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Abstract

Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distribu-

tions. Distant proposal draws are taken in a sequence of steps following the Hamiltonian dynamics

of the underlying parameter space, often yielding superior mixing properties of the resulting Markov

chain. However, its performance can deteriorate sharply with the degree of irregularity of the un-

derlying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold

HMC (RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially

increased computational cost that can become prohibitive in high-dimensional scenarios. In this paper

we propose the Adaptive HMC (AHMC), an alternative inferential method based on HMC that is

both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits

become more pronounced with higher dimensionality of the parameter space and with the degree of

irregularity of the underlying likelihood surface. We show that AHMC satisfies detailed balance for

a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size,

highlighting substantial efficiency gains of AHMC. Simulation examples and an application of the

BEKK GARCH model show the usefulness of the new posterior sampler.
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1. Introduction

Hamiltonian dynamics have been traditionally used to describe the laws of motion in molecular sys-

tems in physics. Following the recent advances in Markov chain Monte Carlo (MCMC) fuelled by

increasing availability of fast computation, inferential methods based on Hamiltonian dynamic sys-

tems are becoming increasingly popular in the statistics literature (Neal, 1993, 2010; Ishwaran, 1999;

Liu, 2004; Girolami and Calderhead, 2011).1 Hamiltonian Monte Carlo, also called Hybrid Mote Carlo,

(HMC) uses Hamiltonian dynamics in constructing distant proposal draws in a sequence of steps and

hence concurrently yields relatively low correlation among draws and high acceptance probabilities.

Methods based on HMC have been shown to improve sampling of ill-behaved posteriors, and enabled

the solution of otherwise intractable high dimensional inference problems (Neal, 2010; Girolami and

Calderhead, 2011). These methods are particularly useful for the kind of problems where it is difficult

to accurately approximate the surface of the (posterior) log-likelihood around the current parameter

draw or the mode in real time needed for obtaining sufficiently high acceptance probabilities in impor-

tance sampling (IS) or accept-reject methods. Perpetual re-fitting of a local posterior approximating

density around newly accepted draws during the MCMC run may become too costly for methods based

on such mechanism to be practical. These types of problems typically arise when the log-likelihood is

costly to evaluate and is near-ill-conditioned around the mode.

Even if on a small scale, with a few parameters and small sample size, such problems can be handled

by standard procedures, these can become prohibitive in higher parameter dimensions and sample

sizes. Examples include recursive models in finance, such as the BEKK GARCH that we treat in

our application, state-space models or point process models. In such situations one would typically

resort to Random walk (RW) style sampling that is fast to run and does not require the knowledge

of the properties of the underlying log-likelihood. However, RW mechanisms can lead to very slow

exploration of the parameter space with high autocorrelations among draws which would require a

prohibitively large size of the Markov chain to be obtained in implementation to achieve satisfactory

mixing and convergence. HMC combines the advantages of sampling that is relatively cheap with

RW-like intensity but superior parameter space exploration.

Nonetheless, HMC uses a mechanism whose form is fixed over the parameter space, lacking adaptability

to local features of the likelihood. The Riemann Manifold HMC, or RMHMC (Girolami and Calder-

head, 2011), alleviates this problem and renders HMC locally adaptable which results in improved

convergence and mixing properties. However, relative to HMC, RMHMC implementation requires a

substantially increased computational burden with a large number of fixed point evaluations within

every MC step which can render its performance inadequate in high-dimensional problems where the

likelihood is expensive to evaluate. Indeed, it is precisely this type of problems for which HMC-type

methods are most useful relative to other existing methods.

1The discussion section of the recent Girolami and Calderhead (2011) article contains over 60 discussion pieces
by prominent statisticians expressing their overwhelmingly supportive views.
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In this paper we propose an alternative inferential method, the Adaptive HMC (AHMC), that is both

relatively fast and locally adaptive. AHMC is based on proposal dynamics generalizing HMC with only

minimal additional functional evaluations, yet closely approximating the local adaptability properties

of RMHMC. Unlike the RMHMC, AHMC does not attempt to construct a completely locally adaptive

proposal sequence, but rather a fast local approximation to the fully adaptive case. This enables

AHMC to bypass multiple fixed point evaluations in every step in the proposal sequence within every

MC parameter draw that RMHMC needs to take. As a result, AHMC features a substantial speed

gain and only a small loss of the degree of adaptability relative to RMHMC.

From the end-user perspective AHMC is easier to code than RMHMC, while the additional elements

over HMC are simple to implement. AHMC is not a special case of RMHMC as their dynamic systems

are non-nested, while HMC can be obtained as a special case of AHMC by imposing restrictions on

the dynamics of the latter.

We lay out a set of necessary and sufficient conditions under which AHMC yields a valid MCMC

scheme with a tractable form of its acceptance probability. In particular, these include a reversibility

condition and a contraction mapping condition. As Girolami and Calderhead (2011) provide a de-

tailed comparison of RMHMC to a number of alternative samplers including RW, MALA, and HMC

on numerous examples showing overall supremacy of RMHMC in terms of effective sample size (ESS),

it is sufficient for our purpose to take RMHMC as the benchmark of comparison. In order to uncover

any potential trends in performance, we compare the ESS of AHMC to RMHMC on two simulated

examples: one with increasing dimensionality of the parameter space and fixed sample size (multivari-

ate Normal posterior) and one with increasing sample size and fixed dimensionality (GARCH(1,1)).

Both examples reveal increasing efficiency gains of AHMC in dimensionality and sample size.

Bayesian estimation of multivariate GARCH models is relatively scarce (Dellaportas and Vrontos

(2007), Hudson and Gerlach (2008) and Osiewalski and Pipien (2004)). Coming up with a good

proposal density inside a Metropolis-Hasting procedure can be challenging. Therefore, we apply

our procedure to a high-dimensional BEKK GARCH model with its highly complex likelihood. We

show that AHMC facilitates inference on the model in higher dimensions than previously considered

practical. The importance of full BEKK inference is highlighted by a marginal likelihood comparison

that clearly favors the full model version over its restricted alternatives.

AHMC is related to but distinct from the adaptive radial-based direction sampling (ARDS) method

of Bauwens, Bos, van Dijk, and van Oest (2004). While AHMC utilizes deterministic directional

derivatives (numerical or analytical) of a Hamiltonian system in order to move within hypersurfaces

of approximately equal functional value, ARDS is based on a transformation into radial coordinates,

stochastic sampling of directional vectors, and then applying the inverse transformation. The ac-

ceptance probability of the Metropolis-Hastings version of ARDS (Proposition 1) is a function of a

numerical quadrature over the posterior in a given direction. The importance sampling version of
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ARDS relies on a directional approximation of the posterior. In either case, each MC draw of ARDS

requires a certain type of relatively detailed posterior approximation which AHMC seeks to avoid

in order to be applicable in problems where quadrature evaluation or importance sampling may be-

come computationally prohibitive, as described above. Each method thus focuses on different types

of applied problems.

