable), branching on x1

obtains the smallest total volume and branching on x3 obtains the largest total volume.

Proposition 3. With the full convex hull and branching on x1 at the midpoint, for the left interval, if
sBB bounds tightening does not occur, the optimal branching variable will not change until⌈

log2

(
a2(b1 − a1)

a1(b2 − a2)

)⌉
steps.

Proposition 4. With the full convex hull and branching on x1 at the midpoint, for the right interval,
if sBB bounds tightening does not occur, the optimal branching variable will not change until⌈

log2

(
b2(b1 − a1)

b1(b2 − a2)

)⌉
steps.

2.2 Best double-McCormick relaxation

Some software does not use the explicit convex hull for trilinear monomials but instead em-
ploys repeated McCormick to obtain a relaxation. Here we describe some branching-point
analysis for the double-McCormick relaxation P3 (the relaxation with the smallest volume).
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Theorem 5. Let c3 ∈ [a3, b3] be the branching point for x3. Using the relaxation P3, the smallest total
volume after branching is obtained when c3 = a3+b3

2 , i.e., branching at the midpoint is optimal.

Next we consider branching on x1 and x2. Even for the special case of ai = 0 and bi = 1 for
i = 1, 2, the midpoint for say x1 is not the optimal branching point when using the relaxation
P3. Substituting these values into the volume formulae, we find that the minimum of the
appropriate (convex) function is obtained when branching at x1 =

√
3

3 ≈ 0.577.

Theorem 6. For i = 1, 2 and using the relaxation P3, the total volume of the relaxations after branch-
ing on xi:

VolP3

∣∣∣
ai=ci

+ VolP3

∣∣∣
bi=ci

is a convex function in the branching point ci, over the domain ci ∈ [ai, bi].

Proposition 7. For i = 1, 2 and using the relaxation P3, the minimum of the convex function

VolP3

∣∣∣
ai=ci

+ VolP3

∣∣∣
bi=ci

over the domain ci ∈ [ai, bi] occurs at some value of ci > ai+bi
2 .

3. Conclusions

We have presented some analytic results on branching variable and branching-point selection
in the context of sBB applied to models having functions involving the multiplication of three
or more terms. Of course variables often appear in multiple functions. Therefore when de-
ciding on a branching variable or a branching point we may obtain conflicting guidance. But
this is an issue with any branching rule, including those tested empirically, and it is always a
challenge to find good ways to combine local information to make algorithmic decisions.
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Abstract The problem of comparing deterministic and stochastic global optimization methods is considered
in the contribution. For this purpose, a new comparison methodology called “operational zones”
is presented and described. Lipschitz deterministic and nature-inspired metaheuristic methods are
then compared numerically by using the introduced operational zones.
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1. Introduction

Let us consider the following box-constrained global optimization problem:

f∗ = f(x∗) = min f(x), x ∈ D = [a, b] ⊂ RN , (1)

where the objective function f(x) is supposed to be “black-box”, hard to evaluate, multiex-
tremal, and non-differentiable. Let us also suppose that it satisfies the Lipschitz condition
with some norm ‖·‖ over a hyperinterval D:

|f(x1)− f(x2)|≤ L‖x1 − x2‖, x1, x2 ∈ D, (2)

with L being the Lipschitz constant (possibly unknown), 0 < L <∞.
There exists a huge number of methods for solving the stated problem (see, e. g., [2, 14,

17, 20, 21, 23]). Among them we find deterministic Lipschitz-based algorithms and stochastic
metaheuristics. These two types of methods have different advantages and disadvantages.
Most of the metaheuristic population-based algorithms are relatively simple and easy to im-
plement, have attractive nature-inspired interpretations, and are often used by practitioners to
solve practical decision-making problems (see such problems, e. g., in [4, 11]). However, they
do not always manifest strong theoretical convergence and often do not guarantee the global
optimality of the found solutions. On the other hand, the Lipschitz deterministic methods
are more complicated, but have strong theoretical convergence properties and can provide a
guaranteed solution to problem (1)–(2).

Therefore, a comprehensive numerical comparison of the global optimization methods be-
longing to these two classes is important from the practical point of view. For this purpose, a
new methodology called “operational zones” (see, e. g., [18]) is presented in this contribution
to compare several deterministic and stochastic methods.

∗This work was supported by the project No. 15-11-30022 “Global optimization, supercomputing computations, and applica-
tions” of the Russian Science Foundation, 2015–2017.
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2. Operational zones

The approach of operational zones is based on the concept of “operational characteristics”
proposed in 1978 by Grishagin in [5] (see also [21] for their description) for analyzing perfor-
mance of deterministic methods in terms of costly function evaluations (trials). Operational
characteristics can be considered as predecessors of the subsequently re-discovered “perfor-
mance profiles” from [1] and “data profiles” from [13]. The operational characteristic of a
method on a class of test problems is a non-decreasing function that indicates the number of
problems solved (in some predefined sense) by this method after each function evaluation
within a prescribed trials budget. It is convenient to represent the operational characteristic of
a method in a graph where each pair (for increasing values of trials) corresponds to a point on
the plane. Among different methods (or particular instances of a method) the better method
is that with the highest operational characteristic.

For example, in Figure 1 the operational characteristic of a deterministic method on a class
of 100 test functions is shown by red dashed line. It can be seen from this figure that, e. g.,
after 270 trials the method under consideration has solved 79 test problems.

0 270 400
0

79

100

Figure 1. The operational characteristic of a deterministic method is indicated by red dashed line; the operational zone of a
stochastic method is represented by cyan color, with the average operational characteristic given by continuous blue line

Although the operational characteristics are very representative for comparing determinis-
tic algorithms, they cannot be used for a comparison of stochastic methods executing multiple
launches with different randomly generated parameters. The operational zones are designed
to fill up this gap in the following way.

Let us consider every instance of a stochastic method as a particular method. It corresponds
to a particular launch of the method among the total number M of launches, characterized by
a concrete set of randomly generated parameters of the method. A particular operational
characteristic can be associated to this method’s instance. So, for each of M launches of the
algorithm the respective M operational characteristics can be constructed and the upper and
lower bounds of all the operational characteristics can be therefore determined. These bounds
define the whole operational zone of the method. For example, in Figure 1 the operational
zone of a metaheuristic population-based algorithm is reported by cyan color; the blue line
inside this zone corresponds to the average operational characteristic among the whole bundle
of the operational characteristics of the method forming the method’s operational zone.

In this way, operational characteristics of deterministic methods can be compared with op-
erational zones of stochastic algorithms, thus providing us with an intuitive visual tool for
studying global optimization methods of different nature. The concept of operational zones
will be used in this contribution to compare Lipschitz deterministic methods with stochastic
population-based metaheuristics.

3. Comparison of Lipschitz-based and metaheuristic methods

The following Lipschitz deterministic methods and nature-inspired metaheuristics have been
considered in our numerical experiments that will be presented:
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(a) Operational zones for the methods DE (cyan colored) and PSO (green colored)
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(b) Operational characteristics for Lipschitz methods GAL, INF, and LTI; and the operational zone for the method DE

Figure 2. Operational zones for comparing performance of deterministic and stochastic methods

GAL: Geometric method with an A priori given Lipschitz constant L (see, e. g., [10]).
INF: INFormation-statistical method with a global estimate of L (see, e. g., [21]).
LTI: Geometric method with a local tuning and local improvement (see, e. g., [12, 19]).

The Lipschitz constants for the method GAL were estimated by the values obtained over 10−7-
grid. The methods INF and LTI use the reliability parameter r that was set equal to 2 for the
INF method and equal to 1.1 for the LTI method.

DE: Differential Evolution algorithm described, e. g., in [16], and implemented in http:

//www1.icsi.berkeley.edu/~storn/DenewC.zip.
PSO: Particle Swarm Optimization algorithm proposed in [7] and implemented in its stan-

dard version.
Moreover, the following widely used metaheuristic population-based algorithms can be

also considered for a further numerical comparison:
GA: Genetic Algorithm in its standard version (see, e. g., [8, 18]) as implemented in http:

//www.egr.msu.edu/~kdeb/codes/rga/.
ABC: Artificial Bee Colony algorithm proposed in [6] and implemented in http://sci2s.

ugr.es/EAMHCO#Software.
FA: Firefly Algorithm discussed in [22].

A detailed information on the parameters of these metaheuristics can be found, e. g., in [9, 8].
Several one-dimensional (e. g., from [19, 15]) and multidimensional (e. g., from [4, 3]) test

classes were used in our numerical experiments with the considered global optimization
methods. For each test function the problem (1) was considered to be solved if an algorithm
has generated a trial point into an ε-neighborhood of the global minimizer (known for all the
test functions).

Performance of methods of deterministic and stochastic nature can be easy compared by
using operational zones. For example, operational zones of the considered algorithms over
one-dimensional Pintér’s test class from [15] are given in Figure 2(a)-(b). In this case, the
value ε = 10−5(b − a) was used with the trials maximum number equal to 10000; the pop-
ulation size for each metaheuristic algorithm was set equal to 10. The advantages of the DE
method with respect to the PSO (see Figure 2(a)) and the Lipschitz methods with adaptive es-
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timate of the Lipschitz constant (the INF and the LTI methods) with respect to the considered
metaheuristics on the taken test class can be observed in an intuitive way.
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Abstract In this talk we address the problem of visualizing in a bounded region a set of individuals, which has
attached a dissimilarity measure and a statistical value. This problem, which extends the standard
Multidimensional Scaling Analysis, is written as a global optimization problem whose objective is
the difference of two convex functions (DC). Suitable DC decompositions allow us to use the DCA
algorithm in a very efficient way. Our algorithmic approach is used to visualize two real-world
datasets.

Keywords: DC programming, Visualization

Summary

In the Big Data era, Data Visualization is an area of interest to specialists from a wide vari-
ety of disciplines, [11, 12, 18, 19]. The information managed must be processed and, what
is even more important, understood. Data Visualization techniques arise to respond to this
requirement by developing specific frameworks to depict complex data structures as easy-to-
interpret graphics, [27, 34].

Mathematical Optimization has contributed significantly to the development of this area
during recent years, see [10, 22, 28] and the references therein. Nowadays, complex datasets
pose new challenges in order to visualize the data in such a way that patterns are captured
and useful information is extracted. Special attention is paid to represent the underlying dis-
similarity relationships that data may have. Classical dimensionality reduction techniques,
such as Principal Component Analysis, [29], or Multidimensional Scaling (MDS), [21, 24, 36],
have been customized to deal with more complex data structures, [1, 3, 13], and to make the
interpretability of the results easier via, for instance, sparse models, [5, 6, 14].

Apart from adapting existing methods, specific problems may call also for new approaches.
For instance, in addition to the dissimilarity measure, the data may have attached a statistical
variable, to be related with the size of each object in the graphical representation of the dataset,
[16]. This is the case for geographical data, to be visualized on a map in which countries are
resized according to, for instance, population rates, but maintaining the neighboring relation-
ships of countries. This type of representations, known as cartograms, [35], leads to plots in
which countries are replaced by geometrical objects, frequently circles or rectangles, while the
neighborhood relationships and the size of the objects are sought to be well represented. A key
issue is how such problems are expressed as optimization programs, and which optimization
tools are available to cope with them. For uses of optimization applied to cartograms construc-
tion and related visualization frameworks we refer the reader to [4, 7, 8, 16, 17, 20, 23, 31, 33]
and references therein.

In this talk we present a new mathematical programming framework to build a visualiza-
tion map, in which a set of N individuals are depicted as convex objects in a bounded region
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Ω ⊂ Rn, usually n ≤ 3. These objects must have a volume proportional to a given statistical
value associated with the individuals, ω = (ω1, . . . , ωN ), and they should be placed accord-
ingly to a dissimilarity measure attached to the individuals, δ = (δij)i,j=1,...,N . In order to
locate the objects in Ω, a reference object B is used, to be translated and expanded. However,
since our final goal is to obtain a visualization map which allows the analysts to understand
the data they are working with, a criterion which somehow controls the appearance of the plot
needs to be also considered. We will deal with this paradigm by focusing on how the objects
are spread out over Ω.

Leaving aside the statistical values ω, the purpose of representing dissimilarities between
individuals reminds to MDS, [3, 13, 14, 21, 24, 25, 26, 36], which aims to represent the dissim-
ilarity between individuals as empirical distances between points in an unbounded space of
lower dimension. Although our visualization model may seem very close to MDS, it has the
special feature of representing in the bounded region Ω not only dissimilarities as distances
between objects, but also the statistical measure ω through the volumes of the objects in Ω.
Our visualization tool is able to rescale the dissimilarities between the individuals and the
statistical values associated to them to fit in Ω. Observe that fitting the objects into Ω may
yield representations in which the objects intersect if their sizes are not small enough, but, on
the other hand, too small objects obstruct the visualization of the statistical measure. Ideally
the objects should be spread out across the visualization map. This aim will be also taken into
account when modeling the problem.

The methodology proposed in this talk has applications in fields others than Data Visualiza-
tion, such as for instance, Location Analysis or Distance Geometry. In location problems, the
facilities to be located are usually considered as points. However, a natural extension is to con-
sider facilities as dimensional structures, see [15], and DC techniques have been specifically
applied to this generalization, [2, 9]. Ours can also be seen as a problem in Distance Geometry
optimization, as carefully reviewed in [26]. In Distance Geometry, a graph realization problem
consists of finding a configuration of points such that their (Euclidean) distances fit a given
dissimilarity matrix. Among them is the Sensor Network Location problem, [30, 32, 37, 38],
in which one assumes that some individuals are anchors (their location is known) and the
remaining ones are sensors, whose location is to be obtained so that their Eculidean distances
fit the dissimilarities. Thus, our method can also be applied to the Sensor Network Location
problem, in which sensors and anchors have a nonnegligible area.

In this talk, the construction of a visualization map with the three characteristics mentioned
above is written as a global biobjective optimization problem with convex constraints. We
show that the objective function of the aggregate problem can be expressed as a difference of
convex (DC) function, and thus DC optimization tools can be used to solve the optimization
program.
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Abstract Ellipsoid bounds for strictly convex quadratic integer programs have been proposed in [1, 2]. The
idea is to underestimate the objective function of the problem by another convex quadratic function
for which an integer minimimizer is easily computed. We initially propose in this paper a different
way of constructing the quadratic underestimator for the same problem and then extend the idea to
more general problems where the objective function is convex (not necessarily strictly convex), and
box constraints are introduced. The quality of the proposed bounds is evaluated experimentally and
compared to related existing methodologies.

Keywords: Quadratic Integer Programming, Ellipsoid bound

1. Introduction

The quadratic integer programming problem has been focus of intense research in the last
years. Obtaining tight dual bounds to its optimal objective value is essential for the successful
application of branch-and-bound (B&B) algorithms. When the problem is convex, a common
approach to obtain dual bounds is simply to relax the integrality constraints and solve the
continuous relaxation. An alternative approach has been proposed in [1] for the case where
the objective function is strictly convex. A convex quadratic underestimator for the objective
function is used on the relaxation proposed, which has the same continuous minimizer as the
objective function and has an integer minimimizer that can be easily obtained. More recently,
in [2], the authors have generalized the idea introduced in [1], proposing classes of underes-
timators with the strong rounding property introduced in [3], property given to functions for
which an integer minimizer is obtained by rounding the continuous minimizer. The authors
propose heuristics to search for underestimators in these classes leading to the tightest possi-
ble ellipsoid bounds, name introduced in [2] and motivated by the geometric interpretation of
the ellipsoidal sublevel sets of the convex quadratic underestimators. The results in [2] show
that ellipsoid bounds are never worse than the continuous bounds and can be quickly com-
puted, however they apply only for the minimization of strictly convex quadratic functions.

We initially propose in this paper a new method to generate underestimators for strictly
convex quadratic objective functions. Next, we extend the ellipsoid bounds to some convex
quadratic objective functions (not necessarily strictly convex). Finally, we show how the idea
can be applied to the case where box constraints are introduced. Numerical results compare
the approaches proposed in this paper to related existing approaches from the literature.

2. Ellipsoid bounds for strictly convex quadratics

In this section, we address strictly convex quadratic integer programs of the form

min{q(x) := xTQx+ cTx : x ∈ Zn} (SCIQP)

where Q is a positive definite n × n matrix, and c ∈ Rn. We denote the eigenvalues of Q by
λmax := λ1 ≥ λ2 ≥ . . . ≥ λn := λmin, and the corresponding eigenvectors by u1, u2, . . . , un.
The eigenvalue decomposition of Q is given by Q = UΛUT .
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Ellipsoid bounds for (SCIQP) [1, 2] are given by the solution of an integer relaxation of the
problem, where we minimize an underestimator function q′ of q, over Zn . Denoting by x̄ the
unique continuous minimizer of q, given by −(1/2)Q−1c, it is possible to verify that

q(x) = q(x̄) + (x− x̄)TQ(x− x̄),

for all Rn. Defining, then
q′(x) := q(x̄) + (x− x̄)TQ′(x− x̄), (1)

where Q−Q′ � 0 and Q′ � 0, it is straightforward to see that q(x) ≥ q′(x), for all x ∈ Rn.
Nevertheless, to apply the ellipsoid bounds efficiently, it is essential that the integer min-

imimum of q′ can be computed easily.
In [1], it is shown that if Q′ is diagonal, an integer minimizer of q′ is simply obtained by

rounding x̄. More specifically, an integer minimizer is given by bx̄e = (bx̄1e , . . . , bx̄ne)T ,
where for any a ∈ R, bae denotes the closest integer to a. Furthermore, the authors present the
following semidefinite programming problem, for which the optimal solution is a diagonal
matrix Q′ := Diag(t) that leads to the best possible ellipsoid bound to (SCIQP), among all
positive semidefinite diagonal matrices.

max{
n∑
i=1

ti(bx̄ie − x̄i)2 : Q−Diag(t) � 0 , t ≥ 0 } (SDP)

Generalizing the results in [1], some classes of matrices Q′ are presented in [2] for which the
quadratic function q′ has the strong rounding property. Guided by the geometric characteriza-
tion of the ellipsoidal sublevel sets of q′, the authors initially define quasiround sets, as follows.

Definition 1. Let B(x, ρ) be the Euclidean ball of radius ρ ∈ R+ and center x ∈ Rn. Given α ∈ R+

and x0 ∈ M , we call a set M ⊆ Rn α-quasiround w.r.t. x0 if there exist radii ρ1, ρ2 ∈ R+ such that
B(x0, ρ1) ⊆M ⊆ B(x0, ρ2) and ρ2 − ρ1 ≤ α.

Next, defining d(x,D) := inf{||x − y||: y ∈ D}, for any x ∈ Rn and D ⊂ Rn, and α(x) :=
d(x,Zn \ {bxe})− d(x,Zn), the authors in [2] show the two following results.

Theorem 2. Let q′ : Rn → R. Assume that the sublevel sets of q′, given by Lq′(z) := {x ∈ Rn :
q′(x) ≤ z}, are α(x̄)-quasiround w.r.t. x̄, for any continuous minimizer x̄ of q′, and for all z ≤ q′(bx̄e).
Then q′ has the strong rounding property.

Corollary 3. Let λ′max := λ′1 ≥ λ′2 ≥ . . . ≥ λ′n =: λ′min be the eigenvalues of Q′. If relation (2)
presented below is satisfied, then the quadratic function q′ has the strong rounding property.

λ′max ≤ λ′min/(1− α(x̄)
√
λ′min)2 . (2)

Computing the matrix Q′ satisfying (2) that leads to the best lower bound for (SCQIP) can-
not be done as efficiently as it can be done for the case where Q′ is diagonal, where one solves
problem (SDP). Therefore, in this case the authors in [2] propose a heuristic to construct Q′.
The eigenvectors ofQ′ are set equal to the eigenvectors ofQ and, to satisfy (2), each eigenvalue
λ′i of Q′ is set as the minimum between λi and λmin/(1−α(x̄)

√
λmin)2. The heuristic choice for

the eigenvectors and eigenvalues of Q′ guarantee that q′ underestimates q and has the strong
rounding property. Results in [2] show that this heuristic can lead to bounds computed much
faster than the bounds given by the solution of (SDP).

An intuition about the ellipsoid bounds is given by the level sets of q and q′, which corre-
spond to ellipsoids centered at x̄. The ellipsoid corresponding to q′ for the level fixed as q′(bx̄e)
should contain the the ellipsoid corresponding to q for the same level, should contain bx̄e on
its border, and no integer point in its interior. We note that to have strong bounds, it is good to
have both ellipsoids as similar as possible. Therefore, setting the eigenvectors of Q′ equal to
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the eigenvectors of Q looks like an interesting idea. However, the upper bounds imposed by
(2) on the eigenvalues of Q′ may change too much the shape of the corresponding ellipsoid,
when compared to Q, and lead to weak bounds. Alternatively, following ideas introduced in
[1], we propose the use of an easily computed rank one matrix Q′ = δvvT , where δ ∈ R+ and
v ∈ Zn \ {0}. For our matrix Q′, the goal is to have the angle between the vector v and the
eigenvector un of Q, corresponding to λmin, as close as possible to 90◦. Properly selecting in-
teger components for v, we show that the integer minimum of q′ can still be easily computed
and discuss the benefits of this choice. For a given vector v, the parameter δ is selected to
maximize the bound, while ensuring that q′ underestimates q. Algorithm 1 shows the major
steps of our procedure.

Algorithm 1 : Computation of Q′(Q = UΛUT ))

(α, β) := arg min{(i,j):i,j∈{1,...,n},i 6=j}

{∣∣∣∣⌊ un(i)

un(j)

⌉
− un(i)

un(j)

∣∣∣∣};

v(α) := −1;
v(β) :=

⌊
un(α)
un(β)

⌉
;

v(k) := 0, for all k ∈ {1, . . . , n}, k 6= α, k 6= β;
Select δ∗ as the largest δ ∈ R+ such that Q− δvvT � 0;
Q′ := δ∗vvT ;

return (Q′,δ∗, v).

Note that if un(α)
un(β) ∈ Z, then

vTun = −un(α) +

⌊
un(α)

un(β)

⌉
un(β) = 0,

i.e., in this case the vector v is orthogonal to un. Otherwise, we select the indexes α and β
aiming at having the angle between v and un as close as possible to 90◦.

Accordingly to Observation 4 in [1], the parameter δ∗ in Algorithm 1 can be computed as

δ∗ :=
1

||vT (
√

ΛUT )−1||22
.

We note that as v ∈ Zn, a lower bound to (SCIQP), is given by

lb := q(x̄) + δ∗(
⌊
vT x̄

⌉
− vT x̄)2. (3)

Finally, for our selected vector v, it is also straightforward to verify that the above lower bound
is indeed the integer minimum of q′.

3. Generalizations for the ellipsoid bounds

In this section we discuss a generalization of the ellipsoid bounds for the case where the matrix
Q is positive semidefinite, but not positive definite. Let us consider problem (CQIP) similar
to (SCIQP), where the only difference is the fact that rank(Q) = k < n. The eigenvalues
of Q are given by λmax := λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = λk+2 = . . . = λn = 0, and
the corresponding eigenvectors by u1, u2, . . . , un. It is important to note that although the
continuous minimizer of (CQIP) is not unique, for any continuous minimizer x̄, we still can
verify that q(x) := q(x̄) + (x− x̄)TQ(x− x̄).

Therefore, we again search for a rank one-matrix Q′ = δ∗vvT such that q′(x) := q(x̄) + (x−
x̄)TQ′(x − x̄) underestimates q(x) for all x ∈ Rn, and the integer minimum of q′, or at least a
good lower bound for it, is easily computed. As in the strictly convex case if v ∈ Zn, then a
lower bound for (CQIP) is given by (3). In order to compute for a given vector v, the parameter
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δ∗ as the largest δ ∈ R+ such that Q − δvvT � 0, we generalize the results presented in [1] as
it follows.

Remark 4. Let Q = UΛUT be the eigenvalue decomposition of the n×n matrix Q, where rank(Q) =
k ≤ n. Let v ∈ Rn and v = vk +vp, where vk ∈ Im(Q) and vp ∈ ker (Q). Let δ∗ be the largest δ ∈ R+

such that Q− δvvT � 0.
Then, if vp 6= 0,

δ∗ = 0,

otherwise,
δ∗ :=

1

||vTΣ||22
,

where Σ is the pseudoinverse of
√

ΛUT .

We discuss how to apply the result above to compute bounds for special classes of positive
semidefinite matricesQ and extend Algorithm 1 to (CQIP). We finally extend Algorithm 1 also
to the case where box constraints are added to the problem.

4. Numerical results and conclusions

We implemented the heuristic proposed in [2], Algorithm 1, and solved problem (SDP) for
the strictly convex case. Considering randomly generated instances, we show how Algorithm
1 compares to the other methods. Our algorithm generates better bounds than the heuristic
for all instances with shorter running time than (SDP) requires to be solved. Ellipsoid bounds
are also always better than the continuous bounds q(x̄). We also implemented the generalized
Algorithm 1 for the convex case with and without box constraints. In both cases we are able to
generate lower bounds better than the continuous minimum of the quadratic function in short
running time. The experiments with Algorithm 1 show that the rotation of the eigenvectors
of Q is an important feature in our method to get good ellipsoid bounds, and the extensions
proposed in this work make it possible to apply the methodology to more general quadratic
problems.
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approach is effective and the hyperbolic tangent penalties compete with other popular penalties.
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1. Introduction

A penalty approach for globally solving mixed-integer nonlinear programming (MINLP) prob-
lems is presented. A continuous relaxation of the MINLP problem is carried out by converting
it to a finite sequence of bound constrained nonlinear programming (BCNLP) problems with
only continuous variables. The MINLP problem is addressed in the form:

min
x∈X⊂Rn

f(x)

subject to gj(x) ≤ 0, j = 1, . . . , p
hl(x) = 0, l = 1, . . . ,m
xi ∈ R for i ∈ Ic ⊆ I ≡ {1, . . . , n}
xj ∈ Z for j ∈ Id ⊆ I

(1)

where f, gj , hl : Rn → R are continuous possibly nonlinear functions in a compact sub-
set of Rn, herein defined as X = {x : −∞ < lbi ≤ xi ≤ ubi < ∞, i = 1, . . . , n} and
Ic ∩ Id = ∅ and Ic ∪ Id = I . Let C be the following subset of Rn, C = {x ∈ X : gj(x) ≤
0, j = 1, . . . , p, hl(x) = 0, l = 1, . . . ,m} (that we assume to be compact) and let W ⊆ C be
the nonempty feasible region of the problem (1) W = {x ∈ C ⊂ Rn : xj ∈ Z for j ∈ Id ⊆ I}.
A penalty continuous formulation of the MINLP problem is used. First, a continuous relax-
ation of the MINLP problem (1) is obtained by relaxing the integrality conditions from xj ∈ Z,
j ∈ Id to xj ∈ R, j ∈ Id, and by adding a penalty term to the objective function that aims to
penalize integrality constraint violation (see [2, 5]). Second, the resulting nonlinear program-
ming (NLP) penalty problem is formulated as a BCNLP problem with an objective penalty
function that is related to the objective function of the continuous relaxation of the MINLP
and the nonlinear constraints violation.

Thus, our contribution in this article is directed to the combination of two penalty terms
aiming to penalize integrality violation and nonlinear inequality and equality constraints vi-
olation separately. The penalty term for the integrality constraints is based on the hyperbolic
tangent function [2] and the inequality and equality constraints violation is dealt with penal-
ties that also rely on the hyperbolic tangent function. The solution of the BCNLP penalty prob-

∗This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia,
within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.
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lem are then obtained using the DIRECT algorithm [4], a deterministic algorithm for finding
global solutions inside hyperrectangles. We illustrate the performance of the proposed exact
penalty approach on three well-known test problems.

2. Penalty functions for MINLP

A penalty approach that can be extended to solve MINLP problems is investigated. In this
context, a penalty function selected from a class of penalty functions for solving general inte-
ger problems [2, 5, 6] is used. Problem (1) is equivalent to the following continuous reformu-
lation (in the sense that they have the same global minimizers), which comes out by relaxing
the integer constraints on the variables and adding a particular penalty term to the objective
function, as follows:

min
x∈C

φ(x; ε) ≡ f(x) + P (x; ε)

subject to xi ∈ R, i = 1, . . . , n,
(2)

where ε ∈ R+ is a penalty parameter, and

P (x; ε) =
1

ε

∑
j∈Id

min
lbj≤di≤ubj ∧ di∈Z

tanh (|xj − di|+ε) (3)

is the penalty term based on the hyperbolic tangent function, which is differentiable and
strictly increasing on the set X [2]. The resulting penalty function in the NLP problem (2)
is termed exact since ∃ε̄ ∈ R+ such that for all ε ∈ (0, ε̄], problems (1) and (2) have the same
global minimizers (see Theorem 2.1 in [5]). Assuming that the set C is compact, the proof of
Theorem 2.1 in [5] is based on specific assumptions on the objective function f and on the
penalty term P (x; ε). The particular case in (3) satisfies those assumptions (see Property 2.5
in [2]).

