62 research outputs found

    Ship Wake Detection in SAR Images via Sparse Regularization

    Get PDF
    In order to analyse synthetic aperture radar (SAR) images of the sea surface, ship wake detection is essential for extracting information on the wake generating vessels. One possibility is to assume a linear model for wakes, in which case detection approaches are based on transforms such as Radon and Hough. These express the bright (dark) lines as peak (trough) points in the transform domain. In this paper, ship wake detection is posed as an inverse problem, which the associated cost function including a sparsity enforcing penalty, i.e. the generalized minimax concave (GMC) function. Despite being a non-convex regularizer, the GMC penalty enforces the overall cost function to be convex. The proposed solution is based on a Bayesian formulation, whereby the point estimates are recovered using maximum a posteriori (MAP) estimation. To quantify the performance of the proposed method, various types of SAR images are used, corresponding to TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS2. The performance of various priors in solving the proposed inverse problem is first studied by investigating the GMC along with the L1, Lp, nuclear and total variation (TV) norms. We show that the GMC achieves the best results and we subsequently study the merits of the corresponding method in comparison to two state-of-the-art approaches for ship wake detection. The results show that our proposed technique offers the best performance by achieving 80% success rate.Comment: 18 page

    Détection de bateaux dans les images de radar à ouverture synthétique

    Get PDF
    Le but principal de cette thèse est de développer des algorithmes efficaces et de concevoir un système pour la détection de bateaux dans les images Radar à Ouverture Synthetique (ROS.) Dans notre cas, la détection de bateaux implique en premier lieu la détection de cibles de points dans les images ROS. Ensuite, la détection d'un bateau proprement dit dépend des propriétés physiques du bateau lui-même, tel que sa taille, sa forme, sa structure, son orientation relative a la direction de regard du radar et les conditions générales de l'état de la mer. Notre stratégie est de détecter toutes les cibles de bateaux possibles dans les images de ROS, et ensuite de chercher autour de chaque candidat des évidences telle que les sillons. Les objectifs de notre recherche sont (1) d'améliorer 1'estimation des paramètres dans Ie modèle de distribution-K et de déterminer les conditions dans lesquelles un modèle alternatif (Ie Gamma, par exemple) devrait être utilise plutôt; (2) d'explorer Ie modèle PNN (Probabilistic Neural Network) comme une alternative aux modèles paramétriques actuellement utilises; (3) de concevoir un modèle de regroupement flou (FC : Fuzzy Clustering) capable de détecter les petites et grandes cibles de bateaux dans les images a un seul canal ou les images a multi-canaux; (4) de combiner la détection de sillons avec la détection de cibles de bateaux; (5) de concevoir un modèle de détection qui peut être utilisé aussi pour la détection des cibles de bateaux en zones costières.Abstract: The main purpose of this thesis is to develop efficient algorithms and design a system for ship detection from Synthetic Aperture Radar (SAR) imagery. Ship detection usually involves through detection of point targets on a radar clutter background.The detection of a ship depends on the physical properties of the ship itself, such as size, shape, and structure; its orientation relative to the radar look-direction; and the general condition of the sea state. Our strategy is to detect all possible ship targets in SAR images, and then search around each candidate for the wake as further evidence.The objectives of our research are (1) to improve estimation of the parameters in the K-distribution model and to determine the conditions in which an alternative model (Gamma, for example) should be used instead; (2) to explore a PNN (Probabilistic Neural Networks) model as an alternative to the commonly used parameteric models; (3) to design a FC (Fuzzy Clustering) model capable of detecting both small and large ship targets from single-channel images or multi-channel images; (4) to combine wake detection with ship target detection; (5) to design a detection model that can also be used to detect ship targets in coastal areas. We have developed algorithms for each of these objectives and integrated them into a system comprising six models.The system has been tested on a number of SAR images (SEASAT, ERS and RADARSAT-1, for example) and its performance has been assessed

    A False-alarm-controllable Modified AdaBoost Wake Detection Method Using SAR Images

    Get PDF
    A false-alarm-controllable modified AdaBoost-based method is proposed for detecting ship wake from sea clutter in synthetic aperture radar (SAR) images. It reformulates the wake detection problem as a binary classification task in the multifeature space. The update strategy of the sample weights in the original AdaBoost is modified for wake detection. First, a detection result confidence factor is designed to deal with class imbalance between sea clutter and ship wake; then, the AdaBoost is further modified as a false alarm rate (FAR) controllable detector by introducing penalty parameters to adjust weights update strategies for the sea clutter. Meanwhile, the multifeature space is spanned by a novel frequency peak height ratio (FPHA) feature and four salient features. FPHA is proposed to enhance the separation between the wake and sea clutter, which is computed from the amplitude spectrum peak of the image after the Fourier transform. Experimental results show that the proposed detector can tackle the imbalanced data problem and flexibly control FAR by adjusting penalty parameters. Moreover, improved detection probability is also achieved compared with existing methods

    An Automatic Ship Detection Method Based on Local Gray-Level Gathering Characteristics in SAR Imagery

    Get PDF
    This paper proposes an automatic ship detection method based on gray-level gathering characteristics of synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial intensity distribution of SAR image, and then an adaptive-like LGGD thresholding and filtering scheme to detect ship targets. Experiments on real SAR images with varying sea clutter backgrounds and multiple targets situation have been conducted. The performance analysis confirms that the proposed method works well in various circumstances with high detection rate, fast detection speed and perfect shape preservation

    A multiresolution method for internal wave detection and color display from satellite images