Our work also complements other existing tailored proposal methods for posterior sampling in difficult

situations such as Chib and Greenberg (1995), Chib and Ramamurthy (2010), Liesenfeld and Richard

(2006) and Pitt and Shephard (1997). The AHMC is a useful addition to the applied econometrician’s

toolkit and can be applied to the full block of parameters as in our examples or a sub-block of

parameters in conjunction with other Gibbs and Metropolis-Hasting steps.

The paper is organized as follows: Section 2 provides an overview of useful statistical background

including the detailed balance condition of the Metropolis-Hastings principle. Section 3 reviews HMC

and RMHMC, and Section 4 introduces AHMC. Section 5 explores the properties of AHMC on

simulated examples and Section 6 details the application of AHMC to a high-dimensional BEKK

GARCH model. Section 7 concludes.

2. Statistical Background

Consider an economic model parametrized by a Euclidean vector θ ∈ Θ for which all information in

the sample is contained in the model posterior π(θ; ∙) that we denote by π(θ) which is assumed known

up to an unknown integrating constant. Formally, a general class of such models can be characterized

by a family Pθ of probability measures on a measurable space (Θ,B) where B is the Borel σ−algebra.

The purpose of Markov Chain Monte Carlo (MCMC) methods is to formulate a Markov chain on

the parameter space Θ for which, under certain conditions, π(θ) ∈ Pθ is the invariant (also called

’equilibrium’ or ’long-run’) distribution. The Markov chain of draws of θ can be used to construct

simulation-based estimates of the required integrals and functionals h(θ) of θ that are expressed as

integrals. These functionals include objects of interest for inference on θ such as quantiles of π(θ).

The Markov chain sampling mechanism specifies a method for generating a sequence of random

variables {θr}Rr=1, starting from an initial point θ0, in the form of conditional distributions for the

draws θr+1|θr ∼ G(θr). Under relatively weak regularity conditions (Robert and Casella, 2004), the

average of the Markov chain converges to the expectation under the stationary distribution:

lim
R→∞

1

R

R∑

r=1

h(θr) = Eπ[h(θ)]

A Markov chain with this property is called ergodic. As a means of approximation we rely on large

but finite R ∈ N which the analyst has the discretion to select in applications.
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The Metropolis-Hastings (M-H) principle has been the cornerstone of constructing Markov chains by

sampling θr+1|θr from G(θr); see Chib and Greenberg (1995) for a detailed overview. G(θr) can be

obtained from a given (economic) model and its corresponding posterior π(θ), parametrized by θ,

known up to a constant of proportionality.

However, π(θ) typically has a complicated form which precludes direct sampling. Then the goal

is to find a transition kernel P (θ, dθ) whose nth iterate converges to π(θ) for large n. After this

large number, the distribution of the observations generated from the Markov chain simulation is

approximately the target distribution. The transition kernel P (θ,A) for θ ∈ Θ and A ⊂ Θ is an

unknown conditional distribution function that represents the probability of moving from θ to a point

in the set A. Suppose we have a proposal-generating density q(θ∗r+1|θr) where θ
∗
r+1 is a proposed state

given the current state θr of the Markov chain. The Metropolis-Hastings (M-H) principle stipulates

that θ∗r+1 be accepted as the next state θr+1 with the acceptance probability

(2.1) α(θr, θ
∗
r+1) = min

[
π(θ∗r+1)q(θr|θ

∗
r+1)

π(θr)q(θ∗r+1|θr)
, 1

]

otherwise θr+1 = θr. Then the Markov chain satisfies the so-called detailed balance condition

π(θr)q(θ
∗
r+1|θr)α(θr, θ

∗
r+1) = π(θ

∗
r+1)q(θr|θ

∗
r+1)α(θ

∗
r+1, θr)

which is sufficient for ergodicity. α(θ∗r+1, θr) is the probability of the move θr|θ
∗
r+1 if the dynamics

of the proposal generating mechanism were to be reversed. While π(θ) may be difficult or expensive

to sample from, the proposal-generating density q(θ∗r+1|θr) can be chosen to be sampled easily. The

popular Gibbs sampler arises as a special case when the M-H sampler is factored into conditional

densities.

A variation on (2.1) arises when the parameter space Θ is augmented with a set of independent

auxiliary stochastic parameters γ ∈ Γ that fulfill a supplementary role in the proposal algorithm,

such as facilitating the directional guidance of the proposal mechanism. The detailed balance is then

satisfied using the acceptance probability

(2.2) α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)q(θr, γr|θ

∗
r+1, γ

∗
r+1)

π(θr, γr)q(θ∗r+1, γ
∗
r+1|θr, γr)

, 1

]

The desired posterior can be obtained by marginalizing out γ.

3. Hamiltonian Monte Carlo

The Hamiltonian (or Hybrid) Monte Carlo (HMC) algorithm originates from the physics literature

where it was introduced as a fast method for simulating molecular dynamics (Duane, Kennedy,

Pendleton, and Roweth, 1987). It has since become popular in a number of application areas in-

cluding statistical physics (Akhmatskaya, Bou-Rabee, and Reich, 2009; Gupta, Kilcup, and Sharpe,

1988), computational chemistry (Tuckerman, Berne, Martyna, and Klein, 1993), or a generic tool for

Bayesian statistical inference (Neal, 1993, 2010; Ishwaran, 1999; Liu, 2004; Beskos, Pillai, Roberts,
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Sanz-Serna, and Stuart, 2010). A separate stream of literature has developed around the Langevin dif-

fusion mechanisms which use related proposal dynamics but utilize one-step proposals only (Roberts

and Rosenthal, 1998; Roberts and Stramer, 2003).

In this Section we provide the stochastic background for HMC. Our synthesis is based on previously

published material, but unlike the bulk of literature presenting HMC in terms of the physical laws of

motion based on preservation of total energy in the phase-space, we take a fully stochastic perspective

familiar to the applied Bayesian econometrician. The HMC principle is thus presented in terms of

the joint density over the augmented parameter space leading to a Metropolis acceptance probability

update. We hope that our synthesis of the probabilistic perspective on HMC will provide a useful

point of reference, in particular to econometricians who wish to further explore the HMC principles.

3.1. HMC Principle

Consider a vector of parameters of interest θ ∈ Rd distributed according to the posterior density π(θ).

Let γ ∈ Rd denote a vector of auxiliary parameters with γ ∼ Φ(γ; 0,M) where Φ denotes the Gaussian

distribution with mean vector 0 and covariance matrix M , independent of θ. Denote the joint density

of (θ, γ) by π(θ, γ). Then the negative of the logarithm of the joint density of (θ, γ) is given by the

Hamiltonian equation2

(3.1) H(θ, γ) = − lnπ(θ) +
1

2
ln
(
(2π)

d |M |
)
+
1

2
γ′M−1γ

Hamiltonian Monte Carlo (HMC) is formulated in the following three steps that we will describe in

detail further below:

(1) Draw an initial auxiliary parameter vector γ0r ∼ Φ(γ; 0,M);

(2) Transition from (θr, γr) to (θ
L
r , γ

L
r ) = (θ

∗
r+1, γ

∗
r+1) according to the Hamiltonian dynamics;

(3) Accept (θ∗r+1, γ
∗
r+1) with probability α(θr, γr; θ

∗
r+1, γ

∗
r+1), otherwise keep (θr, γr) as the next

MC draw.