Furthermore, combining this idea with a penalty-based strategy for the nonlinear inequality
and equality constraints, the BCNLP problem arises in the form

min
x∈X

Ψ(x; ε, µ) ≡ φ(x; ε) + µ

 p∑
j=1

tanh(max{gj(x), 0}) +
m∑
l=1

tanh(|hl(x)|)


subject to xi ∈ R, i = 1, . . . , n,

(4)

where we have extended the use of the ‘tanh(·)’ to the general constraints violation and µ > 0
is the penalty parameter. Ψ is a non-differentiable penalty function, although continuously
differentiable at infeasible points, if f and the constraint functions are differentiable. An issue
that remains to be established is the exactness property of the penalty function Ψ(x; ε, µ) in
the context of using problem (4) to find an optimal solution to (2).

Algorithm 1 describes the proposed penalty framework aiming to find a global minimizer
of the MINLP problem (1) by computing a global minimizer of the BCNLP problem formu-
lated in (4), where zk ∈ X , zkj ∈ Z, j ∈ Id results from rounding xkj to the nearest integer and
zki = xki , i ∈ Ic.

Besides forcing the integer variables to take integer values, another important issue is to
reduce the overall nonlinear constraint violation, which is measured in terms of the maximum
violation by η(xk) = maxj=1,...,p;l=1,...,m

{
max{gj(xk), 0}, |hl(xk)|

}
. Although more complex

rules may be selected to control the reduction of parameters like ε, η, δ and the growth of
parameter µ, we use simple schemes for these preliminary experiments.

To solve the BCNLP problems formulated in (4), a deterministic algorithm that uses only
function evaluations, DIRECT [4] is used. DIRECT is efficient, in the sense that a few function
evaluations are required, to find just an approximation to the solution, although the num-
ber of evaluations grows faster when a high quality solution is required. The problem to
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Input: (x∗, f∗) (global solution), x0, ε1, µ1, η1, δ1

Set k = 1;
while ‖xk−1 − x∗‖> 1E − 3 or η(xk−1) > 1E − 4 or fk−1 > f∗ + 1E − 3 do

Compute xk such that Ψ(xk; εk, µk) ≤ Ψ(x; εk, µk) + δk, for all x ∈ X ;
if ‖xk − zk‖> 1E − 3 and φ(xk; εk)− φ(zk; εk) ≤ εk‖xk − zk‖ then

εk+1 = 0.1εk; ηk+1 = ηk; δk+1 = δk;
else

if η(xk) ≤ ηk then
µk+1 = µk; ηk+1 = max{0.1ηk, 1E − 4}; δk+1 = 0.1δk;

else
µk+1 = 2µk; ηk+1 = ηk; δk+1 = δk;

if ‖xk − x∗‖> 1E − 1 then
εk+1 = 0.9εk;

Set k = k + 1;

Algorithm 1: Penalty-based algorithm

be addressed by DIRECT has the following form: for fixed εk, µk, δk, find xk ∈ X such that
Ψ(xk; εk, µk) ≤ Ψ(x; εk, µk) + δk for all x ∈ X , assuming that the objective function Ψ(x; ·) is
Lipschitz continuous on X .

DIRECT is designed to completely explore the search space and is mainly characterized by
sequentially dividing the space X into hyperrectangles and evaluating Ψ at their centers. To
perform a balance between global and local search, the algorithm makes use of two important
concepts: potentially optimal hyperrectangle and grouping according to size. The center ci,
the objective function value, Ψ(ci; ·), and the size di - originally given by the distance from
the center to a corner - of the hyperrectangle i are used to define the groups of hyperrectan-
gles, to select the potentially optimal hyperrectangles and divide them into smaller ones, until
typically a maximum number of function evaluations is reached.

3. Numerical results

To make a preliminary evaluation of the practical behavior of the proposed penalty frame-
work, based on the penalty presented in (4), we use three well-known MINLP problems (see
[7]) which have two solutions, one global and one local:

(P1) min f(x) ≡ −x1 − x2
s.t. x1x2 − 4 ≤ 0,

0 ≤ x1 ≤ 4,
x2 ∈ {0, . . . , 6}
f∗ = −6.6666667

(P2) min f(x) ≡ 35x0.61 + 35x0.62

s.t. 600x1 − 50x3 − x1x3 + 5000 = 0
600x2 + 50x3 − 15000 = 0
0 ≤ x1 ≤ 34, 0 ≤ x2 ≤ 17,
x3 ∈ {100, . . . , 300}
f∗ = 189.311627

(P3) min f(x) ≡ 2x1 + x2
s.t. 1.25− x21 − x2 ≤ 0

x1 + x2 − 1.6 ≤ 0
0 ≤ x1 ≤ 1.6,
x2 ∈ {0, 1}
f∗ = 2

In the context of the proposed penalty algorithm, we have also tested the three most popular
general constraint penalties yielding the final penalty function:

Ψ(x; ε, µ) = φ(x; ε) + µ

 p∑
j=1

(max{gj(x), 0})q +

m∑
l=1

(|hl(x)|)q
 for q = 1/2, 1, 2. (5)

The penalty algorithm is coded in MATLAB programming language (Matlab Version 8.1.0.604
(R2013a)), the MATLAB code ‘DIRECT.m’ [3] is invoked, and the numerical experiments were
carried out on a PC Intel Core 2 Duo Processor E7500 with 2.9GHz and 4Gb of memory.
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Table 1 contains the results obtained by the present study with the penalty presented in
(4) and with the penalty functions in (5) for comparison, where f is the computed solution,
‘C.viol.’ and ‘I.viol.’ are the general constraint and the integrality violations, respectively,
Nfeval is the number of function evaluations, It is the number of iterations and T is the CPU
time (in seconds). For comparison, the results of a hybrid stochastic algorithm [1] and of an
exact branch-and-reduce algorithm [7] are also shown. The herein listed results inside paren-
theses mean that the condition of the stopping rule of the algorithm related to that quantity
is not satisfied. Our penalty algorithm always converges to the global solution and is able
to reach good approximate solutions in a reasonable time. The practical performance of the
penalty presented in (4) is comparable to the penalty in (5) with q = 1 and these two are supe-
rior to the other two penalties in comparison. It can be concluded that the proposed penalty
approach for MINLP is effective and deserves further developments.

Table 1. Numerical results based on ε1 = 1, µ1 = 100, η1 = 0.1, δ1 = 1 and a maximum of 18 iterations.

Problem Method f C.viol. I.viol. Nfeval It T

(P1) this study with (4) -6.666661E+00 0.00E+00 5.65E-06 17643 1 3.9E+00
penalty (5) and q = 1/2 -6.666661E+00 0.00E+00 5.65E-06 17717 1 4.0E+00
penalty (5) and q = 1 -6.666661E+00 0.00E+00 5.65E-06 17643 1 3.7E+00
penalty (5) and q = 2 -6.666661E+00 0.00E+00 5.65E-06 147756 8 3.1E+01
in [1]a -6.666657E+00 0.00E+00 – 11513 3.3E+01
in [7]b -6.666667E+00 – – – – 7.0E-01c

(P2) this study with (4) (1.893756E+02) 3.53E-05 9.31E-04 170026 18 7.3E+01
penalty (5) and q = 1/2 (2.016560E+02) 3.82E-07 (2.04E+00) 116382 18 5.5E+01
penalty (5) and q = 1 (1.893756E+02) 3.66E-05 9.31E-04 175662 18 7.5E+01
penalty (5) and q = 2 (1.893240E+02) (1.41E-04) (3.52E-03) 250082 18 1.0E+02
in [1]a 1.892946E+02 0.00E+00 – 13109 1.1E+02
in [7]b 1.893116E+02 – – – – 7.0E-01c

(P3) this study with (4) 2.000417E+00 0.00E+00 4.16E-04 13901 1 3.0E+00
penalty (5) and q = 1/2 (2.027163E+00) 0.00E+00 (1.36E-02) 351368 18 7.3E+01
penalty (5) and q = 1 2.000417E+00 0.00E+00 4.16E-04 13901 1 3.0E+00
penalty (5) and q = 2 2.000395E+00 2.13E-05 4.37E-04 177651 11 3.7E+01
in [1]a 2.000000E+00 0.00E+00 – 4199 3.6E+01
in [7]b 2.000000E+00 – – – – 7.0E-01c

a A multistart based Hooke-and-Jeeves filter method (best solution). b A branch-and-bound algorithm that relies on a domain
reduction methodology. c CPU time in seconds on a Sun SPARC station 2.
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Abstract In this paper, some enhancements to the supporting hyperplane optimization toolkit (SHOT) solver
for convex MINLP are described. These improvements, e.g., utilizing certain features of the sub-
solvers as well as relaxation strategies, increase the computational efficiency of the solver.
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1. Introduction

The extended supporting hyperplane (ESH) algorithm [2, 3] is an iterative method for solv-
ing convex mixed-integer nonlinear programming (MINLP) problems to global optimality.
This is accomplished by solving mixed-integer linear programming (MILP) subproblems de-
scribing a linear relaxation of the nonlinear feasible set. The linear relaxations, in the form
of supporting hyperplanes, are generated on points of the boundary of the nonlinear feasible
region found by performing a linesearch between the solution points of the MILP problem
and an interior point to the integer-relaxed MINLP problem. The supporting hyperplane gen-
erated excludes the previous MILP solution point and improves the linear approximation of
the feasible region. When this procedure is repeated the solution of the MILP subproblems
will converge to the global solution of the MINLP problem. Performing a linesearch to obtain
a supporting hyperplane, was proposed for continuous nonlinear programming (NLP) in [6],
and for MINLP in [5]. The ESH algorithm is also similar to the extended cutting plane (ECP)
algorithm [7], with the main difference being that in the latter, cutting planes are utilized in-
stead of supporting hyperplanes and thus no linesearch is performed.

The ESH algorithm is implemented along with primal bound strategies in the solver SHOT
(supporting hyperplane optimization toolkit). SHOT utilizes several of the open source projects
made available through the COIN-OR initiative, and the goal is to release the solver as open
source as well. In a comparison with other state-of-the-art MINLP solvers on all 333 convex
MINLP problems in MINLPLib2 [4], SHOT proved to be very effective [2]. Some of the recent
additions and hints at the future development of SHOT are discussed in this paper. These
enhancements include: solving mixed-integer quadratic programming (MIQP) subproblems,
extending the usage of lazy constraints in the MILP subsolvers and extensions to the integer-
relaxation strategies employed.

2. Utilizing MIQP capabilities of the subsolvers

In algorithms describing the feasible region by an outer polyhedral approximation through
hyperplanes or cutting planes, such as ECP, ESH or outer approximation (OA) [1], MILP sub-
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Figure 1. A solution profile illustrating the number of instances solved to an objective duality gap of≤ 1% when
solving (MI)QP subproblems instead of (MI)LP ones.

problems are usually solved by calling on subsolvers. However, some MILP solvers (e.g.,
CPLEX and Gurobi), can actually solve MIQP problems as well. If the MINLP problem has
a quadratic objective function this will often greatly enhance the performance of the MINLP
solver, as the nonlinear quadratic objective can be directly expressed in the MIQP subproblem
without linear approximations. In SHOT this means that a MIQP problem is solved in each
iteration instead of an MILP problem. Many of the problems in MINLPLib2 have a quadratic
objective function and linear constraints only, meaning that these problems can be solved to
optimality in one iteration only. Benchmark results obtained when running SHOT with or
without utilizing MIQP subsolvers is illustrated in Figure 1. All benchmarks in this paper
were performed on a Linux-based 64 bit computer using an Intel Xeon 3.6 GHz processor
with four physical and eight logical cores as well as 32 GB system memory.

Note that CPLEX and Gurobi can also solve convex mixed-integer quadratically constrained
quadratic programming (MIQCQP) problems, and therefore, it is possible to let the subsolved
directly handle quadratic constraints while the rest of the nonlinear constraints are handled
by the ESH method. However, this was not considered in the benchmark mentioned above.

3. Utilizing an adaptive LP step

By default in SHOT, the variable integer constraints are ignored in the first iterations, and
LP (or QP) problems are thus solved instead of mixed-integer problems. For a problem not
dominated by the integer requirements this will quickly give a good initial description of the
nonlinear feasible region as integer-relaxed problems are often magnitudes faster to solve.
After some criterion has been met, i.e., the maximum nonlinear constraint violation is below
a certain threshold or an iteration limit has been reached, the integer requirements are in-
cluded. This strategy has proved to work well, as indicated in Figure 2. In this benchmark,
the maximum number of integer-relaxed iterations was set at 300 and the maximum nonlinear
constraint termination tolerance at 0.001.

In addition to this initial relaxation strategy, integer-relaxed problems can also be solved in
later iterations. If the same solution for the discrete variables is obtained in several subsequent
iterations, the MILP solver can be viewed as solving LP instead of MILP problems, and to
speed up the solution process the integer variables can therefore be fixed and an NLP problem
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Figure 2. A solution profile illustrating the number of instances solved to an objective duality gap of≤ 1% when
initially solving integer-relaxed (i.e., QP/LP) subproblems.

with the original constraints of the MINLP problem solved instead. The solution to this NLP
problem gives a primal solution candidate that can be used as a cutoff value for the MILP
solver as long as it is within the interior of the nonlinear feasible set, i.e., fulfills all nonlinear
constraints. If it is on the boundary or, due to numerical tolerances, in the exterior of this set,
a supporting hyperplane can be added instead in this point to avoid numerical difficulties.

An alternative technique for handling that the same integer solution is returned in several
subsequent iterations, is to fix the integer variables to their respective values and instead solve
a series of LP or QP problems and generating supporting hyperplanes until the maximum
constraint violation of the new solution point is less than a specified epsilon tolerance. This
is often much faster than solving an NLP problem, however it comes at the cost that we most
often do not get a new primal solution candidate unless it is situated on the boundary of the
nonlinear feasible region.

4. Adding supporting hyperplanes as lazy constraints

MILP solvers such as CPLEX or Gurobi have the possibility to add constraints as so-called lazy
constraints. These are only considered when verifying a solution, and lazy constraints are thus
not normally included in the MILP model until they become active. Since SHOT often creates
several new constraints in each iteration (if several integer-feasible solutions are found), the
number of constraints increases rapidly, directly affecting the solution time of each iteration.
However, since the information contained in the early linearizations may become practically
redundant in later ones, the performance can be increased by adding the hyperplanes as lazy
constraints and let the MILP solver decide whether to use them or not. The results, when
using the initial relaxed step described in Section 3 and shown in Figure 2, indicate that for
problems with a long solution time (about > 60 s in the benchmark) the large amount of initial
extra linearizations created have a negative impact on the performance in the long run. This
further motivates the usage of lazy constraints instead of traditional ones.

There are two main strategies on how to use the lazy constraint technique in SHOT: The first
is to add the constraints as lazy instead of as regular ones in each iteration and solve the sub-
problems normally. The second option is to integrate the creation of supporting hyperplanes
as lazy constraints through the means of so-called callbacks in the subsolver. In the latter case,



104 Andreas Lundell, Jan Kronqvist and Tapio Westerlund

Table 1. The differences in solution times for SHOT when applied to some convex instances in MINLPLib2 and
utilizing the constraint strategies mentioned in Section 4.

Solution time (s) when adding the constraints as
Problem name normal constraints lazy constraints lazy constraints through callback

batchs201210m 14.1 23.8 7.6
clay0305h 13.7 17.7 4.2
flay05h 10.8 33.6 29.5
fo7 13.0 24.5 11.4
sssd25-08 99.7 25.6 3.3
syn30m04h 14.1 22.6 4.7
tls4 21.8 19.3 2.4

whenever the MILP solver finds a new integer-feasible solution, a callback function is called
that performs a normal ESH linesearch step between this point and the internal point, and
generates a new supporting hyperplane on the boundary of the nonlinear feasible set. This
hyperplane is then added as a lazy constraint, removing the integer-feasible point, after which
the subsolver will continue the search for a new integer-feasible solution without needing to
rebuild the branching tree. The second strategy is actually a very easy way of extending, e.g.,
CPLEX or Gurobi to also being able to handle convex MINLP problems.

A comparison of performance for the lazy constraint functionality is provided in Table 1. It
illustrates that adding lazy constraints through callbacks is preferred in most cases.
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Abstract The comparison of diverse descriptors among molecules forms the basis of Ligand Based Virtual
Screening methods (LBVS). In these techniques, a query molecule is processed against large com-
pound libraries containing up to millions of chemical compounds. After screening, subsets of com-
pounds with descriptor values close to the ones of the query compound will be subjected to exper-
imental characterization. This technique (LBVS) has shown success in many different drug discov-
ery scenarios and it is nowadays a very active research field within computational drug discovery.
Nonetheless, many of these LBVS methods are limited by single property or molecular descriptor
comparison between query and compound databases. This mono-objective optimization method-
ology imposes serious limitations to drug discovery methods since it has been demonstrated that
many discovered drugs share simultaneously several descriptors values at once with query com-
pounds. Therefore the implementation of multi-objective optimization methods in LBVS is manda-
tory and of outstanding interest on this area. In this work in progress, a multi-objective evolutionary
algorithm has been designed. Its aim is to quickly obtain a fixed size set approximating the complete
Pareto-front. It adapts ideas from different multi-objective optimization evolutionary algorithms,
but also incorporates new devices. In order to analyze the algorithm performance, the new method
has been compared to algorithms from the state-of-the-art. According to preliminary computational
experiments, the performance of the new algorithm is promising.

Keywords: Multiobjective Optimization, Computational Chemistry, Drug discovery,
Ligand Based Virtual Screening

1. Introduction

Virtual Screening (VS) techniques allow to provide predictions about which chemical com-
pounds might interact with a given protein target in some specified way and thus achieving
the desired biological function. VS techniques are mainly divided into Ligand Based Virtual
Screening (LBVS) and Structure Based Virtual Screening (SBVS).

SBVS methods require detailed structural information about the target protein and can not
be applied in situations where this data is not available. Unfortunately this issue is very
common for instance in the case of membrane proteins such as GPCRs (G protein-coupled
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receptor), which are of the highest pharmacological relevance. In such cases one can recur
to LBVS methods, where only information about known ligands (actives and inactives, ago-
nists and antagonists, etc) is exploited in order to predict new bioactive compounds against
selected protein targets. LBVS methods will therefore consider all existing available infor-
mation (structural, physico-chemical parameters, binding affinities, etc) about known active
and inactive compounds, and this information will be referred to as molecular descriptors.
There exist a large number of molecular descriptors of potentials used to compare molecules,
as for example Shape similarity, Electrostatic similarity, Atomic property fields, Aromatic potential,
Desolvation potential, etc.

In practice, the comparison of diverse descriptors among molecules lies in the core of the
diverse LBVS methods. In these techniques, a query molecule is processed against large com-
pound libraries containing up to millions of chemical compounds. After screening, subsets of
compounds with descriptor values close to the ones of the query compound will be consid-
ered for experimental studies. For these comparisons the properties in 3D space and ligand
flexibility must be taken into account. This implies that in order to measure the descriptor sim-
ilarity between the query and database molecule, the optimization algorithm must explore the
translation and rotation of the query molecule in addition to the potential or descriptor sim-
ilarity that the molecule may adopt in three-dimensional (3D) space. So, the algorithm must
find the optimal alignment that shows the highest descriptor similarity. In several cases, the
optimization algorithm approach has consisted on defining a multistart algorithm where each
of the random generated points call to a good local optimizer.

Nonetheless, many of these LBVS methods are limited by single property or molecular de-
scriptor comparison between query and compound databases. This mono-objective optimiza-
tion methodology imposes serious limitations to drug discovery methods since it has been
demonstrated that many discovered drugs share simultaneously several descriptors values at
once with query compounds. Therefore the implementation of multi-objective optimization
methods in LBVS is mandatory and of outstanding interest on this area.

In this work in progress, a multi-objective evolutionary algorithm has been designed; we
deal with a bi-objective problem, where the Three-Dimensional Shape [1, 2] and the Electro-
static Similarity [3] are the two objective functions which are optimized simultaneously. Our
main aim is to quickly obtain a fixed size set approximating the complete Pareto-front. This
approach adapts ideas from different multi-objective optimization evolutionary algorithms,
but also incorporates new devices.

2. The Multi-objective evolutionary algorithm

In this paper, we deal with a bi-objective problem. A general nonlinear bi-objective problem
can be formulated as follows:

min {f1(y), f2(y)}
s.t. y ∈ S ⊆ Rn (1)

where f1, f2 : Rn −→ R are two real-valued functions. Let us denote by f(y) = (f1(y), f2(y))
the vector of objective functions and by Z = f(S) the image of the feasible region.

When dealing with multi-objective problems we need to clarify what ‘solving’ a problem
means. Some widely known definitions to explain the concept of solution of (1) follow.

Definition 1. A feasible vector y∗ ∈ S is said to be efficient iff there does not exist another feasible
vector y ∈ S such that fl(y) ≤ fl(y

∗) for all l = 1, 2, and fj(y) < fj(y
∗) for at least one index j

(j = 1 or 2). The set SE of all the efficient points is called the efficient set or Pareto-set. If y1 and y2

are two feasible points and fl(y1) ≤ fl(y2), l = 1, 2, with at least one of the inequalities being strict,
then we say that y1 dominates y2.
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Efficiency is defined in the decision space. The corresponding definition in the criterion
space is as follows:

Definition 2. An objective vector z∗ = f(y∗) ∈ Z is said to be non-dominated iff y∗ is efficient. The
set ZN of all non-dominated vectors is called the non-dominated set or Pareto-front. If y1 and y2 are
two feasible points and y1 dominates y2, then we say that f(y1) dominates f(y2).

Solving (1) means obtaining the whole efficient set, that is, all the points which are efficient.
To this aim, exact general methods should be used [4, 5]. However, considering the high
computational cost of the problem to solve as well as the large memory requirements of exact
methods, heuristic algorithms seem to be the best choice.

The (meta)heuristic methods and, in particular the evolutionary algorithms, allow to obtain
good approximations of the efficient set. This is due to their ability to find multiple efficient
solutions in one single simulation run. In this work in progress, a multiobjective evolutionary
algorithm is presented to deal with this hard-to-solve optimization problem. It adapts some
concepts from other evolutionary algorithms (EAs) devised to cope with single-objective op-
timization problems. Therefore, a niching technique aiming at the preservation of solution di-
versity in objective space has been implemented. It is remarkable that the issue of population
diversity in parameter space has been gaining attention because several scientific domains,
including ligand-virtual screening and drug discovery, are interested in producing solutions
that differ [6]. Our method also combines evolutionary algorithms properties with local search
techniques that are applied to accelerate the convergence to different local optima. Our algo-
rithm also includes ideas from other typical MOEAs, as the establishment of Pareto-ranks, the
determination of Non-dominated solutions, and the use of distance metrics to compute the
estimation of the density of solutions during the selection procedure (as in [7]).

A comprehensive computational study is in progress to compare the new multiobjective
algorithm with the well-known NSGA-II [7] and SPEA2 [8] algorithms, which have become
the reference algorithms in the multi-objective evolutionary computation community. Ad-
ditionally, two other state-of-the-art algorithms have been included in the comparison: the
algorithms MOEA/D [11] and SMS-EMOA [10], which have proved to be very competitive
in different studies. The implementation of those four algorithms in the platform j-Metal [9]
has been used for the evaluation. Following the existing performance indicators in literature,
the comparisons have been accomplished in terms of effectiveness, i.e. in terms of quality of
the obtained approximations of the Pareto-front. The modus operandi has been to provide the
algorithms with a budget in the number of function evaluations and to obtain a fixed size
approximation of the Pareto-front.

For the assessment and comparison of Pareto-set approximations, global indicators (hy-
pervolume), proximity indicators (average distance and I1

ε+) and also dispersion indicators
(spread and spacing) have been computed.

3. Summary

In this work, a multi-objective evolutionary algorithm will be presented. It is designed to deal
with a bi-objective problem, where the Three-Dimensional Shape and the Electrostatic Simi-
larity of two molecules must be optimized simultaneously. The performance of the algorithm
has been analyzed through an extensive computational study. The preliminary results are
promising.
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Abstract Smear-based variable selection strategies are well-known and commonly used by branch-and-prune
interval-based solvers. They estimate the impact of the variables on each constraint of the system
by using the partial derivatives and the sizes of the variable domains. Then they aggregate these
values, in some way, to estimate the impact of each variable on the whole system. The variable with
the greatest impact is then selected. A problem of these strategies is that they, generally, consider all
constraints equally important.

In this work, we propose a new variable selection strategy which first weights the constraints
by using the optimal Lagrangian multipliers of a linearization of the original problem. Then, the
impact of the variables is computed with a typical smear-based function but taking into account the
weights of the constraints. The strategy is tested on classical benchmark instances outperforming
significantly the classical ones.

Keywords: Global optimization, Branch and bound, Variable selection, Lagrangian multipliers, Smear function

1. Introduction

This paper deals with continuous global optimization (nonlinear programming) deterministi-
cally handled by interval branch and bound (B&B). The problem is defined by:
minx∈x f(x) s.t. g(x) ≤ 0, where f : Rn → R is the real-valued objective (non convex) function
and g : Rn → Rm is a vector-valued (non convex) function.1 x = (x1, ..., xi, ...xn) is a vector
of variables varying in a domain (i.e., a box) x2. For performance and simplicity considera-
tions, a variable xo, with initial domain xo = [−∞,+∞] is included in the set of variables x
and an additional constraint f(x) = xo is included in the set of constraints (actually, functions
f(x)− xo and xo − f(x) are included in g). Finally, we solve an equivalent problem:

min
x∈x

xo s.t. g(x) ≤ 0 (1)

Several works have been proposed for finding good branching strategies ([2, 3, 4, 5, 7]).
Smear-based methods [3, 4] use information on the system to obtain the variable with the
greatest impact. The impact of a variable xi on a function gj is computed by means of the
smear value. Consider that the current node is associated with box x; the smear value is given
by: smear(xi, gj) = |J ji|∗wid(xi), where J ji is an interval overestimate of the range of the
partial derivative ∂gj

∂xi
in x. |J ji| is the magnitude of the interval J ji, i.e., |J ji|= max(|Jji|, |Jji|).

Selection methods based on the smear value select the variable that maximizes an aggrega-
tion of this value in the whole system.

Tawarmalani and Sahinidis [6] present an algorithm called ViolationTransfer, to estimate the
impact of a variable on the problem. ViolationTransfer works with the Lagrangian function of

1The branching strategies proposed in this paper can also apply to problems having equality constraints.
2An interval xi = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box x is a Cartesian product of intervals x1 × ... × xi ×
...× xn.
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a relaxation of the problem and an optimal solution of the relaxation x?. For each variable, an
interval xvi ⊂ xi is defined. xv is the smallest box such that it contains x? and each univariate
constraint gj(x?1, ..., x

?
i−1, xi, x

?
i+1, x

?
n) ≤ 0 (j = 1..m) is feasible for at least one value in xvi .

Then, for each variable xi, the difference between the bounds of the image of the Lagrangian
function over the interval xvi is estimated. In each estimation all the variables are fixed except
xi. The assumption is that branching on the variable maximizing the image width is likely to
improve the lower bound of the objective function in the subproblems.

In this article we propose lsmear, a new variable selection strategy for interval B&B solvers.
In a few words, the method selects the variable maximizing the smear value of the Lagrangian
function of the problem. In the Lagrangian function, the Lagrange multipliers are replaced by
the dual optimal of a linear approximation of the problem. Related to the ViolationTransfer
strategy our approach has some important differences:

1. lsmear uses a simple linear approximation of the original problem instead of sophisticated
convex relaxation techniques.

2. lsmear estimates the impact of each variable in the Lagrangian function of the original
problem. The estimated impact is computed by using the smear value.

3. The computation of xv requires the solver to use a reformulated problem in which mul-
tidimensional functions are replaced with either univariate or bilinear functions [6]. For
the moment, and in order to maintain the simplicity and generality of the approach,
lsmear uses directly x instead of xv.

2. lsmear, a Smear-based strategy using optimal Lagrange
multipliers

A main issue related to the smear-based strategies is that these strategies consider all the
constraints equally important. To overcome this issue we propose to estimate the impact of the
constraints in the system by using the optimal Lagrange multipliers of a linear approximation
of the original problem.

