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Abstract
Let G = G(n,m) be a random graph whose average degree d = 2m/n is below the k-colorability
threshold. If we sample a k-coloring σ of G uniformly at random, what can we say about the
correlations between the colors assigned to vertices that are far apart? According to a prediction
from statistical physics, for average degrees below the so-called condensation threshold dk,cond, the
colors assigned to far away vertices are asymptotically independent [Krzakala et al: PNAS 2007].
We prove this conjecture for k exceeding a certain constant k0. More generally, we determine the
joint distribution of the k-colorings that σ induces locally on the bounded-depth neighborhoods
of a fixed number of vertices.
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1 Introduction

We let G = G(n,m) denote the random graph on the vertex set [n] = {1, . . . , n} with precisely
m edges. Unless specified otherwise, we assume that m = m(n) = ddn/2e for a fixed number
d > 0.

Going back to the seminal paper of Erdős and Rényi [18], the problem of coloring the random
graph G remains one of the longest-standing challenges in probabilistic combinatorics. Over
the past half-century, efforts have been devoted to problems ranging from determining
the likely value of the chromatic number [4, 9, 26, 29] and its concentration [5, 27, 36] to
algorithmic ones such as constructing or sampling colorings of the random graph [3, 12, 14,
16, 23, 24, 38].

The last few years have witnessed substantial progress w.r.t. estimating χ(G) accurately.
Achlioptas and Friedgut [2] proved that for any number k ≥ 3 of colors there exists a sharp
threshold sequence dk−col = dk−col(n) such that for any fixed ε > 0, G is k-colorable w.h.p. if
2m/n < dk−col(n)−ε, while χ(G) > k w.h.p. if 2m/n > dk−col(n)+ε. Furthermore, starting
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from [4] there is a sequence of results which improve on the bounds for dk−col(n). The best
current bounds read

(2k−1) ln k−2 ln 2+δk ≤ lim inf
n→∞

dk−col(n) ≤ lim sup
n→∞

dk−col(n) ≤ (2k−1) ln k−1+δk, (1)

where limk→∞ δk = 0, see [10, 11]. In addition, the understanding of the geometry of the set
of k-colorings has advanced significantly [1, 32], too.

Much of the recent work has been inspired by ideas from statistical physics. Indeed, based
on a systematic but non-rigorous approach, the "cavity method" [30, 31], physicists have
derived "predictions" on a wide range of problems in combinatorics. More specifically, from
the statistical mechanics viewpoint, problems such as random graph coloring are examples of
"disordered systems", and the principal interest is in the associated Gibbs distributions. For
instance, if k ≥ 3 is an integer and G = (V,E) is a k-colorable graph, this is a probability
distribution on [k]V , namely the uniform distribution µG,k on the set Sk(G) of all k-colorings
of G. The fact that graph coloring is computationally hard suggests that µG,k is a quite a
complex object to study, and so it is. Not only does the Gibbs distribution reflect structural
properties of the problem such as the geometry of the space of colorings. But it is also
expected that its spatial mixing properties, i.e. the nature of correlations under the Gibbs
distribution, have a substantial impact on the performance of algorithms both for finding
and sampling (counting) colorings [13, 16, 28, 38]. Moreover, the existence of long range
correlation phenomena under the Gibbs distribution have been related to the hardness of
certain computational problems, e.g. see [37, 19, 20].

The usual setting where we study spatial mixing under the Gibbs distribution is as
follows: Considering a small region of vertices Λ ⊂ V (G), we analyze how the coloring of Λ
is correlated with that of vertices at some distance ω around Λ, as ω increases. It turns out
that spatial mixing is the most fundamental variant in understanding the behavior of Gibbs
distribution.