Step 1 provides a stochastic initialization of the system akin to a RW draw. This step is necessary in

order to make the resulting Markov chain {(θr, γr)}
R
r=1 irreducible and aperiodic (Ishwaran, 1999). In

contrast to RW, this so-called refreshment move is performed on the auxiliary variable γ as opposed

to the original parameter of interest θ, setting θ0r = θr. In terms of the HMC sampling algorithm,

the initial refreshment draw of γ0r forms a Gibbs step on the parameter space of (θ, γ) accepted with

probability 1. Since it only applies to γ, it will leave the target joint distribution of (θ, γ) invariant

and subsequent steps can be performed conditional on γ0r (Neal, 2010).

2In the physics literature, θ denotes the position (or state) variable and − lnπ(θ) describes its potential
energy, while γ is the momentum variable with kinetic energy γ′M−1γ/2, yielding the total energy H(θ, γ) of
the system, up to a constant of proportionality. M is a constant, symmetric, positive-definite ”mass” matrix
which is often set as a scalar multiple of the identity matrix.
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Step 2 constructs a sequence {θkr , γ
k
r }
L
k=1 according to the Hamiltonian dynamics starting from the

current state (θ0r , γ
0
r ) and setting the last member of the sequence as the HMC new state proposal

(θ∗r+1, γ
∗
r+1) = (θ

L
r , γ

L
r ). The role of the Hamiltonian dynamics is to ensure that the M-H accep-

tance probability (2.2) for (θ∗r+1, γ
∗
r+1) is kept close to 1. As will become clear shortly, this corre-

sponds to maintaining the difference −H(θ∗r+1, γ
∗
r+1)+H(θ

0
r , γ

0
r ) close to zero throughout the sequence

{θkr , γ
k
r }
L
k=1. This property of the transition from (θr, γr) to (θ

∗
r+1, γ

∗
r+1) can be achieved by conceptu-

alizing θ and γ as functions of continuous time t and specifying their evolution using the Hamiltonian

dynamics equations3

dθi

dt
=
∂H(θ, γ)

∂γi
=
[
M−1γ

]
i

(3.2)

dγi

dt
= −

∂H(θ, γ)

∂θi
= ∇θi lnπ(θ)(3.3)

for i = 1, . . . , d. For any discrete time interval of duration s, (3.2)–(3.3) define a mapping Ts from

the state of the system at time t to the state at time t + s. For practical applications of interest

these differential equations (3.2)–(3.3) in general cannot be solved analytically and instead numerical

methods are required. The Stormer-Verlet (or leapfrog) numerical integrator (Leimkuhler and Reich,

2004) is one such popular method, discretizing the Hamiltonian dynamics as

γ(t+ ε/2) = γ(t) + (ε/2)∇θ lnπ(θ(t))(3.4)

θ(t+ ε) = θ(t) + εM−1γ(t+ ε/2)(3.5)

γ(t+ ε) = γ(t+ ε/2) + (ε/2)∇θ lnπ(θ(t+ ε))(3.6)

for some small ε ∈ R. From this perspective, γ plays the role of an auxiliary variable that parametrizes

(a functional of) π(θ, ∙) providing it with an additional degree of flexibility to maintain the acceptance

probability close to one for every k. Even though ln π(θkr ) can deviate substantially from ln π(θ
0
r),

resulting in favorable mixing for θ, the additional terms in γ in (3.1) compensate for this deviation

maintaining the overall level of H(θkr , γ
k
r ) close to constant over k = 1, . . . , L when used in accordance

with (3.4)–(3.6), since ∂H(θ,γ)
∂γi

and ∂H(θ,γ)
∂θi

enter with the opposite signs in (3.2)–(3.3). In contrast,

without the additional parametrization with γ, if only ln π(θkr ) were to be used in the proposal mech-

anism as is the case in RW style samplers, the M-H acceptance probability would often drop to zero

relatively quickly.

Step 3 applies a Metropolis correction to the proposal (θ∗r+1, γ
∗
r+1). In continuous time, or for ε→ 0,

(3.2)–(3.3) would keep −H(θ∗r+1, γ
∗
r+1) + H(θr, γr) = 0 exactly resulting in α(θr, θ

∗
r+1) = 1 but for

discrete ε > 0, in general, −H(θ∗, γ∗) +H(θ, γ) 6= 0 necessitating the Metropolis step. A key feature

of HMC is that the generic M-H acceptance probability (2.2) can be expressed in a simple tractable

form using only the posterior density π(θ) and the auxiliary parameter Gaussian density φ(γ; 0,M).

The transition from (θ0r , γ
0
r ) to (θ

L
r , γ

L
r ) via the proposal sequence {θ

k
r , γ

k
r }
L
k=1 taken according to the

3In the physics literature, the Hamiltonian dynamics describe the evolution of (θ, γ) that keeps the total energy
H(θ, γ) constant.
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discretized Hamiltonian dynamics (3.4)–(3.6) is fully deterministic proposal, placing a Dirac delta

probability mass δ(θkr , γ
k
r ) = 1 on each (θ

k
r , γ

k
r ) conditional on (θ

0
r , γ

0
r ). The system (3.4)–(3.6) is time

reversible and symmetric in (θ, γ), which implies that the forward and reverse transition probabilities

q(θLr , γ
L
r |θ

0
r , γ

0
r ) and q(θ

0
r , γ

0
r |θ
L
r , γ

L
r ) are equal: this simplifies the Metropolis-Hastings acceptance ratio

in (2.2) to the Metropolis form π(θ∗r+1, γ
∗
r+1)/π(θ

0
r , γ

0
r ). From the definition of the Hamiltonian H(θ, γ)

in (3.1) as the negative of the log-joint densities, the joint density of (θ, π) is given by

(3.7) π(θ, γ) = exp [−H(θ, γ)] = π(θ)
(
(2π)

d |M |
)−1/2

exp

(

−
1

2
γ′M−1γ

)

Hence, the Metropolis acceptance probability takes the form

α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)

π(θ0r , γ
0
r )
, 1

]

= min
[
exp

(
−H(θ∗r+1, γ

∗
r+1) +H(θ

0
r , γ

0
r )
)
, 1
]

= min
[
exp

(
lnπ(θ∗r+1)− lnπ(θ

0
r) + lnφ(γ

∗
r+1; 0,M)− lnφ(γ

0
r ; 0,M)

)
, 1
]

The expression for α(θr, γr; θ
∗
r+1, γ

∗
r+1) shows, as noted above, that the HMC acceptance probability

is given in terms of the difference of the Hamiltonian equations H(θ0r , γ
0
r )−H(θ

∗
r+1, γ

∗
r+1). The closer

can we keep this difference to zero, the closer the acceptance probability is to one. A key feature of the

Hamiltonian dynamics (3.2)–(3.3) in Step 2 is that they maintain H(θ, γ) constant over the parameter

space in continuous time conditional on H(θ0r , γ
0
r ) obtained in Step 1, while their discretization (3.4)–

(3.6) closely approximates this property for discrete time steps ε > 0 with a global error of order ε2

corrected by the Metropolis update in Step 3.

