

The University of Bradford Institutional
Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please
refer to the repository record for this item and our Policy Document available from
the repository home page for further information.

To see the final version of this work please visit the publisher’s website. Where
available access to the published online version may require a subscription.

Author(s): Dahal, K. P., Remde, S. M., Cowling, P. I. and Colledge, N. J.

Title: Improving metaheuristic performance by evolving a variable fitness function.

Publication year: 2008

Book title: Evolutionary Computation in Combinatorial Optimization.

ISBN: 978-3-540-78603-0

Publisher: Springer Verlag.

Original publication is available at http://www.springerlink.com

Citation: Dahal, K. P., Remde, S. M., Cowling, P. I. and Colledge, N. J. (2008)
Improving metaheuristic performance by evolving a variable fitness function. In:
Evolutionary computation in combinatorial optimization. 8th European

Conference (EvoCOP 2008) Naples, Italy, March 26-28, 2008. pp 170-181.

Copyright statement: © 2008 Springer Verlag. Reproduced in accordance
with the publisher's self-archiving policy.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springerlink.com/�

Improving Metaheuristic Performance by

Evolving a Variable Fitness Function*

Keshav Dahal
1
, Stephen Remde1, Peter Cowling

1
,and Nic Colledge1

1 MOSAIC Research Group, University of Bradford, Bradford, BD7 1DP, United Kingdom

{s.m.remde, p.i.cowling, k.p.dahal, n.j.colledge}@bradford.ac.uk

http://mosaic.ac/

Abstract. In this paper we study a complex real world workforce scheduling

problem. We apply constructive search and variable neighbourhood search

(VNS) metaheuristics and enhance these methods by using a variable fitness

function. The variable fitness function (VFF) uses an evolutionary approach to

evolve weights for each of the (multiple) objectives. The variable fitness

function can potentially enhance any search based optimisation heuristic where

multiple objectives can be defined through evolutionary changes in the search

direction. We show that the VFF significantly improves performance of

constructive and VNS approaches on training problems, and “learn” problem

features which enhance the performance on unseen test problem instances.

Keywords: Variable Fitness Function, Evolution, Heuristic, Meta-heuristic.

1 Introduction

Search gets stuck when local optima are reached, and there are no better neighboring

solutions, but the solution is not globally optimal. While the global fitness function is

ideally suited to an approach guaranteed to find an optimal solution, it is not adequate

in assessing the fitness of a local move. Many metaheuristics allow escape from these

local optima however they may ultimately fail at a higher level because of the nature

of the global fitness function.

The variable fitness function seeks to tackle this problem by redefining the fitness

function so it may change over the course of the search. The result is that the local

fitness function is different from the global fitness function and can be more effective

than the global fitness function to assess local moves. [1] shows the variable fitness

function’s effectiveness at enhancing local search heuristics and in this paper we

attempt to show its ability to enhance a metaheuristics and to learn reusable

information to guide the search of a difficult optimization problem. The problem we

study is a complex real world workforce scheduling problem which contains many

scheduling problems from the literature as subproblems. Like many other real world

* This work was funded by EPSRC and @Road Ltd, a Trimble Company under an EPSRC

CASE studentship, which was made available through and facilitated by the Smith Institute

for Industrial Mathematics and System Engineering

problems it has many features that are hard to understand and model, and objectives

that are non-linear in nature. This can make it hard for a person to define a global

fitness function, let alone one to describe how to assess the quality of local moves.

We aim to show the variable fitness function’s ability to enhance the search when we

solve this workforce scheduling problem using constructive search and Variable

Neighborhood Search (VNS).

In the next section, related work is discussed. In section 3 the variable fitness

function is defined and section 4 describes the problem. In section 5 the

computational experiments are presented and the results analysed. Finally, section 6

will draw conclusions.

2 Related Work

The variable fitness function (VFF) is a new search enhancement technique that can

be used to enhance any search based optimization heuristic provided that a) the

problem is multi-objective (or multiple objectives can be defined in some way) and b)

we have CPU time available to use this process offline (although the resulting VFF

can be used very quickly online). First presented in [1], the variable fitness function

provides a simple scheme for encoding a piecewise linear function into a genetic

algorithm and a method for evolving these functions. The variable fitness functions

are then used to determine the local fitness function at each step in the local search.

