1,265 research outputs found

    Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a equence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold HMC (RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially increased computational cost that can become prohibitive in high-dimensional scenarios. In this paper we propose the Adaptive HMC (AHMC), an alternative inferential method based on HMC that is both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits become more pronounced with higher dimensionality of the parameter space and with the degree of irregularity of the underlying likelihood surface. We show that AHMC satisfies detailed balance for a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size, highlighting substantial efficiency gains of AHMC. Simulation examples and an application of the BEKK GARCH model show the usefulness of the new posterior sampler.High-dimensional joint sampling; Markov chain Monte Carlo; Multivariate GARCH

    Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a equence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold HMC (RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially increased computational cost that can become prohibitive in high-dimensional scenarios. In this paper we propose the Adaptive HMC (AHMC), an alternative inferential method based on HMC that is both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits become more pronounced with higher dimensionality of the parameter space and with the degree of irregularity of the underlying likelihood surface. We show that AHMC satisfies detailed balance for a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size, highlighting substantial efficiency gains of AHMC. Simulation examples and an application of the BEKK GARCH model show the usefulness of the new posterior sampler.High-dimensional joint sampling; Markov chain Monte Carlo; Multivariate GARCH

    Information-geometric Markov Chain Monte Carlo methods using Diffusions

    Get PDF
    Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond Statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for Statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.Comment: 22 pages, 2 figure

    GMM Estimation of Affine Term Structure Models

    Get PDF
    This article investigates parameter estimation of affine term structure models by means of the generalized method of moments. Exact moments of the affine latent process as well as of the yields are obtained by using results derived for p-polynomial processes. Then the generalized method of moments, combined with Quasi-Bayesian methods, is used to get reliable parameter estimates and to perform inference. After a simulation study, the estimation procedure is applied to empirical interest rate data

    Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models

    Get PDF
    This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear state-space models together with a software implementation in the statistical programming language R. We employ a step-by-step approach to develop an implementation of the PMH algorithm (and the particle filter within) together with the reader. This final implementation is also available as the package pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some intuition as to how the algorithm operates and discuss some solutions to problems that might occur in practice. To illustrate the use of PMH, we consider parameter inference in a linear Gaussian state-space model with synthetic data and a nonlinear stochastic volatility model with real-world data.Comment: 41 pages, 7 figures. In press for Journal of Statistical Software. Source code for R, Python and MATLAB available at: https://github.com/compops/pmh-tutoria

    Monte Carlo derivative pricing with partial information in a class of doubly stochastic Poisson processes with marks

    Get PDF
    To model intraday stock price movements we propose a class of marked doubly stochastic Poisson processes, whose intensity process can be interpreted in terms of the effect of information release on market activity. Assuming a partial information setting in which market agents are restricted to observe only the price process, a filtering algorithm is applied to compute, by Monte Carlo approximation, contingent claim prices, when the dynamics of the price process is given under a martingale measure. In particular, conditions for the existence of the minimal martingale measure Q are derived, and properties of the model under Q are studied.Minimal martingale measure, News arrival, Marked point process, Nonlinear filtering, Reversible jump Markov chain Monte Carlo, Ultra high frequency data
    corecore