The lsmear method works in two phases. First, a linearization of the global optimization
problem is generated. Each function gj(x) is approximated by using the first order term of its
Taylor expansion around the midpoint of the box, i.e.,

glj(x) = gj(mid(x)) +
n∑
i=1

mid(J ji).(xi −mid(xi))

where J ji is an interval overestimate of the image of ∂gj∂xi
over x. Note that instead of using the

partial derivatives in the midpoint of the box we use the midpoint of the overestimate of the
partial derivatives (i.e., mid(J ji)).

The generated linear optimization problem includes the bound constraints, i.e., xi ≤ xi ≤
xi, and it is solved by using the simplex method3. If an optimum exists, then a second phase
is carried out. In this phase, the strategy computes the smear value of the following function:

L(x) = xo +

m∑
i=1

λ∗jgj(x)

where λ∗ corresponds to the dual optimal solution of the linear problem. The function L is
equivalent to the Lagrangian of (1) but the Lagrange multipliers have been replaced by the

3Actually we need to solve the dual problem, however we use a linear solver which solves both, the primal and the dual problems
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optimal Lagrange multipliers of the linear approximation. Thus, the problem of minimizing
L(x) can be seen as a rough approximation of the original optimization problem. The interest-
ing thing about L is that it aggregates the objective function and the constraints of the problem
in only one function, thus, computing the smear value of each variable in L offers an estima-
tion of the impact of the variable in the original problem. We believe that this estimation is
fairer than the one computed by the classical smear-based strategies because each constraint
is, in a certain way, being weighted according to its influence on the optimal value. Finally, as
well as the other Smear-based strategies, the variable with the greatest impact is selected for
bisection.

Input: (x,J , g)
// Phase 1: linearization and solving the linear program

gl← g(mid(x)) + mid(J).(x−mid(x))
t← xo; xo ← [−∞,∞]
λ∗ ← optimize(minxo, subject to: xi ≤ xi ≤ xi, glj(x) ≤ 0)
xo ← t
if λ∗ 6= ∅ then

// Phase 2: computing the impact of L(x)
for i ∈ {1..n} do

D ← λ∗i
for j ∈ {1..m} do

D ←D + λ∗n+j .J ji

I ← |D.wid(xi)|
if I > max impact then

max impact← |I|
var← i

return var
else

return smearsum(x,J)

Algorithm 1: lsmear

Algorithm 1 shows our approach. J corresponds to the Jacobian matrix which contains the
interval overestimates of the partial derivatives over x. In the linear program (Phase 1), the
interval related to the objective variable is unbounded to enhance the chances for successfully
finding an optimal solution. In Phase 2, for each variable xi we first compute D, which is an
interval overestimate of ∂L

∂xi
over x. The overestimate is obtained by adding the products of the

interval partial derivatives on each constraint (J ji) and the corresponding dual optimal value
(λ∗n+j). D is initialized with the dual optimal value related to the bounded constraint, i.e., λ∗i
(the partial derivative related to the i-th bound constraint over the variable xi is 1). Then, the
smear impact of the variable is computed as the magnitude of the product of the interval par-
tial derivative and the width of the related interval. The variable with the maximum impact
is saved and returned. If the linear program does not have solutions or if the optimal value
is unbounded, then the smearsum method is launched instead. This method uses the same
Jacobian matrix received by the lsmear one.

3. Experiments

In order to validate our approach, we implemented lsmear in IbexOpt, a state-of-the-art op-
timizer of the Interval-Based EXplorer library (Ibex ([1])). All the experiments were run on a
server PowerEdge T420, with 2 quad-processors Intel Xeon, 2.20 GHz and 8 GB RAM.
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The instances were selected from the series 1 and 2 of the COCONUT constrained global
optimization benchmarks.4 We selected all the problems solved by some strategy in a time
comprised between 2s and 3600s (66 instances). Each strategy was run 5 times on each instance
and the average CPU time was reported.

We compared the proposed strategy lsmear with some of the classical variable selection
strategies: round-robin (rr), largest-first (lf), smearsum (ssum), smearmax (smax) and
smearsumrel (ssr). Figure 1 summarizes the comparison among the six strategies.

Figure 1. Performance profile.

Each curve reports the percentage of instances solved by the corresponding strategy in less
than factor times the best reported CPU time. From the results we observe that lsmear clearly
outperforms all the classical variable selection strategies. Also note that more than 90% of
the instances are solved by lsmear in less than twice the best CPU time reported by all the
strategies.
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Abstract This paper focuses on the aircraft merging and sequencing problem at Terminal Manoeuvring Areas
through the use of Controlled Time of Arrival (CTA). A Mixed-Integer Linear Programming for-
mulation is proposed in order to minimize the number of non achievable CTAs while maintaining
separation between aircraft with regard to the horizontal, wake-turbulence, and runway occupancy
time constraints. Computational experiments performed on real-world case studies of Paris Charles
De-Gaulle (CDG) airport show that the approach is viable.
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1. Introduction

The Terminal Manoeuvring Area (TMA) is a designated area of controlled airspace surround-
ing one or several airports where there is a high volume of traffic. It is designed to handle
aircraft arriving to and departing from airports. TMA is identified by many researchers as
one of the most critical parts of the air transportation system. Therefore, there is a need for
improving efficiency and increasing capacity by using efficient approaches and algorithms.
In this paper, we focus on the problem of merging flight flows into the TMA. During the
transition from the en-route to the terminal airspaces, aircraft arriving from different entry
points must be merged and organized into an orderly stream while maintaining a safe sepa-
ration between them. In moving to the future SESAR concept of Trajectory Based Operations,
Air Traffic Controllers (ATC) can merge arrival traffic streams into sequences by the use of
so-called Controlled Times of Arrival (CTA) at the TMA entry point, called Initial Approach Fix
(IAF). CTA can be achieved using the airborne Required Time of Arrival (RTA) functionality, a
feature of modern Flight Management Systems designed to calculate and adjust the speed of
the aircraft to arrive at a given point in space at a defined target time. CTAs are determined by
ATC (typically using an arrival manager tool) and set when the aircraft is around 150-200NM
from touchdown. Such calculations might take into account, among other things, downlinked
aircraft Estimated Time of Arrival (ETA) (or a time-window [ETAmin,ETAmax]). In [1], De Smedt
et al. investigated the application of RTA to a real sequence of arriving aircraft into Melbourne,
Australia. They found that pressure on the terminal area would sometimes require aircraft to
lose more time than what is possible through the RTA capability, and hence require addition-
ally a recourse to other conventional sequencing techniques to provide a sequence resolution.

In this paper, we consider the problem of assigning CTAs to arriving aircraft in order to
reduce the number of CTAs that fall outside the [ETAmin,ETAmax] windows subject to opera-
tional constraints related to wake turbulence, horizontal separation, and runway occupancy
time. This problem is very close to the problem of minimizing the number of late jobs on one
machine, which is known to be NP-hard in the strong sense [2]. We propose a Mixed-Integer
Linear Programming (MILP) formulation of this problem and report computational experi-
ments on real-world case studies from Paris CDG airport using Gurobi optimization solver.
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2. MILP formulation
2.1 Given data

In TMA the traffic is arranged so that there is a basic segregated and separated Terminal Area
flight path structure with arriving traffic coming through one of a number of IAF. For example,
Figure 1 displays the arriving network structure at Paris CDG airport to runway 26L. In this
arrival procedure, four routes, originating from IAF MOPAR, LORNI, OKIPA and BANOX,
fuse into one single route towards the runway.

OKIPA

LORNI
MOPAR

BANOX

LFPG 26L

Figure 1. The route structure model for LFPG runway 26L.

We model the route structure as a graph, or to be more precise as a tree here, G = (V,E) in
which the aircraft are allowed to fly. The vertex set V is the set of way-points andE is the set of
the arcs interconnecting these way-points by a straight-line segments . The arcs are assigned
the natural orientation towards the root r, which plays the role of the runway threshold. Each
other leaf e ∈ V corresponds to an entry point and admits a unique corresponding path (route)
re leading to the root. We are given a set of flights (or aircraft), F = {1, . . . |F|}, and for each
flight f ∈ F the following data is also given:
• ef : entry way-point at TMA (this determines the route rf := ref of flight f )
• tf : ETA at the entering point ef ∈ V
• suf : speed (supposed constant) of f on the arc u ∈ E
• [tf −∆f , tf + ∆f ]: the [ETAmin,ETAmax] window.

2.2 Optimization variables

For each flight f we associate the continuous variable xf , representing its assigned CTA, and
the binary variable yf indicating whether the assigned CTA falls outside the [ETAmin,ETAmax]
window (yf = 1) or not (yf = 0). Considering two flights f and g, we have to decide which
lands first. Thus, we further introduce the decision variable

δf,g =

{
1 if f lands before g
0 otherwise

Remark that δf,g decides also the passing order on any node v ∈ rf ∩ rg. We also introduce
auxiliary variable tvf , representing the passing time through node v. It is connected to xf by
tvf = xf +

∑
u∈rvf

du
suf

, where the rvf contains the arcs of rf before v, and du is the length of u.

2.3 Objective function

The aim is to minimize the total number of non achievable CTAs:∑
f∈F

yf . (1)
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2.4 Constraints

The first set of constraints indicates the decision interval for the CTA. Ideally we would ask
each xf to be an achievable CTA, i.e. tf −∆f ≤ xf ≤ tf + ∆f . However, such a requirement,
will in general render the problem infeasible. Thus, at the price of possibly invoking other
conventional sequencing techniques, we relax this constraint by

tf −∆f ≤ xf ≤ tf +Rmax, f ∈ F (2)

where Rmax is the maximum moving-backward value of CTA, a user-defined parameter.
Now, considering pairs (f, g) of flights, we have that

δfg + δgf = 1, f, g ∈ F , g > f. (3)

In words, either flight f must land before (δfg = 1) or after (δgf = 1) flight g. It is trivial to see
that, for certain pairs (f, g) of flights, we can decide whether δfg = 1 or whether δgf = 1 based
on the particular input data in a preprocessing step. The link between xf and yf is given by

xf − yf (Rmax −∆f ) ≤ tf + ∆f , f ∈ F . (4)

Indeed, if the CTA is not achievable, then this constraint implies that yf = 1. Otherwise, both
values yf = 0 and yf = 1 are feasible, but in the minimal solution yf will necessarily be 0.
Operational constraints. In this problem, we consider three separation requirements.

Runway separation constraints. For each ordered pair of flights (f, g) a minimum sepa-
ration of τf,g units must be maintained between the landing times trf and trg of f and g. This
minimum separation τf,g depends on the wake turbulence categories of f and g. This separa-
tion is insured by the following constraint (M denotes a sufficiently large positive constant)

trg − trf ≥ τf,g − (1− δf,g)M, f, g ∈ F , f 6= g. (5)

Weak-turbulence constraints. For each pair of successive aircraft (f, g), the International
Civil Aviation Organization regulates the minimum spacing between them to avoid the dan-
ger of wake turbulence. It is a distance-based separation wf,g. As the speed is assumed to stay
constant throughout one arc, it is sufficient to check this separation constraint at the nodes
v ∈ rf ∩ rg. This is achieved by imposing the following constraint

tvg − tvf ≥ max

wf,g

s
u−g,v
g

,
wf,g

s
u+f,v
f

− (1− δf,g)M, v ∈ rf ∩ rg; f, g ∈ F , f 6= g (6)

where u−g,v (resp. u+
f,v) is the arc of rg incoming to (resp. the arc of rf outgoing from) node v.

Horizontal separation constraints. Aircraft must satisfy a minimum given horizontal
separation, dh, based on radar (typically dh = 3 NM in the TMA). In order to give a necessary
and sufficient condition for the horizontal separation, we need the following assumptions:
(H1) The distance between any two non-adjacent arcs u1 and u2 is greater than or equal to dh.

(H2) For any two distinct adjacent arcs u1 = (v1, v) and u2 = (v2, v) (or u2 = (v, v2)), the
distance between v2 and the line segment [v1, v] and the distance between v2 and the
line segment [v2, v] are greater than or equal to dh.

Assumption (H1) implies that a conflict (the distance between two aircraft is less than dh) can
only occur between two aircraft flying on the same arc or two adjacent arcs. Moreover, in
the later case, Assumption (H2) guarantees that a conflict can only occur near the common
node. The following lemma takes care of the case where a pair of flights travel on arcs that are
adjacent to a common node.
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Lemma 1. Let u1 = (v1, w1), u2 = (v2, w2) two arcs adjacent to a common node v ∈ V . Let θu1,u2 be
the angle between the vectors −−→v1w1 and −−→v2w2. Assume that flight f passes node v before g. Then, there
is no conflict between f and g, when f is flying on u1 while g is flying on u2 if and only if

tvg − tvf ≥ ∆f,g
u1,u2 , (7)

where ∆f,g
u1,u2 is defined as follows:

1. If u1 = (v1, w1) and u2 = (v2, w2) are converging arcs (i.e. v = w1 = w2), then

∆f,g
u1,u2 :=


dh
sgu2

if sfu1 cos(θu1,u2) ≤ sgu2
dh

√
(sfu1 )2+(sgu2 )2−2sfu1s

g
u2

cos(θu1,u2 )

|sin(θu1,u2 )|sfu1s
g
u2

otherwise.

2. If u1 = (v1, w1) and u2 = (v2, w2) are serial arcs (i.e. v = v1 = w2), then

∆f,g
u1,u2 :=


max ( d

h

sfu1
, dh
sgu2

) if sfu1 cos(θu1,u2) ≥ sgu2 or sgu2 cos(θu1,u2) ≥ sfu1
dh
√

(sfu1 )2+(sgu2 )2+2sfu1s
g
u2

cos(θu1,u2 )

|sin(θu1,u2 )|sfu1s
g
u2

otherwise.

Consequently, the horizontal separation constraint on node v reads

tvg − tvf ≥ ∆f,g
u1,u2 − (1− δf,g)M. (8)

This constraint must be satisfied for each pair f, g of aircraft, for each node v ∈ rf ∩ rg, and for
each arcs u1 ∈ rf , u2 ∈ rg adjacent to v.

3. Computational experiments
We test our approach on real traffic data sample recorded on 5th May 2015 at Paris CDG
Airport on runway 26L. We apply our algorithm first at once on the 24-hour data and then on
different 2-hour time windows. The MILP model is solved with Gurobi 5.6.3. Computations
are performed on an Intel(R) Core(TM) i5-3210M with 2.5GHz and 4Go RAM memory. The
results (number of non-achievable CTAs) are given in Table 1 and show that the problem can
be efficiently solved.

Table 1. Results obtained on real traffic of the Paris CDG Airport runway 26L (May 5, 2015)

0:00 3:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00- 19:00
Time windows - - - - - - - - - -

24:00 5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00

Number of flights 417 32 63 39 51 54 42 48 48 37
Optimal solution 29 3 9 3 8 3 0 0 1 1
Computation time (sec.) 28.6 0.05 31.04 0.03 5.66 0.01 0.03 0.05 0.03 0.03

4. Summary
The problem of minimizing the number of CTAs falling outside the [ETAmin,ETAmax] win-
dows subject to operational constraints is investigated. A MILP formulation and promising
preliminary computational experiments on real traffic data were presented.
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1. Introduction

In the following study we will focus on a specific type of convex mixed integer nonlinear pro-
gramming (MINLP) instances, where all nonlinear functions are convex and can be separated
into convex functions consisting only of a subset of the original variables. For such MINLP
instances it is possible to utilize a simple reformulation, here referred to as a lifted polyhedral
approximation, where the problem is lifted to an higher dimensional space to obtain a tighter
linear approximation which can significantly enhance the performance of some MINLP solu-
tion techniques. The benefits of the lifted polyhedral approximation have, for example, been
discussed in [5, 6] and Hijazi et al. demonstrated in [3] the benefits of combining lifted poly-
hedral approximations with outer approximation. Here the main interest has been to study
the benefits of combining lifted polyhedral approximations with a new solver called the sup-
porting hyper plane optimization toolkit (SHOT) [4]. As will be demonstrated in this paper,
the reformulation is beneficial for solution techniques based on a polyhedral outer approxi-
mation of the feasible region. Solvers utilizing a polyhedral approximation are for example
SHOT, ALPHAECP and DICOPT, as well as BONMIN with certain settings, e.g., see [4, 1].

In a recent benchmark on convex MINLP instances presented in [4] the previously men-
tioned solvers preformed well and the overall best performance was obtained with SHOT
closely followed by BARON and ALPHAECP, thus motivating the use of solvers based on
polyhedral approximations. However, even though there are several commercial and aca-
demic solvers available for convex MINLP, it should be noted that convex MINLP is still a
challenging type of optimization problems. For example in the benchmark about 3% of the
problem instances remains unsolved, even if we combine the effort of all the solvers used in
the benchmark. Hence further research is still motivated within the field of convex MINLP.
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2. Divided linear approximations

Here we will consider the linear approximation of completely additively separable and almost
separable functions. We will illustrate the benefits of approximating each component sepa-
rately compared to a linear approximation of the original function by two simple examples.
A completely additively separable function f can be decomposed into univariate functions gi
according to

f(x1, x2, ...., xn) =

n∑
i=1

gi(xi). (1)

In case the function f is convex, it is clear that all the functions gi are also convex. A partially
additively separable function, sometimes also referred to as additively decomposed, cannot
be divided into univariate functions. However, it can be divided into functions hi consisting
of only a subset of the original variables. Let N be an index set containing the index of each
variable, i.e., N = {1, 2, ..., n} and let Ni ⊂ N be the index set of the variables defining hi.
Then a partially additively separable function can be defined as

f(x1, x2, ...., xn) =
n∑
i=1

hi (xj | j ∈ Ni). (2)

The definition of a partially additively separable function require the subsets Ni to be disjoint
sets. However, here we only require that the sets are not equal and that they are proper subsets
of N . These functions will here be referred to as almost separable. Now it should be noted
that a variable e.g., x1 may appear in several of the functions hi. Thus, even if the original
function f is convex it does not guarantee that the separated functions hi are convex. Here
we will only consider such functions f that can be divided into convex functions hi. Now,
consider how to generate a polyhedral approximation of the convex function f . The intuitive
way is to utilize a first order Taylor series expansion at the linearization point x0 according to

f(x) ≈ f̂(x) = f(x0) +∇f(x0)T (x− x0). (3)

If we utilize several linearizations the approximation is given by

f(x) ≈ f̂1(x) = max
j

{
f(xj) +∇f(xj)T (x− xj)

}
. (4)

However, it is also possible to generate individual linearizations for each component hi of the
function f

f(x) ≈ f̂2(x) =
n∑
i=1

max
j

{
hi(y

j
i ) +∇hi(yji )

T (yi − yji )
}
, (5)

where yi is a vector, containing a subset of the variables x, defined by the index set Ni. Pro-
vided that each component hi is a convex function, the approximation given by f̂2 will always
underestimate the function f .

Now, to illustrate the benefits of the latter approximation let ut consider a simple example.
Suppose we wish to approximate the function f(x, y) = x2 + y2 within the box defined by
−3 ≤ x ≤ 3 and −3 ≤ y ≤ 3. We then generate the approximations f̂1 and f̂2 according to
equations (4) and (5) by generating linearizations at the points (−3, 0), (0, 0), (3, 0), (0,−3) and
(0, 3). From Figure 1 it is clear that f̂2 gives a tighter approximation of f compared to f̂1. From
the figure it can also be seen that the greatest approximation error of f̂1 is obtained at the cor-
ners of the box. At these corner points f̂2 actually gives an exact approximation. This is due
to the fact that the individual components h1(x) = x2 and h2(y) = y2 are approximated by
linearizations at the extreme values and at the center value. Hence, each component have an
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Figure 1. The figures on top shows the approximations and in light red the real function f . The upper left figure
shows the approximation according to equation (5) and the upper right figure shows the approximation according
to equation (4). The figures below shows the corresponding approximation error.

exact approximation at the extreme values and at the center resulting in an exact approxima-
tion at each combination of these points. For an optimization method based on a polyhedral
approximation, the tighter approximation gives a great advantage, usually reducing the num-
ber of iterations required significantly.

In the previous example the function f was completely additively separable. Now let
us consider the almost separable function f(x, y, z) = x−1.2y−0.8 + e0.5(y+z). Suppose we
wish the approximate the function f within the three dimensional box X , defined by X =
{x, y, z | 0.1 ≤ x ≤ 3, 0.1 ≤ y ≤ 3, 0.1 ≤ z ≤ 3}. Here both components h1(x, y) = x−1.2y−0.8

and h2(y, z) = e0.5(y+z) are convex, thus the approximation according to equation (5) will
result in an underestimation of f . Suppose we generate the approximations f̂1 and f̂2 by
generating linearizations at all corners of the box X . To compare the approximations we can
integrate the difference between the approximation a f̂k and f to obtain an estimation error
volume Vk. The estimation error volumes are given by

V1 =

∫ 3

0.1

∫ 3

0.1

∫ 3

0.1

(
f(x, y, z)− f̂1(x, y, z)

)
dxdydz

V2 =

∫ 3

0.1

∫ 3

0.1

∫ 3

0.1

(
f(x, y, z)− f̂2(x, y, z)

)
dxdydz.

In case linearizations are added for all corners of the boxX , we obtain V1 ≈ 37.9 and V2 ≈ 34.7.
More interestingly, in case we leave out linearizations at 3 cornes of X we obtain V1 ≈ 216.2

and still V2 ≈ 34.7. Hence, in this case the approximation f̂2 results in a tighter approximation
even with fewer linearizations points.

3. Lifted polyhedral approximations in MINLP

In the previous section we showed that the approximation f̂2 can give a significantly tighter
underestimator than f̂1. By introducing auxiliary variables µi in a convex MINLP instance,
the problem can be written in such a form that solvers based on a polyhedral approximation
can benefit from the separate approximation of the components hi as in equation (5). This is
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Table 1. Comparison of solution times of original problem and the reformulated with different solvers.

AlphaECP BONMIN OA DICOPT SHOT
MINLP Instance Org./ Ref. Org./ Ref. Org./ Ref. Org./ Ref.

Netmod dol1 >7200 s/ 3794 s >7200 s/ 1135 s >7200 s/ 3462 s >7200 s/ 1199 s
Portfolio classical 050 1 >7200 s/ 6 s ** >7200 s/ 4 s >7200 s/ 8 s 2513 s/ 15 s
Slay10h >7200 s/ 93 s >7200 s/ 15s >7200 s/ 51 s 1649 s/ 22 s
Stockcycle >7200 s/ 1 s >7200 s/ 1 s >7200 s/ 1 s >7200 s/ 3 s
Tls4 142 s/ 26 s 59 s/ 3 s >7200 s/ >7200 s 52 s/ 9 s
Tls5 >7200 s/ >7200 s >7200 s/ >7200 s >7200 s/ >7200 s >7200 s/ 4403 s
Tls7 >7200 s/ >7200 s >7200 s/ >7200 s 7200 s/ >7200 s >7200 s/ >7200 s

The problem instances were solved to a desired tolerance of ±1% of the optimal solution, which in practice was specified
with the optcr option in GAMS. All calculations where done on a desktop computer with an quad-core Intel Xeon 3.6 GHz
processor. In the instance marked ** AlphaECP did not return a solution within the desired tolerance. This is due to the fact
that the solver’s termination criterion is not based on the duality gap. All solvers have used CPLEX as subsolver.

done by dividing each constraint f(x) =
∑n

i=1 hi (xj | j ∈ Ni) ≤ 0 according to

hi (xi ∈ Ni) ≤ µi ∀i,
n∑
i=1

µi ≤ 0. (6)

A solution satisfying these new constraints, will obviously satisfy the original constraint. Note
that this transformation requires each component hi to be convex, which does not follow from
the convexity of f . Next we will consider 7 convex MINLP instances taken from MINLPLib2
[2], where some of the nonlinear functions are completely or almost additively separable. We
have solved the problems both in their original form and with the transformation according
to equation (6). SHOT, as well as the GAMS solvers AlphaECP, BONMIN-OA and DICOPT
were used in the comparison, whom all utilize a polyhedral approximation and should hence
benefit from the transformation. For all solvers we have used the parameters recommended
for convex problems and the time limit was set to 7200 s. From Table 1 it can be seen that
the reformulation, resulting in a lifted polyhedral approximation, in several cases drastically
improved the performance of the solvers. The results strongly motivates the use of a lifted
polyhedral approximation, and it will be investigated further how to incorporate it in SHOT.
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1. Introduction

A global optimization problem can be described as

min
x∈D

f(x), (1)

where f(x) is the objective function, D is the search space, and x is the decision vector. Real-world
optimization problems usually require to consider more than one criteria thus translating the
above global optimization problem to the multi-objective optimization problem where a set of
m ≥ 2 objective functions f1(x), f2(x), . . . , fm(x) must be taken into account when determining
the optimal decision vector of the problem.

Due to conflicts between objectives often encountered in real-world situations, usually it is
impossible to determine a single decision vector x∗, which would be the best according to all
objectives of the problem – the best decision vector by one objective can be worse or even the
worst by another one. Therefore the goal of solution of a multi-objective optimization problem
is to find a set of compromising decision vectors which cannot be improved by any objective
without deterioration of another one. Such a set of decision vectors is called Pareto Set and
the corresponding set of the objective functions values – the objective vectors – is called Pareto
Front. For more details on multi-objective optimization and Pareto optimality we refer to [1].

Determination of the Pareto front is the main goal of multi-objective optimization. How-
ever, determination of the exact Pareto front of a real-world problem usually is complex and
time consuming task and sometimes impossible within a reasonable time. On the other hand,
usually it is not necessary to find the exact Pareto front when dealing with real-world opti-
mization problems – it is good enough to provide a discrete approximation of the true Pareto
front.

The algorithms based on controlled random search are popular to tackle practical optimiza-
tion problems as they usually are easy to implement, robust, and require a little knowledge on
the problem being solved – the only requirement is to be able to evaluate objective values for
every feasible decision vector. The well-known algorithms such as NSGA-II [2], SPEA2 [10],
MOEA/D [5, 7], NSGA-III [3] etc. can be given as an examples of controlled random search
algorithms for approximation of the Pareto front.

The set of objective vectors approximating the Pareto front can be very large (or even infi-
nite) and hard to process especially if a decision maker have to select one or several the most
suitable solutions. On the other hand the decision maker might declare a region of interest of
the Pareto front and guide the search towards it. Based on whether the preference information
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Figure 1. Illustration of the region of interest defined by the reference point for the problem of two objectives
both subject to minimize

is provided before, after or during the optimization process, preference-based multi-objective
optimization methods can be classified into priori, posteriori, and interactive ones [8].

Our research is focused on incorporation of a decision maker preferences into previously
developed Multi-Objective Single Agent Stochastic Search (MOSASS) thus developing Preference-
based MOSASS – PreMOSASS.

2. PreMOSASS

MOSASS has been developed from Single Agent Stochastic Search (SASS) [6] and used in
conjunction with NSGA-II in [4].

MOSASS is based on generation of new decision vectors in the neighborhood of the initial
decision vector, which is updated if the decision vector dominating it is found. The perturba-
tion in random generation of coordinates of the new decision vector is dynamically adjusted
according to the repetitive successes and failures in generation the new decision vectors, thus
giving more attention to the global or the local search. For the detailed description of MOSASS
we refer to [4].

PreMOSASS extends the MOSASS by incorporating the reference point as the preference
information given by decision maker. Thus the PreMOSASS focuses on the approximation of
the Pareto front within the region of interest (see Figure 1).

The PreMOSASS algorithm begins with an initial decision vector x = (x1, x2, . . . xn) and
an empty archive A for storing non-dominated decision vectors will be found at runtime of
the algorithm. A new decision vector x′ is generated by changing values of some variables
of x. Each variable xi (i = 1, 2, . . . , n) is modified with probability 1/n by adding a random
value ξi generated following Gaussian distribution. In general, the new decision vector can
be expressed mathematically as

x′ = x + ξ, (2)

where ξ = (ξ1, ξ2, . . . , ξn) and

ξi =

{
N (bi, σ), if ri ≤ 1/n,

0, if ri > 1/n,
(3)

where N (bi, σ) is random number generated following Gaussian distribution with the bias
bi and the standard deviation σ, ri – a random number uniformly generated within interval
[0, 1], and n – the number of problem variables. Such a probabilistic approach of generation of
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new decision vector leads to the change of a single variable in average; see [4] for details and
advantage of the approach.

If the generated decision vector x′ dominates its precursor x, thenA is updated by removing
all decision vectors dominated by x′, and x is replaced by x′. The iteration is then assumed to
be successful and the algorithm continues to the next iteration.