As far as the case where G = G(n,m) is regarded, it seems that the local treelike
structure of the graph plays a prominent role in the study of spatial mixing. It is well
known that the neighborhood structure within a fixed radius around some vertex v ∈ G is
asymptotically distributed as a Galton-Watson tree with offspring distribution Po(d), where
d = 2m/n. This observation motivates the question of whether it is possible to study the
spatial mixing properties of the Gibbs distribution on G by means of the Gibbs distribution
on Galton-Watson trees with Po(d) offspring. For certain questions like the so-called Gibbs
uniqueness (e.g. see [21]) the reduction from G to a Galton-Watson tree is trivially true.
However, for different kinds of spatial mixing this reduction turns out to be far from trivial,
e.g. the reconstructibility we consider here.

In this work we study the above question in its full generality. We investigate the
asymptotic relation between the Gibbs distribution over the k-colorings of a Po(d) Galton-
Watson tree and the marginal of the Gibbs distribution over the k-colorings of G on a fixed
size neighborhood around some vertex v. We show that these two distributions converge
to each other in a very specific way, provided that the average degree d is smaller than the
so-called condensation threshold

dk,cond = inf
{
d > 0 : lim sup

n→∞
E[Zk(G(n,m))1/n] < k(1− 1/k)d/2

}
.

The precise value of dk,cond has recently been determined rigorously (for k exceeding a
certain constant k0) [7]. An asymptotic expansion of that precise formula yields the explicit
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expression

dk,cond = (2k − 1) ln k − 2 ln 2 + δk with δk → 0,

matching the best current lower bound on dk−col (cf. (1)). Based on non-rigorous considera-
tions from statistical physics, we do not expect that the aforementioned convergence is true
for d > dk,cond (see further discussion in Section 3).

As a matter of fact we show that the above convergence does hold even if we consider
a fixed number of neighborhoods jointly. That is, for some fixed r, we consider r many
vertices in G and a small radius neighborhood around each vertex. We show that the joint
distribution of the k-colorings of these neighborhoods under µG,k converges to the product
of r Gibbs distributions over the k-colourings of a Po(d) Galton-Watson tree.

All the above imply that the reduction from G to the Galton-Watson tree is indeed
correct for studying any generic spatial mixing condition as long as d < dk,cond. A direct
corollary of our results is to verify the existence of a certain kind of decorrelation between
the color assignments of distant vertices, that was predicted by physicists using the cavity
method, see [25]. Furthermore, there is an impressing consequence that comes from the
observation that dk,cond is asymptotically equal to the k-colorability threshold for G. Our
result shows that the long-range effects that drive up the chromatic number of G are not
noticeable at a "local scale" (see further discussion in Section 3).

The challenging task in our analysis is that even though we speak about the local behavior
of the Gibbs distribution of G, we still need to argue about its global properties. To this
end we make a novel use of the "planted trick", introduced in [1]. In particular, we generalize
the planted model by introducing what we call the "planted replica model". The planting,
now, involves two independent k-colorings rather than just one. Our formalization of the
problem as well as the use of planting are quite generic. For this reason, we expect that our
approach can be extended to other models on random (hyper)graphs such as the hard-core
model, hypergraph two coloring, random k-SAT, etc.

2 Results

For a k-colorable graph G = (V,E), a vertex v and an integer ω ≥ 0 we let ∂ω(G, v) signify
the depth-ω neighborhood of v, i.e., the graph obtained from G by deleting all vertices at
a distance greater than ω from v. Additionally, for a set U ⊂ V we let µk,G|U denote the
projection of µk,G onto [k]U , i.e.,

µk,G|U (σ0) = µk,G
({
σ ∈ [k]V : ∀u ∈ U : σ(u) = σ0(u)

})
(σ0 ∈ [k]U ).