Guided Local Search [2] also modifies the fitness function to change the direction

when a local optimum has been found. Features of a solution are identified and

penalties for solutions exhibiting these features are increased when the solution is

stuck in a local optimum. A feature which occurs in a local optimum has its penalty

score increased slightly, and these penalties are used to modify the fitness function,

attempting to force the search to move in another direction. The primary differences

between the VFF and Guided Local Search approaches are in their approaches to

modifying the fitness function (evolutionary versus reinforcement learning), the

fitness function objects that are being tuned (objectives versus features) and, most

importantly, the ability of the Variable Fitness Function to be applied with no CPU

time overhead for unseen test instances.

The problem we study is based on a mobile workforce scheduling problem

presented in [3,4]. It is a complex real workforce scheduling problem identified by

@Road Ltd. and shares many complexities found in various other scheduling

problems such as the Resource Constrained Project Scheduling Problem (RCPSP) and

its variants [5], Job Shop Scheduling Problem (JSSP) [6] and its variants, along with

other problems such as Vehicle Routing [7] and the Traveling Salesman Problem [8].

In [3], the problem’s multi objective nature was used to show the trade off between

diversity and solution quality when using multi objective genetic algorithm compared

to a genetic algorithm using weighted sum objective functions. In [4] the problem’s

complexity was used to show that breaking the problem down into a very large

number of smaller parts and then using another method to decide which of these

smaller parts to solve, is a very effective way of solving large complex problems.

[4] uses reduced Variable Neighborhood Search (rVNS) [9] amongst other

heuristics. rVNS is a faster form of Variable Neighbourhood Search. Variable

Neighbourhood Search (VNS) [10] is based on the idea of systematically changing

the neighbourhood of a local search algorithm. Variable Neighbourhood Search

enhances local search using a variety of neighbourhoods to “kick” the search into a

new position after it reaches a local optimum. Several variants of VNS exist as

extensions to the VNS framework [9] which have been shown to work well on

various optimisation problems. In our experience, VNS has the advantage for

complex, real-world problems, of requiring limited additional effort, once a basic

local search framework is established.

3 The Variable Fitness Function

The Variable Fitness Function [1] describes how the weights of a weighted sum

fitness function change over the iterations of a search process. The variable fitness

function is piecewise linear, describing the relative importance of objectives at each

iteration. There are two variations: the standard variable fitness function fixes the

number of discontinuities and the number of iterations between them and the adaptive

variable fitness function allows the points of discontinuity to evolve along with the

variable fitness function objective weights (Figure 1). Work so far provides evidence

that the adaptive version is more effective than the fixed version, as more complex

functions can be evolved [1].

For the adaptive variable fitness function, we define a set of weights {Wb,a} where

a indexes the weight set (a=1…A) and b indexes the objective (b=1…B). We define

Ia, the number of iterations between the weight sets. The variable fitness function is

now defined as:

∑
=

=

B

b

bb iWsOisf

1

)()(),(

where s is the solution to be evaluated and i is the iteration, Ob(s) is the value of

objective b for solution s and

)()(,1,, cbcbcbb WW
jk

ji
WiW −

−

−
+= +

where iteration i occurs in the range from weight set c (starting at iteration j) to

weight set c+1 (starting at iteration k) i.e. the linear interpolation of the weight of

objective b for iteration i.

Figure 1 shows an example adaptive variable fitness function. This describes how

the weights change over the iterations, for example, that the weight of objective 1

(W1) starts off at 2 (hence the objective is to be maximized) and then after iteration

200 its importance starts to decrease and objective 3 (that has weight W3) is to be

minimized, and its importance is higher at the start and end of the search process.

1.38

-0.36
-0.51

-3.07

-1.99 -2.10

-0.21

1.69
1.69

2.002.002.00

0.48

1.00

0.16

1.00

-0.81

-0.30

-2.95

-0.42

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0 50 100 150 200 250 300 350 400

Iterations

W
e
ig

h
t W1

W2

W3

W4

Figure 1. An example adaptive variable fitness function. (the number of iterations between the

weight sets and the number of weight sets may vary)

3.1 Evolution

Little work has been done in encoding piecewise linear functions such as these into

chromosomes. [11] uses a complex encoding for polynomial expressions. The

encoding is used to optimise a curve to fit a function described by a set of data points

(and is not an appropriate method for the VFF). The evolution here is similar to work

done on tuning of parameters for another algorithm using genetic algorithms [12].