If x′ does not dominates its precursor x and is not dominated by it, then the dominance
relation of x′ against reference point and decision vectors in A is evaluated. If x′ dominates
the reference point (belongs to the region of interest) and is not dominated by any decision
vector inA, thenA is updated by removing all decision vectors dominated by x′ and including
x′ as a member of the archive. Otherwise, if x′ is dominated by the reference point or by any
decision vector from A, then x′ is rejected and the opposite decision vector x′′ = x − ξ is
investigated.

If decision vector x is updated or archiveA is supplemented by x′, then iteration is assumed
to be successful and the biases of Gaussian perturbation is updated by

bi ← 0.2bi + 0.4ξi, i = 1, 2, . . . , n. (4)

If decision vector x is updated or archive A is supplemented by x′′, then iteration is assumed
to be successful and the biases of Gaussian perturbation is updated by

bi ← bi − 0.4ξi, i = 1, 2, . . . , n. (5)

If both x′ and x′′ are rejected, then iteration is assumed to be failed and the biases of Gaus-
sian perturbation is updated by

bi ← 0.5bi, i = 1, 2, . . . , n. (6)

The standard deviation σ of the Gaussian perturbation is dynamically adjusted with respect
to the repetitive success and failed iterations. If the number scnt of repetitive successful iter-
ations reaches the predefined number Scnt, then the standard deviation is increased twice.
Analogous, if the number fcnt of repetitive failed iterations reaches the predefined number
Fcnt, then the standard deviation is reduced by a half. If the standard deviation becomes
smaller than its lower bound σmin, then σ is set to its lower bound (σ = σmin).

The iterative process is continued till a stopping criterion is not satisfied, which is usually
based on the maximum number of iterations or the maximum number of functions evalua-
tions. The algorithm returns a set A ∪ {x} of non-dominated decision vectors found during
the runtime of the algorithm.

3. Computational experiments

PreMOSASS has been experimentally investigated by solving multi-objective optimization
problem ZDT1 [9] with 10 variables and 2 objectives – both subject to minimize. The reference
point has been set to (0.5, 0.5) and 1000 function evaluations have been used for the approxi-
mation of the Pareto front.

The results obtained by MOSASS and PreMOSASS are illustrated in Figure 2. One can
see from the figure that approximation of the Pareto front obtained by MOSASS covers the
whole Pareto front, whereas PreMOSASS focuses on exploration of the regenio defined by the
reference point.

4. Summary

The previously proposed algorithm MOSASS has been improved by incorporating the pref-
erence information thus developing the preference-based multi-objective optimization algo-
rithm PreMOSASS. The proposed algorithm has been experimentally investigated by solving
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Figure 2. Pareto front approximation obtained by MOSASS and by PreMOSASS with reference point (0.5, 0.5).

a well-known multi-objective optimization test problem thus highlighting advantages of in-
corporation of the preference information into the random search technique.
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Abstract This work addresses the maximum edge weight clique problem, a generalization of the well-known
maximum clique problem. We propose a heuristic approach based on the optimization of a quadratic
function over a sphere. Preliminary computational results are reported for a set of benchmark prob-
lem instances derived from the DIMACS maximum clique instances.
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1. Introduction

The maximum weight clique problem is an important generalization of the maximum clique
problem (MC) and it has been considered in three different versions in the literature: the max-
imum vertex weight clique, the maximum edge weight clique, and the maximum edge and
vertex weight clique. In all three versions a clique with maximum weight is sought. The
difference being the way in which the clique weight is calculated, namely as the sum of the
weights of its vertices, the sum of the weights of its edges, and the sum of the weights of
both its vertices and edges, respectively. In this work, we focus on the maximum edge weight
clique (MEWC) problem. If all edge weights are equal, then finding the MEWC is equiva-
lent to finding the MC. Therefore, the MEWC problem has, at least, the same computational
complexity as the MC problem, which is known to be NP-hard [6].

Many applications can be found for these cliques in facility location and dispersion [11],
molecular biology [5], broadband network design [8], and bioinformatics [3]. The first work on
this problem appears to have been that of Späth [11]. The author addresses a facility selection-
location problem and finds heuristic solutions through iterative improvements of some initial
clique by successively exchanging two vertices. Since then several works have been reported
in the literature. Exact branch-and-cut algorithms, based on linear programming have been
proposed by [7, 8, 10], among others. These works first introduce facet-defining inequalities
which are then used as cutting planes. More recently, heuristics have been proposed: Tabu
Search [1], phased local search [9], and several linear programming relaxations [4].

All authors, except for [4, 9], consider complete networks, although many practical appli-
cations are defined on sparse graphs, for example in protein interaction networks [3]. Fur-
thermore, except for [1] all the works on the MEWC use linear representations of the problem.
This preference for linearity is understandable, since many methods that take advantage of
linearity have been proven to be successful and efficient. However, linearizing combinatorial
problems may not always be the best choice from a computational point of view.

In this paper, we propose a heuristic that uses a continuous quadratic formulation to find
solutions to the MEWC problem. Section 2 provides a quadratic discrete formulation, as well

∗The financial support of project UID/EEA/50014/2013 and NSF/CMMI–1538493 is appreciated.
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as an equivalent quadratic continuous formulation. The heuristic proposed in this work is pre-
sented in Section 3, which also reports on preliminary computational results. Finally, Section
4 concludes this work.

2. Problem definition and formulation

Given a simple edge-weighted graph G = (V,E), where V is the set of vertices and E is the
set of edges, a clique in G is a subset of vertices C ⊆ V , such that all vertices in C are pairwise
adjacent. The weight of a clique C is defined as W (C) =

∑
(i,j)∈E(C)wij , where wij > 0

denotes the weight associated with edge (i, j) and E(C) is the set of edges connecting vertices
of C. The MEWC problem seeks a clique C in G which maximizes W (C).

A straightforward binary quadratic formulation for the MEWC problem is:

max

∑
i,j∈V

wijxixj : xixj = 0∀ (i, j) /∈ E;xv ∈ {0, 1} ∀ v ∈ V

 . (1)

The following result can be derived from (1) :

Proposition 1. The MEWC problem can be equivalently formulated as a continuous quadratic prob-
lem, as shown in (2), where M denotes a sufficiently big number.

max
xv∈[0,1] ∀ v∈V

 ∑
(i,j)∈E

wijxixj −
∑

(i,j)6∈E

Mxixj

 . (2)

3. Heuristic approach

Problem (2) is NP-hard. However, optimizing a quadratic function subject to ellipsoid con-
straints has been proved to be polynomially solvable [12]. In this work, following the work
in [2] the MEWC problem is approximated by substituting the unit hypercube constraint by a
unit hypersphere.

Let AG denote the weighted adjacency matrix of graph G, where AG(i, j) is set to wij for
(i, j) ∈ E and 0 otherwise, and ĀG the adjacency matrix of Ḡ, the complement of G, where
ĀG(i, j) is set to 1 for (i, j) 6∈ E and to 0 otherwise. The quadratic model in (2) can then be
written as:

max
X∈[0,1]n

(
1

2
XTAGX −

1

2
XT (MĀG)X

)
, (3)

which is approximated by:

Maximize
1

2
XTQX

Subject to

||X||22= 1,

(4)

where X ∈ Rn is the vector of variables, Q = AG −MĀG, and ||X||22= XTX.
The stationary points of this problem are given by the eigenpairs (µ∗, X∗) ofQ. Thus, a heuris-
tic solution to the MEWC can be obtained by enumerating the stationary points, i.e., eigen-
vectors of Q, and extracting the corresponding clique in G, as in the algorithm below.
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ALGORITHM

1. for each eigenvector Xe of matrix Q = AG −MĀG do

(a) obtain a clique C by performing the following procedure:

i. Sort components of Xe in a nonincreasing order (i.e. xe1 ≥ xe2 ≥ · · · ≥ xen)
ii. C ← v(xe1)

iii. for j = 2 to n do
if v(xej) ∈

⋂
i∈C N(i) then C ← C ∪ {v(xej)}

(b) obtain W (C) the weight of the incumbent clique

(c) if W (C) > W (C∗) then C∗ ← C

2. Return the best known clique C∗ and the corresponding weight W (C∗)

Here, v(x) denotes the vertex corresponding to variable x and N(i) denotes the set of vertices
adjacent to vertex i in G (i.e. neighbors of u).
Preliminary results are reported in Table 1 for the DIMACS-EW benchmark instances, pro-
posed by Pullan [9], which were derived from the DIMACS MC instances.

The first four columns characterize the problem instances in terms of name, number of
vertices, number of edges, and edge density, while the fifth reports the best known solution
due to Pullan [9]. In columns six and seven we report the clique weight W (C) and clique
size |C|, obtained by the heuristic proposed here, and in column eight the computational time
required to obtain such solutions. Finally, column nine reports on the quality of solutions by
providing the percentage gap between our solutions and those of Pullan, i.e. W

′(C)−W (C)
W ′(C) ×100.

Table 1. Computational results for the proposed algorithm.

Instances |V | |E| d(G) W ′(C) W (C) |C| Time(s) Gap(%)

johnson8-2-4 28 210 0.556 192 192 4 0.01 0.00
MANN-a9 45 918 0.927 5,460 5,445 16 0.04 0.27
hamming6-2 64 1,824 0.905 32,736 32,736 32 0.13 0.00
hamming6-4 64 704 0.349 396 396 4 0.08 0.00
johnson8-4-4 70 1,855 0.768 6,552 6,552 14 0.11 0.00
johnson16-2-4 120 5,460 0.765 3,808 3,766 8 0.46 1.10
C125.9 125 6,963 0.898 66,248 60,095 31 0.54 9.29
keller4 171 9,435 0.649 6,745 6,175 11 1.29 8.45
brock200-1 200 14,834 0.754 21,230 21,230 21 2.35 0.00
brock200-2 200 9,876 0.496 6,542 6,542 12 2.02 0.00
brock200-3 200 12,048 0.605 10,303 10,303 15 2.03 0.00
brock200-4 200 13,089 0.658 13,967 13,736 17 2.05 1.65
c-fat200-1 200 1,534 0.077 7,734 7,734 12 2.65 0.00
c-fat200-2 200 3,235 0.163 26,389 26,389 23 2.14 0.00
c-fat200-5 200 8,473 0.426 168,200 168,200 58 2.76 0.00

As it can be seen, for most problem instances the best known result was matched, nonethe-
less this was not the case for five problem instances. For two problem instances the optimality
gap is unexpectedly large.

4. Conclusions

This work introduces a heuristic for the MEWC problem that approximates the optimal solu-
tion by maximizing a continuous quadratic program over an unit hypersphere centered at the
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origin rather than over the unit hypercube. The preliminary results obtained are very encour-
aging as for many of the problem instances we were able to obtain a solution as good as the
best known solution. Other approximations and corresponding heuristics can be derived by
considering spheres centered at points other than the origin and different radius r, that is by
generalizing the sphere equation to ||X −X0||22= r2.
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Abstract The aim of this paper is threefold. First, given the objective function of a global optimization prob-
lem, we propose techniques to identify some of its properties, on which the difficulty of the opti-
mization depends. Second, we propose a new class of test functions, which allows to modify the
difficulty of the global optimization task by varying a couple of parameters and which can be em-
ployed, together with other already existing test functions, to evaluate the previously mentioned
techniques. Third, we show how the outcome of our analysis can be employed to make appropriate
algorithmic choices for the global optimization task through memetic approaches. The discussion
will put in evidence the advantages but also the limits of the proposed techniques.
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1. Introduction

The global optimization task asks for the minimization of a continuous function f over a com-
pact domain D ⊂ Rn. Depending on the function to be optimized, the problem of finding
the global optimum of the objective function can be either relatively simple, e.g., when f is a
convex function and D a convex domain, or very hard, e.g., when f is a highly multimodal
function. In the existing literature various techniques have been proposed to solve global op-
timization problems. For highly structured problems with a moderate dimension it is possible
to apply branch-and-bound methods which return a certified globally optimal solution. But
for poorly structured problems exact methods are doomed to failure and only heuristic meth-
ods can return an estimate of the global optimum within a reasonable time. An exhaustive
discussion about different global optimization approaches can be found in [5]. Our focus in
this paper is on problems which feasible region is a box or a polytope, and which objective
function is highly multimodal. We also assume that function evaluation and local searches
are relatively cheap tasks. As already commented in [4], the difficulty of these problems is
not only connected to the modality of the functions, i.e., to the number of local minima, but
also to the way these minima are placed within the feasible domain. In order to formalize this
aspect, the concept of level 2 local minimum has been introduced in [4] (level 1 local minima are
the usual local minima of the function). These are the local minima over a graph which nodes
are the level 1 local minima (assumed to be in a finite number). The set of nodes will be de-
noted by V in what follows. The edges of the graph depend on some neighborhood structure.
Edges are always oriented from a local minimum with higher function value towards a local
minimum with lower function value. Level 2 local minima always include the global mini-
mum, which will be assumed to be unique. But other level 2 local minima may be present,
depending on the choice of the neighborhood. One possible way to define the neighborhood
is through mountain passes (i.e., stationary points at which the Hessian has a single negative
eigenvalue). Given two local minima x and y, these are connected through an edge if there
exists a mountain pass z and a continuous curve s(t), t ∈ [0, 1], such that: s(0) = x, s(1) = y,
s(t̄) = z, for some t̄ ∈ [0, 1], and, moreover, f(s(t)) increases over [0, t̄] and decreases over [t̄, 1].
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While rigorous, this definition has the difficulty that the existence of the curve s(t) is hard to
establish. An alternative, simpler, definition is based on the Euclidean distance between local
minima. In particular, we use the normalized Euclidean distance, i.e., the ratio between the
Euclidean distance and the diameter of the feasible domain. In what follows we denote such
distance withD(·, ·). Normalized distances range between 0 and 1. For a given function f and
a threshold d ∈ [0, 1], the oriented graph is Gd = (V,Ed), where

Ed = {(x,y) : x,y ∈ V, x 6= y, D(x,y) ≤ d, f(y) ≤ f(x)}.
Local minima over graph Gd are all nodes without outgoing edges. We can define a function
WN : [0, 1]→ {1, . . . , |V |} as follows. First we introduce the subset

V (d) = {x ∈ V : 6∃ y ∈ V : (x,y) ∈ Ed} ⊂ V,
i.e., the subsets of local minima with no outgoing edges (these are the level 2 local minima
identified over graph Gd). Next, let fmin = minx∈V f(x) and fmax = maxx∈V f(x) be the
minimum and maximum objective function value at local minima of the problem (in fact, the
former is the global minimum value). Finally,

WN(d) =
∑

x∈V (d)

(
fmax − f(x)

fmax − fmin

)
,

i.e., WN(d) is a weighted sum of the level 2 local minima identified over graph Gd, with
weights belonging to the interval [0, 1] and larger at local minima with lower function value.
It holds that WN(d) ≥ 1 for all d ∈ [0, 1] since the global minimum always belongs to V (d)
and has weight equal to one. As d increases, function WN decreases (more precisely, it is a
non increasing step function). Graph G1 is the complete one and WN(1) = 1 (recall we are
assuming that the global minimum is unique). The value df defined as follows

df = min{d : WN(d) = 1},
is quite significant. This is the smallest value at which the graph has a single local minimum
which necessarily corresponds to the global minimum of f . If df is small, this means that we
can reach the global minimum by exploring small neighborhoods of the local minima, while
a large df value means that we may need to explore large neighborhoods in order to reach
the global minimum. Since the smaller the neighborhood, the more efficient is its exploration,
functions with a small df value tend to be easier to optimize. These functions are also called
in the literature single-funnel ones, while functions for which WN decreases slowly to 1 are
called multi-funnel ones. In fact, some care is needed. E.g., if one or few local (but not global)
minima of f are far away from all the other local minima, their presence will cause a large
df value, while when restricting the attention to low-level local minima, the df value would
be much lower. In other words, some care is needed when "outliers" are present. Moreover,
the value df and the function WN may not be enough to establish the difficulty of a global
optimization problem. This will be made clearer through some examples later on, showing
that the difficulty of optimizing functions with similar information from WN and df can be
rather different. All the same the information returned by function WN and by value df
should be taken into account when evaluating the difficulty of a global optimization problem.

At this point we should remark that the exact knowledge ofWN and df requires the knowl-
edge of all the local minima, which, of course, would make trivial the detection of the global
minimum. Thus, what we can do is to make an estimate. Possible estimates will be given in
Section 3.

2. Test functions

In the existing literature there are different test functions which can be classified either as
single-funnel or as multi-funnel ones. Examples of single-funnel functions are the Rastrigin
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[8], Ackley [1], and Levy n.13 [2] functions. Examples of multi-funnel functions are the Schwe-
fel [7] and Lunacek bi-Rastrigin [6] functions. In our study we considered all these functions.
More precisely, we considered rotated versions of these functions in order to remove the sim-
plifying feature of separability of the basic versions. In this paper we also propose a new class
of test functions, called MF and parameterized with respect to two parameters αl ∈ [−10, 0]
and αr ∈ [0, 10]. The MF functions are defined as:

MFαl,αr(x) =

n∑
i=1

min{θ(xi − αl)2, (xi − αr)2 + 1} − 10(cos(2π(xi − αl))− 1),

where θ =
α2
r + 1

α2
l

,

and xi ∈ [−10, 10], x∗i = αl, i = 1, . . . , n, f(x∗) = 0,

where x∗ denotes the global minimum. For αl, αr → 0, the function MF becomes equivalent
to the single-funnel Rastrigin function, while the df value of these functions is controlled
through the difference αr−αl. The df value for these functions is strictly related to αr−αl. In
the one-dimensional case parameter αl represents the position of the global minimum, while
αr is the position of another level 2 local minimum over graphs Gd (when d is smaller than
αr − αl). Finally, similarly to what we have done with the other test functions, in order to
destroy separability, we considered rotated versions of the MF functions, i.e., we considered
functions MFαl,αr(Wx), minimized over rotated domains {x ∈ Rn : Wx ∈ [−10, 10]n},
where W is an orthonormal matrix.

3. How to establish whether a function is single- or
multi-funnel

The construction of the graphs Gd requires the knowledge of all the local minima of the func-
tion but this is a task at least as difficult as the original global optimization problem. Thus, we
propose to consider a subset of local minima denoted by L ⊆ V and the subgraph induced by
this subset. The resulting graphs are Gd = (L,Ed(L)), where Ed(L) is the set of edges which
nodes both belong to the subset L. In particular, in order to consider a subset of "good" local
minima, we used the population members at different generations of a simple memetic ap-
proach called MDE (see [3]), and we computed at each generation an estimateWN of function
WN (the estimates for fmin and fmax are the minimum and maximum objective function val-
ues within the population at the current generation), and an estimate d̄f of the value df . The
functions WN , after five generations, are displayed in Figure 1. All the curves are obtained
averaging the values over 10 random trials.

It is clearly seen that functionsWN decrease much more rapidly for single-funnel functions.
Moreover the d̄f values of the single-funnel functions are much smaller. Function MF−2.5,2.5,
which is indeed the one with smallest df values among the MF functions we considered, lies
at the border between single- and multi-funnel functions but it is more clearly distinguished
with respect to single-funnel functions like the Levy and Rastrigin ones, and the graph of the
corresponding WN function lies above that of the three single-funnel functions. Thus, we
have seen that it is possible to identify some indicators which allow to recognize whether a
function is single- or multi-funnel. Interestingly, it also holds that the three WN curves which
decrease more slowly (namely, Schwefel, MF−8,5,8.5 and MF−2,5,8.5) will turn out to be also
those of the most challenging tests according to our experiments.
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Figure 1. Represents the WN function after the 5-th generation using MDE.

4. Computational experiments

We have performed some preliminary computational experiments which primary goal is to
verify that the difficulty indicator estimated in Section 3 is coherent with the real function
difficulty. The tests have been executed averaging the values over 25 trials and using differ-
ent memetic approaches based on Differential Evolution. These approaches can be divided in
three categories. The first category uses a greedy search policy that allows a fast convergence
of the algorithm. The second category try to maintain diversity between elements of the pop-
ulation causing a slower convergence (and consequently a larger number of local searches)
but a more accurate exploration. The last category has an intermediate behaviour between the
previous two. The computational experiments have shown that the functions with a low d̄f
value and fast decreasingWN function can be efficiently solved using a greedy strategy. How-
ever, as the d̄f value increases, the results obtained with a greedy strategy become poorer in
terms of successes. Functions with a high d̄f value and slowly decreasingWN function require
approaches which favor global exploration by enhancing diversity within the population.
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Abstract The parameter estimation problem is a widespread and challenging problem in engineering sciences
consisting in computing the parameters of a parametric model that fit observed data. The computer
vision community has proposed the RANSAC algorithm to deal with outliers in the observed data.
This randomized algorithm is efficient but non-deterministic and therefore incomplete. Jaulin et
al. propose a branch-and-contract algorithm that returns all the model instances fitting at least q
observations. Assuming that at least q observed data are inliers, this algorithm achieves on the
observations a relaxed intersection operator called q-intersection. First, this paper presents several
improvements to Jaulin et al.’s algorithm. Second, an interval branch and bound algorithm is de-
signed to produce a model that can explain the maximum number of observations within a given
tolerance. Experiments are carried out on computer vision and image processing problems. They
highlight a significant speedup w.r.t. Jaulin et al.’s interval method in 2D and 3D shape recogni-
tion problems. We have also investigated how the approach scales up in dimensions up to 7 for
stereovision (estimation of essential and fundamental matrices).
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1. Parameter estimation

Parameter estimation is a difficult problem widely studied by engineering sciences. It consists
in determining the n numerical parameters of a model based on m observations. Calibration
or geolocation can be viewed as specific parameter estimation problems. A parameterized
model is defined by an implicit equation f(x,p) = 0, p = (p1, . . . , pn) being the vector of
parameters to be determined. Given a finite set of observations {o1, . . . ,oi, . . . ,om}, we search
for all the parameters vectors that are compatible with at least q of these observations. We
generally have n ≤ q ≤ m. An observation oi is a d-dimensional vector of observed data. It
is said compatible with the parameters vector p, using a tolerance value τ , when it satisfies
an observation constraint −τ ≤ f(oi,p) ≤ +τ . The consensus set C(p) is the set of observations
compatible with p.

C(p) = {oi|−τ ≤ f(oi,p) ≤ τ} (1)

This parameter estimation problem becomes challenging when the function f used to define
the parametric model is not linear and/or in presence of outliers. Outliers can have numerous
origins, including extreme values of the noise, erroneous measurements and data reporting
errors. In order to cope with outliers we search for model instances whose consensus set
contains at least q elements.

This problem can be formulated as a numerical constraint satisfaction problem with n vari-
ables p = (p1, . . . , pn) having a real interval domain, and a single constraint stating that at
least q observations are compatible with the model:

card(C(p)) ≥ q (2)

The optimization version of this problem simply consists in maximizing the cardinality of the
consensus set, i.e. q.
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RANSAC: parameter estimation heuristic coping with outliers

The random sample consensus algorithm (RANSAC) [1] has become a state-of-the-art tool
in the computer vision and image processing communities to achieve parameter estimation
robust to outliers. This stochastic algorithm proceeds by randomly sampling observations
for determining a model (n observations for determining n parameters), before checking the
number of other observations compatible with this model. A version of RANSAC presented in
[2] is dedicated to the detection of several solutions (models), but it does not detect all of them.
Indeed, when a solution is found, this non deterministic algorithm removes the observations
involved in the consensus set before searching for a next solution.

Deterministic interval constraint programming approach

A deterministic parameter estimation method based on interval constraint programming and
robust to outliers was described in [3, 4].

We denote by [xi] = [xi, xi] the interval/domain of a real-valued variable xi, where xi, xi
are floating-point numbers. A Cartesian product of intervals [x] = [x1] × ... × [xn] is called a
(parallel-to-axes) box. The width of a box is given by the width xk−xk of its largest dimension
xk. Interval methods also provide contracting operators (called contractors), i.e. methods that
can reduce the variable domains involved in a constraint or a set of constraints without loss
of solutions. In particular, a simple forward-backward (also called HC4-revise) algorithm
traverses twice the expression tree corresponding to a given constraint to contract the domains
of its variables [5, 6].

The deterministic parameter estimation algorithm performs a tree search to exhaustively
explore the parameter space.

[p] is recursively subdivided: one variable pi in p is selected, its domain [pi] is bisected
into two sub-intervals and the two corresponding sub-boxes are explored recursively.
The combinatorial process stops when a precision is reached, i.e. when the width of the
current box is inferior to εsol.

At each node of the tree, a box [x] is handled:

1. A contraction is achieved using each of them observation constraints by the forward-
backward procedure, which produces an m-set S of sub-boxes of [x].

2. The q-intersection box ∩qS of these contracted boxes is returned.

The q-intersection operator relaxes the (generally empty) intersection of m boxes by the
union of all the intersections obtained with q boxes. More formally:

Definition 1. Let S be a set of boxes. The q-intersection of S, denoted by ∩qS, is the box of smallest
perimeter that encloses the set of points of Rn belonging to at least q boxes.

For instance, the box in dotted lines in Figures 1–2 is the 4-intersection of the m = 10 two-
dimensional boxes (in plain lines).

The q-intersection of boxes is a difficult problem that has been proven DP-complete in [7]
and we have resorted to a non optimal projection heuristic that reasons on each dimension
independently [8]. This algorithm is time O(nm log(m)).

2. Improvements
We have proposed several generic improvements to the deterministic parameter estimation
code, and several improvements specific to shape recognition problems.
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Figure 1. A set S of 2-dimensional
boxes

Figure 2. The dashed box is ∩4S.
Zones that belong to at least 4 boxes
are darkened. Illustration of q-
intersection for q = 4, m = 2.

Figure 3. Approximation of the ob-
servation constraints Vi by parallelo-
grams Ai, and projection on the nor-
mal vector u. Q-intersection in an ad-
ditional direction.

2.1 Generic improvements

Possible and valid observations. In the search tree, two data structures are maintained.
First, the set of possible observations: if an observation constraint leads to an empty box using
a (forward-backward or q-intersection) contraction at a given node, this observation will be
removed from the possible observations in the subtree.

Second, the number of valid observations is maintained by testing every possible obser-
vation (using (1)) at given punctual parameters vectors inside the studied box. The valid
observations form a subset of the possible observations. A stopping condition in the current
branch of the search is reached when the two sets are the same.

Q-intersection in an additional direction. The q-intersection algorithm achieves a projec-
tion on each dimension (called q-projection) of the boxes obtained by contraction using every
observation constraint.

We also perform a q-projection on an additional direction where we hope to obtain small
intervals, thus favoring a failure of the q-intersection. To this end, we linearize and relax every
observation constraint, and project the parallelograms obtained on the direction correspond-
ing to the mean normal vector of the “parallelogram” gradients. See Figures 1–3 for a 2D
illustration.

In an improved version, the q-projection is achieved only in the additional direction, except
in the lowest part of the search tree where all the dimensions are handled.

2.2 Improvements specific to applications

Dedicated contraction. Instead of running a general forward-backward contraction algo-
rithm using a library for interval arithmetic computations and backward projections (e.g.,
implemented in Ibex), we can rewrite interval computations dedicated to the analytical form
of observation constraints.

Bisection strategy. For 3D plane recognition, we bisect first the intervals of the variables
corresponding to the plane normal vector and bisect the variable intervals modeling distances
to the origin only when the plane normal vector intervals have reached a good precision. For
2D circle recognition, we first handle the circle center coordinates and terminate with the circle
radius.
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3. Parameter estimation fitting a maximum number of inliers

We have also designed an interval branch and bound algorithm for parameter estimation that
computes a model maximizing the consensus, i.e. maximizing the number of valid observa-
tions (inliers) of a parameterized model. Several strategies have been designed: depth-first
search (and a variant) and best-first search.

Contraction using forward-backward procedures and q-intersection is performed at each
iteration (node). The lower bound qmin of this maximization problem is given by the number
of observations that have been validated in past iterations. An upper bound qmax of the num-
ber of inliers in a node is given by the maximum number of intersected intervals found by the
(qmin + 1)-projection procedure in a dimension. If qmax ≤ qmin, then the branch is pruned.
qmax may be inferior to the number of possible observations in the box, in particular if the box
contains several valid models.

4. Experiments
The algorithms are implemented in the Interval Based EXplorer (Ibex) [9], a free C++ library
devoted to interval computing. The combination of the improvements described in Section 2
brings a significant speedup of two orders of magnitude on each tested instance of 3D plane
and 2D circle detection problems and appears to be an interesting alternative to RANSAC in
low dimension. These experiments suggest that our interval branch and bound algorithm can
guarantee a model maximizing the number of inliers while ensuring a good performance.