3.2. Metropolis adjusted Langevin (MALA)

The Langevin algorithm is equivalent to a special case of HMC when the number of leapfrog steps

L = 1. In this case, the proposal from the current state θr to the proposal θ
∗
r+1 can be expressed as

θ∗r+1 = θr + (ε
2/2)∇θ lnπ(θ(t)) + εzr

where z ∼ N(z; 0, Id) (Ishwaran, 1999). Using a preconditioning matrix M such that

θ∗r+1 = θr + (ε
2/2)M∇θ lnπ(θ(t)) + εUzr

with U obtained via Cholesky decomposition satisfying M = UUT can further improve the Langevin

sampling properties (Roberts and Stramer, 2003).

4. Adaptive Hamiltonian Monte Carlo

Compared to HMC, the ratio in the acceptance probability (2.2) can be kept closer to 1 for higher

dimensions of Θ and farther proposals θ∗r+1 if the mechanism generating the proposal sequence is

allowed to adapt to the curvature of π(θ) with the proposal sequence {θkr , γ
k
r }
L
k=1. Hence, the goal of
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local adaptivity of HMC is to render the proposal mechanism responsive to the local curvature of the

log-likelihood function ln π(θ).

4.1. Non-separable Hamiltonian Systems

In the adaptive case the Hamiltonian equation takes the form

(4.1) H(θ, γ) = − lnπ(θ)− ln q(γ|θ)

where

(4.2) q(γ|θ) = (2π)−d/2 |M(θ)|−1/2 exp

(

−
1

2
γ′M(θ)−1γ

)

renders the auxiliary parameter quadratic term γ′M(θ)−1γ/2 as an explicit function of θ. This prop-

erty leads to local adaptability of the proposal sequence but also complicates subsequent analysis

substantially. The associated Hamiltonian dynamics equations are in general given by

dθi

dt
=
∂H(θ, γ)

∂γi
=
[
M(θ)−1γ

]
i

(4.3)

dγi

dt
= −
∂H(θ, γ)

∂θi
= ∇θ lnπ(θ)−

1

2
Tr

(

M(θ)−1
∂M(θ)

∂θi

)

+
1

2
γ′M(θ)−1

∂M(θ)

∂θi
M(θ)−1γ(4.4)

A number of numerical methods have been devised in the physics and molecular dynamics literature

to solve the differential equations (4.3)–(4.4) in order to accurately determine the position of θ(t+ s)

and γ(t+ s) at the next instant t+ s given their current position at time t in the state space. These

solutions include the generalized Euler and Stormer-Verlet (generalized leapfrog) methods (Hairer,

Lubich, and Wanner, 2003; Leimkuhler and Reich, 2004).

The choice of the metric M(θ) in (4.2) critically influences the properties of the resulting sampler. In

general, any non-degenerate form of M(θ) can lead to an HMC-based method, with M(θ) = Id, the

identity matrix, resulting in HMC as a special case. In a seminal paper, Girolami and Calderhead

(2011) provide theoretical justification for combining the generalized leapfrog integrator with the

choice of the Fisher information matrix of π(θ) for M(θ), yielding RMHMC. However, the generalized

leapfrog necessitates finding one implicit fixed point in γ and another one in θ at every proposal

step k in each dimension i of γ and θ (see Appendix E for details). These fixed points need to be

obtained numerically which can lead to prohibitive computational burden in cases where evaluation

of the likelihood is expensive, such as in high-dimensional or recursive problems.

4.2. AHMC

In this paper we propose the Adaptive HMC (AHMC), an alternative HMC-based method featuring

distant proposals that is locally adaptable and yet avoids determination of two fixed points at every

step k of the proposal sequence. Similarly to HMC, the M-H acceptance probability (2.2) can be

expressed in the tractable Metropolis form. Showing that AHMC satisfies the conditions for a valid
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MCMC scheme is a challenging task that we undertake in Theorem 1 below. Results of this type

have been obtained for HMC and RMHMC in the literature, but the AHMC is a non-nested distinct

alternative to either of these methods and hence needs to be validated separately. Theorem 2 then lays

out the set of conditions on the (posterior) likelihood that are sufficient for satisfying the assumptions

made in Theorem 1. These conditions can be easily verified in a given application.

The starting point for AHMC is the non-separable Hamiltonian (4.1)-(4.2). Instead of M(θ), for

each MCMC update r, we use the matrix M(θr, θ∗r+1) that is fixed constant for the entire leapfrog

multi-step proposal sequence {θkr , γ
k
r }
L
k=1, i.e. between θr and θ

∗
r+1 inclusive.

A key feature of this approach is that M(θr, θ∗r+1) is permitted to change for each MCMC iteration.

For a given r, M(θr, θ∗r+1) is not a function of θ. Hence the formation of the proposal sequence

{θkr , γ
k
r }
L
k=0 can use the standard leapfrog integrator of HMC with the mapping given by (3.4)–(3.6)

with M replaced by M(θr, θ∗r+1) written as,

γk+1/2r = γkr −
ε

2
∇θ lnπ(θ

k
r )(4.5)

θk+1r = θkr + ε
[
M(θr, θ∗r+1)

−1γk+1/2r

]
(4.6)

γk+1r = γk+1/2r −
ε

2
∇θ lnπ(θ

k+1
r )(4.7)

This is in contrast to Girolami and Calderhead (2011) which used a different numerical integrator and

requires finding two fixed points for each k. Our approach requires one fixed point for all k = 1, ..., L.

In summary, we expect our approach to be more computationally efficient relative to Girolami and

Calderhead (2011). First we use (4.5)-(4.7) instead of the more complex integrator associated with

(4.3)-(4.4). Second, we require one fixed point in contrast to many fixed points along the proposal

path.

The following assumption states a sufficient condition for AHMC to yield a valid MCMC scheme

satisfying detailed balance.

ASSUMPTION 1. M(θr, θ∗r+1) is symmetric in its arguments, satisfying

M(θr, θ∗r+1) =M(θ
∗
r+1, θr)

This Assumption guarantees the symmetry between the forward mapping sequence Tk and the reversed

mapping sequence applying Tk with reversed signs starting at (θ
L
r , γ

L
r ). This ensures that the forward

proposal sequence {θkr , γ
k
r }
L
k=0 follows the same path as the reverse proposal sequence. This symmetry

of the proposal mapping sequence fulfills the same role as in HMC, resulting in compliance of AHMC

with detailed balance, as shown in Theorem 1 below.