If H is a subgraph of G we briefly write µk,G|H = µk,G|V (H). Additionally, given a graph
G, we let v1,v2, . . . denote vertices of G that are chosen uniformly and independently at
random. Finally, let ‖ · ‖TV be the total variation norm. The main result of this paper is

I Theorem 1. There is a constant k0 > 0 such that for any k ≥ k0, d < dk,cond, l ≥ 1,
ω ≥ 0 we have

lim
n→∞

E

∥∥∥∥∥µk,G|∂ω(G,v1)∪···∪∂ω(G,vl) −
l⊗
i=1

µk,∂ω(G,vi)

∥∥∥∥∥
TV

= 0. (2)

In words, suppose that k ≥ k0 is not too small, let d < dk,cond and fix integers l, ω. Choose
a random graph G and pick l vertices v1, . . . ,vl uniformly and independently at random.
Standard properties of the random graph ensure that w.h.p. their depth-ω neighborhoods
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∂ω(G,v1), . . . , ∂ω(G,vl) are pairwise disjoint and acyclic. Hence, each ∂ω(G,vi) is a tree
w.h.p. However, w.h.p. in G there are paths of length Ω(logn) joining (most of) the vertices
at distance precisely ω from the randomly choosen "roots" vi. Now, (2) states that w.h.p. the
total variation distance of the following two distributions tends to 0 as n→∞. Under the
first distribution, choose a k-coloring σ of the entire random graph G uniformly at random
and consider its projection onto the forest ∂ω(G,v1) ∪ · · · ∪ ∂ω(G,vl). In particular, σ has
to respect the constraints imposed by the "long paths" that join the different components
∂ω(G,vi). Under the second distribution, ignore these long-range effects and obtain a
k-coloring of ∂ω(G,v1)∪· · ·∪∂ω(G,vl) simply by picking a k-coloring of each tree ∂ω(G,vi)
independently and uniformly at random (a task that can be performed efficiently by dynamic
programming).

Setting ω = 0 in Theorem 1 yields the following statement, which is of interest in its own
right.

I Corollary 2. There is a number k0 > 0 such that for all k ≥ k0, d < dk,cond and any
integer l > 0 we have

lim
n→∞

E

∥∥∥∥∥µk,G|{v1,...,vl} −
l⊗
i=1

µk,G|{vi}

∥∥∥∥∥
TV

= 0. (3)

By the symmetry of the colors, for each vertex v the "marginal distribution" µk,G|{v}
is just the uniform distribution on [k] for every vertex v. Hence, Corollary 2 states that
for d < dk,cond w.h.p. in the random graph G for randomly chosen vertices v1, . . . ,vl the
following is true: if we choose a k-coloring σ of G at random, then (σ(v1), . . . , σ(vl)) ∈ [k]l
is asymptotically uniformly distributed. Prior results of Montanari and Gershenfeld [22] and
of Montanari, Restrepo and Tetali [33] imply that (3) holds for d < 2(k − 1) ln(k − 1), about
an additive ln k below dk,cond.

Another interesting special case occurs if we set l = 1 in Theorem 1. In this case we
obtain a result about the well-known reconstruction problem. Suppose we draw a k-coloring
σ of G at random and we reveal the assignment of a vertex v. The reconstruction problem
amounts to studying how the information about the assignment at v biases the distribution
of assignments of other vertices in G, i.e. point to set correlation. It is straightforward
that the assignments at the neighbors of v are correlated with that of v since they must be
distinct. More generally, the reconstruction problem considers the bias on the assignments
of vertices on a fixed "radius" ω from v. If this correlation persists as ω →∞ we say that
reconstruction is possible on G. Otherwise we say that reconstruction is impossible. A similar
notion can be defined on a random Galton-Watson tree T(k, d) with offspring distribution
Po(d). That is, the reconstruction problem considers how the color assignment at the root
biases the distribution of the assignments of the vertices at level ω in a random k-colouring
of T(k, d). 1

I Corollary 3. There is a number k0 > 0 such that for all k ≥ k0 and d < dk,cond the
following is true.