5. Discussion
A question is whether the approach scales up in higher dimension. First experiments seem to
show that the current interval branch and bound algorithm cannot cope with the fundamental
matrix estimation problem (dimension 7) useful in stereovision. We will investigate whether
the approach can handle parameter estimation problems of dimension 4 or 5 (essential matrix
estimation [10]).
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Abstract Our aim is to find the optimal location of a facility on a network, where demand is distributed on
the nodes and edges, while only a given percent of the demand has to be covered. An edge is either
covered entirely or not at all. This inner knapsack problem has to be solved as well as the location
of the facility.

Keywords: Global optimization, Network location, Facility location, Knapsack problem, Branch and bound

1. Introduction

Location problems on networks have been around since the 60s of the last century. In most
cases demand is concentrated on the nodes of the network, while facilities can be located
on the edges. Although several researchers have proposed models where the edges contain
demand as well, usually the demand is uniformly distributed along the edge. There are only
a few papers dealing with arbitrary distributions, e.g. [1, 2, 3, 4].

In our work, we considered a single facility location problem with demand distributed at
the nodes and along the edges of the network. The distribution of the demand on the edges is
arbitrary. Contrary to the planar 1-median problem, known to be convex, the objective of this
problem with continuous demand is much more complex.

2. Problem formulation

Let N = (A,E) be a connected and undirected network, with node set A = {a1, a2, . . . an}
and edge set E = {e1, e2, . . . em}, where |A|= n and |E|= m. Furthermore let lij denote the
length of edge (ai, aj) ∈ E and d(x, y) denote the distance between two points on the network
x, y ∈ N . The distance is understood as the length of the shortest path from x to y.

We assume the demand is distributed at the nodes as well as along the edges of the network.
The demand of node a is denoted by wa ≥ 0, while the total demand distributed on a given
edge e is pe ≥ 0. The distribution of the demand on edge e is given by a random variable
with cumulative distribution function (cdf) Fe. Lastly the sum of the demand on the whole
network is denoted by D =

∑
a∈Awa +

∑
e∈E pe.

Our objective is to minimize the distance of a facility to a set of the costumers weighted by
their demand. At least a fraction α of the overall demand has to be covered. The inclusion of
edges and nodes is binary, thus, if an edge or node is included, its whole demand has to be
served.

∗This work is funded by the Hungarian National Research, Development and Innovation Office - NKFIH, OTKA grant PD115554
and by research grants and projects MTM2015-65915-R (Ministerio de Economía y Competitividad, Spain), P11-FQM-7603 and
FQM-329 (Junta de Andalucía, Spain). This work was also supported by an STSM Grant from COST Action TD1207.
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min
A∗⊆A,E∗⊆E,x∈N

G(x) :=
∑
a∈A∗

wad(x, a) +
∑
e∈E∗

pe

∫
b∈e

d(x, b)dFe(b) (1)

s.t.
∑
a∈A∗

wa +
∑
e∈E∗

pe ≥ αD (2)

To solve this problem we propose a Branch and Bound algorithm. Branching is done on
the location and the cover variables simultaneously, while bounds are computed using the
relaxed solution of the cover problem.

3. The optimal cover of the demand for a fixed location

To find the optimal solution of (1)-(2), we need to find a cover of the edges that satisfies (2)
and minimizes (1) for a given facility location x. The edges and nodes are either fully covered
or not at all. Hence, for a location x fixed, an optimal cover can be obtained by solving a
knapsack problem, where the demand of the edges and nodes are the weights of the items,
while the value of the items is the cost of serving them, denoted by ua for node a and ve for
edge e.

We approach the problem from the other way around, trying to find the edges and nodes
which should be excluded from the cover. This way the problem resembles the usual knapsack
problem. Thus we have to find a subset of the edges and nodes, that has the greatest cost,
while the sum of their demand does not exceed the limit of the knapsack, which is (1 − α)D.
The complementary set of this one will be an optimal cover for the original problem. The
knapsack problem in formula is

max
y,z

∑
a∈A

uaya +
∑
e∈E

veze

s.t.
∑
a∈A

waxa +
∑
e∈E

peye ≤ (1− α)D,

ya, ze ∈ {0, 1} ∀a ∈ A, e ∈ E.

The variables y, z are binary vector variables that represent the inclusion of the items in the
knapsack. An example of a cover can be seen on Figure 1.

1
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5
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34
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8

Figure 1. Example of a cover, where the facility is placed at the black circle. Included nodes and edges are shown
in red.

The difficulty in solving the knapsack problem comes when the facility location is not given,
and instead, it is known to belong to a segment of an edge, an interval. In this case, the cost



Solving the 1-median Problem on a Network with Demand Surplus 139

values, ua, ve are also interval valued, and an upper bound of the objective function is needed.
If two cost intervals intersect we can not make a definitive choice in including one or the other,
thus the knapsack problem given as such does not have an exact solution unless there is an
ordering on the cost intervals. This ordering exists if and only if the cost intervals are disjoint.
Luckily, every edge can be split into segments, such that within each segment an ordering on
the corresponding cost intervals exist. Calculating these segments is computationally expen-
sive, but once such a segment is obtained its knapsack problem can be solved to optimality.

4. Relaxation of the knapsack problem

As the exact solution of the knapsack problem is expensive, it is natural to use cheaper lower
bounds, such as the continuous relaxation, which can be calculated directly and provides only
one fractional variable (item) in the solution, called the split item: The items have to be ordered
in decreasing order by their value to weight ratio; if we put the items into the knapsack in this
order, the first item that do not fit is the split item.

5. Computational observations

Unfortunately working on the knapsack problem alongside the location problem is not effec-
tive due to the previously mentioned integrity gap. Thus the branching should be done on
the location variable until it is narrowed down to a small enough segment where solving the
knapsack problem to optimality is possible.

We propose two branching strategies. The first one relies on branching along the midpoint
of the location segment, while the second strategy branches so that the resulting knapsack
problems can be solved exactly. The second method allows us to start solving the knapsack
problem when the exact solution can be found without any unnecessary location branches.

Due to the effect of the integrity gap on the bounds sharpness, the first strategy is expected
to work better for large networks, while the second strategy would be more competitive for
smaller ones.

6. Summary

We proposed a solution to the 1-median problem on a network with demand surplus. A
Branch and Bound method is used with two branching strategies. The difficulty of the prob-
lem comes from the inner knapsack problem. Its exact solution for the upper bound is difficult
to find due to the interval nature of the item costs. If the exact solution of the knapsack prob-
lem is not calculated, the lower bound does not converge to the optimal value.

The implementation of the algorithm utilizes a sorting method to decrease the computa-
tional cost of calculating the knapsack problem’s relaxed solution. We believe this method
will reliably solve small and medium sized networks, using the appropriate branching strat-
egy according to the size of the network.
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Abstract We consider a mixed integer linear programming model from the literature for the problem of mini-
mizing the makespan on parallel batch processing machines with non-identical job sizes. Symmetric
and equivalent solutions in the feasible set of the problem lead to an inefficient application of branch-
and-bound algorithms. We present valid inequalities to discard these solutions and show through
computational results that our strengthened model clearly outperforms the model from the litera-
ture. With the model proposed in this work, we prove for the first time optimality for instances of
this problem with more than 25 jobs.

Keywords: Batch scheduling, Mixed integer linear programming, Symmetry, Valid inequality

1. Introduction

Scheduling problems on batch processing machines have been widely exploited in the litera-
ture, mainly motivated by the vast number of applications in industries. The idea is to group
jobs in batches and process all jobs on the same batch at the same time in a machine, avoiding
setups and facilitating the material manipulation.

We address the problem of minimizing the makespan on parallel batch processing ma-
chines with non-identical job sizes, which models an important application in the semicon-
ductor industry, namely the scheduling problem in the burn-in operation at the testing phase
of semiconductors [9]. The problem is strongly NP-hard [1, 9] and has been categorized as
Pm|sj , B|Cmax on the three-field system proposed in [4].

Several works have considered this specific batch scheduling problem, but mainly focusing
on heuristic approaches (see, for example, [1, 2, 3, 5, 6]). In [1], the problem is formulated as
a mixed integer linear program (MILP), and solved by a branch-and-bound (B&B) algorithm.
Optimal solutions are only reported for instances with up to 25 jobs. The B&B, when applied
to the MILP formulation proposed, solves several subproblems corresponding to symmetric
and equivalent solutions, which makes it very inefficient. The difficulty related to symmetry
in integer programming is well known [8], and the impact of symmetry breaking cuts on the
solution of a particular application in software engineering [7], motivated us to develop valid
inequalities to problem Pm|sj , B|Cmax. The validity of the inequalities proposed in this work
is supported by proven results about the optimal solution of problem Pm|sj , B|Cmax, and their
strength is demonstrated through computational experiments. With the new model proposed,
we prove for the first time optimality for instances of this problem with more than 25 jobs.

In Section 2, we define problem Pm|sj , B|Cmax and describe the MILP formulation proposed
in [1]. In Section 3, we propose valid inequalities for the problem and present the result that
support their validity. A new strengthened model is proposed and in Section 4, computational
results are used to compare the models and show the impact of the inequalities introduced.



142 Renan S. Trindade, Olinto Araújo, Marcia Fampa and Felipe Müller

2. A MILP model for minimizing makespan on parallel batch
processing machines

On problem Pm|sj , B|Cmax, a set J of jobs is considered. Each job j ∈ J is characterized by
a processing time pj and a size sj , and must be assigned to a batch k ∈ K, not exceeding the
capacityB of the machine. The batches must be designed and scheduled on anm ∈M parallel
machine. The objective is to minimize the makespan (Cmax), defined as the time required to
finish the processing of the last batch processed on all the machines. The processing time of
batch k in machine m is given by Pk,m = max{pj : j is assigned to batch k and processed by
machine m}. As the machine cannot be interrupted during the batch processing, no job can
be added to or removed from the machine until the processing is finished. Furthermore, jobs
cannot be divided between batches.

In [1], Pm|sj , B|Cmax is formulated as the following MILP.

(P1): min Cmax : (1)
subject to :.................................................................∑

k∈K

∑
m∈M

xj,k,m = 1 ∀j ∈ J (2)∑
j∈J

∑
m∈M

sjxj,k,m ≤ B ∀k ∈ K (3)

Pk,m ≥ pjxj,k,m ∀j ∈ J, ∀k ∈ K,∀m ∈M (4)

Cmax ≥
∑
k∈K

Pk,m ∀m ∈M (5)

Pk,m ≥ 0 ∀k ∈ K,∀m ∈M (6)
Cmax ≥ 0 (7)
xj,k,m ∈ {0, 1} ∀j ∈ J, ∀k ∈ K,∀m ∈M (8)

The variable Pk,m represents the processing time of batch k on machinem, and xj,k,m indicates
if job j is assigned to batch k and processed by machine m. The objective function value in (1)
is the makespan. Constraints (2-3) state that each job is assigned to only one batch and one
machine, all respecting the machine capacity. Constraint (4) sets the processing time of batch
k assigned to machine m and (5) takes the time of the last machine to finish the processing. A
batch is considered open if at least one job is assigned to it. As the number of open batches is
bounded by |J |, |K| is set equal to |J |.

Problem P1 has a large number of symmetric solutions in its feasible set, defined as solutions
with identical schedules for equal batches, but indexed differently. These solutions are consid-
ered distinct by a B&B algorithm, making it very inefficient, solving symmetric subproblems
several times. Besides symmetric solutions, the feasible set of P1 also contains equivalent so-
lutions, contributing similarly to the inefficiency of the B&B. Equivalent solutions are defined
as solutions where the jobs ordering in the batches is permuted, which has no effect on the
makespan.

3. Valid inequalities

We propose valid inequalities to problem Pm|sj , B|Cmax that eliminate symmetric and equiv-
alent solutions from the feasible set of P1.

Firstly, we replace the variable xj,k,m, which is responsible for both batch dimensioning and
for machine allocation, with the two new variables: xj,k, which indicates if job j is assigned to
batch k, and yk,m, which indicates batch k is assigned to machine m. This substitution reduces
significantly the number of variables in the problem.
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As mentioned in the previous section, many symmetries are allowed by the formulation
P1 because the ordering in which the jobs are placed in the batches does not interfere in the
final optimal solution value. Let us consider, therefore, the jobs in J to be indexed in non-
decreasing order of processing times (p1 ≤ p2 ≤ ... ≤ p|J |). We propose then the two following
constraints:

.................................................................∑
k∈K:j≤k

xj,k = 1 ∀j ∈ J (9)

xj,k ≤ xk,k ∀j ∈ J,∀k ∈ K : j < k (10)

Constraints (9) determine that a job j can only be assigned to a batch k, if j ≤ k, and con-
straints (10) determine that batch k can only be open if job k is assigned to it. These constraints
eliminate several solutions from the feasible set of P1. Furthermore, (9) implies that xj,k = 0, if
j > k, allowing a significant further reduction on the number of binary variables in the model.
As the jobs are sorted in non-decreasing processing time, and batch k can only be open if job
k is assigned to it, the processing time of a existing batch k is fixed as pk. That is, each batch k
always have the job k as the highest index.

Thus, the solution of the formulation P2 that we propose in the following, will always have
a non-decreasing order of processing times of batches when assigned to machines. Proposition
1 ensures that no optimal solution is cut off when the problem is conceived in this way.

Proposition 1. Any optimal solution for Pm|sj , B|Cmax can be represented considering batches se-
quenced in non-decreasing order of the processing times of batches.

We propose, therefore, the following strengthened model to problem Pm|sj , B|Cmax.

(P2): min Cmax (11)
subject to.................................................................

(9)(10)∑
j∈J :j≤k

sjxj,k ≤ Bxk,k ∀k ∈ K (12)

xk,k ≤
∑
m∈M

yk,m ∀k ∈ K (13)

Cm ≥
∑
k∈K

pkyk,m ∀m ∈M (14)

Cmax ≥ Cm ≥ 0 ∀m ∈M (15)
xj,k ∈ {0, 1} ∀j ∈ J, ∀k ∈ K : j ≤ k (16)

The objective function value in (11) is the makespan. Constraints (12) ensure that the machine
capacity is respected. Constraints (13) state that if batch k is open, it should be assigned to
a machine. Constraints (14-15) set Cmax equal to the time of the last machine to finish the
processing.

4. Computational results and conclusions

We analyze the strength of the valid inequalities proposed in this work, comparing the per-
formance of the solver CPLEX 12.5, when applied to P1 and P2. All runs were conducted on
an Intel Quad-Core Xeon X3360 2.83 GHz, 8GB, running under Linux, with a time limit of 30
minutes. The number of jobs in our tests varies from 10 to 100, the machine capacity is 10
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and the number of parallel machines is 2, 4 or 8. The instances were created from the random
discrete uniform distribution. The processing times are selected in two intervals: p1 : [1, 10]
and p2 : [1, 20]. The job sizes are selected in three intervals: s1 : [1, 10], s2 : [2, 4], s3 : [4, 8].

The smaller jobs in s2 increase the number of possible jobs combinations in each batch
and make the problems more difficult, in contrast with instances of type s3. We solved 100
instances for each combination of job size, processing time and number of parallel machines,
a total of 9600 instances. All the instances of type s3 were solved to optimality with P2 in an
average time 0.14 seconds, while P1 only can solve to optimality the instances with 10 jobs.
With 20 jobs, P1 reaches the time limit of 30 seconds in several instances of type s3, and the
final average duality gap was of 8.57%.

Concerning the instances of type s1 optimality was reached with P2 for the majority of
instances with up to 100 jobs and with final duality gap not greater than 0.05%. P2 proves the
optimality of all instances of type s1 with 20 jobs in an average time of 0.07 seconds, while P1

has difficulty already in this case, with average final duality gap of 4,85%.
In case of instances of type s3, P2 still reaches optimal solutions in all the instances with

up to 20 jobs in 0.18 seconds on average. Problem P1 can only prove the optimality, in this
case, when the number of machines is 8, in an average time of 2.78 seconds, while P2 takes
0.08 seconds on average. When the number of machines is 2 or 4, P1 presents final duality gap
of 4,09%. For instances with up to 100 jobs, P2 maintains its good performance keeping the
average gap in 0.81% with 50 jobs and 1.50% with 100 jobs.

To our knowledge, this is the first time proven optimal solutions for instances with more
than 25 jobs are reported, constituting the state of the art concerning results from exact meth-
ods to problem Pm|sj , B|Cmax. Substantial gains were obtained with the inclusion of the valid
inequalities proposed in the MILP formulation presented in the literature, decreasing the av-
erage running time for instances solved to optimality, and leading to a practical application of
the B&B algorithm to the problem.
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Abstract Aircraft conflict avoidance is a critical issue in Air Traffic Management, which can be addressed,
among others, by means of Mixed Integer Non-Linear Programming (MINLP) techniques.

In this work we introduce a new approach to address, via velocity regulation, the problem of
avoiding conflict for a set of aircraft flying in an air sector at cruise flight. Speed variations for all
aircraft are to be minimized so that, at any time instant, the horizontal distance between each pair
of aircraft is above a threshold security value. The problem can be expressed as a MINLP, solvable
with standard MINLP solvers for a small number of aircraft, but intractable for instances of more
realistic size. This motivates us the design of a cluster-based procedure.

In our approach, aircraft are clustered into groups, so that within each cluster the aircraft are
conflicting, while conflicts do not exist (or they are at least less severe) between aircraft in different
clusters. Then a MINLP solver is used sequentially on each cluster to minimally modify the aircraft
speeds so that conflicts within the cluster are solved, not creating new conflicts with aircraft in other
clusters.

Theoretical convergence of the procedure and preliminary numerical results will be discussed in
the talk.

Keywords: Clustering, MINLP, Aircraft conflict avoidance, Subliminal speed control

1. Introduction

One of the main and most crucial tasks of air traffic control services is continuously monitor-
ing aircraft trajectories, detecting potential conflicts, i.e., potential loss of separation between
trajectories, and issuing appropriate conflict resolution maneuvers. The increasing air traffic
on the world-scale has an immediate impact on air traffic controllers’ workload, making it
more and more difficult to handle aircraft conflicts. Hence, a higher level of automation in Air
Traffic Management and Control urgently needs to be introduced, so that automatic aircraft
conflict avoidance procedures have in particular received a growing attention over the past
few years.

Mathematical optimization naturally arises in this context, as one usually aims at separating
conflicting aircraft while optimizing a selected criterion (e.g., stay as close as possible to the
original trajectory, or minimizing delays induced by separation maneuvers). Mixed-Integer
Nonlinear Programming is attracting a growing attention for the considered real-world ap-
plication, as it enables to model the complex nonlinear (nonconvex) aircraft separation con-
straints while considering mixed variables (continuous variables typically used for aircraft
speeds, heading angles, etc., and integer ones typically used for logical choices). First ap-
proaches based on mixed-integer optimization date back to 2002 ([5, 8]), and more recently,
were proposed in [1, 2, 3, 6, 7].

One can observe that the complexity of the problem under consideration is specially related
to the nonlinear nonconvex separation constraints, that are indexed on all pairs of aircraft, and
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whose number increases quadratically with the number of aircraft. Hence, exact solution al-
gorithms easily turn to be computational demanding, specially when the number of aircraft
considered simultaneously is large. On the other hand, in realistic situations, the airspace sec-
tion under consideration is a quite large portion of the airspace where generally only small
groups of aircraft with close trajectories may potentially be in conflict. This suggest to decom-
pose the problem into smaller subproblems (clusters) of conflicting aircraft. Such an approach
was introduced in [3], where however a procedure to create subgroups of aircraft was not
proposed.

In the present work, we propose to decompose the overall problem into subproblems in-
volving only a small number of aircraft and to perform conflict avoidance exactly on these
subproblems, then combining all the obtained solutions. Subproblems are described through
mixed-integer nonlinear programs, and are constructed by clustering aircraft using a suitable
dissimilarity measure. Each cluster is solved to optimality, then clusters are modified if con-
flicts are still present, and the process is repeated until no conflicts occurr anymore.

2. Problem modeling

Let us consider a set A of n aircraft flying during their cruise flight in a given air sector, all at
the same flight level. The horizontal separation only has to be satisfied. This means that, at
any time instant t ≥ 0, the distance between any pair of aircraft i, j should not be smaller than
the horizontal separation standard d. Assuming that uniform motion laws apply, the position
xi(t) of aircraft i at time t is given by

xi(t) = xi(0) + tvi, (1)

where both the initial position xi(0) and velocity vi are assumed to be known, and the distance
‖xi(t)− xj(t)‖ between i and j satisfies

‖xi(t)− xj(t)‖2= t2‖vi − vj‖2+2t (vi − vj) · xr0ij + ‖xr0ij ‖2, (2)

where ‖·‖ is the Euclidean norm in the two-dimensional space and xr0ij = xi(0)−xj(0) denotes
the relative position at time t = 0 of aircraft i with respect to j.

Since, keeping the original trajectories, equation ‖xi(t)− xj(t)‖≥ d may not be fulfilled i.e.,
aircraft may be in conflict, suitable separation maneuvers, corresponding to trajectory devia-
tions, have to be carried out. We consider aircraft speed deviations, following the concept of
subliminal speed control, that was introduced as a promising method to improve traffic con-
gestion while maintaining a low impact on controller’s workload [4]. In this framework, we
allow each aircraft i to (slightly) modify its speed from vi to qivi, where the speed variations
qi are bounded in the interval [−6%vi,+3%vi].

Speed variations qi for all i, represent the main decision variables of our nonlinear opti-
mization problem, that is formulated as follows:

min
∑

i∈A(qi − 1)2

s.t. dij(qi, qj) ≥ d ∀i, j ∈ A, i < j

qmin ≤ qi ≤ qmax ∀i ∈ A
(3)

where qmin and qmax are lower and upper bounds on qi, and dij(qi, qj) represents the distance
between aircraft i and j. It is a nonlinear nonconvex expression, as detailed below.

3. Aircraft clustering-based algorithm

For speed variations qi, i ∈ A, the second-degree polynomial function in equation (2) attains
its minimum in [0,∞) at time instant

max
{

0, tmij (qi, qj)
}
, (4)
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with

tmij (qi, qj) =
− (qivi − qjvj) · xr0ij
‖qivi − qjvj‖2

. (5)

Hence, by substituting in (2), we have that the separation between aircraft i and j is

dij(qi, qj) =


√
‖xr0ij ‖2‖qivi − qjvj‖2−

(
xr0ij · (qivi − qjvj)

)2

‖qivi − qjvj‖
, if tmij (qi, qj) ≥ 0

‖xr0ij ‖, else

(6)

Equation (6) gives nonlinear nonconvex constraints for problem (3). Furthermore, the condi-
tion “if tmij (qi, qj) ≥ 0” leads us to introduce for each i, j ∈ A, i < j, the binary variables yij
as

yij =

{
1, if tmij ≥ 0

0, else,
(7)

or, equivalently, as

yij =

{
1, if (qivi − qjvj) · xr0ij ≤ 0

0, else,
(8)

i.e., the constraint (
(qivi − qjvj) · xr0ij

)
(2yij − 1) ≥ 0. (9)

We decompose the overall problem into subproblems involving only a small number of air-
craft and perform aircraft conflict resolution exactly on these subproblems, then combining
all the obtained results. To do so, clustering is performed to make groups of aircraft. As a dis-
similarity measure, we consider the pairwise critical distance for aircraft separation dij(qi, qj)
as defined in (6). The smaller the value of dij(qi, qj), the more critical the conflict is between
aircraft i and j, i.e., the more similar i and j are. We propose a hierarchical agglomerative
clustering procedure using single linkage (closest distance) to merge groups, and imposing an
upper bound σ on each cluster size in order to avoid clusters to be unbalanced in size.

Given aircraft with speeds (qivi)i∈A , the above clustering procedure yields a list of clusters
A1, . . . , Am. Such a list is sequentially inspected, and, for each cluster Ac, c = 1, 2 . . . ,m, an
optimization problem is solved, in which the speeds of all aircraft j outside Ac is considered
to be fixed to qjvj . More precisely, we seek the values (qi)i∈Ac as close as possible to 1 so that

1. inside Ac, all conflicts are solved, i.e., dij(qi, qj) ≥ d for all i, j ∈ Ac, i 6= j,

2. for a given set of aircraft pairs Bc ⊂
{

(i, j) : i ∈ Ac, j 6∈ Ac, dij(qi, qj) ≥ d
}
, no conflict

appears, i.e., dij(qi, qj) ≥ d.
Formally, the subproblem to be addressed for cluster Ac can be stated as

min
∑

i∈Ac (qi − 1)2 (10)
s.t. dij(qi, qj) ≥ d ∀(i, j) ∈ Ac, i < j (11)

dij(qi, qj) ≥ d ∀(i, j) ∈ Bc (12)
qmin ≤ qi ≤ qmax ∀i ∈ Ac. (13)

Convergence issues and empirical performance on test instances will be presented.
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Abstract In this paper, some improvements of spatial Branch and Bound (sBB) algorithms are discussed to
solve aircraft conflict avoidance problems formulated as MINLP. We propose a new quadratic con-
vex relaxation technique based on affine arithmetic. Moreover, a branching strategy is also proposed
for the considered problem. Preliminary numerical results validates the proposed approach.

Keywords: Aircraft conflict avoidance, Interval Branch and Bound, Convex relaxation, Affine forms.

1. Introduction

In this work, we deal with the use of deterministic global optimization to solve the aircraft
conflict avoidance problem by means of aircraft speed changes. Specifically, we focus on exact
global solvers based on Branch and Bound methods. The selected solvers are Couenne and
IBBA, the first based on convex relaxations and the latter based on rigorous interval compu-
tations and linear relaxations. Both codes also include interval constraint propagation tech-
niques.

Two aircraft are said in conflict when the horizontal distance between them and their alti-
tude distance are smaller than standard safety distances. In this paper, we consider aircraft
in their en route cruise phase, all at the same altitude, so that only their horizontal distances
have to be handled through appropriate separation constraints. Aircraft are monitored and
suitable separation maneuvers are issued if in the observed time window conflicts may po-
tentially occur. The separation maneuver considered here is aircraft speed deviations, while
the directions of motions are kept fixed. Aircraft speed changes may not be able to solve all
possible conflict situations, like in the case of two aircraft flying face-to-face; such an approach
is however considered very promising to reduce the complexity of air traffic. Subliminal speed
control is in particular interesting: it is a speed control where aircraft speeds are changed in
a very tight range around original speeds, namely between −6% and 3%. In this work we
further consider speeds between −12% and 6% of the original speeds as a second range for
testing.

The optimization model for aircraft conflict avoidance based on speed changes considered
in this work is described in Section 2. In Section 3 we briefly recall on the main characteristics
of the two global optimization solvers Couenne and IBBA. A new convex relaxation based on
affine arithmetic, to be used within IBBA, is proposed in Section 4 for the quadratic convex
objective function of the considered model. In Section 5, some numerical tests are discussed.
Some conclusions are given in Section 6.

∗The authors gratefully acknowledges financial support under grant ANR 12-JS02-009-01 "ATOMIC".
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2. MINLP model

In this section, we recall the main elements of a model developed and described in [1]. It is a
MINLP model, where aircraft can change their speed once during the observed time window
in order to get a conflict-free configuration. The main decision variables are qi, i ∈ A (A being
the set of aircraft), representing the aircraft speed variations. For each aircraft i, qi = 1 means
that there is no change, qi > 1 means that aircraft i accelerates and qi < 1 that it decelerates.
The optimization criterion is

∑n
i=1(qi − 1)2, where n is the number of aircraft. The main

difficulty is represented by the separation constraints, for each pair of aircraft i and j:

‖xi(t)− xj(t)‖≥ d ∀t ∈ (0, T ), (1)

where T is the time horizon, d is the minimum required separation distance (5 Nautic Miles),
and xi(t) is the position of aircraft i. Letting xrij(t) = xi(t) − xj(t) be xr0ij + vrij t, with xr0ij
the relative initial position of aircraft i and j, and vrij be their relative speed, one obtains
||xr0ij + vrij t||2≥ d2 ∀t ∈ (0, T ), and therefore

‖vrij‖2 t2 + 2(xr0ij · vrij) t+ (‖xr0ij ‖2−d2) ≥ 0 ∀t ∈ (0, T ).

By computing the minimum tmij of the above quadratic convex function, and by introducing
binary variables yij to check the sign of tmij , following the procedure of Cafieri et al. [1], one
can reformulate the constraints above by eliminating the dependence on t. More precisely, the
following model (P) is obtained (see [1] for details):

(P)



min
qi,tmij ,yij

n∑
i=1

(qi − 1)2

s.t.
tmij ‖vrij‖2+xr0ij · vrij = 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

−tmij (2yij − 1) ≤ 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

−yij
(
‖vrij‖2(‖xr0ij ‖2−d2)− (xr0ij · vrij)2

)
≤ 0, ∀(i, j) ∈ {1, · · · , n}2, i < j

qi ∈ qi = [qi,qi], ∀i ∈ {1, · · · , n}
tmij ∈]−∞,∞[, ∀(i, j) ∈ {1, · · · , n}2, i < j

yij ∈ {0, 1}, ∀(i, j) ∈ {1, · · · , n}2, i < j

Remark 1. The optimization criterion in (P) is quadratic and convex.