There are many potential ways of setting M(θr, θ∗r+1). We take a user-friendly approach with light

computational burden and specify

(4.8) M(θr, θ∗r+1) =
1

2

[
F (θr) + F (θ

∗
r+1)

]
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where F (θ) is the Fisher information matrix evaluated at θ. The value of M(θr, θ∗r+1) that complies

with Assumption 1 is then obtained as one fixed point in {Tk}
L
k=1 per proposal draw (θ

∗
r+1, γ

∗
r+1).

Given θr, F (θr), and an initial guess F (θ
∗
r+1) = F (θr), we take L steps of (4.5)-(4.7) with k =

1, . . . , L, then update F (θ∗r+1) and (4.8), and keep iterating until convergence of (θ
∗
r+1, γ

∗
r+1) and

hence M(θr, θ∗r+1) to a fixed point. Conditional on this M(θr, θ
∗
r+1), the actual proposal sequence

{θkr , γ
k
r }
L
k=0 with (θ

∗
r+1, γ

∗
r+1) = (θ

L
r , γ

L
r ) is then drawn by applying (4.5)-(4.7). The conditions for a

contraction mapping discussed below ensure the existence and uniqueness of the fixed point. In our

experiments we found that only a few iterations were necessary to obtain the fixed point, resulting in

relatively rapid speed of the MCMC updates. The exact AHMC algorithm is given in Appendix C.

The HMC results as a special case of AHMC for a globally constant matrixM over the entire parameter

space of (θ, γ). As another special case when ln π(θ) has a globally constant curvature with respect to

θ, such as when θ = μ for data y ∼ N (μ, I), the AHMC produces draws equivalent to the HMC. In

general, however, when the curvature of ln π(θ) changes as a function of θ, such as in θ = (μ,Σ) for

data y ∼ N (μ,Σ), AHMC exploits the shape of ln π(θ) by locally adapting the proposal dynamics to

the curvature of ln π(θ).

A key feature of AHMC, in line with other HMC-based schemes, is that simplifies the acceptance

probability (2.2) to the Metropolis form containing only the ratio of the joint densities of (θ, γ). This

feature provides for a relatively user-friendly implementation of the algorithm. Theorem 1 shows both

detailed balance and the Metropolis property for AHMC.

THEOREM 1. Conditional on M(θr, θ∗r+1) given by Assumption 1, the AHMC satisfies detailed

balance, with the acceptance probability

α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)

π(θ0r , γ
0
r )
, 1

]

= min [exp (α̃r) , 1](4.9)

where

α̃r = lnπ(θ
∗
r+1)− lnπ(θ

0
r) + lnφ(γ

∗
r+1; 0,M(θr, θ

∗
r+1))− lnφ(γ

0
r ; 0,M(θr, θ

∗
r+1))

The proof is given in the Appendix A. Theorem 1 is stated as conditional on M(θr, θ∗r+1) obtained as

a fixed point whose existence is not guaranteed to hold in general. Here we state a set of sufficient

conditions for when this is the case.

ASSUMPTION 2. ∇θ lnπ(θ) is globally bounded and Lipschitz continuous in θ.

ASSUMPTION 3. The parameter space Θ is compact.

THEOREM 2. Under the Assumptions 2–3, the fixed point defining M(θr, θ∗r+1) exists and is unique

for any given θr. In particular, for any δ ∈ (0, 1) there exists ε(δ) > 0 dependent on δ only, such that

∀ε∗ < ε(δ), {Tk}Lk=1 is a contraction mapping uniquely determining M(θr, θ
∗
r+1).
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The proof is provided in the Appendix B.

5. Illustrative Examples

In this Section we assess the performance of AHMC on two stylized illustrative examples. Girolami

and Calderhead (2011) provide an excellent exposition of a series of problems that highlight the

performance edge of RMHMC relative to the non-adaptive HMC, MALA, and RW. Hence, to establish

the performance merit of AHMC it is sufficient to take RMHMC as the benchmark of comparison.

We first examine sampling of the parameters in multivariate Normal density in Example 1, and then

sampling of the parameters in a univariate GARCH(1,1) model in Example 2. In order to uncover

any potential trends, in Example 1 we fix the sample size and increase the parameter dimensionality;

in Example 2 we fix the dimensionality and increase the sample size.

We compare the relative efficiency of AHMC and RMHMC by using the same approach as Girolami

and Calderhead (2011) and Holmes and Held (2006) in making their comparisons. For each exam-

ple and method, we calculate the effective sample size (ESS) using the posterior samples for each

parameter obtained in 10,000 iterations with 5,000 burnin section. The ESS is the number of effec-

tively independent draws from the posterior distribution that the Markov chain is equivalent to. The

ESS thus serves as an estimate of the number of independent samples needed to obtain a param-

eter estimate with the same precision as the MCMC estimate considered based on a given number

of dependent samples. The nominal ESS is calculated as ESS∗ = R
[
1 + 2

∑
j γ(j)

]−1
where R is

the number of posterior samples, and γ(j) is the monotone sample autocorrelation (Geyer, 1992).

The nominal ESS is then normalized for CPU run time required to obtain the given Markov chain of

posterior draws, yielding ESS = 100×ESS∗/S where S is the number of seconds of CPU run time.

The MCMC chains were obtained on a 2.6 GHz unix workstation with the Intel fortran 95 compiler.

For obtaining ESS∗ from the MCMC output chains we used the R package coda. All results reported

are the averages of 10 different runs.

The results for the following examples are given in Tables 1 and 2 and Figures 1 and 2 below. We

report the mean, standard deviation, minimum, and maximum ESS for the sampled parameter vector

for each simulation setup. We also report the nominal (unnormalized) numbers along with the CPU

run time as the ESS inputs. In the tables Ratio denotes the ratio of AHMC to RMHMC of the

respective statistics. Values greater than 1 indicate better performance of AHMC. Figures 1 and 2

plot the relative efficiency gain of AHMC over RMHMC, calculated as the ESS means ratio for the

two methods. Figure 1 shows the AHMC relative efficiency gain for increasing dimensionality and

fixed sample size in Example 1, and Figure 1 for fixed dimensionality and increasing sample size in

Example 2. In each Figure, the horizontal dotted line at y-value 1 marks theoretical equivalence of

both methods, while the region above 1 represents efficiency gains of AHMC.
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5.1. Example 1: Joint Sampling of Parameters of a Multivariate Normal Density

Let yt ∼ N (y|μ,Σ) for t = 1, . . . , T with

lnπ(θ) = −
Td

2
ln(2π)−

T

2
ln |Σ| −

1

2

T∑

t=1

(yt − μ)
′
Σ−1(yt − μ)

and θ ≡ (μ′, vech(Σ)′)′. Naturally, a convenient factorization of this problem is readily available, but

this stylized example is meant to serve for joint sampling comparison purposes on a familiar and

analytically tractable case. In general applications, a conditional factorization of the joint density

lnπ(θ) may not be available or practical to implement (this is for instance the case of the BEKK

GARCH model analyzed in the next Section). In the simulation study of Example 1, we vary dim(y)

from 2 to 6, which corresponds to the parameter dimensionality dim(θ) varying from 3 to 27. The

true parameter values were set to μ0 = 0, and Σ to equal the covariance matrix of a first-order

autoregressive process with correlation 0.5. Our prior restricts Σ to be positive definite. Each chain

was initialized at the true parameter values, with L = 100 leapfrog steps, and ε tuned to achieve

acceptance rates between 0.7 and 0.9. The ESS statistics are reported in Table 1 and Figure 1.

