3,451 research outputs found

    Solving DCOPs with Distributed Large Neighborhood Search

    Full text link
    The field of Distributed Constraint Optimization has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent cooperation. Nevertheless, solving Distributed Constraint Optimization Problems (DCOPs) optimally is NP-hard. Therefore, in large-scale, complex applications, incomplete DCOP algorithms are necessary. Current incomplete DCOP algorithms suffer of one or more of the following limitations: they (a) find local minima without providing quality guarantees; (b) provide loose quality assessment; or (c) are unable to benefit from the structure of the problem, such as domain-dependent knowledge and hard constraints. Therefore, capitalizing on strategies from the centralized constraint solving community, we propose a Distributed Large Neighborhood Search (D-LNS) framework to solve DCOPs. The proposed framework (with its novel repair phase) provides guarantees on solution quality, refining upper and lower bounds during the iterative process, and can exploit domain-dependent structures. Our experimental results show that D-LNS outperforms other incomplete DCOP algorithms on both structured and unstructured problem instances

    Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

    Get PDF
    Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb_{b} problem the (1+1) EA and GSEMO achieve a b+12\frac{b+1}{2}-approximation ratio in expected polynomial times of nn the number of nodes and kk the number of labels. We also show that GSEMO achieves a (2ln(n))(2ln(n))-approximation ratio for the MLST problem in expected polynomial time of nn and kk. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA

    Improving metaheuristic performance by evolving a variable fitness function.

    Get PDF
    In this paper we study a complex real world workforce scheduling problem. We apply constructive search and variable neighbourhood search (VNS) metaheuristics and enhance these methods by using a variable fitness function. The variable fitness function (VFF) uses an evolutionary approach to evolve weights for each of the (multiple) objectives. The variable fitness function can potentially enhance any search based optimisation heuristic where multiple objectives can be defined through evolutionary changes in the search direction. We show that the VFF significantly improves performance of constructive and VNS approaches on training problems, and ¿learn¿ problem features which enhance the performance on unseen test problem instances

    Local Ranking Problem on the BrowseGraph

    Full text link
    The "Local Ranking Problem" (LRP) is related to the computation of a centrality-like rank on a local graph, where the scores of the nodes could significantly differ from the ones computed on the global graph. Previous work has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a graph where nodes are webpages and edges are browsing transitions. Recently, this graph has received more and more attention in many different tasks such as ranking, prediction and recommendation. However, a web-server has only the browsing traffic performed on its pages (local BrowseGraph) and, as a consequence, the local computation can lead to estimation errors, which hinders the increasing number of applications in the state of the art. Also, although the divergence between the local and global ranks has been measured, the possibility of estimating such divergence using only local knowledge has been mainly overlooked. These aspects are of great interest for online service providers who want to: (i) gauge their ability to correctly assess the importance of their resources only based on their local knowledge, and (ii) take into account real user browsing fluxes that better capture the actual user interest than the static hyperlink network. We study the LRP problem on a BrowseGraph from a large news provider, considering as subgraphs the aggregations of browsing traces of users coming from different domains. We show that the distance between rankings can be accurately predicted based only on structural information of the local graph, being able to achieve an average rank correlation as high as 0.8

    Local convergence of random graph colorings

    Get PDF
    Let G=G(n,m)G=G(n,m) be a random graph whose average degree d=2m/nd=2m/n is below the kk-colorability threshold. If we sample a kk-coloring σ\sigma of GG uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called {\em condensation threshold} dc(k)d_c(k), the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for kk exceeding a certain constant k0k_0. More generally, we investigate the joint distribution of the kk-colorings that σ\sigma induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem
    • …
    corecore