Reconstruction is possible on G ⇔ tree reconstruction is possible on T (k, d). (4)

The point of Corollary 3 is that it reduces the reconstruction problem on a combinatorially
extremely intricate object, namely the random graph G, to the same problem on a much

1 Formal definitions can be found in [22].
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simpler structure, namely the Galton-Watson tree. That said, the reconstruction problem on
T(d) is far from trivial. The best current bounds show that there exists a sequence (δk)k → 0
such that non-reconstruction holds in T(d) if d < (1− δk)k ln k, while reconstruction occurs
if d > (1 + δk)k ln k [15].

Montanari, Restrepo and Tetali [33] proved (4) for d < 2(k − 1) ln(k − 1), about an
additive ln k below dk,cond. This gap could alternatively be plugged by invoking recent results
on the geometry of the set of k-colorings [6, 10, 32]. However, Corollary 3 is an immediate
consequence of Theorem 1.

3 Discussion and related work

Erdős’ observation [17] that the random graph G provides an example of a graph with high
girth and high chromatic number is, quite literally, a textbook application of the "probabilistic
method". One possible proof is to combine (1) with the well-known observation that for any
` ≥ 3 the probability that G fails to contain a cycle of length at most ` remains bounded
away from 0 as n → ∞. The difficulty of coming up with a deterministic construction of
such a graph highlights the extent to which the phenomenon baffles intuition [34].

Theorem 1 goes one step further. It shows that the long-range effects that drive up the
chromatic number of G are "locally elusive". Indeed, suppose we project a random k-coloring
of G to the depth-ω neighborhood of a bounded number of vertices. Then Theorem 1
shows that asymptotically no traces of the long-range effects that drive up the chromatic
number remain as the induced coloring is distributed as though no such effects were present.
In particular, w.h.p. any k-coloring of the neighborhood of a given vertex v extends in
asymptotically the same number of ways to the entire graph. Needless to say, we are unaware
of any deterministic construction that exhibits this property.

It is instructive to discuss the relationship between Theorem 1 and the geometry of the
set Sk(G) of k-colorings. For (1 + ηk)k ln k < d < dk,cond, where limk→∞ ηk = 0, w.h.p.
the set Sk(G) shatters into an exponential number of disjoint "clusters" C1, . . . , CN , each
containing merely an exponentially small fraction of the set Sk(G) [1]. Additionally, w.h.p. a
randomly chosen coloring σ of G belongs to a cluster Ci that is "frozen" [1, 32]. That is, there
is a number Ω(n) of vertices v that receive the same color under all the k-colorings in Ci.
Conversely, the cluster Ci can be characterised (almost) completely by a map τ : V → [k]∪{∗}
that assigns all frozen vertices their color and that sets all other variables to the "joker color"
∗ [10, 32]. In effect, the internal structure of a typical cluster is subject to strong long-range
correlations. For instance, if we consider the projection of a random k-coloring τi chosen
from the cluster Ci to a bounded number v1, . . . ,vl of randomly chosen vertices, then the
distribution of the resulting color vector (τi(v1), . . . , τi(vl)) would be far from uniform. What
Theorem 2 and Corollary 2 show is that these long range correlations "cancel out perfectly"
due to the large overall number of clusters.

No such cancellation is expected to occur for d beyond dk,cond but below the k-colorability
threshold [25]. In fact, non-rigorous but sophisticated arguments from physics predict that
in this regime, the so-called condensed phase, the set Sk(G) is dominated by a bounded
number of frozen clusters. Hence, the joint distribution (σ(v1), . . . , σ(vl)) will be a mixture
of a bounded number of "frozen" distributions (τi(v1), . . . , τi(vl)). Consequently, we expect
Theorem 1 to be best-possible in terms of the range of d.

Theorem 1 deals with the absence of "long-range correlations" in the random graph
coloring problem. It makes sense to raise similar questions in a wide variety of other problems
as well. In fact, the method that we develop in this paper is rather generic, and we expect
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that it will generalise to various other problems; the following section will provide a detailed
discussion. Immediate examples that spring to mind include random hypergraph coloring
or models from physics such as the Potts model. Another potential candidate may be the
hardcore model on the random regular graph, which was studied by Bhatnagar, Sly and
Tetali via a rather different approach [8], and its generalisations [35].