3. sBB solvers: Couenne and IBBA

The deterministic global optimization solvers Couenne and IBBA, that we consider for the
present work, are both based on a spatial Branch-and-Bound (sBB) method. Its main characteris-
tics include Bissection/Branching techniques and Constraint Propagation techniques (named
HC4 or FBBT) [2, 4]. Further characteristics of Couenne and IBBA are summarized in Table 1.
Note that for computing bounds, Couenne uses convex relaxations (denoted by (Pconv) in Ta-
ble 1) [2], while IBBA uses linear relaxations (denoted by (PAFlin ) in Table 1) based on affine and
interval arithmetics [3, 5].

Remark 2. IBBA is numerically reliable (because it is mainly based on interval arithmetic).



On Solving Aircraft Conflict Avoidance via sBB Codes 151

Table 1. Main characteristics of Couenne and IBBA

Couenne (Belotti et al.) [2] IBBA (Messine and Ninin) [3, 5]

- (P) ≥ (Pconv) - (P) ≥ (PAFlin ) + Er (where Er is a constant)
- Formal Preprocess - Interval and Affine Arithmetic
- wij = xixj and wii = x2i with McCormick constraints. - xi = mid(xi) + rad(xi)εi, with xi = [xi,xi], εi ∈ [−1, 1] .
- Relaxation⇒ + new variables and constraints. - Relaxation⇒ same nb of variables and constraints.
- Use of IPOPT. - Use of CPLEX.

4. Quadratic convex relaxation and branching strategy for IBBA

An idea to improve IBBA code is to keep the quadratic convex criterion instead of linearizing it.
This yields a new automatic way to make a convex relaxation of problem (P) by using affine
arithmetic. More specifically, the constraints, which are mainly concave, are linearized directly
using affine arithmetic, and the criterion is just rewritten by employing a change of variables
from qi to εi ∈ [−1, 1] as qi −→ mid(qi) + rad(qi)εi, where qi = [qi,qi], mid(qi) =

qi+qi

2 and

rad(qi) =
qi−qi

2 . Thus, the criterion of problem (P) becomes:

n∑
i=1

(qi − 1)2 −→
n∑
i=1

(mid(qi) + rad(qi)εi − 1)2

=
n∑
i=1

(rad(qi))
2εi

2 + 2(mid(qi)− 1)rad(qi)εi + (mid(qi)− 1)2

The quadratic part of the reformulated criterion reads εTAεε, with Aε a diagonal matrix hav-
ing elements rad2(qi); Aε is a matrix of size n× n.

Remark 3. Aε is positive semidefinite and then the criterion reformulated in terms of ε is kept convex.
Note that this property is independent on the selected application.

Proposition 4. If rad(qi)→ 0 then Aε → 0, thus the criterion reformulated in ε tends to be linear.

Another idea to improve IBBA (and possibly Couenne) is related to the branching strategy.
We remark that in the constraints of problem (P), the variables tmij and yij can be deduced from
variables qi. Thus, the idea is to branch only on variables qi, and to use the HC4-constraint
propagation technique to automatically reduce bounds on variables tmij and yij .

5. Numerical solutions

We tested IBBA on 5 problem instances, detailed in [1]; the aircraft are positioned around a
circle and all of them fly with the same speed 400NM towards the center of the circle. In the
two following tables, n represents the number of aircraft and r the radius of the circle, and the
time window is about 30 minutes. In Table 2, we solve problem (P) by considering a speed
variation qi ∈ [0.94, 1.03] (subliminal control), while in Table 3 we consider a larger range,
qi ∈ [0.88, 1.06]. In Table 2, we first report the numerical results in terms of computing time
obtained in [1] by using Couenne. In the three last columns of Table 2 and Table 3, we provide
the results obtained using IBBA in three different versions: (i)IBBA alone, (ii)IBBA using the
quadratic convex relaxation detailed in the previous section, (iii)IBBA using the McCormick’s
linear relaxations on the quadratic convex program. In the three cases, we use the CPLEX

software to solve the linear and convex quadratic programs. The number of iterations is also
reported in some cases.

We first note that the gain obtained by using the branching strategy discussed above is very
important: when this is not used, IBBA behaves not differently from Couenne (that so could
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Table 2. Results obtained with Couenne and 3 versions of IBBA, using qi ∈ [0.94, 1.03]

n r Couenne from [1] IBBA IBBA+Quad IBBA+McCormick

time (s) time (s) time (s) time (s)

2 1 ×102 0.11 0.01 0.19 0.01
3 2 ×102 0.98 0.23 1.31 0.23
4 2 ×102 8.43 0.89 2.70 0.88
5 3 ×102 469.86 41.37 80.79 40.35
6 3 ×102 46707.03 395.87 (67287its) 618.54 (66761its) 403.03 (66366its)

Table 3. Results obtained with Couenne and 3 versions of IBBA, using qi ∈ [0.88, 1.06]

n r IBBA IBBA+Quad IBBA+McCormick

time (s)/(#its) time (s)/(#its) time (s)/(#its)

2 1 ×102 0.04 / (94) 0.11 / (89) 0.04 / (94)
3 2 ×102 0.43 / (416) 0.74 / (383) 0.41 / (386)
4 2 ×102 4.36 / (2134) 5.82 / (1915) 4.09 / (1930)
5 3 ×102 117.56 / (32151) 136.25 / (29700) 111.57 / (29862)
6 3 ×102 2270.03 / (384552) 2489.33 / (360233) 2188.75 / (361720)

be considerably improved by using this strategy of branching). The impact of the proposed
quadratic convex relaxation is actually not very strong on the considered conflict avoidance
problem: a reduction in the number of iterations does not correspond to a smaller CPU-time.
This is due to the fact that solving a quadratic convex program with CPLEX is of course more
expansive than solving a linear one. Therefore, for the considered application the use of the
McCormick linear relaxation of the quadratic convex problem provides the most efficient re-
sults in terms of CPU-time. Note that the main variables qi vary within very tight bounds, and
therefore the quadratic part of the convex relaxation quickly disappears during the computa-
tion (Aε tends to be 0). As a consequence, when the variable ranges are small, the quadratic
relaxation is not efficient; with a larger variable range, [0.88, 1.06] (Table 3), the gain in the
number of iterations is indeed more important.

6. Conclusion

We have showed that we can obtain promising results using sBB global optimization solvers
such as Couenne and IBBA on an aircraft conflict avoidance model. A suitable branching strat-
egy and a new quadratic convex relaxation based on affine arithmetic, implemented in IBBA,
associated with a McCormick linear reformulation, enable to significantly improve the effi-
ciency of the solver.
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Abstract DIRECT (DIviding RECTangles) is one of the most known partitioning-based algorithms for global
optimization. Recently several modifications of DIRECT algorithm have been proposed including
different partitions, various sampling strategies, and improved balancing of global and local search.
In this talk we overview some of them and discuss how the performance of these algorithms can be
further improved.
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Summary

In this talk we consider global optimization algorithms derived from well known DIRECT (DI-
viding RECTangles) algorithm [6]. It is one of the most known partitioning-based algorithms
that balances local and global search in an attempt to efficiently find the global minimizer. The
main procedure of the DIRECT algorithm involves evaluation of the objective function at the
centers of hyper-rectangles and trisection of potentially optimal ones.

Many modifications of DIRECT have been proposed, most of them use hyper-rectangular
partitions, central sampling, and trisection [1, 2, 3, 4, 5, 8, 9, 10, 11, 12]. Trisection is used to
enable reuse of the objective function value at the center in descendant subregions, the same
center is of the middle descendant subregion. Diagonal approach samples at the endpoints of
diagonal [7, 17, 18, 19] and for efficient reuse of sample points use trisection with different di-
rections of diagonals and a special vertex database. Simplicial partitions are used in DIRECT-
type DISIMPL algorithm and its modifications [13, 14, 15, 16] where central sampling and
trisection (DISIMPL-c) or vertex sampling and bisection (DISIMPL-v) is used. Recently we
developed another modification of DIRECT where a bisection of hyper-rectangles and a new
sampling strategy on diagonal is used. Bisection can ensure better shapes of hyper-rectangles
with smaller variation of sizes in different dimensions than trisection which produces sizes
differing by three times. However, to be competitive to other subdivisions, efficient sampling
strategy with reuse in descendant subregions is necessary. In this talk we discuss various
sampling and subdivision strategies in DIRECT-type algorithms and their impact on the per-
formance.

DIRECT-type algorithms often spend an excessive number of function evaluations explor-
ing suboptimal local minima and delaying discovery of the global minimum. It was shown
recently that the significant speed-up may be achieved for the DIRECT-type algorithms ei-
ther with two-phase technique [13, 18] or combining DIRECT-type algorithms with the local
searches [9, 11]. In this talk we present overview of such modifications and results of experi-
mental investigation.
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[14] R. Paulavičius and J. Žilinskas. Simplicial Lipschitz optimization without the Lipschitz constant. Journal of
Global Optimization, 59(1):23–40, 2013.
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Abstract The optimal selection of the irradiation directions – beam angle optimization (BAO) – in intensity-
modulated radiation therapy (IMRT) treatment planning is seldom done in clinical practice as the
corresponding problem is a highly non-convex multi-modal optimization problem. However, for
some tumor sites, the advantage of considering optimal radiation incidences is well known. In
this paper we present a multistart approach for the continuous BAO problem and compare it with
typically used combinatorial approaches.

Keywords: IMRT, Beam angle optimization, Multistart, Derivative-free optimization

1. Introduction

The goal of radiation therapy is to eradicate all cancer cells by delivering a dose of radiation
to the tumor volume while attempting to spare the surrounding healthy organs and tissues.
Radiation is typically generated by a linear accelerator mounted on a gantry that can rotate
along a central axis and can be delivered from almost any angle (direction) around the tumor.
The choice of appropriate angle directions to irradiate the tumor volume can enhance a better
sparing of the surrounding structures.

The BAO approaches can be separated into two different classes. The first class, prevalent
in literature and single solution offered by some commercial treatment planning systems, ad-
dresses the BAO problem as a combinatorial optimization problem by considering a discrete
sample of all possible beam irradiation directions. The best ensemble of beam angle directions
cannot be obtained, in an acceptable computation time, by performing exhaustive searches.
Thus, searches are typically guided by a variety of different methods including neighborhood
search [1], genetic algorithms [5] or simulated annealing [6]. This combinatorial formulation
of the BAO problem leads to an NP hard problem and thus there is no algorithm known able
to find, in a polynomial run time, the optimal solution of the combinatorial BAO problem [2].
Another common and successful approach is iterative BAO [2, 3], where beams are sequen-
tially added, one at a time, to a treatment plan, significantly reducing the number of beam
combinations. In a second class, the continuous search space of the highly non-convex BAO
problem is explored [8, 9, 10]. In this paper, we present a novel approach that explores thor-
oughly the continuous search space of the highly non-convex BAO problem using a multistart
derivative-free framework.
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2. BAO continuous formulation

In order to model the BAO problem as a mathematical optimization problem, a measure of
the quality of the beam angles ensemble is required. The straightforward measure for driving
the BAO problem is the optimal solution of the fluence map optimization (FMO) problem
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], the problem of finding the optimal radiation intensities. Let us
consider n to be the fixed number of (coplanar) beam directions, i.e., n beam angles are chosen
on a circle around the CT-slice of the body that contains the isocenter (usually the center of
mass of the tumor). All continuous [0◦, 360◦] gantry angles will be considered instead of a
discretized sample. Since the angle−7◦ is equivalent to the angle 353◦ and the angle 367◦ is the
same as the angle 7◦, a bounded formulation can avoided. A simple continuous formulation
for the BAO problem is obtained by selecting an objective function such that the best beam
angle ensemble is obtained for the function’s minimum:

min f(θ1, . . . , θn)

s.t. (θ1, . . . , θn) ∈ Rn.

The objective function f(θ1, . . . , θn) that measures the quality of the beam angle ensemble
θ1, . . . , θn is the optimal value of the FMO problem for each fixed set of beam angles. For this
study, a multicriterial optimization based on a prescription called wish-list [3] was used to
address the FMO problem. Nevertheless, as the FMO model is used as a black-box function,
the conclusions drawn using this particular formulation of the FMO problem can be extended
to different FMO formulations.

3. Multistart approach for the continuous BAO problem

Multistart methods, most of the time, randomly sample the search space. However, for search
spaces with peculiar characteristics as the BAO continuous search space, other strategies must
be adopted to spread the starting ensembles (solutions) in the search space [0, 360]n as well as
possible. Since the order of the irradiation directions of a beam angle ensemble is irrelevant,
the BAO continuous search space have symmetry properties. In terms of optimization, there
are many different strategies to address problems with symmetry properties. For the BAO
problem, if we keep the beam angles sorted, the symmetry problem is solved and that strat-
egy allows a significative reduction of the search space. In general, for n-beam directions, by
sorting the solution’s directions, we reduce the search space by 2n. However, the reduced
search space takes a peculiar form, as illustrated in Figure 1 for a BAO search space with 3
beam directions where all possible cases of sorted 3-beam angle ensembles distributed by the
four quadrants are displayed as well as the corresponding cubes in the search space [0, 360]3.
For n-beam angle ensembles, the total number of (hyper)cubes of the entire search space is
4n while the number of (hyper)cubes of the reduced search space, which corresponds to the
number of possible distributions of n sorted beam angles by the 4 quadrants is the combina-
tion with repetition of

(
n+4−1

4

)
= (n+4−1)!

4!(n−1)! . For example, for the 7-beam angle optimization
problem, the reduced search space has 120 hypercubes compared to 16384 hypercubes for the
entire search space. Thus, for a multistart framework, a possible choice of the starting sorted
beam angle ensembles is the selection of one ensemble for each of the (hyper)cubes of the
reduced search space, guaranteeing that the starting solutions belong to the reduced search
space, they are well spread and most importantly they cover well all the reduced search space.
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Distribution of possible 3D solutions

Figure 1. Three beam directions distribution by the four quadrants and the corresponding cubes in the search
space [0, 360]3.

4. Computational tests

Multistart is a two phase method that can be designated as global and local phases. In the
global phase, the objective function is evaluated for all the starting solutions selected, as de-
scribed in the previous section. Then, local search procedures seek to improve each of the
starting points outcome in a local phase. We have showed in previous works that a beam
angle set can be improved in a continuous manner using derivative-free algorithms. Thus,
pattern search methods were selected as local procedure to tackle the BAO problem since they
require few FMO problem computations and avoid local entrapment [8, 9, 10].

The multistart framework was tested for the optimization of the BAO problem using a set of
twenty clinical examples of retrospective treated cases of nasopharyngeal tumors at the Por-
tuguese Institute of Oncology of Coimbra (IPOC). Treatment plans with seven coplanar beam
orientations were obtained using the multistart framework and compared with treatments
plans obtained using iterative BAO and with the 7-beam equispaced coplanar treatment plans,
typically used in clinical practice.
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5. Summary

The BAO problem is an extremely challenging continuous global non-convex optimization
problem. In clinical practice, most of the time, beam directions continue to be manually se-
lected by the treatment planner in a time-consuming procedure without objective and rigorous
criteria. Alternatively, combinatorial optimization strategies have been used to obtain beam
directions, including iterative BAO. We propose a completely different methodological ap-
proach by addressing the BAO problem as a continuous optimization problem and exploring
the reduced search space using a multistart framework. For the nasopharyngeal clinical cases
retrospectively tested, the use of optimized beam ensembles obtained by the multistart frame-
work enhanced the quality of the treatment plans obtained and clearly outperform the quality
of treatment plans that considered equidistant beam ensembles or beam ensembles obtained
using iterative BAO.
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Abstract We present a new, Java based implementation of the GLOBAL algorithm to enable it to run more ef-
ficiently in multicore computers. The direct motivation for this step were two applications requiring
massive amounts of computation from the fields of surgical operation design and nanophotonical
detector development.
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1. Introduction

In recent years we were involved mostly in the solution of two sets of optimization applica-
tion problems: optimal nanophotonical detector design [5] and surgical operation planning
[3]. These were computationally demanding tasks that required a proper implementation al-
lowing a quicker solution on everyday computers. The applied optimization platform was
the GLOBAL algorithm [1, 4].

GLOBAL is a multistart procedure, that applies local search methods for finding local min-
imizer points. Two local search algorithms can be selected: the first is UNIRANDI, a direct
search technique. It is a random walk method, that does not assume differentiability of the
objective function, and requires only a subroutine for the calculation of the objective function
value. The other method is BFGS, that is readily available in Matlab (even without the op-
timization packages). This assumes a smooth objective function, although it requires again
only a subroutine for the calculation of the objective function value.

The framework multistart algorithm assumes that the relative size of the region of attraction
of the global minimizer point(s) is not negligible, i.e. say larger than 0.00001. The GLOBAL
procedure is in a schematic description:

Step 1: Draw N points with uniform distribution in X , and add them to the current cumula-
tive sample C. Construct the transformed sample T by taking the γ percent of the points
in C with the lowest function value.

Step 2: Apply the clustering procedure to T one by one. If all points of T can be assigned to
an existing cluster, go to Step 4.

Step 3: Apply the local search procedure to the points in T not yet clustered. Repeat Step 3
until every point has been assigned to a cluster.

Step 4: If a new local minimizer has been found, go to Step 1.

∗The research was supported by National Research, Development and Innovation Office-NKFIH through project "Optimized
nanoplasmonics" K116362. Mária Csete acknowledges that the project was supported by the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences. Gábor Szabó acknowledges the support of the Hungarian Academy of Sciences.
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Step 5: Determine the smallest local minimum value found, and stop.

2. A motivating problem from nanophotonical design

We intend to find favorable structures of tiny light sensors for sophisticated communication
via encoded information. The parameters of the optimal structure of the detectors sensing
quantum information holding infrared single-photons depend much on the wave length. Dif-
ferent kinds of plasmonic structures have relevant properties for controlling the nanophoton-
ical properties of integrated detectors. We encounter many diverse optimization problems
studying these integrated structures.

COMSOL is a Java based Matlab tool for multi-physics simulation (Figure 1). The RF mod-
ule of the COMSOL is a well accepted tool for investigating the sensitivity of detectors in
nanophotonics. It is cooperating well with other platforms such as Matlab, Java, Excel etc.
Also a server-client type websocket based communication is available between the applica-
tions and the simulation engine. COMSOL can be driven by LiveLink (MATLAB):

Figure 1. A typical COMSOL control page.

addpath ’/n/comsol/COMSOL44/mli’;

import com.comsol.model.*

import com.comsol.model.util.*

mphstart(pcName,2036);

model=mphload(mphFileName);

model.sol(’sol1’).run;

mphmean(model,’var4’,1);

But COMSOL can also be controlled by LiveLink (JAVA):
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System.setProperty("cs.root",

"C:\\Program Files\\COMSOL\\COMSOL44");

ModelUtil.initStandalone(false);

ModelUtil.connect(pcName, 2036);

model = ModelUtil.loadCopy("Model",mphFileName);

model.sol("sol1").run();

model.result().table("tbl1").getTableData(true)[0][0]

We studied the following optimization problems. What is the maximal detection efficiency
for a given type detector? The available values in the literature are around 93%. What is the
maximal detection efficiency for e.g. different polarization photons? The information carrying
type photon should be absorbed with enhanced efficiency compared to other type photons.
Can we improve the contrast without a major decrease in the detection efficiency?

The code was earlier available in Fortran, C, and Matlab. The reasons for the Java imple-
mentation:

More efficient optimization, an object oriented version is also welcome.

This language supports our parallelization aims as well, both the multi-machine and the
multi-core versions (CUDA was neglected in the first row).

Fits well our present problems.

The object oriented GLOBAL has three main components: sample generation, clustering,
and local minimization. All the three are equipped with an interface class. All of them can be
applied in a stand-alone way, other combinations can be formed. They have build methods.

3. Experimental results

Some representative efficiency results:
Nano-cavity-array-integrated detector (NCDAI)

Optimization method Period (nm) Absorption
Original (792, optA) 792.46 78.22%
GLOBAL (792, optC) 792.46 79.52%

Nano-cavity-double-deflector-array-integrated detector (NCDDAI)

Optimization method Period (nm) Absorption
Original (792, optA) 792.46 86.84%
GLOBAL (792, optC) 792.46 89.90%

Nano-cavity-trench-array-integrated detector (NCTAI)

Optimization method Period (nm) Absorption
Original (792, optA) 792.46 89.92%
GLOBAL (792, optC) 792.46 92.07%
GLOBAL (500-600, optG) 600.00 94.49%
GLOBAL (1000-1100, optI) 1056.24 95.05%

Optimized contrast results are given in the next table with fixed absorption rates (NCAI
stands for Nano-cavity-array-integrated, NDAI for Nano-deflector-array-integrated):

System Original Optimized 90% 93%
NCAI 146.8800 219.9831 219.9679 199.461
NDAI 1.3420E+03 6.0424E+10 6.3289E+05 3.2113E+03
NCDDAI 1.9468E+03 4.6787E+11 2.1718E+08 1.9135E+07
NCTAI 49.9800 366.4346 69.8521 69.9753
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Figure 2. Detector types: NCAI, NCDAI, NCDDAI, and NCTAI, respectively. The arrows indicate the parame-
ters to be optimized.

In the talk we shall report detailed computational test results on the Java version GLOBAL
code, on the speed up achieved, and also on new, improved results on the surgical operation
design problem [3] addressed in the last Global Optimization Workshop [2].
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Abstract Over the last decades checking copositivity of matrices by simplicial subdivision of the unit simplex
has made a big progress. Recently it has been showing that surprisingly the use of regular sim-
plicial subdivisions may have some advantage over traditional iterative bisection of simplices. In
this contribution we pose the question whether regular subdivisions may provide opportunities in
copositivity testing.
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1. Copositivity Detection by Simplicial Refinement

Copositivity plays an important role in combinatorial and quadratic optimization. Setting
up a linear optimization problem over the copositive cone leads to exact reformulations of
combinatorial problems, for example, maximum clique [1]. Let ω(G) be the clique number of
a graph G, E the identity matrix, t ∈ N a variable, and Q = E − AG a matrix derived from
the adjacency matrix AG of the graph G. The goal of this copositive programming problem
is to find the smallest value of t such that tQ − E is copositive, i.e. it is in set C of copositive
matRices,

ω(G) = min{t : tQ− E ∈ C}.

An n × n real symmetric matrix A is called copositive if xTAx ≥ 0 for all x ∈ Rn+, where
Rn+ := {x ∈ Rn : xi ≥ 0 for all i} denotes the non-negative orthant. This means a matrix A
is copositive if eTi Aej = aij ≥ 0 for all i, j. Thanks to the thesis investigation of Bundfuss [2],
it is known that iterative simplicial refinement of the unit simplex S, this sufficient condition
eventually becomes closer and closer to a necessary condition. The unit simplex is defined as

S = {x ∈ Rn |
n∑
j=1

xj = 1; xj ≥ 0, ∀j}. (1)

Let v1, . . . , vn denote the vertices of sub-simplex ∆ in the refinement, then vTi Avj ≥ 0 shows
that A is copositive over ∆. This condition gives rise to Algorithm 1 for copositivity detection.
First of all, it should work with an accuracy ε in case minx∈S x

TAx = 0. This means that the
algorithm in fact presents a certificate of what could be called ε-copositivity, xTAx ≥ −ε.

The algorithm starts with the unit simplex, i.e. the vertices are the unit vectors e1, . . . , en.
Simplices are subdivided until either the candidate list is empty, which certificates that A
is copositive, or alternatively a point x ∈ S is found for which xTAx < 0, which means

∗This work has been funded by grants from the Spanish Ministry (TIN2015-66688) and Junta de Andalucía (P11-TIC-7176), in
part financed by the European Regional Development Fund (ERDF) and by Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) through PEst-OE/MAT/UI0297/2011 (CMA)
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Input: A: matrix, ε: accuracy.
1 Λ := {S} // Set of sub-simplices in tree

2 certificate = true
3 while Λ 6= ∅ do
4 Extract a simplex ∆ from Λ and refine into a set Ω of sub-simplices
5 for all ∆ ∈ Ω do
6 Determine L(∆)

7 if found a point x with xTAx < 0 // A not copositive

8 then
9 certificate = false goto 12

10 if L(∆) > −ε then
11 Store ∆ in Λ.

12 return certificate
Algorithm 1: CoposTest(A, ε, certificate)

that A is not copositive. Like in branch and bound algorithms, it defines a lower bound
L(∆) = mini,j v

T
i Avj ≤ minx∈∆ x

TAx for each evaluated simplex ∆, such that each simplex ∆
for which L(∆) ≥ −ε can be discarded. Therefore, the search tree is pruned at the nodes cor-
responding to those simplices. Implicitly, the algorithm has a selection rule of which simplex
to refine further first. Usually a depth first rule or best first rule based on the lowest lower
bound value is used to prevent the tree to fill up all memory space in the computer.

Copositivity certification by simplicial refinement requires much more computation than
verifying non-copositivity of a matrix. More recent implementations [4] that also include par-
allel computing show that verifying non-copositivity of matrices can go to a size up to several
thousands. However, certifying copositivity of a copositive matrix is limited to a size up to
22 in a reasonable time. In the implemented simplicial partitioning algorithms [2, 4] the edge
(i, j) with the most negative value vTi Avj is subdivided aiming to find a point with negative
vTAv quickly in the case of a non-copositive matrix. The question is whether one could find
a way to make certification of copositivity faster, although verification of non-copositivity is
slower. This would also make copositive programming by simplicial partitioning faster.

Moreover, it is known that branch and bound techniques like Algorithm 1 require an effi-
cient management of memory storage of the underlying search tree and its nodes. In order to
make efficient use of memory and to facilitate the computational requirement, this contribu-
tion investigates whether the recently developed regular simplicial covering can be of help to
achieve the aim of efficient copositivity detection.

2. Regular subdivision of the unit simplex by 2USC

For several years we investigated the concept of Uniform Simplex Cover (USC) where the sim-
plex is covered by equally sized, equally oriented overlapping sub-simplices and we analysed
its characteristics. Initially, the concept did not look very appealing compared to traditional
bisection, as the refinement leads to overlapping sub-simplices, i.e. it is not a partition. Only
recently has been found that in some aspects, where the complete tree is generated, like when
the matrix is copositive, the method may have some advantage over bisection, see [3]. To
express the idea of equally sized and oriented simplices we introduce the following concepts.

Each simplex ∆ has a center c and a radius r which define its vertex matrix as

V = c1T + rD, (2)

where 1 is the all ones vector and E = (e1, . . . , en) represents the identity matrix. D =
(d1, . . . , dn) = E − 1

n11
T is a symmetric matrix with the directions from the center towards
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the regular simplex vertices. Notice that the center of the unit simplex S is c = 1
n1, whereas

its radius, that is the step size relative to the deviation matrix D is 1.

v3 

rd3 

v2 

rd2 

v1 

rd1 

c 

d3 

d2 d1 

Figure 1. Uniform covering of a simplex by 2USC. The orientation provides fixed directions di, i = 1, . . . , n.