When optimizing the weights of the variable fitness function, each weight in the

variable fitness function appears as a gene in a GA chromosome. When the adaptive

variable fitness function is used, the iterations between the weight sets are also

included. Figure 2 shows how the weight sets are mapped to the genes of a

chromosome.

W1,1 … W1,B I1 W1,1 … W1,B I1 … WA,1 … WA,B

Figure 2. Mapping the weights to a chromosome for an adaptive variable fitness function.

A modified version of 1 point crossover [13] will be used. It works the same way

as normal 1-point crossover but the crossover point may only be on a weight set

boundary. This method will keep mutually compatible weight sets together. The thick

lines in Figure 2 show these crossover points. Each gene will have a chance to be

mutated with a probability of pmut, the mutation rate. Mutation will simply mutate the

value of the gene by a random variable normally distributed around 0 and with a

standard deviation as predefined for each weight. Hence Wa,b is mutated by a value

from the normal distribution N(0, Vb) with probability pmut. Where Vb is the standard

deviation of mutation associated with objective b and pmut is the probability of

mutation which is the same for all alleles. This is similar to work done on mutation of

artificial neural network weights evolved using GAs [14] where the network weight is

mutated by a random number selected from a normal distribution.

The initial population of variable fitness functions is generated randomly where

Wa,b is picked uniformly at random out of the interval [Lb, Ub] for objective b. There is

a padapt probability that the chromosome will change length. If a chromosome is to

change length there is an equal probability it will either shrink or grow by one weight

set. If it is to shrink, a random weight set is chosen and removed from the

chromosome. If it is to grow, a new weight set is inserted between two randomly

chosen adjacent weight sets. The inserted weight set does not change the shape of the

variable fitness function as it is inserted exactly half way between the two adjacent

weight sets and has weight values that are the mean of the bordering weight sets. The

new weight set is then mutated. Lastly, the Ia genes also have a pmut probability of

being mutated using the same method as the Wa,b genes. This gives the chromosomes

a chance to get more and less complex and to also expand to more or less iterations.

In our experiments, Lb and Ub will be -1 and 1 respectively (since objective values

are normalized), Vb = 0.05(Ub – Lb), and pmut= padapt=0.05 for all objectives b. These

are known good values from previous work [1] and this previous work also shows

that the sensitivity to parameters is low.

4 The Case Study Problem and Solution Heuristics

The problem we study is based on the workforce scheduling problem in [3]. The

problem consists of assigning resources and time slots to geographically dispersed

tasks. Tasks require various skills and resources possess these skills at different

competencies. Resources are mobile and must travel between tasks and to and from

their “home” location at the end and start of the day. Tasks have a priority associated

with them which indicates their urgency or the reward for completing the task.

In the problem instances we study, 10 resources possess between 1 and 5 skills of

which there are various bottlenecks in the availability. The resources travel at varying

speeds. There are 300 tasks requiring between 0.5 and 1 hours to complete to be

scheduled over 3 days and each has a 4 hour time window in which it must be

completed. A task requires a resource to possess a certain skill, of which some skills

are in more demand than others. Tasks are to be completed as early in the 4 hour time

window as possible. Tasks have precedence constraints such that some task may not

be started before another has completed. A chain of tasks is a subgraph of the

precedence digraph of maximum indegree 1 where the indegree (outdegree) of a task

in the subgraph is one if the indegree (outdegree) in the precedence digraph is greater

than zero.

For this is a real world complex problem there are many objectives. Table 1 lists

some of the principal objectives we have identified. The global fitness function is

defined as f = 5 (Scheduled High) + 2 (Scheduled Low) +(Complete Chains) – 0.1

(Overrun), following reflection with our industrial collaborator. We use a constructive

heuristic, CON, to build an initial schedule then an improvement metaheuristic, IMP,

to improve it.

Table 1. Objectives used for the workforce scheduling problem.

Objective Description

Scheduled High The number of high priority tasks scheduled.

Scheduled Low The number of low priority tasks scheduled.

Complete Chains The number of task chains that have been completed.

Travel Distance The total distance traveled by the resources.

Travel Time The total time spent traveling by the resources

Overrun The total number of hours the task have overrun.