4 Outline

Throughout this section we assume that k ≥ k0 and that d < dk,cond.

4.1 Spatial mixing via replicas

The proof of Theorem 1 consists of three components. The first part is to reduce the proof of
Theorem 1 to studying the distribution called random replica model. This is a distribution
over triples (G, σ1, σ2) such that G is a k-colorable graph and σ1, σ2 ∈ Sk(G). In particular,
it is induced by the following experiment.
RR1 Choose a random graph G = G(n,m) subject to the condition that G is k-colorable.
RR2 Sample two k-colorings σ1, σ2 of G uniformly and independently.

In an analogous manner we define the distribution T⊗(k, d) as follows: The distribution
is over triples (T, τ1, τ2), where T is an instance of the Galton-Watson tree with offspring
distribution Po(d) and τ1, τ2 are two independent random k-colorings of T.

So as to proceed with our arguments we need a bit of terminology. A rooted graph is
a graph G = (V,E) with vertex set V ⊂ R together with a distinguished vertex v0 ∈ V ,
the root. Further, a dicolored rooted graph is a k-colorable rooted graph (G, v0) together
with two k-colorings σ1, σ2 ∈ Sk(G). An isomorphism between two dicolored rooted graphs
(G, v0, σ1, σ2), (G′, v′0, σ′1, σ′2) is a graph isomorphism ϕ : G → G′ such that ϕ(v0) = v′0,
σ1 = σ′1 ◦ ϕ, σ2 = σ′2 ◦ ϕ and ϕ(v) < ϕ(w) iff v < w for all vertices v, w of G. In words, ϕ
preserves the roots, both colorings and the order of the vertices (which are real numbers). For
ω ≥ 0 we denote by ∂ω(G, v, σ1, σ2) the rooted dicolored graph obtained from (G, v, σ1, σ2)
by deleting all vertices whose distance from v exceeds ω.

Given Γ a rooted dicolored graph and ω ≥ 0, for some graph G = (V,E), σ1, σ2 ∈ Sk(G),
we let

QΓ,ω(G) = 1
|V |

∑
v∈V

1 {∂ω(G, v, σ1, σ2) ∼= ∂ωΓ} .

That is, QΓ,ω(G) is the fraction of vertices of G whose depth-ω neighbourhood, dicolored as
in (σ1, σ2), are isomorphic to ∂ωΓ. The following proposition reduces the proof of Theorem 1
to studying the quantity QΓ,ω under the random replica model. In particular, it holds

I Proposition 4. Assume that for any dicolored rooted tree θ and any integer ω ≥ 0, we have

Qθ,ω(G, σ1, σ2) P−→ P
[
∂ωT⊗(d, k) ∼= ∂ωθ

]
. (5)

Then (2) holds for any ω ≥ 0, l ≥ 0.

The proof of Proposition 4 is based on an averaging argument that generalises a very elegant
argument from [22]. More details can be found in Section 5.
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4.2 Planting replicas
The above implies that we need to study the random variable Qθ,ω(G, σ1, σ2) with (G, σ1, σ2)
chosen from the random replica model. It turns out that studying the random replica model
is a formidable task. E.g. for half the range of d we consider there is not even a practical way
of finding a k-coloring not to mention generating one at random (cf. the discussion in [1]).
For this reason we study the random replica model by means of the planted replica model.
The planted replica model, is a probability distribution that is easy both to implement and
to analyse.

For two maps σ1, σ2 : [n]→ [k] let

F(σ1, σ2) =
k∑
i=1

[(
|σ−1

1 (i)|
2

)
+
(
|σ−1

2 (i)|
2

)]
−

k∑
i,j=1

(
|σ−1

1 (i) ∩ σ−1
2 (j)|

2

)
,

i.e. F(σ1, σ2) is the number of edges of the complete graph on [n] that are monochromatic
in at least one of σ1 or σ2.