The idea of 2USC, where each edge is covered by 2 overlapping simplices, is illustrated in
Figure 1. Due to the orientation, the set of direction vectors in D is always the same. The
reduction of the radius from parent simplex to a child in the corresponding search tree is at
least n−1

n . Storage of the simplex in a tree requires only to store the center c and the radius r.
We now focus on the consequence of using such a refinement for the determination of a

lower bound L(∆) in Algorithm 1. For two vertices vi and vj of ∆ we have

vTi Avj = (c+ rdi)
TA(c+ rdj) = cTAc+ rcTA(di + dj) + r2dTi Adj . (3)

For evaluating the lower bound, we have the evaluation cTAc in c and, as will be shown, the
minimum on a linear and quadratic term in the radius r with vectors bij and constants fij :

L(∆) = cTAc+ min
i,j
{rcT bij + r2fij}. (4)

If the evaluated cTAc is negative, non-positiveness has been proven in line 7 of the algorithm.
If the term is nonnegative, the lower bounding term becomes of interest. Notice that term
becomes smaller when we go deeper into the search tree where the radius r becomes small.
The data for the evaluation of the lower bound is matrix A with columns ai and average
row (and column) vector a = 1

n

∑n
i=1Aij . Given that the direction vectors have the shape

di = ei − 1
n1, one can write the necessary coefficients to evaluate the lower bound in (4) as

bij = A(di + dj) = ai + aj − 2a (5)

and

fij = dTi Adj = Aij − ai − aj +
1

n2

n∑
i=1

n∑
j=1

Aij . (6)

These coefficients can be calculated from the matrix A at the start of the algorithm preventing
vertex evaluation and storage.
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3. Conclusion

Copositivity detection using simplicial refinement is a computational challenge. Using regular
simplex refinement with uniformly oriented simplices prevents evaluating and storing vertex
evaluations.
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1. Introduction

In recent years significant research attention has been focused on distributed optimization
algorithms and their applications [4,6,9]. Though many disparate problems and algorithms
have been analyzed, the vast majority of the analysis has focused on convex optimization.
On the other hand, the majority of real life problems tend to be non-convex. Accordingly,
there is significant benefit that can be derived by investigating these non-convex problems
and finding effective algorithms to solve them. To this end we continue the development of
the algorithm proposed in [8] and analyze its performance on a number of general non-convex
problems. In addition, we seek to characterize its behavior as a function of the algorithm’s
parameters both in stationary and time-varying implementations. Lastly, we attempt to obtain
an optimization scheme that can effectively be applied to real world problems where the shape
of the optimization surface and the characterization of the noise are not known.

2. The Algorithm

We consider a distributed scheme for stochastic optimization with N > 1 independent com-
puting threads each implementing a stochastic gradient algorithm wherein the gradient is
further perturbed by a flocking potential with repulsive and attractive terms (a function of the
relative distance between threads). Hence, the updating of individual threads is coupled in
a similar manner to mathematical models of flocking, swarming and other group formations
(see [2]). In our recent work (see [8]) we have shown that this coupling endows the scheme
with a reduced sensitivity to noise. Noise realizations that induce trajectories differing too
much from the group average are likely to cancel out with the attractive term which aims to
maintain cohesion. This noise reduction property is fundamentally different to that attained
by other centralized gradient estimation techniques. For example, with N > 1 samples (which
could be obtained in parallel), a better estimate for gradient can be computed in a centralized
manner (see for instance, [1,7] for a survey of gradient estimation techniques and [3,5] for
recent applications in machine learning.). In contrast, for the flocking-based approach, each
thread only needs to keep track of the current location of other threads. A flocking-based ap-
proach to stochastic optimization provides a novel way of reducing the effects of noise and
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therefore provides a basis for a novel distributed computing approach to stochastic optimiza-
tion.

To illustrate, consider the minimization of the function f(x) = log(||x||2+1) where x ∈ R2.
The unique optimal solution is x∗ = 0. Suppose the gradient ∇f(x) is observed with noise so
that the basic iteration in a traditional stochastic gradient descent algorithm can be written as:

xk+1 = xk + ρk(−∇f(xk)) + ξk)

where ρk > 0 is the step size and the collection {ξk : k > 0} is the noise. Now we introduce an
additional perturbation to the gradient so that the basic iteration for a thread i is:

xi,k+1 = xi,k + ρk(−∇f(xi,k) + ξi,k +

N∑
j=1,j 6=i

g(xi,k − xj,k))

where g(xi,k − xj,k) is the flocking potential between threads i and j, i.e. a combination of
repulsive and attractive "forces" depending upon the relative distance xi − xj . The perfor-
mance of the flocking-algorithm can be seen in Figure 1 (N = 15, ξi,k ∼ N(0, 42), ρk = .3 and
g(x) = −x[a− b/x2] where a = .2, b = .4).

Figure 1a. Distance from the optimal solution
over time for each thread

Figure 1b. Path of a single thread through the so-
lution space

3. Numerical Experiments

The numerical experiments will be performed by testing several implementations of the flock-
ing algorithm on a variety of non-convex optimization problems. The process will consist of
several stages in order to first build intuition about the relationship between the algorithm’s
parameters and its behavior and then using this intuition to develop effective configurations
for different non-convex problems.

3.1 Experiment Parameters

As referenced in Section 2, the algorithm has 3 components which can be modified to alter its
behavior.

The first alterable component is the time scale or step size of the algorithm, which governs
the rate at which the various threads move around the solution space. Previous analysis has
shown that smaller step-sizes will result in the algorithm being less sensitive to noise, while
larger step sizes allow the algorithm to converge to the optimal solution quicker. However,
if the step size is made too large, it can result in the algorithm failing to converge at all, even
among convex problems where we use many threads (see Figures 2, 3, 4). Past analysis has
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only used stationary step sizes while our numerical experiments will analyze certain algorith-
mic implementations in which the step size changes during the algorithm’s execution or differ
between threads.

Figure 2. By plotting the dis-
tance of each thread to the opti-
mal solution for the flocking algo-
rithm when the step size was set
to .1, we can see that the mass of
threads continuously improves its
position with little deviation.

Figure 3. In this plot, where the
step size of the algorithm was set
to .7, we can see that the mass
of threads converged to an op-
timal solution much quicker but
was also subject to greater devia-
tions.

Figure 4. When the step size
was set to 2, though the mass of
threads does find the optimal so-
lution at times, it does not stay
there due to the noise

The second component is the number of distinct threads used in the algorithm. Since chang-
ing this parameter would be associated with a significant cost increase in a real-world setting,
it can only be optimized within that setting. As a result we will leave this parameter constant
throughout our experiments.

The final parameter is the algorithm’s flocking potential which is where the majority of our
analysis will take place. The flocking potential has significant room for variation in that it can
be any function of the distance between the threads. Past analysis has only investigated the
use of a stationary flocking potential for all threads, while this paper will look at a variety of
potentials that change during execution.

3.2 Performance Evaluation

Because our numerical experiments have various objectives, we will need to characterize the
algorithm’s performance in several ways.

For algorithms which lack a stopping criterion, we will primarily be interested in 2 metrics,
the level of convergence (mean distance between threads) of the various threads, and the
best solution found among all threads. Since these implementations lack a stopping criterion
we will simply evaluate their performance by artificially stopping the algorithm after some
common number of iterations. By simulating the optimization process several times, we will
be able to obtain a representative measure of each of the performance metrics.

For algorithms which have a stopping criterion, we will characterize its performance by the
amount of time it took to reach the stopping point as well as the objective value of the final
solution. As before we repeat the numerical experiments several times in order to minimize
the error in our performance analysis.

3.3 Initial Analysis

The first step will be to identify what type of flocking potential engenders different behaviors
of the algorithm. It will be important to understand under what conditions will the threads
converge to a single solution or diverge and escape local minima. In addition, it will be impor-
tant to gain insight into how the step size changes the algorithm’s behavior perhaps relative
to the topography of the objective function.
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3.4 Non-stationary Algorithm Design

The next step will be to use the understanding gained from the initial analysis in order to
design algorithms which more intelligently search the solution space by changing the algo-
rithm parameters over time. The goal is to find an implementation of the algorithm which at
first uses the divergence of the threads to find good global solutions before changing behavior
and converging the various threads towards the best one. Once designed we will test this
implementation to verify our intuition about the optimal sequencing of algorithm behaviors.

3.5 Inter-Thread Flocking Variability

The next step will look at more exotic options where the flocking potential or step size is no
longer the same among all the threads. This will, for example, allow implementations where
the attractive flocking potential is increased among threads that have realized better solutions,
allowing the algorithm to quickly converge when significantly better than average solutions
are found. Another example could be to make threads insensitive to the attractive potential of
any thread at a worse objective solution. Alternatively we could design a version where the
threads implement one or more of the above behaviors and analyze how a mixture of different
thread types could work.

3.6 Abstraction to Real World Problems

The final step will be to see what implementations work well when applied to problems where
nothing is known about the noise or the objective function. As mentioned above, previous
analysis has shown that, for example, a bad step-size can prevent your algorithm from con-
verging to an optimal solution even among convex problems, as a result, we will need to make
sure that the algorithm’s parameters vary in such a way that a bad initial set of parameters
does not indefinitely prevent the algorithm from working as expected. These implementations
will have the greatest potential for actual real world application when very little is known
about the shape of the actual problem.

4. Summary
In summary, we are looking to take distributed stochastic optimization algorithms and gain
the insight necessary to understand how they could be most effectively used to solve non-
convex real world problems.
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1. Introduction

Clustering is a powerful tool for automated analysis of data. It addresses the following prob-
lem: given a set of entities find subsets, called clusters, which are homogeneous and/or well
separated. Clustering is ubiquitous, with applications in the natural sciences, psychology,
medicine, engineering, economics, marketing and other fields [7, 8].

Usually in clustering, we are given a set O = {o1, . . . , on} of n objects that must be par-
titioned into a set of P = {C1, . . . , Ck} clusters such that: (i) Cj 6= ∅, ∀j ∈ {1, . . . , k}; (ii)

Ci∩Cj = ∅, ∀i, j ∈ {1, . . . , k}with i 6= j; and (iii)
k⋃
j=1

Cj = O, while maximizing or minimiz-

ing a function f which defines how homogeneity and separation are expressed in the clusters
to be found.

Among the many available criterion used in cluster analysis, the diameter minimization (DM)
is the most natural to express homogeneity. Actually, the classic book of Garey and Johnson [5]
refers to the DM clustering problem as “the clustering problem”. The diameter (Dj) of a
cluster j ∈ {1, . . . , k} is defined as:

Dj = max{dii′ : 1 ≤ i < i′ ≤ n, oi, oi′ ∈ Cj}, (1)

where dii′ represents the dissimilarity between objects i and i′. The diameter minimization
problem is then expressed as min max1≤j≤kDj .

A popular heuristic for DM is the complete-linkage hierarchical clustering algorithm [9].
Complete-linkage merges at each step of its hierarchical construction the two subsets for
which the maximum dissimilarity between their objects is minimum. The desired solution is
obtained by cutting the resulting tree at k clusters. However, the method seldom finds optimal
solutions as reported by [2, 6]. Regarding exact methods, Hansen and Delattre [6] explored
the relationship between DM and graph-coloring to devise a branch-and-bound method to
solve problems of non-trivial size. Brusco and Stahl [3] proposed a backtracking algorithm,
denoted Repetitive Branch-and-Bound Algorithm (RBBA), that branches by assigning each
object to one of the possible k clusters. More recently, Dao et al. [4] proposed a constraint pro-
gramming approach for DM whose computational results outperformed the previous exact
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approaches found in the literature. In particular, the method obtained the optimal partition
regarding the DM criterion for a real-world dataset with 5000 objects grouped into three clus-
ters.

2. Preliminaries and notation

Let V be the complete set of nodes (objects), of size n. We let E = {{u, v} : u, v ∈ V, u < v} be
the set of edges linking all nodes in V , of sizem = n(n−1)/2. For each edge e = {u, v} ∈ E, we
denote by de the dissimilarity between nodes u and v. The dissimilarity matrix of V is denoted
byD(V ) = [de]e∈E . A feasible solution of the DM is a partition C = (Cj)

k
j=1 of V . The diameter

of a cluster Cj is denoted by d(Cj) and is equal to max{de : e = {u, v} ∈ E, u, v ∈ Cj}. The cost
associated with C is denoted by ω and is equal to max{d(Cj) : j = 1, . . . , k}. Our algorithm to
solve the DM relies on the following results and hypothesis.

Lemma 1. Let U ⊂ V be a subset of V , and let D(U) be its dissimilarity matrix. The optimal solution
of the DM on (U,D(U)) provides a lower bound on the optimal solution of the DM on (V,D(V )).

Proof. The proof is by induction on the size of V \ U . Let |V \ U |= 1. Let ωV , ωU be the
values of two optimal solutions of the DM on (V,D(V )) and on (U,D(U)), respectively. Let
v∗ = V \ U . If ωU > ωV , the one can remove v∗ from the cluster containing it in (V,D(V ))
and get a solution for (U,D(U)) of cost smaller than or equal to ωV , which contradicts the
optimality of ωU . If |V \ U |= k > 1 then one can apply the same argument k times.

Proposition 2. Let U ⊂ V , and let CU be an optimal solution for (U,D(U)) of cost ωU . If one can
find a clustering CV of V of cost ωU , then that clustering is optimal for V .

Proof. From the lemma, ωU is a lower bound on the optimal solution value of DM for the set
V . If ωU is also the value of an upper bound (a feasible solution), then ωU is optimal.

Hypothesis 3. There exists a subset U ⊂ V of size n′ � n such that Proposition 2 holds for U .

Our algorithm aims to provide an efficient way of finding such set U .

3. The general framework

We begin by selecting (using some criterion) an initial set U0 containing κ points from V ,
where κ is a positive integer parameter, usually small. Let us set i ← 0. At iteration i, one
solves problem (U i, D(U i)) to optimality. Let Ci, ωi denote the optimal solution and its value,
respectively, for problem (U i, D(U i)). We then run a heuristic and try to build a feasible solu-
tion for problem (V,D(V )) of cost ωi. Our heuristic proceeds as follows: The nodes in V \ U i
are sorted using some ordering cheap to compute. Every node v ∈ V \ U i is then iteratively
inserted into Ci on some cluster that does not see its diameter increased. If for some node v∗

this is not possible, the heuristic stops. We set U i+1 ← U i ∪ {v∗}, i← i+ 1 and the algorithm
is restarted. If, on the contrary, all nodes in V \ U i could be inserted into Ci, then an optimal
clustering of (V,D(V )) has been found. Algorithm 1 illustrates our method.

In this algorithm, procedure OptimalClustering(U,D(U)) solves, in our case via a branch-
and-price algorithm, the clustering problem restricted to the nodes in U to optimality. It re-
turns the optimal clustering CU and its objective value ωU . The function HeuristicCompletion

(CU , V \ U) completes the solution found by OptimalClustering (U,D(U)) and returns the
resulting clustering CV , its value ωV and a set W = {w} containing a node that could not be
inserted into CU without augmenting its cost (∅ if no such node exists).

The exactness and finiteness of our approach is based on the fact that, at every iteration, the
heuristic either proves the optimality of the current subproblem (supported by Proposition 2),
or the set V is augmented. In the worst case, U will grow up to become equal to V , in which
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Input: Problem P = (V,D(V ))
Output: Optimal clustering CV = {Cj : j = 1, . . . , k} of P
Build U by selecting κ points from V
ωU , ωV ←∞
CU , CV ← ∅
W ← ∅
repeat

U ← U ∪W
(ωU , CU )← OptimalClustering(U,D(U))
(ωV , CV ,W )← HeuristicCompletion(CU , V \ U)

until W = ∅;
return CV

Algorithm 1: Iterative clustering

case procedure OptimalClustering(V,D(V )) is guaranteed to return an optimal solution for
problem (V,D(V )). A simple worst-case time analysis of our method based upon this obser-
vation would suggest that it is indeed theoretically slower than solving the complete problem
at once. However, in practice, our algorithm solves problems several orders of magnitude
smaller than the original one.

4. Computational experiments

The proposed algorithm was implemented in C++ using the GNU g++ compiler v5.2. The
linear programming solver used within our branch-and-price procedure was CPLEX 12.6. The
algorithm was compiled and executed on a machine powered by an Intel Core i7-4710HQ CPU
@ 2.50GHz×8 with 16GB of RAM, running the Ubuntu 15.10 Operating System.

In our experimental analysis, we consider some classical problems from clustering, classi-
fication and regression tasks. In Table 1 we provide the detail of the datasets considered in
our computational study. In this table, n, k and d stand for the number of points, the number
of clusters and the dimension of the problem, respectively. Column labeled Ref contains a
reference to the source of the problem.

Table 1. Problems details

Problem n k d Ref
Iris 150 3 4 [11]
Wine 178 3 13 [11]
Glass 214 7 9 [11]
Ionosphere 351 2 34 [11]
User knowledge 403 4 5 [10]
Breast cancer 569 2 30 [11]
Synthetic control 600 6 60 [1]
Vehicle 846 4 18 [12]
Yeast 1,484 10 8 [11]
Mfeat (morph) 2,000 10 6 [4]
Segmentation 2,000 7 19 [4]
Waveform (v2) 5,000 3 40 [11]

Table 2 compares our algorithm against Dao et al.’s CP algorithm [4], the RBBA of Brusco
and Stahl [3] and the BB of Delattre and Hansen [6]. As one can see from this table, our
algorithm takes two seconds or less to solve all the problems, including problem Waveform
(v2) that passed from being solved in almost a minute, to only two seconds.
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Table 2. Running times (in seconds) on datasets

Problem Opt RBBA BB CP IC
Iris 2.58 1.4 1.8 < 0.1 < 0.1
Wine 458.13 2.0 2.3 < 0.1 < 0.1
Glass 4.97 8.1 42.0 0.2 0.2
Ionosphere 8.6 0.6 0.3 0.2
User knowledge 1.17 3.7 0.2 1.2
Breast cancer 2,377.96 1.8 0.5 0.2
Synthetic control 109.36 1.6 0.4
Vehicle 264.83 0.9 0.2
Yeast 0.67 5.2 1.7
Mfeat (morph) 1,594.96 8.59 0.6
Segmentation 436.4 5.7 0.6
Waveform (v2) 15.58 50.1 2.0
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Abstract A Branch&Bound algorithm based on interval arithmetic is described solving non-convex minimax
problem with continuous variable. Numerical results will follow on control synthesis with H∞
robust constraint.
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1. Introduction

In this talk, we show that problem (1) can be solved in a guaranteed way using a global op-
timization based on interval arithmetic. Moreover, global optimization gives an enclosure of
the minimum value of the objective function:

min
x∈X⊂Rn

sup
y∈Y⊆R

f(x, y)

s.t. ci(x) ≤ 0, ∀i ∈ {1, . . . ,m}.
(1)

We first introduce the interval arithmetic and the notion of inclusion function. After that we
show how to tackle the maximization part of this minimax problem with interval arithmetic.
Finally, we propose a Branch&Bound algorithm to solve the whole problem.

2. Interval Arithmetic

An Interval is a closed connected subset of R [2]. Intervals are denoted using boldface letters
x. A non-empty interval x can be represented by its endpoints:

x = [x, x] = {x : x ≤ x ≤ x}

with x ∈ R ∪ {−∞}, x ∈ R ∪ {+∞} and x ≤ x. The set of intervals will be denoted by IR and
the set of n-dimensional interval vectors, also called boxes, will be denoted by IRn.
The main advantage of interval arithmetic is to be reliable, in the sense that it provides a
guaranteed enclosure of the result. This inclusion property is the fundamental theorem of
interval arithmetic. Let g : Rn 7→ Rm be a function. An inclusion function g : IRn 7→ IRm of g
is defined as follows,

∀x ∈ IRn, g(x) = {g(x), x ∈ x} ⊆ g(x). (2)

An inclusion function provides an upper and a lower bound of a function over an interval.
Several techniques can be used to construct an inclusion function of every factorable function
with +,−, ∗, sin, exp, max,min, ... [6].
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3. Enclosure of the objective function

The objective function of problem (1) involves the computation of fsup(x) = sup
y∈Y

f(x, y). To

minimize this objective function using a Branch&Bound algorithm, we need to compute a
lower and an upper bound of fsup over a box x. This bound must be as close as possible to
the real range of fsup to ensure the convergence of the Branch&Bound algorithm.

Using interval arithmetic, an inclusion function f of f(x, y) can be constructed. Indeed, the
operators +, ∗, abs, √ , max are well-defined [3]. To use the interval arithmetic, we make an
usual assumption and limits the study of sup

y
f(x, y) to a bounded set Y ⊂ R. Indeed, we have

the following equation:

∀x ∈ IRn, fsup(x) =

{
sup
y∈Y

f(x, y) : x ∈ x

}
⊆ f(x,Y).

Unfortunately, the bounds obtained using the inclusion function directly over Y are not
close enough to fsup(x). That is why we subdivide Y into several boxes yi such as Y =

⋃
i

yi.

Thus, we have the following result:

∀x ∈ IRn, fsup(x) ⊆
[
max
i
f(x,yi),max

i
f(x,yi)

]
.

f(x, y)

y

f sup(x)

f sup(x)

yi × f(x,yi)

Figure 1. Computation of fsup(x).

Figure 1 illustrates the previous equation. Y is discretized with non-overlapping intervals
and f is evaluated for each of them. The highest lower bound and upper bound of the evalu-
ations represented by dotted lines in Figure 1 give a guaranteed enclosure of fsup(x). Indeed,
the function f sup, defined as follows, is an inclusion function of fsup:

∀x ∈ IRn,f sup(x) =

[
max
i
f(x,yi),max

i
f(x,yi)

]
.

To save computation time, some boxes yi are eliminated if it is certified that it cannot con-
tain the maximum, i.e. if max

j
f(x,yj) ≥ f(x,yi). Moreover, for a box x, this computation

will be performed inside a Branch&Bound algorithm (described in the next section), so the
discretization of Y can be transmitted to all its sub-boxes. Indeed, for a box x, if a box yi is
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eliminated, we do not need to compute f(xp,yi) for every sub-boxes xp ⊂ x. This process
accelerates the computation time of the Branch&Bound algorithm.

4. Global Optimization Algorithm

We propose to solve problem (1) with a Branch&Bound algorithm [3, 4]. We denote µ the
global minimum of problem (1), X ⊆ Rn the initial domain of the variable, and lbµ and ubµ a
lower and an upper bounds of µ respectively.

The principle of a Branch&Bound algorithm is to split X into smaller subsets and eliminate
them if they do not satisfy the constraint or if it is certified that they do not contain the global
minimum. At the end of the algorithm, we obtained:

x∗ the best feasible solution found,

[lbµ, ubµ] a reliable enclosure of the minimum µ,

A certificate of infeasibility if no solution has been found.

The complexity of our algorithm is exponential, but since the past fifteen years, the global
optimization community has divided the required CPU time by a factor 109 for solving such
problems. This gain is due (in roughly equal parts) to (i) hardware improvement, (ii) progress
in the resolution of linear programs, and (iii) implementation efficiency of advanced mathe-
matical techniques [1]. Most of these progress are included in our implementation.

Several ideas are used to improve the convergence:

Based on the constraints ci(x) ≤ 0, advanced techniques of Constraint Satisfaction Prob-
lem are used to reduce a box x to the feasible domain [5]. These techniques contract the
domain under study, to focus on the feasible domain.

We test some feasible points x to improve the upper bound upµ. Indeed, the value of
each feasible point is an upper of the global minimum.

Using the method of Section 3, lower bounds of the objective function can be obtained
for each box x. These bounds focus the algorithm on the part of the domain which has
more chance to contain the global minimum.

Branch&Bound algorithm based on interval arithmetic.

1. While |ubµ − lbµ|≥ ε and L 6= ∅
2. Extract a box x from L
3. Contract x using [5].
4. Bissect x into x1 and x2.
5. for (i = 1, 2) {
6. Compute f sup(xi).
7. if (f sup(xi) ≤ ubµ) {
8. Add xi in L.
9. Choose x ∈ xi that respects ∀i, ci(x) ≤ 0.
10. if (f sup(x) < ubµ)
11. Update ubµ and x∗ := x.
12. }
13. Update lbµ := min

x∈L
f sup(x).
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This algorithm works as follows. A list of boxes L is initialized with X. At Line 2, the box
x with the lowest lower bound f sup(x) is chosen from L. At Line 3, x is contracted using
[5]. If the result is not empty, x is bisected in two non-overlapping boxes x1 and x2. For x1

and x2, f sup(xi) is computed at Line 6 using Section 3. If f sup(x) > ubµ, it is proved that
the global minimum cannot be in x, else the box is added to L. At Line 9, if possible, a point
x that stabilizes P (s) is chosen in x. If f sup(x) is lower than the current value ubµ, ubµ is
updated. When this algorithm stops, L contains a set of boxes that can contain the global
minimizer; [lbµ, ubµ] provides a guaranteed enclosure of the global minimum µ; x∗ contains
the best known solution. If (lbµ > 1) or if (L = ∅)∧ (x∗ = ∅), it is certified that problem (1) has
no solution.
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Abstract In this paper, we develop strong and easily computable upper bounds for the maximum clique
problem that take advantage of continuous relaxations of integer programming formulations for the
minimum k-core problem and its diameter-restricted version. We show that the proposed upper
bounds are better than those obtained from the standard relaxations of the clique polytope. We also
report the results of computational experiments with several classes of graph instances and provide
a comparison with some existing bounds from the literature.
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1. Introduction

A clique is a subset of pairwise adjacent vertices, and the maximum clique problem aims
to find a clique of maximum cardinality, also called the clique number. This problem has
diverse applications in various fields [5], that include social, biological and communication
networks [3, 10, 21], and hence, is one of the most popular and well studied problems in
combinatorial optimization and theoretical computer science. However, the problem is NP-
hard [12] and is hard to approximate [17]. Motivated by these factors, many exact branch and
bound algorithms [22, 23, 25, 29, 32], enumerative algorithms [7, 30], and a variety of heuristics
[1, 4, 8, 13, 14, 16] have been developed.

Pertinently, many convex relaxations [24] that determine a good upper bound on the clique
number have also been proposed. Perhaps the strongest results in this direction are related
to the notion of Lovász theta [20], denoted by θ(G), which satisfies the inequalities ω(G) ≤
θ(Ḡ) ≤ χ(G), known as the sandwich theorem [18]. Here, Ḡ is the complement graph of G,
ω(G) is the clique number, and χ(G) is the chromatic number, which is the minimum number
of colors required in a proper coloring ofG. Both ω(G) and χ(G) are hard to compute, whereas
θ(Ḡ) can be computed in polynomial time. In fact, there is no provably better than θ(Ḡ)
upper bound on ω(G) unless P=NP [9]. The Lovász theta and its stronger variants have been
used to obtain tight upper bounds on the clique number in several works [6, 15, 19, 27, 28].
However, computing such bounds involves lifting to higher dimensional spaces, limiting their
applicability to only smaller graphs in practice.

In this paper, we take an alternate approach in which we seek a minimum cardinality subset
of vertices satisfying one or more elementary graph-theoretic properties that must hold for
any clique of a fixed size, say k + 1, also referred to as elementary clique-defining properties [26].
If this minimization problem is infeasible for G, or the minimum is greater than k + 1, we
can deduce that ω(G) ≤ k. Even if we obtain a valid lower bound on the minimum that is
greater than k + 1, we can still conclude that ω(G) ≤ k. Hence, our objective in this work
is to develop nontrivial, easily computable lower bounds for the minimization problem in
order to get a tight upper bound on ω(G). More specifically, linear programming (LP) based
bounds for two such minimization problems based on minimum degree and pairwise distance
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requirements are investigated and compared to the standard LP relaxations for the maximum
clique problem.

Given a positive integer k, a subset S of vertices is a k-core if δ(G[S]) ≥ k, and the degener-
acy ofG is the largest k for whichG has a nonempty k-core. Obviously, any clique of size k+1
is a k-core. Hence, given a lower bound k for ω(G), the k-core obtained by recursively remov-
ing all vertices of degree less than k from the graph (“peeling”) can be used for scale-reduction
in very large and sparse graphs for employing exact algorithms to solve the maximum clique
problem [1, 11, 31]. However, the peeling procedure yields the maximum-size k-core in the
graph that may be much larger than the clique number. In this work, we use minimum k-cores
to get an upper bound on the clique number of a graph. Consider the following problem:

Definition 1 (Minimum k-core). Given a graph G = (V,E), and a positive integer k such that
G has degeneracy at least k, find a smallest non-empty k-core in G. The size of a minimum k-core is
denoted by mk(G).

