52 research outputs found

    Autonomous Robotic Gamma Radiation Measurement

    Get PDF
    Tato práce se zaměřuje na autonomní lokalizaci radiologických zdrojů v definované oblasti zájmu. Jejím cílem je vyvinout lokalizační strategie a platformu, na které je bude možné vyzkoušet. Platforma je sestavena z průzkumného robotu Orpheus-X3, scintilačních detektorů a přesného GNSS přijímače. Algoritmus pro vytváření mapy distribuce radiačního pole je rozšířen. Jsou představeny nové metody založené na směrové citlivosti navrhovaného detekčního systému. Počáteční průzkum oblasti zájmu je uskutečněn pomocí kružnicových trajektorií. Všechny algoritmy byly otestována jak simulacemi, tak reálnými experimenty. Dosažená přesnosti lokalizace je v řádu desítek centimetrů. Časová efektivita je použitím nových algoritmů zvýšena přibližně dvakrát až pětkrát. Jedním z~přínosů práce je vývoj modulárního systému, který může být přesunut a uzpůsoben na jiné platformy. Výhodou použitého systému je vysoký stupeň autonomie a bezpečnost pro lidského operátora.This thesis focuses on autonomous localization of radiological sources in a defined area of interest. Its aim is to develop localization strategies and a platform on which they can be tested. The platform is based on reconnaissance robot Orpheus-X3, scintillation detectors and a precise GNSS receiver. Algorithm for creating a radiation distribution map is extended. New methods based on directional sensitivity of proposed detection system are introduced. Initial exploration of the area of interest is done by using circular trajectories. All algorithms are tested both by simulation and real experiments. The achieved precision of localization is in order of tens of centimeters. Time efficiency is increased approximately two to five times by applying new algorithms. One of the contributions of the thesis is a development of a modular system that could be transferred and adjusted to different platforms. The advantage of the used system is a high degree of autonomy and safety for a human operator.

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    Vision-Based Control of Unmanned Aerial Vehicles for Automated Structural Monitoring and Geo-Structural Analysis of Civil Infrastructure Systems

    Full text link
    The emergence of wireless sensors capable of sensing, embedded computing, and wireless communication has provided an affordable means of monitoring large-scale civil infrastructure systems with ease. To date, the majority of the existing monitoring systems, including those based on wireless sensors, are stationary with measurement nodes installed without an intention for relocation later. Many monitoring applications involving structural and geotechnical systems require a high density of sensors to provide sufficient spatial resolution to their assessment of system performance. While wireless sensors have made high density monitoring systems possible, an alternative approach would be to empower the mobility of the sensors themselves to transform wireless sensor networks (WSNs) into mobile sensor networks (MSNs). In doing so, many benefits would be derived including reducing the total number of sensors needed while introducing the ability to learn from the data obtained to improve the location of sensors installed. One approach to achieving MSNs is to integrate the use of unmanned aerial vehicles (UAVs) into the monitoring application. UAV-based MSNs have the potential to transform current monitoring practices by improving the speed and quality of data collected while reducing overall system costs. The efforts of this study have been chiefly focused upon using autonomous UAVs to deploy, operate, and reconfigure MSNs in a fully autonomous manner for field monitoring of civil infrastructure systems. This study aims to overcome two main challenges pertaining to UAV-enabled wireless monitoring: the need for high-precision localization methods for outdoor UAV navigation and facilitating modes of direct interaction between UAVs and their built or natural environments. A vision-aided UAV positioning algorithm is first introduced to augment traditional inertial sensing techniques to enhance the ability of UAVs to accurately localize themselves in a civil infrastructure system for placement of wireless sensors. Multi-resolution fiducial markers indicating sensor placement locations are applied to the surface of a structure, serving as navigation guides and precision landing targets for a UAV carrying a wireless sensor. Visual-inertial fusion is implemented via a discrete-time Kalman filter to further increase the robustness of the relative position estimation algorithm resulting in localization accuracies of 10 cm or smaller. The precision landing of UAVs that allows the MSN topology change is validated on a simple beam with the UAV-based MSN collecting ambient response data for extraction of global mode shapes of the structure. The work also explores the integration of a magnetic gripper with a UAV to drop defined weights from an elevation to provide a high energy seismic source for MSNs engaged in seismic monitoring applications. Leveraging tailored visual detection and precise position control techniques for UAVs, the work illustrates the ability of UAVs to—in a repeated and autonomous fashion—deploy wireless geophones and to introduce an impulsive seismic source for in situ shear wave velocity profiling using the spectral analysis of surface waves (SASW) method. The dispersion curve of the shear wave profile of the geotechnical system is shown nearly equal between the autonomous UAV-based MSN architecture and that taken by a traditional wired and manually operated SASW data collection system. The developments and proof-of-concept systems advanced in this study will extend the body of knowledge of robot-deployed MSN with the hope of extending the capabilities of monitoring systems while eradicating the need for human interventions in their design and use.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169980/1/zhh_1.pd