The planted replica model is induced by the following experiment.
PR1 Sample two maps σ̂1, σ̂2 : [n]→ [k] independently and uniformly at random subject to

the condition that F(σ̂1, σ̂2) ≤
(
n
2
)
−m.

PR2 Choose a graph Ĝ on [n] with precisely m edges uniformly at random, subject to the
condition that both σ̂1, σ̂2 are proper k-colorings of Ĝ.

The above experiment is easy to get a handle on. Indeed, for large enough n the
conditioning in PR1 is essentially void as E[F(σ̂1, σ̂2)] ∼ (1 − 1/k)2n and m = O(n). In
addition, PR2 amounts to simply choosing a random set of m edges out of the

(
n
2
)
−F(σ̂1, σ̂2)

"allowed" edges of the complete graph.
The random replica model and the planted replica model are a priori two different

distributions. However, we show that they are closely related in the following sense.

I Proposition 5. For any sequence (An)n of events we have

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0 ⇒ lim

n→∞
P [(G, σ1, σ2) ∈ An] = 0.

In probability jargon, Proposition 5 states that the random replica model is contiguous
with respect to the planted replica model. That is, triples (G, σ1, σ2) that are typical w.r.t.
the first distribution are typical w.r.t. the second distribution, too. The above proposition
generalises a result from [6]. For more details about Proposition 5, see Section 6.

4.3 A coupling argument
The following proposition summarises the third and last ingredient to the proof of Theorem 1.

I Proposition 6. Let θ be a dicolored rooted tree θ and let ω ≥ 0. Then Qθ,ω(Ĝ, σ̂1, σ̂2)
converges in probability to P [∂ωT⊗(k, d) ∼= ∂ωθ] as n→∞.

The proof of Proposition 6 is based on a coupling argument that illustrates how convenient
it is to work with the planted replica model. Namely, to prove Proposition 6 it is merely
necessary to couple the distribution of the breadth first search tree from a random vertex v
in (Ĝ, σ̂1, σ̂2) up to depth ω with the truncated random tree ∂ωT⊗(k, d). The coupling is
rather immediate from the definitions of these two distributions.

To complete the proof of Theorem 1, we combine Propositions 5 and 6 to conclude that
for any θ, ω,. Qθ,ω(G, σ1, σ2) converges in probability to P [∂ωT⊗(d, k) ∼= ∂ωθ]. Hence, the
assertion follows from Proposition 4.
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5 Proof of Proposition 4

Let G be a graph and Zk(G) = |Sk(G)|. For some X : Sk(G)→ R, we write

〈X(σ)〉G = 1
Zk(G)

∑
σ∈Sk(G)

X(σ).

That is, 〈X(σ)〉G denotes the expectation of X over the choice of random colorings of G.
Let some integers l, ω ≥ 0, let θ1, . . . , θl be rooted trees and let τ1 ∈ Sk(θ1), . . . , τl ∈ Sk(θl).

For a graph G, let U = U(G) denote the number of vertex sequences v1, . . . , vl such that
∂ω (G, vi) ∼= θi for each i ∈ [l]. Let Y (G) denote the set of vertex sequences v1, . . . , vl that
in addition to ∂ω (G, vi) ∼= θi for each i ∈ [l], also satisfy∣∣∣∣∣

〈
l∏
i=1

1 {∂ω(G, vi, σ) ∼= (θi, τi)}
〉
G

−
l∏
i=1

Zk(θi)−1

∣∣∣∣∣ > δ,

for fixed δ > 0. Conditional on the convergence condition in (5) we show that

n−l|Y (G)| P−→ 0. (6)

Then, the proposition follows by using (6) and noting that the random graph converges
locally to the Galton-Watson tree with offspring distribution Po(d), i.e. w.h.p. we have that

n−l|U| = o(1) +
l∏
i=1

P[T(d) ∼= θi].