For the improvement heuristic we have decided to use Variable Neighbourhood

Search (VNS). VNS is relatively simple to implement and we have seen that this kind

of method can work well for scheduling problems [1]. We use a local search heuristic

where we define the neighborhood as schedules which result from optimally

reinserting a task, i.e. placing a task optimally in the schedule in terms of the current

(variable) fitness function. If the task is not yet scheduled, this means allocating the

resources and time to it that yield the best improvement in fitness. If the task is

already scheduled, this may mean moving the task in time, allocating new resources

or a combination of the two (Figure 3). At each iteration of the local search, the entire

neighbourhood is sampled and the best solution accepted. When the local search of

the VNS reaches a local optimum, the search is kicked into a new area of the search

space. We define these kicks as removing between 1 and 4 tasks and all dependent

tasks. We remove dependent tasks so that precedence constraints are not broken.

Figure 4. Task reinsertion. The task is moved to the resource and time in the schedule which

provides the best change in fitness according to the variable fitness function. The light grey

boxes represent other tasks, the dark grey is the task being optimized and the dotted boxed are

the positions being considered.

The construction method, CON, uses the local search operator of the VNS and

terminates when a local optimum is found. The improvement metaheuristic, IMP, has

a stopping criterion of 10,000 iterations. Table 2 lists the methods we will try. We can

see the first two are normal heuristics and the last three are enhanced using VFF.

Resource 1

Resource 1

Resource n

.

.

.

Table 2. Various methods to be used and their VFF enhance versions.

Heuristics Description

CON Construction heuristic using the global fitness function.

CON + IMP Construction heuristic and improvement heuristic using the

global fitness function.

VFF(CON) Construction heuristic using a variable fitness function.

VFF(CON + IMP) Construction heuristic and improvement heuristic using a

variable fitness function.

CON + VFF(IMP) Construction heuristic using the global fitness function and

improvement heuristic using a variable fitness function.

5 Computational Experiments

The five methods are used ten times on each of the five training instances and

averages taken to reduce the effect of randomness. These five training instances are

chosen to contain variations that a workforce would see on a day to day basis. By

using multiple problem instances to evolve variable fitness functions we are trying to

ensure that variable fitness functions learn characteristics of the problem through

learning specific problem instances. For the methods enhanced with the variable

fitness function, a test set of five problems instances will be solved using VFFs which

were evolved using the training instances. Good performance on the test data will

imply that a lot of CPU time could be used to train a “general purpose” variable

fitness function, then that variable fitness function could be used very quickly in “real

time”.

The methods requiring the evolution of a variable fitness function will be given 50

generations with a population size of 10 (equivalent to 500 evaluations). Methods

without a variable fitness function will also be given 500 evaluations and the best one

taken to give them the same amount of CPU time. The CON heuristic takes

approximately 30 seconds to construct the five schedules and the IMP heuristic takes

approximately 25 minutes on a 3.0 GHz PC. As these experiments will take over 260

CPU days to complete they will be run in parallel on approximately 95 computers.

Table 3 shows the results of the individual methods and their standard deviations

and Figure 5 graphs these with 90% confidence intervals. From the results we can see

that the variable fitness functions were indeed able to enhance the standard methods

significantly in all cases. We see very large variations in fitness when the variable

fitness function is used on the constructive part of the search (VFF(CON) and

VFF(CON + IMP)). Further investigation leads us to believe that this is because when

the variable fitness function affects the constructive part of the search, it has the

possibility to move a great distance in the search space from the “normal”

constructive algorithm. The best variable fitness function enhancement for the CON +

IMP method was to just enhance the improvement part. The variation of CON + IMP

is extremely low and the solutions that it has found are far from optimal. This may be

because the kick method of the VNS we have chosen was not sufficiently disruptive.

Table 3. Average fitness and standard deviation of ten runs of each method assessed using the

global fitness function.

Method Average Fitness Standard Deviation

CON 3189.6774 N/A

VFF(CON) 3308.0253 150.3236

CON + IMP 3617.4517 8.4949

VFF(CON + IMP) 3689.9001 111.2555

CON + VFF(IMP) 3770.2434 35.4282

3100

3200

3300

3400

3500

3600

3700

3800

CON VFF(CON) CON + IMP VFF(CON +

IMP)

CON +

VFF(IMP)

F
it
n

e
s
s

Figure 4. Graph of the results in Table 3 with 90% confidence intervals.