5.2. Example 2: Joint Sampling of GARCH (1,1) Parameters

Let yt ∼ N (y|0, σ2t ) with σ
2
t = γ + αy

2
t−1 + βσ

2
t−1 for t = 1, . . . , T and θ ≡ (γ, α, β) where

lnπ(θ) = −
T

2
ln(2π)−

1

2

T∑

t=1

ln(σ2t (θ))−
1

2

T∑

t=1

ytσ
−2
t (θ)

∂

∂θ
lnπ(θ) = −

1

2

T∑

t=1

1

σ2t

∂σ2t (θ)

∂θ
+
1

2

T∑

t=1

e2tσ
−4
t

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂γ
= 1 + β

∂σ2t−1(θ)

∂γ

∂σ2t (θ)

∂α
= e2t−1 + β

∂σ2t−1(θ)

∂α

∂σ2t (θ)

∂β
= σ2t−1 + β

∂σ2t−1(θ)

∂β

and F (θ) is consistently estimated using the average of the outer products of the scores. In this

simulation study we vary the sample size T from 200 to 600. The dimensionality of the parameter

space of θ is kept constant at 3. The true parameter values were set to γ0 = 0.1, α0 = 0.05 and

β0 = 0.9. Each chain was initialized at the true parameter values, with L = 100 leapfrog steps, and

ε tuned to achieve acceptance rates between 0.7 and 0.9. The ESS statistics are reported in Table 2

and Figure 2.

In summary, the improvement of AHMC over RMHMC is substantial, with up to 17-fold efficiency

gain in Example 1 and up to 10-fold efficiency gain in Example 2. In both examples, the improvement

keeps increasing with increasing dimensionality and sample size, indicating sustained efficiency gain

of AHMC for more complex and sizeable problems.
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Table 1: Simulation Results for Example 1

Variable dimension 2 3 4 5 6
Parameter dimension 5 9 14 20 27

CPU Time (s)
AHMC 40.65 140.74 440.69 2282.66 5653.66
RMHMC 36.1 214.47 2139.97 24148.21 93067.35
Ratio 1.13 0.66 0.21 0.08 0.06

Nominal ESS mean
AHMC 543.26 363.52 253.52 189.68 223.65
RMHMC 495.25 390.87 267.69 184.79 214.29

AHMC 1336.88 258.34 57.54 6.65 3.96
ESS mean RMHMC 1372.46 182.25 12.51 0.61 0.23

Ratio 0.98 1.42 4.61 8.7 17.22

Nominal ESS s.d.
AHMC 100.51 71.95 50.83 40.58 53.66
RMHMC 150.53 22.78 18.18 11.78 24.69

ESS s.d.
AHMC 247.31 51.09 11.53 1.42 0.95
RMHMC 416.77 10.63 0.85 0.04 0.03

Nominal ESS min
AHMC 434.33 265.55 175.8 125.54 132.88
RMHMC 324.08 369.8 249.24 174.42 197.37

AHMC 1068.93 188.96 39.91 4.4 2.35
ESS min RMHMC 898.56 172.41 11.65 0.58 0.21

Ratio 1.28 1.1 3.44 6.11 11.13

Nominal ESS max
AHMC 667.48 466.48 344.34 260.78 314.3
RMHMC 600.76 412.25 284.33 196.77 242.52

AHMC 1642.71 331.48 78.13 9.14 5.56
ESS max RMHMC 1664.81 192.23 13.29 0.65 0.26

Ratio 0.99 1.73 5.89 11.23 21.5

Figure 1: AHMC Efficiency Gain in Example 1
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Table 2: Simulation Results for Example 2

Sample size T 200 300 400 500 600
Parameter dimension 3 3 3 3 3

CPU Time (s)
AHMC 50.81 71.27 98.39 124.7 152.69
RMHMC 212.53 312.29 423.42 519.86 623.52
Ratio 0.24 0.23 0.23 0.24 0.24

Nominal ESS mean
AHMC 15.7 21.22 20.49 17.54 24.76
RMHMC 22.26 21.82 17.56 14.53 14.45

AHMC 30.34 29.36 20.87 13.85 16.25
ESS mean RMHMC 10.47 6.98 4.15 2.79 2.32

Ratio 3.33 4.4 5.78 7.71 9.83

Nominal ESS s.d.
AHMC 17.66 28.36 27.69 23.08 35.13
RMHMC 28.37 30.21 23.98 17.01 18.5

ESS s.d.
AHMC 34.18 39.15 28.2 18.11 23.06
RMHMC 13.35 9.67 5.67 3.27 2.97

Nominal ESS min
AHMC 4.5 3.25 3.14 3.07 3.74
RMHMC 4.28 3.04 2.89 2.99 2.85

AHMC 8.54 4.52 3.17 2.47 2.46
ESS min RMHMC 2.01 0.97 0.68 0.58 0.46

Ratio 4.29 4.58 5 4.96 6.03

Nominal ESS max
AHMC 36.03 53.84 52.33 44.06 65.3
RMHMC 54.91 56.62 45.23 34.02 35.75

AHMC 69.67 74.38 53.3 34.66 42.86
ESS max RMHMC 25.83 18.12 10.68 6.54 5.73

Ratio 3.2 4.36 5.82 8.89 12.37

Figure 2: AHMC Efficiency Gain in Example 2
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5.3. Discussion

The results show that AHMC clearly outperforms RMHMC in terms of the ESS in all simulation

scenarios, except in Example 1 for the smallest dimension where both methods are comparable. The

performance edge of AHMC over RMHMC increases rapidly with higher parameter dimensions in

Example 1 and with larger sample size for the same parameter vector in Example 2. Both increasing

the dimensionality and sample size add additional heavy computational load to the RMHMC in

its fixed point iterations that AHMC avoids. These examples highlight the benefits of AHMC on

interesting cases in order to motivate its use in applications.

