980 research outputs found

    Ranging in an Underwater Medium with Multiple Isogradient Sound Speed Profile Layers

    Get PDF
    In this paper, we analyze the problem of acoustic ranging between sensor nodes in an underwater environment. The underwater medium is assumed to be composed of multiple isogradient sound speed profile (SSP) layers where in each layer the sound speed is linearly related to the depth. Furthermore, each sensor node is able to measure its depth and can exchange this information with other nodes. Under these assumptions, we first show how the problem of underwater localization can be converted to the traditional range-based terrestrial localization problem when the depth information of the nodes is known a priori. Second, we relate the pair-wise time of flight (ToF) measurements between the nodes to their positions. Next, based on this relation, we propose a novel ranging algorithm for an underwater medium. The proposed ranging algorithm considers reflections from the seabed and sea surface. We will show that even without any reflections, the transmitted signal may travel through more than one path between two given nodes. The proposed algorithm analyzes them and selects the fastest one (first arrival path) based on the measured ToF and the nodes’ depth measurements. Finally, in order to evaluate the performance of the proposed algorithm we run several simulations and compare the results with other existing algorithms

    Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Get PDF
    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    Cooperative Localization in Mobile Underwater Acoustic Sensor Networks

    Get PDF
    Die großflächige Erkundung und Überwachung von Tiefseegebieten gewinnt mehr und mehr an Bedeutung für Industrie und Wissenschaft. Diese schwer zugänglichen Areale in der Tiefsee können nur mittels Teams unbemannter Tauchbote effizient erkundet werden. Aufgrund der hohen Kosten, war bisher ein Einsatz von mehreren autonomen Unterwasserfahrzeugen (AUV) wirtschaftlich undenkbar, wodurch AUV-Teams nur in Simulationen erforscht werden konnten. In den letzten Jahren konnte jedoch eine Entwicklung hin zu günstigeren und robusteren AUVs beobachtet werden. Somit wird der Einsatz von AUV-Teams in Zukunft zu einer realen Option. Die wachsende Nachfrage nach Technologien zur Unterwasseraufklärung und Überwachung konnte diese Entwicklung noch zusätzlich beschleunigen. Eine der größten technischen Hürden für tief tauchende AUVs ist die Unterwasserlokalisierug. Satelitengestützte Navigation ist in der Tiefe nicht möglich, da Radiowellen bereits nach wenigen Metern im Wasser stark an Intensität verlieren. Daher müssen neue Ansätze für die Unterwasserlokalisierung entwickelt werden die sich auch für Fahrzeugenverbände skalieren lassen. Der Einsatz von AUV-Teams ermöglicht nicht nur völlig neue Möglichkeiten der Kooperation, sondern erlaubt auch jedem einzelnen AUV von den Navigationsdaten der anderen Fahrzeuge im Verband zu profitieren, um die eigene Lokalisierung zu verbessern. In dieser Arbeit wird ein kooperativer Lokalisierungsansatz vorgestellt, welcher auf dem Nachrichtenaustausch durch akustische Ultra-Short Base-Line (USBL) Modems basiert. Ein akustisches Modem ermöglicht die Übertragung von Datenpaketen im Wasser, wärend ein USBL-Sensor die Richtung einer akustischen Quelle bestimmen kann. Durch die Kombination von Modem und Sensor entsteht ein wichtiges Messinstrument für die Unterwasserlokalisierung. Wenn ein Fahrzeug ein Datenpaket mit seiner eignen Position aussendet, können andere Fahrzeuge mit einem USBL-Modem diese Nachricht empfangen. In Verbindung mit der Richtungsmessung zur Quelle, können diese Daten von einem Empfangenden AUV verwendet werden, um seine eigene Positionsschatzung zu verbessern. Diese Arbeit schlägt einen Ansatz zur Fusionierung der empfangenen Nachricht mit der Richtungsmessung vor, welcher auch die jeweiligen Messungenauigkeiten berücksichtigt. Um die Messungenauigkeit des komplexen USBL-Sensors bestimmen zu können, wurde zudem ein detailliertes Sensormodell entwickelt. Zunächst wurden existierende Ansätze zur kooperativen Lokalisierung (CL) untersucht, um daraus eine Liste von erwünschten Eigenschaften für eine CL abzuleiten. Darauf aufbauend wurde der Deep-Sea Network Lokalisation (DNL) Ansatz entwickelt. Bei DNL handelt es sich um eine CL Methode, bei der die Skalierbarkeit sowie die praktische Anwendbarkeit im Fokus stehen. DNL ist als eine Zwischenschicht konzipiert, welche USBL-Modem und Navigationssystem miteinander verbindet. Es werden dabei Messwerte und Kommunikationsdaten des USBL zu einer Standortbestimmung inklusive Richtungsschätzung fusioniert und an das Navigationssystem weiter geleitet, ähnlich einem GPS-Sensor. Die Funktionalität von USBL-Modell und DNL konnten evaluiert werden anhand von Messdaten aus Seeerprobungen in der Ostsee sowie im Mittelatlantik. Die Qualität einer CL hangt häufig von vielen unterschiedlichen Faktoren ab. Die Netzwerktopologie muss genauso berücksichtig werden wie die Lokalisierungsfähigkeiten jedes einzelnen Teilnehmers. Auch das Kommunikationsverhalten der einzelnen Teilnehmer bestimmt, welche Informationen im Netzwerk vorhanden sind und hat somit einen starken Einfluss auf die CL. Um diese Einflussfaktoren zu untersuchen, wurden eine Reihe von Szenarien simuliert, in denen Kommunikationsverhalten und Netzwerktopologie für eine Gruppe von AUVs variiert wurden. In diesen Experimenten wurden die AUVs durch ein Oberflächenfahrzeug unterstützt, welches seine geo-referenzierte Position über DNL an die getauchten Fahrzeuge weiter leitete. Anhand der untersuchten Topologie können die Experimente eingeteilt werden in Single-Hop und Multi-Hop. Single-Hop bedeutet, dass jedes AUV sich in der Sendereichweite des Oberflächenfahrzeugs befindet und dessen Positionsdaten auf direktem Wege erhält. Wie die Ergebnisse der Single-Hop Experimente zeigen, kann der Lokalisierungsfehler der AUVs eingegrenzt werden, wenn man DNL verwendet. Dabei korreliert der Lokalisierungsfehler mit der kombinierten Ungenauigkeit von USBL-Messung und Oberflächenfahrzeugposition. Bei den Multi-Hop Experimenten wurde die Topologie so geändert, dass sich nur eines der AUVs in direkter Sendereichweite des Oberflächenfahrzeugs befindet. Dieses AUV verbessert seine Position mit den empfangen Daten des Oberflächenfahrzeugs und sendet wiederum seine verbesserte Position an die anderen AUVs. Auch hier konnte gezeigt werden, dass sich der Lokalisierungfehler der Gruppe mit DNL einschränken lässt. Ändert man nun das Schema der Kommunikation so, dass alle AUVs zyklisch ihre Position senden, zeigte sich eine Verschlechterung der Lokalisierungsqualität der Gruppe. Dieses unerwartet Ergebnis konnte auf einen Teil des DNL-Algorithmus zurück geführt werden. Da die verwendete USBL-Klasse nur die Richtung eines Signals misst, nicht jedoch die Entfernung zum Sender, wird in der DNL-Schicht eine Entfernungsschatzung vorgenommen. Wenn die Kommunikation nicht streng unidirektional ist, entsteht eine Ruckkopplungsschleife, was zu fehlerhaften Entfernungsschatzungen führt. Im letzten Experiment wird gezeigt wie sich dieses Problem vermeiden lasst, mithilfe einer relativ neue USBL-Klasse, die sowohl Richtung als auch Entfernung zum Sender misst. Die zwei wesentlichen Beiträge dieser Arbeit sind das USBL-Model zum einen und zum Anderen, der neue kooperative Lokalisierungsansatz DNL. Mithilfe des Sensormodels lassen sich nicht nur Messabweichungen einer USBL-Messung bestimmen, es kann auch dazu genutzt werden, einige Fehlereinflüsse zu korrigieren. Mit DNL wurde eine skalierbare CL-Methode entwickelt, die sich gut für den den Einsatz bei mobilen Unterwassersensornetzwerken eignet. Durch das Konzept als Zwischenschicht, lasst sich DNL einfach in bestehende Navigationslösungen integrieren, um die Langzeitstabilität der Navigation für große Verbände von tiefgetauchten Fahrzeugen zu gewährleisten. Sowohl USBL-Model als auch DNL sind dabei so ressourcenschonend, dass sie auf dem Computer eines Standard USBL laufen können, ohne die ursprüngliche Funktionalität einzuschränken, was den praktischen Einsatz zusätzlich vereinfacht