    Get PDF
    In the present work an algorithm for wave detection is developed. The followed methodology is based on the multiresolution processing, the wavelet transform and the RGB model. This algorithm has been tested in three SAR images provided by the COSMOSkymed satellite from the ASI. First, Gaussian masks are generated in order to detect edges in the horizontal and vertical directions. This work is repeated in four resolution levels. Each level depends on the size and the variance of the gaussian mask. Once the horizontal and vertical edges are found, it is followed a non-maximal supresion processing to discard not relevant edges. This images are enhanced by morphological processing. To integrate the levels into a single image in order to interpretate the obtained results it is used the RGB model. Each one of the first three levels is introduced in a RGB image channel. Finally the pixels that appear in white are the corresponding to the most important edges, that is, the waves.Ingeniería Técnica de Telecomunicación, especialidad Sonido e ImagenTelekomunikazio Ingeniaritza Teknikoa. Soinua eta Irudia Berezitasun

    Accurate Pupil Features Extraction Based on New Projection Function

    Get PDF
    Accurate pupil features extraction is a key step for iris recognition. In this paper, we propose a new algorithm to extract pupil features precisely within gray level iris images. The angular integral projection function (AIPF) is developed as a general function to perform integral projection along angular directions, both the well known vertical and horizontal integral projection functions can be viewed as special cases of AIPF. Another implementation for AIPF based on localized Radon transform is also presented. First, the approximate position of pupil center is detected. Then, a set of pupil's radial boundary points are detected using AIPF. Finally, a circle to the detected boundary points is fitted. Experimental results on 2655 iris images from CASIA V3.0 show high accuracy with rapid execution time

    훈련 자료 자동 추출 알고리즘과 기계 학습을 통한 SAR 영상 기반의 선박 탐지

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 자연과학대학 지구환경과학부, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.전천후 지구 관측 위성인 SAR를 통한 선박 탐지는 해양 자원의 확보와 해상 안전 보장에 매우 중요한 역할을 한다. 기계 학습 기법의 도입으로 인해 선박을 비롯한 사물 탐지의 정확도 및 효율성이 향상되었으나, 이와 관련된 다수의 연구는 탐지 알고리즘의 개량에 집중되었다. 그러나, 탐지 정확도의 근본적인 향상은 정밀하게 취득된 대량의 훈련자료 없이는 불가능하기에, 본 연구에서는 선박의 실시간 위치, 속도 정보인 AIS 자료를 이용하여 인공 지능 기반의 선박 탐지 알고리즘에 사용될 훈련자료를 자동적으로 취득하는 알고리즘을 제안하였다. 이를 위해 이산적인 AIS 자료를 SAR 영상의 취득시각에 맞추어 정확하게 보간하고, AIS 센서 자체가 가지는 오차를 최소화하였다. 또한, 이동하는 산란체의 시선 속도로 인해 발생하는 도플러 편이 효과를 보정하기 위해 SAR 위성의 상태 벡터를 이용하여 위성과 산란체 사이의 거리를 정밀하게 계산하였다. 이렇게 계산된 AIS 센서의 영상 내의 위치로부터 선박 내 AIS 센서의 배치를 고려하여 선박 탐지 알고리즘의 훈련자료 형식에 맞추어 훈련자료를 취득하고, 어선에 대한 위치, 속도 정보인 VPASS 자료 역시 유사한 방법으로 가공하여 훈련자료를 취득하였다. AIS 자료로부터 취득한 훈련자료는 기존 방법대로 수동 취득한 훈련자료와 함께 인공 지능 기반 사물 탐지 알고리즘을 통해 정확도를 평가하였다. 그 결과, 제시된 알고리즘으로 취득한 훈련 자료는 수동 취득한 훈련 자료 대비 더 높은 탐지 정확도를 보였으며, 이는 기존의 사물 탐지 알고리즘의 평가 지표인 정밀도, 재현율과 F1 score를 통해 진행되었다. 본 연구에서 제안한 훈련자료 자동 취득 기법으로 얻은 선박에 대한 훈련자료는 특히 기존의 선박 탐지 기법으로는 분별이 어려웠던 항만에 인접한 선박과 산란체 주변의 신호에 대한 정확한 분별 결과를 보였다. 본 연구에서는 이와 함께, 선박 탐지 결과와 해당 지역에 대한 AIS 및 VPASS 자료를 이용하여 선박의 미식별성을 판정할 수 있는 가능성 또한 제시하였다.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - 국문 요약문 - 128 - Bibliography - 130 -Maste

    Coastal bathymetry from satellite high resolution monitoring

    Full text link
    [EN] Bathymetry is traditionally obtained by echo sounding technology. However, bathymetry can be also obtained from satellite imaging, which is much more cheaper than echo-sound measurements. This is obtained by analyzing the waves near to the shoreline. In order so, wave properties such as wavelength and celerity should be measured, after which the bathymetry is estimated using linear wave theory. In this internship a new method based in the continuous wavelet transform has been implemented. In order to obtain the celerity, two images with a time lag are needed. Two data sets are used. On the one hand a video product, with 12 Pléiades images with a time lag between them of 8s. On the other hand a set of Sentinel-2 images. In the latter, a time shift between bands because of a lag in the acquisition is exploited. An application for the extraction and preparation of Sentinel-2 data in a form of a Graphical User Interface has been implemented. The site that has been studied will be the shore of Capbreton, which hosts one of the world’s deepest canyons. The images have been be pre-filtered by using FFT and Radon filters, with several methods that include windowing of fixed and variable size. Those filtering techniques have be implemented and its results compared. Best results are obtained using a variable-size windowing technique. Finally, the wavelet method has been applied to both datasets to achieve wave propagation information.Soñes Bori, J. (2019). Coastal bathymetry from satellite high resolution monitoring. Universitat Politècnica de València. http://hdl.handle.net/10251/140103TFG
    corecore