6. BEKK GARCH Application

Interest in modeling the volatility dynamics of time-series data continues to grow and be important in

many areas of empirical economics and finance. Generally, the literature on multivariate asset return

modeling has moved to using more parsimonious models such as Engle (2002), Engle, Shephard, and

Sheppard (2009) and Ding and Engle (2001). These approaches put restrictions on the volatility dy-

namics and feature two-step estimation and approximations to the likelihood. This makes estimation

and inference feasible for a larger class of assets. However, it is desirable to consider more flexible

models such as the BEKK model of Engle and Kroner (1995) and to perform full likelihood based

inference. The BEKK model is one of the most flexible GARCH models that maintain positive definite

conditional covariances at the expense of a large number of parameters. Although inference of the

model with 2 or 3 assets have appeared in the literature we are not aware of anything beyond this

asset dimension. An important question is how much do we lose in terms of statistical fit in moving

from a BEKK model to a restricted model with less parameters to estimate. The extension to HMC

discussed above provides an approach that can deal with the larger dimensions in the parameter space

and jointly estimate the BEKK model in one run and compare the model to restricted versions.

Let rt be a N × 1 vector of asset returns with t = 1, . . . , T and denote the information set as

Ft−1 = {r1, . . . , rt−1}. We assume returns follow

rt|Ft−1 ∼ NID(0,Ht)(6.1)

Ht = CC ′ + F ′rt−1r
′
t−1F +G

′Ht−1G.(6.2)

Ht is a positive definite N ×N conditional covariance matrix of rt given information at time t− 1, C

is a lower triangular matrix and F and G are N ×N matrices. Since our main focus is on sampling

a complex posterior with many parameters we maintain a Gaussian assumption and a zero intercept

for simplicity.4 The total number of parameters in this model is N(N + 1)/2 + 2N2.

4Although not estimated, we expect our method could be extended to other innovation distributions such as
multivariate Student-t with little modification.
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In the following we focus on the full BEKK model in (6.2) but also consider some restricted versions.

The first imposes F and G to be diagonal matrices which results in N(N + 1)/2 + 2N parameters.

The second imposes diagonal matrices on all parameter matrices C,F and G and has 3N parameters.

The data is percent log-differences of foreign exchange spot rates for AUD/USD, GBP/USD, CAD/USD,

EUR/USD, and JPY/USD from 2000/01/05 - 2006/10/11, (1700 observations). A time series plot of

the five (N = 5) series is in Figure 3 and summary statistics are in Table 3. The sample mean for all

series is close to 0 and excess kurtosis is fairly small. The sample correlations indicate all series tend

to move together.

With N = 5 there are 65 model parameters in the full BEKK model while there are 25 and 15

parameters, respectively, in the two restricted models. To start the GARCH recursion H1 is set to

the sample covariance of the first 20 observations. The priors are set to independent N(0,100). For

identification, the diagonal elements of C and the first element of both F and G are restricted to be

positive (Engle and Kroner, 1995). These restrictions are enforced by dropping any parameter draw

that violates this. We utilize the analytical expressions for the gradient from Hafner and Herwartz

(2008). Starting from a point of high posterior mass we collect a total of 30,000 posterior draws for

inference, with 10,000 burnin section. These computations took on the order of 2 days.

Collecting the parameters in θ = (vech(C)′, vech(F )′, vech(G)′)′, Figure 4 displays the conditional log-

posterior log p(θi|θ−i,FT ) where θ−i is set to a high probability mass point. Some of the conditional

densities are approximately quadratic while others display a more complicated structure. The flat

regions in the log-posterior will present challenges to maximizing this function or to obtaining a

hessian estimate to compute standard errors in a classical approach.

Figure 5 displays the posterior mean of the conditional correlations for the full BEKK model and the

two restricted versions. The BEKK model being the most flexible displays differences with the other

models most notably the version that enforces diagonal matrices on C,G, F . That restriction implies

unconditional correlations of 0 between assets and is at odds with the sample correlations in Table 3.

These differences in the models are confirmed by the marginal likelihoods reported in Table 4. The

marginal likelihoods are estimated following Gelfend and Dey (1994) using a thin tailed truncated

normal following Geweke (2005). The evidence is strongly against both of the restricted diagonal

models. For example, the log-Bayes factor in favor of the full BEKK model is about 35 compared to

the model with diagonal F,G.

In conclusion, our results support the use of the most flexible BEKK model and the AHMC sampler

provides a feasible method to sample from a highly complex posterior density effectively.
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7. Conclusion

Hamiltonian Monte Carlo (HMC) uses Hamiltonian dynamics in constructing distant proposal draws

in a sequence of steps, yielding relatively low correlation among draws and high acceptance probabili-

ties at the same time. In this paper we propose a local adaptation of HMC, the Adaptive Hamiltonian

Monte Carlo (AHMC), whereby the proposal sequence follows the local evolution of the parameter

space. We show that AHMC yields a valid MCMC procedure satisfying detailed balance. We show

that AHMC outperforms in terms of effective sample size the existing locally adaptable HMC-based

method – RMHMC – which has been shown elsewhere to outperform HMC and other alternative

samplers on a number of cases. In our simulations, the relative performance improvement of AHMC

over RMHMC becomes more pronounced with higher dimensionality of the parameter space and the

sample size. We apply AHMC to a high-dimensional BEKK GARCH model in 56 parameter dimen-

sions, which substantially exceeds the dimensionality utilized in previous work. Model comparison

via marginal likelihood further reveals that the full BEKK model is preferable to its restricted ver-

sions with constraints placed on various covariance components, motivating the full high-dimensional

implementation of the model.

8. Appendix A: Proof of Theorem 1

Denote by q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) the proposal density and by q(θ

0
r , γ

0
r ; θ

∗
r+1, γ

∗
r+1) the reverse proposal

density. Given (θ0r , γ
0
r ), q(θ

∗
r+1, γ

∗
r+1; θ

0
r , γ

0
r ) is constructed by the method of change of variables based

on the sequence of steps given by the mapping Tk for k = 1, . . . , L. Since Tk is deterministic, placing

the Dirac delta δ(∙, ∙) = 1 unit probability mass at each (θkr , γ
k
r ), applying successive transformations

Tk yields

q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) =

∣
∣det∇T (θLr , γ

L
r ; θ

L−1
r , γL−1r )

∣
∣−1 ×

∣
∣det∇T (θL−1r , γL−1r ; θL−2r , γL−2r )

∣
∣−1 × . . .

. . .×
∣
∣det∇T (θ2r , γ

2
r ; θ

1
r , γ

1
r )
∣
∣−1
∣
∣det∇T (θ1r , γ

1
r ; θ

0
r , γ

0
r )
∣
∣−1 δ(γ0r , θ

0
r)(8.1)

where ∇T (θkr , γ
k
r ; θ

k−1
r , γk−1r ) denotes the Jacobian matrix of the transformation Tk with respect to

θkr and γ
k
r for each k = 1, . . . , L.

Denote by T̃k the reverse mapping obtained from Tk by reversing the signs in the Hamiltonian proposal

dynamics. Then

q(θ0r , γ
0
r ; θ

∗
r+1, γ

∗
r+1) =

∣
∣
∣det∇T̃ (θ̃Lr , γ̃

L
r ; θ̃

L−1
r , γ̃L−1r )

∣
∣
∣
−1
×
∣
∣
∣det∇T̃ (θ̃L−1r , γ̃L−1r ; θ̃L−2r , γ̃L−2r )

∣
∣
∣
−1
× . . .