    Fiber Bragg Grating Based Sensors and Systems

    Get PDF
    This book is a collection of papers that originated as a Special Issue, focused on some recent advances related to fiber Bragg grating-based sensors and systems. Conventionally, this book can be divided into three parts: intelligent systems, new types of sensors, and original interrogators. The intelligent systems presented include evaluation of strain transition properties between cast-in FBGs and cast aluminum during uniaxial straining, multi-point strain measurements on a containment vessel, damage detection methods based on long-gauge FBG for highway bridges, evaluation of a coupled sequential approach for rotorcraft landing simulation, wearable hand modules and real-time tracking algorithms for measuring finger joint angles of different hand sizes, and glaze icing detection of 110 kV composite insulators. New types of sensors are reflected in multi-addressed fiber Bragg structures for microwave–photonic sensor systems, its applications in load-sensing wheel hub bearings, and more complex influence in problems of generation of vortex optical beams based on chiral fiber-optic periodic structures. Original interrogators include research in optical designs with curved detectors for FBG interrogation monitors; demonstration of a filterless, multi-point, and temperature-independent FBG dynamical demodulator using pulse-width modulation; and dual wavelength differential detection of FBG sensors with a pulsed DFB laser

    NASA Tech Briefs, April 2000

    Get PDF
    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports

    Estimation of the lightning performance of transmission lines with focus on mitigation of flashovers

    Get PDF
    The growth of transmission networks into remote areas due to renewable generation features new challenges with regard to the lightning protection of transmission systems. Up to now, standard transmission line designs kept outages resulting from lightning strokes to reasonable limits with minor impacts on the power grid stability. However, due to emerging problematic earthing conditions at towers, topographically exposed transmission towers and varying lightning activity, such as encountered at the 400 kV Beauly-Denny transmission line in Scotland, the assessment of the lightning performance of transmission lines in operation and in planning emerges as an important aspect in system planning and operations. Therefore, a fresh approach is taken to the assessment of the lightning performance of transmission lines in planning and construction, as well as possible lightning performance improvements in more detail, based on the current UK/Scottish and Southern Energy 400 kV tower design and overhead line arrangements. The approach employs electromagnetic transient simulations where a novel mathematical description for positive, negative and negative subsequent lightning strokes, which are all scalable with stroke current, is applied. Furtermore, a novel tower foot earthing system model which combines soil ionisation and soil frequency-dependent effect is used. Novel lightning stroke distribution data for Scotland as well as novel cap-and-pin insulators with arcing horn flashover data derived from laboratory experiments are applied. For overhead lines, transmission towers, and flashover mitigation methods describing their physical behaviour in lightning stroke conditions state-of-the-art models are utilised. The investigation features a variety of tower and overhead line arrangements, soil conditions and earthing designs, as well as the evaluation of various measures to improve the performance. Results show that the lightning performance of a transmission line is less dependent on the tower earthing conditions, but more dependent on the degree of lightning activity and stroke amplitude distribution. The assessment of flashover mitigation methods shows that cost-effective and maintenance free solutions, such as underbuilt wires can effectively replace a costly improvement of the tower earthing system. However, in locations where challenging earthing conditions prevail, tower line arresters or counterpoise are the only options to maintain an effective lightning protection

    Location of wideband impulsive noise source

    Get PDF

    Semi-automatic liquid filling system using NodeMCU as an integrated Iot Learning tool

    Get PDF
    Computer programming and IoT are the key skills required in Industrial Revolution 4.0 (IR4.0). The industry demand is very high and therefore related students in this field should grasp adequate knowledge and skill in college or university prior to employment. However, learning technology related subject without applying it to an actual hardware can pose difficulty to relate the theoretical knowledge to problems in real application. It is proven that learning through hands-on activities is more effective and promotes deeper understanding of the subject matter (He et al. in Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. Erie, PA, USA, pp 1–9 (2016)). Thus, to fulfill the learning requirement, an integrated learning tool that combines learning of computer programming and IoT control for an industrial liquid filling system model is developed and tested. The integrated learning tool uses NodeMCU, Blynk app and smartphone to enable the IoT application. The system set-up is pre-designed for semi-automation liquid filling process to enhance hands-on learning experience but can be easily programmed for full automation. Overall, it is a user and cost friendly learning tool that can be developed by academic staff to aid learning of IoT and computer programming in related education levels and field

    MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology

    Get PDF
    renewable; green; energy; environment; law; polic
    corecore