Figure 5 shows the breakdown of the individual objectives and Table 4 shows the

difference in the average objective measures the enhanced methods have produced.

This chart and table show that the VFF approach has found a way to obtain

improvements to high priority objectives at the expense of low priority ones.

In all of the cases where the method is enhanced by the variable fitness function,

the number of scheduled tasks, both low priority and high priority, has increased. This

intuitively makes sense as these are the highest weighted objectives in the global

fitness function. Travel time was decreased in both the cases where the variable

fitness function was used to enhance the metaheuristic. The increase in travel time

and other penalty objectives for the CON approach is not surprising as CON has no

way to optimize these objectives by reinserting. Travel time is not included in the

global fitness function, however, it would appear that when task reinsertion is

permitted, the VFFs have learnt that less time spent traveling means more time can be

spent doing tasks. In all cases, overrun increased, indicating that tasks were not

scheduled as close to their start time as possible. This may be because tasks were

shifted later in time so other tasks could be completed before them, enabling

preceding tasks to also be completed.

Table 4. Average change in objectives as a result of variable fitness function enhancement.

Base Method CON CON + IMP

Improvement Using VFF(CON) VFF(CON + IMP) CON + VFF(IMP)

Scheduled High (max) 20.20 4.30 17.10

Scheduled Low (max) 40.50 37.10 43.20

Travel Distance (min) 13.79 -24.03 -67.69

Travel Time (min) 14.91 -24.85 -64.34

Overrun (min) 603.52 220.51 203.08

Complete Chains (max) -3.30 -1.20 1.20

0

200

400

600

800

1000

1200

Scheduled

High

Scheduled

Low

Travel

Distance

Travel Time Overrun Complete

Chains

V
a
lu

e

CON VFF(CON) CON + IMP VFF(CON + IMP) CON + VFF(IMP)

Figure 5. Individual objective break down for each method.

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50

Generation

F
it
n

e
s
s

Average VFF(CON) Population Best

Average VFF(CON) Population Average

3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

0 10 20 30 40 50

Generation

F
it
n

e
s
s

Average CON + VFF(IMP) Population Best

Average CON + VFF(IMP) Population Average

Figure 6. Average population fitness and best of the population’s fitness at each generation

showing the evolution for VFF (CON) and CON + VFF(IMP) methods.

Figure 6 shows the evolution process in action. Not only do these graphs show that

the evolution process is working, and that the populations are evolving, but it shows

the difference between randomly generated variable fitness functions (those in the

initial population at generation 0) and evolved ones (those in the final population at

generation 50). The plot showing the evolution of VFF(CON) method shows a greater

increase in fitness from random variable fitness functions to evolved variable fitness

functions than that of CON + VFF(IMP) (note the difference in “fitness” scale

between the graphs). This is because the CON + IMP is a better method than CON,

and hence there is less room for improvement.

Variable Fitness Function Evolved for a CON + VFF(IMP)

-1.5

-1

-0.5

0

0.5

1

1.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000W
e
ig

h
t

High

Low

Travel Time

Travel Distance

Overrun

Complete Chains

Objectives over Iterations

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

H
o
u

rs

Average Overrun

Average Travel Time

Figure 7. A selected evolved VFF shown above and a plot below showing how two selected

objective measures change over the course of a search.

Figure 7 shows an example of how the variable fitness function is working. The

top plot shows a typical evolved variable fitness function from the population and

how the objective weights change over the iterations. Highlighted are the Travel Time

and Overrun objective weights. Plotted below are the objective values obtained at

each iteration from a single run using this variable fitness function. A quite obvious

correlation can be seen between the weight of overrun and the average overrun

observed. When the weight is positive, overrun increases and when the weight is

negative it decreases. This variable fitness function has in fact learnt a type of right-

left shift heuristic [15], which is frequently used in schedule repair.

0%

1%

2%

3%

4%

5%

6%

7%

VFF(CON) Test VFF(CON) VFF(CON + IMP) Test VFF(CON +

IMP)

CON + VFF(IMP) Test CON +

VFF(IMP)

P
e

rf
o

rm
a

n
c
e

 G
a

in
e

d

Figure 7. Average method performance gained using variable fitness function on test data

compared to training data.