    Cooperative Authentication in Underwater Acoustic Sensor Networks

    Full text link
    With the growing use of underwater acoustic communications (UWAC) for both industrial and military operations, there is a need to ensure communication security. A particular challenge is represented by underwater acoustic networks (UWANs), which are often left unattended over long periods of time. Currently, due to physical and performance limitations, UWAC packets rarely include encryption, leaving the UWAN exposed to external attacks faking legitimate messages. In this paper, we propose a new algorithm for message authentication in a UWAN setting. We begin by observing that, due to the strong spatial dependency of the underwater acoustic channel, an attacker can attempt to mimic the channel associated with the legitimate transmitter only for a small set of receivers, typically just for a single one. Taking this into account, our scheme relies on trusted nodes that independently help a sink node in the authentication process. For each incoming packet, the sink fuses beliefs evaluated by the trusted nodes to reach an authentication decision. These beliefs are based on estimated statistical channel parameters, chosen to be the most sensitive to the transmitter-receiver displacement. Our simulation results show accurate identification of an attacker's packet. We also report results from a sea experiment demonstrating the effectiveness of our approach.Comment: Author version of paper accepted for publication in the IEEE Transactions on Wireless Communication

    Underwater Acoustic Modems

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Due to the growing interest using underwater acoustic networks, there are more and more research papers about underwater communications. These papers are mainly focused on deployments and studies about the constraints of the underwater medium. The underwater acoustic channel is highly variable and the signal transmission can change according to environmental factors such as the temperature, pressure or salinity of the water. For this reason, it is important to know how these devices are developed and the maximum distance and data transfer rates they can achieve. To this end, this paper presents an exhaustive study of existing underwater acoustic modems where their main features are highlighted. We also review the main features of their hardware. All presented proposals in the research literature are compared with commercial underwater acoustic modems. Finally, we analyze different programs and improvements of existing network simulators that are often used to simulate and estimate the behavior of underwater networks.This work was supported by the Ministerio de Ciencia e Innovacion through the Plan Nacional de I+D+i 2008-2011 within the Subprograma de Proyectos de Investigacion Fundamental under Project TEC2011-27516. The associate editor coordinating the review of this paper and approving it for publication was Dr. Lei Shu. (Corresponding author: Jaime Lloret.)Sendra, S.; Lloret, J.; Jimenez, JM.; Parra-Boronat, L. (2015). Underwater Acoustic Modems. IEEE Sensors Journal. 16(11):4063-4071. https://doi.org/10.1109/JSEN.2015.2434890S40634071161
    corecore