It is easy to see that if G contains a clique of size k + 1, then mk(G) = k + 1, and for a given
k, if there is no k-core in G or mk(G) > k + 1, then ω(G) ≤ k. Although this property helps
us obtain a valid upper bound for the maximum clique problem, using exact algorithms for
finding the smallest such k satisfying this property is not a viable approach from a compu-
tational standpoint for the following reason. Unlike the maximum k-core problem, which is
polynomially solvable, the minimum k-core problem does not admit a polynomial-time con-
stant factor approximation algorithm for k ≥ 3, unless P = NP [2]. Hence, as a starting point,
we aim to show that LP relaxations of the minimum k-core problem, and strengthened varia-
tions of the same can be used to easily compute good upper bounds for the maximum clique
problem.
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Abstract In a Standard Quadratic Optimization Problem (StQP), a possibly indefinite quadratic form (the
simplest nonlinear function) is extremized over the standard simplex, the simplest polytope. Despite
this simplicity, the nonconvex instances of this problem class allow for remarkably rich patterns of
coexisting local solutions, which are closely related to practical difficulties in solving StQPs globally.
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close connections of StQP with Evolutionary Game Theory and other, seemingly unrelated areas of
Mathematical Modeling.
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1. Introduction

We consider the Standard Quadratic Optimization Problem (StQP) given by

max
{
x>Ax; : x ∈ ∆n

}
with ∆n =

{
x ∈ Rn+ :

∑
i∈N

xi = 1

}
, (1)

where A is a symmetric n× n-matrix and N = {1, . . . , n}. Despite of its simplicity, this model
is quite versatile. Applications are numerous, ranging from the famous Markowitz portfo-
lio problem in Finance, Economics (evolutionary game theory) through Machine Learning
(background-foreground clustering in image analysis) to life science applications, e.g. in Pop-
ulation Genetics (selection models) and Ecology (replicator dynamics). So it is not too surpris-
ing that the following questions are closely related (for detailed explanations and background
see e.g.[1] and references therein):

How many strict local solutions are there at most in a given StQP ?
How many evolutionarily stable states (ESSs) can coexist in a given (partnership) game ?
How many asymptotically stable fixed points can coexist for the replicator dynamics ?
How many stable equilibria can coexist in a one-locus, multi-allelic system ?
How many maximal cliques can coexist in an undirected graph ?
The last question sheds light on an important aspect of StQPs, namely the discrete combi-

natorial structure of this problem class of continuous optimization models. Indeed, for the
subclass of StQPs based upon an adjacency matrix A of an undirected graph, the answer
to the last question is well known by the famous Moon/Moser bound [10]: asymptotically
3
√

3
n ≈ (1.4422)n, a number exponential in the order n of the graph, and this bound is sharp,

attained at the complete multipartite Turán graph T (n, dn3 e).
However, the Moon/Moser bound is not valid for general symmetric matrices A (with also

non-binary entries). In this paper, we will push this exponential bound up, improving, and
building, upon earlier investigations [5] where the basis ≈ 1.4592 was established, to a basis

∗See also "Constructing StQPs with many local solutions" and "Complexity of an StQP: a theory-guided experimental study"
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of ≈ 1.48106, establishing, to the best of our knowledge, a new world record (as of March
2016). Note that a worst-case upper bound on the maximal number of strict local solutions
asymptotically equals ≈ 2n

1.25
√
n

(see (6) below), so that the basis necessarily is smaller than
two.

2. Looking over the fence; local solution structure

The above mentioned close relations between the different fields Optimization, game the-
ory and population/selection dynamics; as explained in [1], the optimization problem (1) is
closely related to an evolutionary game with strategy set N in pairwise contests, with payoff
matrix A. If A = A>, this means that the row and the column player share the payoff equally,
a partnership game. Likewise, the symmetric matrix A = [aij ] could also collect the (incre-
mental) fitness values for the allelic combination {i, j} ∈ N × N where N is the allele set for
a single autosomal locus. Finally we may look a certain population dynamics called replicator
dynamics defined as a system of coupled autonomous differential equations, a continuous-time
dynamical system (a dot ẏ signifies derivative w.r.t. time t) and perform the usual qualitative
equilibrium analysis:

ẋi(t) = xi(t)
(

[Ax(t)]i − x(t)>Ax(t)
)
, i ∈ N , x(0) = x0 ∈ ∆n ; t ≥ 0 . (2)

We have the following equivalences for a point x ∈ ∆n:

x is a strict local maximizer of (1), i.e. strictly maximizes population overall fitness
⇔ x is an evolutionary stable strategy (ESS) for payoff matrix A

⇔ x is an asymptotically stable fixed point for the dynamics (2).


(3)

For succinct proofs, we refer to [1, Theorem 10] where also equivalences for the weaker ver-
sions of solutions are stated and proved:

x is a local maximizer of (1), i.e. maximizes population overall fitness
⇔ x is a neutrally stable strategy (NSS) for payoff matrix A

⇔ x is a Lyapunov stable fixed point for the dynamics (2);

 (4)

and

x is a KKT point for (1), i.e. satisfies first-order conditions for local maximality
⇔ x is a Nash equilibrium strategy (NES) for payoff matrix A

⇔ x is a saturated fixed point for the dynamics (2).


(5)

For us relevant are the first equivalences in (3), (4) and (5), and in the following will use both
terms (strict local maximizer/ESS; local maximizer/NSS; KKT point/NES) interchangeably.
For the readers’ convenience, we will repeat the definitions of ESS, NSS, NES below; note
that these also apply to non-symmetric square matrices A 6= A>, used for modeling non-
partnership evolutionary games; to this end, we will introduce a bit of notation first: given
any point x ∈ ∆n, let I(x) = {i ∈ N : xi > 0} be the support of x.

A vector x ∈ ∆n is called a (symmetric) Nash Equilibrium State/Strategy (NES), in symbols
x ∈ NES(A), if x>Ax ≥ y>Ax for all y ∈ ∆n, i.e., if x is a best reply to itself. The set of all best
replies y to x is denoted by BRA(x) =

{
y ∈ ∆n : y>Ax = x>Ax

}
.

A Neutrally Stable State/Strategy (NSS) is a NES which in addition satisfies x>Ay ≥ y>Ay for
all y ∈ BRA(x); this is denoted by x ∈ NSS(A). In words, a state/strategy x is neutrally stable
if it is at least as good a reply to any y than that y to itself, for any alternative best reply y to
x. Finally, an NSS is called Evolutionarily Stable State/Strategy (ESS), in symbols x ∈ ESS(A), if
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the last inequality is strict: x>Ay > y>Ay for all y ∈ BRA(x) \ {x}: any alternative best reply y
to x fares strictly worse against itself than the incumbent x performs against y.

Obviously, ESS(A) ⊆ NSS(A) ⊆ NES(A). The last two sets are never empty, but they
can be infinite, while the first one has to be always finite (but may be empty, e.g. for A = O).
However, generically, the first two sets coincide [1, Corollary 14], in which case they are both
nonempty and finite. More precisely, since the (ESS) pattern of A,

pattern(A) := {I(x) : x ∈ ESS(A)}

forms an antichain in the system of all subsets of N , which has n elements, by Sperner’s
theorem about maximal antichains and Stirling’s approximation we get

|ESS(A)|≤
(
n⌊
n
2

⌋) ∼ 2n/
√
πn . (6)

Instances with a rich such pattern (and thus many coexisting strict local solutions) will be
the main focus of our investigations, extending and improving upon previous studies [5].
Despite its discrete combinatorial nature, the pattern comprises all essential information on
the solution set of the instance, at least generically; note that generically we have ESS(A) =
NSS(A). Indeed, given I ∈ pattern(A), it is a mere matter of solving a linear equation system
in |I| variables to obtain the unique ESS x such that I(x) = I .

3. Global solutions; worst- and average case complexity

Our present study draws upon our earlier work [3, 4] focused on the coexistence of global so-
lutions in StQPs. Generically, there is only one global solution, but there are instances with
exponentially many (strict) global solutions. We know that StQPs are NP-hard (e.g., by re-
duction to the maximum clique problem), and that they form a PTAS [2]. For general QPs,
determining one local solution is already NP-hard [11]; note that for the StQP, a very efficient
local maximization algorithm for the general case was proposed in [12]. Obviously, deter-
mining all local solutions cannot be easier than solving the StQP globally. For a thorough
discussion of these and related issues, we refer to [7].

So what is a typical hard instance ? In a natural model for random n× n instances Ã, Kon-
togiannis and Spirakis [8, 9] showed that E

[
|pattern(Ã)|

]
= E

[
|ESS(Ã)|

]
= γnE

[
|NES(Ã)|

]
with γn → 0 as n→∞, and that

P
[
max

{
|I|: I ∈ pattern(Ã)

}
≥ n2/3

]
→ 0 as n→∞ .

So relatively large support sizes exists in some patterns, but instances with those patterns
become increasingly rare as n gets large. Interesting complex (and therefore large) patterns
would likely be missed or occur too rarely in a naive random sampling approach. On a related
question, Chen and Peng obtained very recently in [6] an even stronger probability bound,
under a similar model for random instances, denoting by x∗(A) a (generically unique) global
solution of (1):

P
[
|I(x∗(Ã))|≥ 3

]
→ 0 as n→∞ .

Again, this shows that naive random sampling is not very promising; if we know that the sup-
port of the global solution is at most a doubleton (and this happens with a high probability),
we simply have to search among all suchO(n2) doubletons and singletons; such instances oc-
cur with a high probability, and are no challenge algorithmically. Note that also the possible
pattern structures are constrained as they cannot contain any supports containing a doubleton
already detected as a member of the pattern. Therefore, the worst cases are hidden in regions
of small probability, and we will explore that region more systematically than just random
searching, developing structures which guarantee highly complex patterns.
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4. Summary

This is part one of a series of three presentations, given by I. Bomze, W. Schachinger and
R. Ullrich. The present part serves as an introduction and to give some background on the
used framework and methods to empirically explore the complexity of the simplest of the
hard optimization models – the Standard Quadratic Optimization Problem. We address the
question of coexistence of many local solutions and the system of their support, the so-called
patterns of an instance.
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1. Introduction

While it is easy to find an instance of the Standard Quadratic Optimization Problem (StQP)

max
{
x>Ax : x ∈ ∆n

}
with no strict local solution at all (A = O, the zero matrix, will do) or just one such (take
A = En − In, with En the all-ones matrix and In the identity matrix of order n), the other
end of the spectrum of difficulty is less well known. One of our approaches to get closer to
that far end is based upon a collection of given symmetric matrices A,B1, . . . ,Bn of orders
n, k1, . . . , kn. These will be used to construct a matrix of order N :=

∑n
i=1 ki. Define

Q =


1k1 o . . . o
o 1k2 . . . o
...

...
. . .

...
o o . . . 1kn


>

where 1k is the all ones vector in Rk, and o stands for the zero vector of appropriate dimension.
Then both AQ := Q>AQ and B := Diag(B1, . . . ,Bn) are symmetric matrices of order N , and,
thinking of t as a large real parameter, we let

Gt = Gt(A,B1, . . . ,Bn) = tAQ + B .

Special cases of this construction have been considered before: The case A = (0 1
1 0), B1,B2

arbitrary has been used in the proof of [6, Theorem 1], and the case A arbitrary of order n,
B1 = I2, Bi = I1 for 2 ≤ i ≤ n, has been used in the proof of [7, Theorem 1].

2. Some prerequisites

During the investigation of pattern(Gt) we come across matrices which are perturbations of
A, those perturbations becoming slighter as t increases. For our first aim - to understand how
the pattern changes as the matrix is perturbed - we need some definitions.

∗See also "Finding and analyzing hard instances of the StQP" and "Complexity of an StQP: a theory-guided experimental study"
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Denote byFn those symmetric n×n-matrices A such that (1) has only strict local maximizers
(and therefore finitely many):

Fn := {A ∈ Sn : NSS(A) = ESS(A)} ;

and by Frn those symmetric n × n-matrices A such that all NESs are quasistrict in the sense
that ei is an alternative best answer to x if and only if strategy i is used in x with positive
frequency/probability. With JA(x) =

{
i ∈ {1, . . . , n} : [Ax]i = x>Ax

}
, that is

Frn := {A ∈ Sn : I(x) = JA(x) for all x ∈ NES(A)} .

We have Frn ⊆ Fn, and that Frn is open and dense in Sn (see [2, Theorem 13, Corollary 14]).
However, the set Fn is not open for n ≥ 3, as can be seen from an example in [1].

Let F :=
⋃
n≥1Fn and Fr :=

⋃
n≥1Frn. We can show that

a) if A ∈ Fn, then for all B ∈ Fn sufficiently close to A we have

|{K ′∈ pattern(B) : K ⊆ K ′}|≥ 1, for all K ∈ pattern(A), (1)
|{K ∈ pattern(A) : K ⊆ K ′}|≤ 1, for all K ′∈ pattern(B), (2)

which implies
|pattern(B)|≥ |pattern(A)|.

b) if A ∈ Frn, then for all B ∈ Fn sufficiently close to A we have

pattern(B) = pattern(A) .

We can have strict inequalities in any of (1) and (2), resulting in |pattern(B)|> |pattern(A)|, as
well as strict inclusion K ⊂ K ′ in (1) and (2).

Another ingredient to our analysis of the set ESS(Gt) is the following representation in
terms of ESSs of the constituent matrices B1, . . . ,Bn and (a perturbation of) A.

Lemma 1. Let b̄i := max
x∈∆ki

x>Bix for 1 ≤ i ≤ n, so that b̄i = p̄>i Bip̄i for some p̄i ∈ ∆ki . Then, with

EK :=


( α1p1

...
αnpn

)
: I(α) = K, pi ∈ ESS(Bi) for i ∈ K, pi = p̄i for i 6∈ K,

α ∈ ESS(tA + Diag(b)), where bi :=

{
p>i Bipi, i ∈ K,
b̄i, else.


(3)

we have ESS(Gt) =
⋃

K⊆{1,...,n}
EK .

With the same assumptions as in the lemma, there are analogous representations

NSS(Gt) =
⋃

K⊆{1,...,n}

NK and NES(Gt) =
⋃

K⊆{1,...,n}

QK ,

where for the definition of the setsNK andQK we just have to replace the two occurrences of
ESS in the right hand side of (3) by twice NSS respectively twice NES.

We further introduce the following useful tools. For A ∈ Fn define the pattern generating
polynomial pA and the support size generating polynomial qA by

pA(x1, . . . , xn) :=
∑

I∈pattern(A)

∏
i∈I

xi, qA(x) :=
∑

I∈pattern(A)

x|I| = pA(x, . . . , x).
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Then we have |ESS(A)|= qA(1), and the mean support size of ESS(A) is given by q′A(1)

qA(1) . Also,
if P is a permutation matrix, then for A′ := P>AP we have qA′(x) = qA(x).

As a consequence of our perturbation results and Lemma 1 we obtain the following.

Theorem 2.
(a) If {A,B1, . . . ,Bn} ⊂ Fr, then for t big enough, we have Gt ∈ Fr.
(b) If A ∈ Fr and {B1, . . . ,Bn} ⊂ F , then for t big enough and xi = (xi,1, . . . xi,ki) for 1 ≤ i ≤ n, we
have pGt(x1, . . . , xn) = pA(pB1(x1), . . . , pBn(xn)), and thus |ESS(Gt)|= pA(qB1(1), . . . , qBn(1)).

One merit of this theorem is that it allows us to enrich an initial subset of Fr consisting
of matrices with many ESSs with further matrices Gt of even more ESSs, that can themselves
be used as building blocks for even larger matrices and so on and so on, and another that it
makes it possible to keep track of those large numbers of ESSs just by evaluating polynomials.
Writing down Gt explicitly requires to find the claimed large enough t experimentally, as we
did not state universal lower bounds for t in the theorem. The following corollary can be of
help in that regard, it deals with two cases where explicit lower bounds for t ensuring validity
of the assertion of Theorem 2(b) can easily be constructed.

Corollary 3.
(a) Let A = En − In and Bi ∈ Fki for 1 ≤ i ≤ n, with pi := |ESS(Bi)|. Let b := max

1≤i≤n
max
x∈∆ki

x>Bix.

Then for t > b the matrix Gt satisfies |ESS(Gt)|=
∏

1≤i≤n
pi.

(b) Let A ∈ Frn and Bi ∈ Fki for 1 ≤ i ≤ n, with p>i Bipi = 0 for every i and every pi ∈ ESS(Bi).
Then for t = 1 the matrix Gt satisfies |ESS(Gt)|= pA(qB1(1), . . . , qBn(1)).

There are further nice closure properties of Gt, like
(i) if {A,B1, . . . ,Bn} ⊂ Fr and all the local solutions of all the corresponding StQPs are global
maximizers, with the global maxima being the same for all Bi, then for t large enough this will
also be the case for Gt, i.e. all the local solutions of the StQP corresponding to Gt are global
maximizers, which is interesting in the light of the results in [3, 4],
(ii) if {A,B1, . . . ,Bn} ⊂ Fr and the set S(M) := {|K|: K ∈ pattern(M)} of support sizes is a
singleton for every M ∈ {A,B1, . . . ,Bn}, with S(Bi) the same for all i, then for t large enough
also S(Gt) will be a singleton, which can be used to improve results in [5],
(iii) if {A,B1, . . . ,Bn} ⊂ Fr are all cyclically symmetric, with Bi the same for all i, then Gt is
congruent to a cyclically symmetric matrix via a permutation matrix.

We end this section with a short demonstration of our methods.

Example 1. A computer search restricted to cyclically symmetric matrices reveals a matrix
A ∈ Fr9 with first row [0, 35, 12, 20, 20, 20, 20, 12, 35], satisfying |ESS(A)|= 27 (which is less
than 30, the largest number of ESS known for 9 × 9 matrices). All the supports are of size 5,
therefore qA(x) = 27x5, and the pattern generating polynomial of A turns out to be

pA(x) = x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x7 + x4x5x6x7x8 + x5x6x7x8x9 + x6x7x8x9x1

+x7x8x9x1x2 + x8x9x1x2x3 + x9x1x2x3x4 + x1x2x3x4x7 + x2x3x4x5x8 + x3x4x5x6x9

+x4x5x6x7x1 + x5x6x7x8x2 + x6x7x8x9x3 + x7x8x9x1x4 + x8x9x1x2x5 + x9x1x2x3x6

+x1x2x3x6x7 + x2x3x4x7x8 + x3x4x5x8x9 + x4x5x6x9x1 + x5x6x7x1x2 + x6x7x8x2x3

+x7x8x9x3x4 + x8x9x1x4x5 + x9x1x2x5x6

We want to construct a matrix Gt ∈ Fr12 having many ESSs with support size 5, where we
allow for B1, . . . ,B9 the matrices I2, I2, I2, I1, I1, I1, I1, I1, I1 in some order. Note that qIk(x) = kx.
As it turns out, for t = 1000000 and the order specified above we have

104 = |ESS(Gt)|= pA(2, 2, 2, 1, 1, 1, 1, 1, 1) = max{pA(x) : x ∈ {1, 2}9, x1 + · · ·+ x9 = 12},

and accordingly qGt(x) = 104x5. That number, 104, is the largest number of ESS that we have
been able to find for any symmetric matrix of order 12.
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3. Improving lower bounds for the largest number of ESSs
that a symmetric n× n matrix can have

Denote by Un the largest number of ESSs that a symmetric n × n matrix can have. We know
from [6, Theorem 2] that γ := limn→∞ U

1/n
n exists and satisfies Un ≤ γn for all n. To the best

of our knowledge, the best lower bound for γ that has been found so far is 301/9 ≈ 1.4592,
originating from a 9×9 matrix with 30 ESSs, each of support size 3, which has been published
in [6]. Building upon a certain small set of promising matrices found by computer search, our
results enable us to show that for any order n ≥ 10 there are matrices that lead to improved
lower bounds for γ, in particular, U1/n

n ≥ 701/11 ≈ 1.47142 holds for n ≥ 10, our best lower
bound for γ being 5361/16 ≈ 1.48106.

4. Summary

This is part two of a series of three presentations, given by I. Bomze, W. Schachinger and R. Ull-
rich. The present part introduces a method for constructing Standard Quadratic Optimization
Problems with many local solutions.
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1. Algorithmic challenges: finding all ESSs of a given game

An algorithm to detect all ESSs of a given game (i.e., matrix) was presented in [1], but to
our knowledge it has never been implemented and utilized. We implemented it with mi-
nor modifications and want to summarize it very briefly, focusing on the modifications and
implementation issues.

Since for every support I ⊆ N , I 6= ∅, in a game with strategy set N , there exists at most
one ESS x with I(x) = I , the idea of the algorithm is to search for ESSs on (potentially) all
the 2n − 1 supports of the game. This is done exploiting [1, Proposition 2.1], so a full support
search only happens when the game does not exhibit any ESSs at all.

On every searched support the following two steps are carried out:
1. FINDEQ - Find a serious candidate for a strict local maximizer.
2. CHECKSTAB - Check if the candidate is really a strict local maximizer.
The algorithm we implemented differs from the original approach in two points. The orig-

inal algorithm suggests to search the entire power set of N by selecting sets Jmin and Jmax,
being minimal (maximal) with respect to the set inclusion, and this is done iteratively (see
p.317 in [1]). From an computational point of view - especially when one expects to find many
ESSs - it is faster to search only “from the smallest supports upwards” (i.e. neglecting the
Jmax-sets), since it is cheaper to run FINDEQ on small supports. The second difference is the
way the sets are chosen: instead of minimality with respect to the set inclusion we focus on
the minimal number of elements. This is clearly more efficient to implement.

We coded this algorithm as multi-threaded for rational matrices using exact arithmetics,
thus avoiding any roundoff errors. Our system setup is an Intel i7-4930K CPU with 6 kernels,
16GB RAM and a SSD harddisk, where the output of the algorithm is stored in a database.
Note that this implementation has been utilized in the literature before, see [2] and [3], al-
though in a slightly different context.

To give an estimate, this setup can search and record up to 5000 matrices of order n = 9 per
second, but this depends largely on the complexity of the rational numbers and on the pattern
(support structure numbers of ESSs) in the game.

∗See also "Finding and analyzing hard instances of the StQP" and "Constructing StQPs with many local solutions"
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FINDEQ - Finding a serious candidate for an ESS. In the original paper [1] the character-
ization of extremal equilibria with the help of polyhedra is used. To this end the vertices of a
polyhedron have to be found, which can be accomplished by linear programming techniques.
This original method is far too slow for practical applications, so we adapted it by presenting
a new method, admitting every NES as candidate for an ESS, if it is the only NES with the
currently considered support.

CHECKSTAB - Checking which candidates are really ESS. Verification of the ESS prop-
erty of the candidates is a quite cumbersome task, since it potentially involves checks for
copositivity [1, Section 3]. It is interesting to note that empirically only a small percentage
of ESSs is detected by copositivity, usually a check for positive definiteness is sufficient in
most cases. This is in line with genericity, but as we are working on discrete data, it is not
straightforward.

2. Cyclically symmetric matrices and restrictions on them

We will employ symmetry transformations of the coordinates of vectors given by cyclic per-
mutation (see also [2], where this notation has been introduced), denoting by a⊕ b, a	 b and
a�b the result of addition, subtraction and multiplication modulo n. To keep in line with stan-
dard notation, we consider the remainders [1 :n] instead of [0 :n− 1], e.g. 1⊕ (n− 1) = n. To
be more precise, let Pi be the square n× n permutation matrix which effects Pix = [xi⊕j ]j∈[1:n]

for all x ∈ Rn (for example, if n = 3 then P2x = [x3, x1, x2]>). Obviously Pi = (P1)i for all
integers i (recall P−3 is the inverse matrix of PPP), P>i = Pn−i = P−1

i and Pn = In. A circulant
matrix S = C(a) based on a vector a ∈ Rn (as its last column rather than the first) is given by
S = [Pn−1a,Pn−2a, . . . ,P1a, a] . If S = C(a) is symmetric it is called cyclically symmetric, and
that holds whenever ai = an−i for all i ∈ [1 :n− 1] .

It is easy to see that any circulant matrix S = C(a) satisfies P>i SPi = S for all i ∈ [1 :n], and
this is the key to their use in finding matrices with many ESSs.

Let a problem maxx∈∆n x>Sx be given and, let M be an arbitrary permutation matrix with
M>SM = S. If x∗ is a solution to the problem , then M>x∗ is also solutions of the problem. The
two vectors need not differ from each other, though, if additional symmetry prevails.

Due to the structure of the matrices C(a), any found ESS leads to further n− 1 ESSs, where
the involved permutation matrices are P1, . . . ,Pn−1, if we are cautious enough to break above-
mentioned symmetry. In this case, the number of ESSs found in a game with a cyclically
symmetric matrix must be the sum of multiples of the factors of n (or 0 or 1). When n is prime,
this leads to the nice property that the game has 0,1 or a multiple of n ESSs.

We started experimenting to search cyclically symmetric matrices C(a) for ESSs on different
n, where we set an = 0 in every case. This reduces the degrees of freedom and does not do
any harm, since constants can be added to columns of a game matrix without changing the
game, see [4]. So in total we have

⌊
n
2

⌋
variables for every n, and for these variables we allowed

integers.
This approach leads to good results for smaller n (say ≤ 12), but for larger n this procedure

became prohibitively slow. For these instances, our idea is not only to exploit cyclic permuta-
tions matrices inherent to the matrices C(a), but to enforce M>C(a)M = C(a) for one or more
arbitrary permutation matrices M. This leads to more restrictions on the degrees of freedom
for constructing the vector a.

Empirically for n ∈ [13 : 22] it turned out that using the following construction is a good
choice. Define n× n matrices Ei,j = eie

>
j and let for k and n mutually prime

Mk =
n∑
i=1

Ek�i,i. (1)
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If we now require M>k C(a)Mk = C(a), then further restrictions on the ai result. Therefore,
if too many restrictions are imposed, then a becomes trivial in that ai is constant across all
i ∈ [1 : n − 1], and if we do not use enough restriction by this construction, all ai may have
different values. A careful choice of these further restrictions was successfully applied to
various cyclically symmetric matrices for different n, which will be detailed in the talk.

3. Experimental studies on cyclically symmetric matrices

The theory detailed before enables us “more than just educated guesses” on the solution com-
plexity of StQPs, which were impossible to obtain by naive random sampling or brute force
enumeration: indeed, by these methods, it is highly unlikely to encounter even one of the
interesting instances. To gain insight how a large and representative number of matrices with
a potentially complex solution structure behave, we therefore developed the resulting refined
mathematical experiments which provide an illustration and a statistical evaluation for cycli-
cally symmetric matrices for three different n, namely n = 6, n = 7 and n = 19.

All the matrices we generated and tested are of the form C(a) where

a = (a, b, c, b, a, 0)> for n = 6 ,
a = (a, b, c, c, b, a, 0)> for n = 7 , and
a = (a, b, b, c, b, c, a, a, c, c, a, a, c, b, c, b, b, a, 0)> for n = 19 .

Note that M>7 C(a)M7 = C(a) is satisfied in the latter case n = 19.
Since multiplying a matrix with a positive factor does not change the amount and structure

of an ESS, just the direction and not the length of a is important. Therefore we used points on
the unit sphere as input for a, employing the following procedure: take a Lambert projection of
the unit sphere, which is an equal-area projection (to prevent graphical biases in the following
illustrations) with θ ∈ [−π, π] on the horizontal and sin(φ) ∈ [−1, 1] on the vertical axis, where
(φ, θ) are polar coordinates representing x = cos(φ) cos(θ), y = cos(φ) sin(θ), z = sin(φ).

We performed another coordinate transformation, building an orthonormal system such

that the north pole of the sphere points into direction
(

1
1
1

)
, i.e.

(
a
b
c

)
= 1√

6

( √
3 1

√
2

−
√

3 1
√

2
0 −2

√
2

)(
x
y
z

)
.

The reason for this transformation lies in a remarkable symmetry around direction (1, 1, 1)>

for n ∈ {7, 19}.
To approximate a uniform distribution on the sphere we generated (approximately) equidis-

tant data points on the θ-sin(φ)-plane, giving 1201 × 401 data points. Note that points on the
boundary are calculated multiple times due to periodicity, but we did not correct for this.

While all three values of n will be discussed in the talk, here we only provide details for
n = 7, where the left part of Figure 1 shows the support-pattern for the entire search space.

It is interesting to see that all the areas for the different ESSs and supports are clearly sepa-
rated (for all n), and they are connected for all supports, except for zero ESSs. The areas with
one ESS lie in the positive orthant (w.r.t. the standard basis) for all n. The areas with zero ESSs
have measure zero on the unit sphere, they form arcs and isolated points on the θ-sin(φ)-plane.
But these points are rarely hit due to the construction of the data (isolated points of zero ESSs
can be seen in the plots upon closer look).

For n ∈ {7, 19} there exists a remarkable symmetry. Next to the area with one ESS there
exist three areas with the highest number of ESSs. For n = 7 these areas with 14 ESSs having
different support structure. The right part of Figure 1 “zooms” into the plot on the left side, in
the sense that we want to analyze the structure of one of these three areas in more detail. We
generated 1015×501 data points in the interval θ ∈ [−0.75π,−0.65π] and sin(φ) ∈ [0.765, 0.92],
which again simulates a uniform distribution. The separation of the different support pattern
is clearly visible, with a particular point close to (−0.68π, 0.88) where all the separating lines
meet.
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Figure 1. Entire search space and zoom in for n = 7

4. Summary

This is part three of a series of three presentations, given by I. Bomze, W. Schachinger and
R. Ullrich. The present part describes an algorithm to find all strict local solutions of a given
StQP and introduces cyclically symmetric matrices, which have the potential to have many
coexisting solutions. An extensive experimental study for cyclically symmetric matrices of
order 6,7 and 19 is presented.
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