Figure 7 shows the improvement gained in the global fitness function from using

the variable fitness function enhanced methods over the standard methods, for both

the training data and the test data. Note that for test data instances, the amount of CPU

time for the VFF and standard approaches are the same. As seen in the chart, the

variable fitness functions enhanced methods are still significantly better than their

standard versions on the test data (with the exception of the VFF(CON + IMP)

method whose 90% confidence interval takes it below 0%). This is a good indication

that variable fitness functions trained for the VFF(CON) and CON + VFF(IMP) could

be reused on different problem instances with good performance, and that they have

“learned” generalisable information about the problem as well as specific information

about the training instances.

5 Conclusions

In this paper we have demonstrated the application of an evolutionary variable fitness

function to a constructive heuristic and a metaheuristic for a complex, real-world

workforce scheduling problem. We have shown that statistically significant increases

in heuristic and metaheuristic performance can be gained by using the variable fitness

function. We have also seen that evolution plays a key role in getting these gains. To

show the reusability of the evolved variable fitness functions they were used on

another set of problem instances and showed gains of nearly equal magnitude. This is

a strong indicator that a variable fitness function could be evolved offline and then the

evolved variable fitness function be used in a real time situation. Arguably, the

variable fitness function can be used for any optimization problem where multiple

objectives can be defined. In future work we will investigate further how and why the

VFF approach works its potential as a general problem-solving approach.

References

[1] Remde, S., Cowling, P., Dahal, K. and Colledge, N.: Evolution of Fitness Functions to

Improve Heuristic Performance. Proceedings of Learning and Intelligent Optimization

(LION) II, LNCS, Springer (2008),

[2] Tsang, E. and Voudouris, C.: Fast local search and guided local search and their application

to British Telecom's workforce scheduling problem. Operations Research Letters 20 (3):

119-127 (1997)

[3] Cowling, P., Colledge, N., Dahal, K. and Remde, S.: The Trade Off between Diversity and

Quality for Multi-objective Workforce Scheduling. Evolutionary Computation in

Combinatorial Optimization, Proc. Lecture Notes in Comp. Science 3906: 13-24 (2006)

[4] Remde, S., Cowling, P., Dahal, K. and Colledge, N.: Exact/Heuristic Hybrids using rVNS

and Hyperheuristics for Workforce Scheduling. Evolutionary Computation in Combinatorial

Optimization Proc., LNCS, Springer (2007)

[5] Hartmann, S.: Project Scheduling under Limited Resources: Model, methods and

applications. Springer-Verlag, Berlin Heidelberg, New York (1999)

[6] Vanlaarhoven, P.J.M, Aarts, E.H.L and Lenstra, J.K.: Job Shop Scheduling by Simulated

Annealing. Operations Research 40(1), pp 113-125 (1992)

[7] Toth, P. and Vigo, D. (Eds.): The Vehicle-Routing Problem. Siam, (2001)

[8] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (Eds.): The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley, (1991)

[9] Hansen, P. and Mladenovic, N.: Variable neighborhood search: Principles and applications.

European Journal of Oper. Res. 130 (3): 449-467 May 1 (2001)

[10] Mladenovic, N. and Hansen, P.: Variable neighborhood search. Computers & Operational

Research 24 (11): 1097-1100 Nov (1997)

[11] Potgieter, G. and Engelbrecht, A. P.: Genetic Algorithms for the Structure Optimisation of

learned Polynomial Expressions. Applied Mathematics and Computation 186 (2): 1441-

1466 Mar (2007)

[12] Shimojika, K., Fukuda, T., Hasehawa Y.: Self-Tuning Fuzzy Modeling with adaptive

membership function, rules, and hierarchical structure-based on Genetic Algorithm. Fuzzy

Sets And Systems 71 (3): 295-309 (1995)

[13] Reeves, C.R.: Genetic Algorithms and Combinatorial Optimization. In V.J. Rayward-

Smith (Ed.), Applications of Modern Heuristic Methods, Alfred Waller, Henley-on-Thames,

111–125. (1995)

[14] Yao, X.: Evolving artificial neural networks.: Proceedings Of The IEEE 87 (9): 1423-1447

(1999)

[15] Valls, V., Ballestin, F. and Quintanilla, S.: Justification and RCPSP: A technique that

pays. European Journal of Operational Research, Volume 165, Issue 2, (2005)