For (6), we extend an argument from [22, Proposition 3.2]. Given a sequence ε = ε(n),
we let Xθ1,...,θl

(G, [l], ω) be the set of all vertex sequences u1, . . . , ul such that ∂ω (G, ui) ∼= θi
while ∣∣∣∣∣∣

〈∏
i∈[l]

(
1 {∂ω (G, ui, σ) ∼= (θi, τi)} −

1
Zk(θi)

)〉
G

∣∣∣∣∣∣ > ε.

Conditional on the convergence assumption in (5), we show that there is a sequence ε =
ε(n) = o(1) such that w.h.p. (over the graph instances) it holds that |Xθ1,...,θl

(G, [l], ω)| ≤ εnl.
In particular, let zi = Zk(θi) and ti(v, σ) = 1 {∂ω (G, v, σ) ∼= (θi, τi)}. Moreover, set

Qi(v) = 1 {∂ω (G, v) ∼= θi} ·
〈
(ti(v, σ1)− z−1

i )(ti(v, σ2)− z−1
i )
〉

G , Qi = 1
n

∑
v∈[n]

Qi(v).

The convergence assumption in (5) implies that there exists ε = ε(n) = o(1) such that∑
i∈[l]Qi ≤ ε3. Then fixing an arbitrary i0 ∈ [l] we get that

ε2

nl
|Xθ1,...,θl

(G, [l], ω)| ≤ 1
nl

∑
u1,...,ul∈[n]

〈∏
i∈[l]

(ti(ui, σ)− z−1
i )
〉2

G

l∏
i=1

1 {∂ω (G, ui) ∼= θi}

≤ 1
nl

∑
u1,...,ul∈[n]

〈
(ti0(ui0 , σ1)− z−1

i0
)(ti0(ui0 , σ2)− z−1

i0
)
〉
G

l∏
i=1

1 {∂ω (G, ui) ∼= θi}

[as σ1, σ2 are independent]

≤ 1
nl

∑
u1,...,ul∈[n]

Qi0(ui0) = Qi0 ≤ ε3, (7)
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734 Local Convergence of Random Graph Colorings

which implies that w.h.p. |Xθ1,...,θl
(G, [l], ω)| ≤ εnl. Now, we consider the sequences of l

vertices which do not belong to Xθ1,...,θl
(G, [l], ω), i.e. the majority of the l-tuples. We show

that all of them are, somehow, well behaved.

I Claim 7. Let Eθ1,...,θl
be the set of all l-tuples (v1, . . . , vl) of distinct vertices such that

∂ω (G, vi) ∼= θi for all i ∈ [l]. Under the assumption in (5) the following is true: There is a
number C > 0 such that for all (v1, . . . , vl) ∈ Eθ1,...,θl

\ Xθ1,...,θl
(G, [l], ω)∣∣∣∣∣∣

〈∏
i∈[l]

1 {∂ω (G, vi, σ) ∼= (θi, τi)}
〉

G

−
∏
i∈[l]

z−1
i

∣∣∣∣∣∣ ≤ Cε1/2.

Then we get (6) from (7) and Claim 7. The proposition follows.

6 Proof of Proposition 5

Before proving the proposition, we consider the following: Given two maps σ1, σ2 : [n]→ [k],
we let the overlapmatrix ρ(σ1, σ2) be a k×k matrix such that ρij(σ1, σ2) = 1

n

∣∣σ−1
1 (i) ∩ σ−1

2 (j)
∣∣.

I Claim 8. Let ρ̄ be the uniform distribution on [k]2. Then, there is k0 > 0 such that for all
k ≥ k0 and all d < dk,cond, it holds that E[〈‖ρ(σ1, σ2)− ρ̄‖F 〉G] = o(1).

In words, the above claim asserts that for typical instances of G the expectation over the
choice of the random graph G(the outer E) of the average `2-distance of the overlap of two
randomly chosen k-colorings of G from ρ̄ goes to 0 as n→∞. The d < 2(k−1) ln(k−1) case
of Claim 8 was previously proved in [33] by way of the second moment analysis from [4]. As it
turns out, the regime 2(k−1) ln(k−1) < d < dk,cond requires a somewhat more sophisticated
argument.

In addition to Claim 8, we need the following concentration result from [6].

I Theorem 9 ([6]). There is k0 > 0 such that for all k ≥ k0 and all d < dk,cond we have

lim
ω→∞

lim
n→∞

P [| lnZk(G)− lnE[Zk(G)]| ≤ ω] = 1.

Proof. The proof of the proposition is by contradiction. Assume that (A′n)n≥1 is a sequence
of events such that for some fixed number ε > 0 we have

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ A′n

]
= 0 while lim sup

n→∞
P [(G, σ1, σ2) ∈ A′n] > 2ε. (8)

Setting ω(n) = ln ln
(

1/P
[
(Ĝ, σ̂1, σ̂2) ∈ A′n

])
, we let Bn be the set of all pairs (σ1, σ2)

of maps [n]→ [k] such that ‖ρ(σ1, σ2)− ρ̄‖2 ≤
√
ω/n. Also we let

An = {(G, σ1, σ2) ∈ A′n : (σ1, σ2) ∈ Bn} .

We observe that

ω(n) = ln ln
(

1/P
[
(Ĝ, σ̂1, σ̂2) ∈ An

])
→∞. (9)

Then Claim 8 and (8) imply that

lim
n→∞

P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0 while lim sup

n→∞
P [(G, σ1, σ2) ∈ An] > ε.
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The assumption that limn→∞ P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= 0, implies that

E[Zk(G)21 {An}] =
∑

(σ1,σ2)∈Bn

P [σ1, σ2 ∈ Sk(G), (G, σ1, σ2) ∈ An]

=
∑

(σ1,σ2)∈Bn

P [(G, σ1, σ2) ∈ An|σ1, σ2 ∈ Sk(G)]P [σ1, σ2 ∈ Sk(G)]

≤ qn
∑

(σ1,σ2)∈Bn

P [(G, σ1, σ2) ∈ An|σ1, σ2 ∈ Sk(G)] , (10)

where qn = max {P [σ1, σ2 ∈ Sk(G)] : (σ1, σ2) ∈ Bn}. Using the definition of the planted
replica model, (10) writes as follows:

E[Zk(G)21 {An}] ≤ k2nqn P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
. (11)

Furthermore, since
∑k
j=1 ρij(σ1, σ2)2,

∑k
i=1 ρij(σ1, σ2)2 ≥ 1/k for all i, j ∈ [k], inclusion/ex-

clusion principle implies that

1
n

lnP [σ1, σ2 ∈ Sk(G)] ≤ d

2 ln
(

1− 2
k

+ ‖ρ(σ1, σ2)‖22
)

+O(1/n)

= d ln(1− 1/k) +O(ω/n) for all (σ1, σ2) ∈ Bn.

Hence, qn ≤ (1 − 1/k)2m exp(O(ω)). Plugging this bound into (11) and setting z̄ =
E[Zk(G)], we get that

E[Zk(G)21 {An}] ≤ k2n(1− 1/k)2m exp(O(ω))P
[
(Ĝ, σ̂1, σ̂2) ∈ An

]
= z̄2 exp(O(ω))P

[
(Ĝ, σ̂1, σ̂2) ∈ An

]
. (12)

On the other hand, if P [(G, σ1, σ2) ∈ A′n] > ε, then Theorem 9 implies that

P [(G, σ1, σ2) ∈ A′n ∩ {Zk(G) ≥ z̄/ω}] > ε/2.

Hence, the distribution of the random replica model yields

E[Zk(G)21 {An}] ≥
ε

2

(
z̄

ω

)2
. (13)

But due to (9), (13) contradicts (12). The proposition follows. J
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