. . .×
∣
∣
∣det∇T̃ (θ̃2r , γ̃

2
r ; θ̃

1
r , γ̃

1
r )
∣
∣
∣
−1 ∣∣
∣det∇T̃ (θ̃1r , γ̃

1
r ; θ̃

0
r , γ̃

0
r )
∣
∣
∣
−1
δ(γ̃0r , θ

∗
r+1)(8.2)

with (θ̃0r , γ̃
0
r ) = (θ

∗
r+1, γ

∗
r+1). Conditional on M(θr, θ

∗
r+1) satisfying Assumption1, the leapfrog trans-

formation defined by (4.5)-(4.7) satisfies

(8.3) (θkr , γ
k
r ) = (θ̃

L−k+1
r , γ̃L−k+1r ) for each k = 1, . . . , L
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Then

(8.4)
∣
∣det∇T (θkr , γ

k
r ; θ

k−1
r , γk−1r )

∣
∣−1 =

∣
∣
∣det∇T̃ (θ̃L−k+1r , γ̃L−k+1r ; θ̃L−kr , γ̃L−kr )

∣
∣
∣ for each k = 1, . . . , L

and hence q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) = q(θ

∗
r+1, γ

∗
r+1; θ

0
r , γ

0
r ).

The ratio in the acceptance probability (2.2) then satisfies detailed balance in the Metropolis form

(8.5)
π(θ∗r+1, γ

∗
r+1)q(θ

0
r , γ

0
r ; θ

∗
r+1, γ

∗
r+1)

π(θr, γr)q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r )

=
π(θ∗r+1, γ

∗
r+1)

π(θr, γr)

since all the Jacobian terms cancel out due to (8.4). By definition of the Hamiltonian equation in

(4.1), the ratio in (8.5) is then equivalent to

lnπ(θ∗r+1)− lnπ(θ
0
r) + lnφ(γ

∗
r+1; 0,M(θr, θ

∗
r+1))− lnφ(γ

0
r ; 0,M(θr, θ

∗
r+1))

9. Appendix B: Proof of Theorem 2

The AHMC mapping is a special case of the general class of s-stage implicit Runge Kutta methods

(Leimkuhler and Reich, 2004, p. 150) defined in our notation for each MC step r by the format

Qi = θk +Δt

s∑

j=1

aijFj , i = 1, . . . , s

Pi = γk +Δt

s∑

j=1

aijGj , i = 1, . . . , s

θk+1 = θk +Δt
s∑

i=1

biFi

γk+1 = γk +Δt

s∑

i=1

biGi

with s ≥ 1 the number of stages, (Qi, Pi), i = 1, . . . , s, the internal stage variables, and the abbrevia-

tions

Fi = ∇γH(Qi, Pi), i = 1, . . . , s

Gi = −∇θH(Qi, Pi), i = 1, . . . , s

where aij = bi = 1 for all i, j. The proof of Theorem 2 then directly follows from the proof of existence

of a unique solution of the s-stage implicit Runge Kutta methods, given by Theorem 7.2 of Hairer,

Nørsett, and Wanner (1993, p. 206). Specifically, if

(9.1) ε(δ) <
1

`maxi
∑
j |aij |

where ` is the Lipschitz constant, then there exists a unique solution to Tk defined by (4.5)-(4.7) which

can be obtained by iteration resulting in the repeated use of the triangle inequality that results from

the Lipschitz condition and the contraction mapping property of (9.1).
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10. Appendix C: The AHMC Algorithm

Initialize current θ

for r = 1 to R {

draw γ0r ∼ q(γ
0
r |θr)

initialize θ0r = θr, j = 0

(j loop) do while
((∥∥θL,jr − θL,j−1r

∥
∥ > δ1

)
or
(∥∥γL,jr − γL,j−1r

∥
∥ > δ2

))
{

j = j + 1

(k loop) for k = 1 to L {

γ
k+1/2,j
r = γk,jr −

ε
2∇θ lnπ(θ

k,j
r )

θk+1,jr = θk,jr + ε
[
M(θr, θ∗r+1)

−1γ
k+1/2,j
r

]

γk+1,jr = γ
k+1/2,j
r − ε

2∇θ lnπ(θ
k+1,j
r )

}

M(θr, θ∗r+1) =
1
2

[
F (θr) + F (θ

L,j
r )

]

}

α∗ =
π(θ∗r+1)q(γ̃

0
r |θ

∗
r+1)

π(θr)q(γ0r |θr)

draw u ∼ U [0, 1]

if (α∗ < u) then {θr+1 = θ
L,j
r } else {θr+1 = θr}

}

11. Appendix D: Fisher Information for the Multivariate Normal Density

For the univariate case,

F (θ) = N

[
σ−2 0

0 1
2σ
−4

]

and for the multivariate case

F (θ) = N

[
Σ−1 0

0 1
2D
′
m

(
Σ−1 ⊗ Σ−1

)
Dm

]

where Dm is the duplication matrix (Magnus and Neudecker, 2007). In our empirical application we

used the numerical approximation to the diagonal of F (θ) instead of the full matrix for faster speed

of the MC runs.



20

12. Appendix E: The Generalized Stormer-Verlet Integrator

The RMHMC (Girolami and Calderhead, 2011) utilizes the following Stormer-Verlet numerical in-

tegrator (Hairer, Lubich, and Wanner, 2003; Leimkuhler and Reich, 2004) in conjunction with the

Fisher information matrix for M(θ) :

γ
k+1/2
ri = γkri −

ε

2

∂H(θkr , γ
k+1/2
r )

∂θi

= γkri +
ε

2

∂ lnπ(θkr )

∂θi
−
ε

2
Tr

[

M(θkr )
−1 ∂M(θ

k
r )

∂θ

]

i

−
ε

2
γk+1/2′r M(θkr )

−1 ∂M(θ
k
r )

∂θ
M(θkr )

−1γk+1/2r(12.1)

θk+1ri = θkri +
ε

2

[
∇γH(θ

k
r , γ

k+1/2
r ) +∇γH(θ

k+1
r , γk+1/2r )

]

i

= θkri +
ε

2

[
M(θkr )

−1γk+1/2r +M(θk+1r )−1γk+1/2r

]

i
(12.2)

γk+1ri = γkri −
ε

2

∂H(θk+1r , γ
k+1/2
r )

∂θi

= γ
k+1/2
ri +

ε

2

∂ lnπ(θk+1r )

∂θi
−
ε

2
Tr

[

M(θk+1r )−1
∂M(θk+1r )

∂θ

]

i

−
ε

2
γk+1/2′r M(θk+1r )−1

∂M(θk+1r )

∂θ
M(θk+1r )−1γk+1/2r(12.3)

for i = 1, . . . , d. At every leapfrog step k = 1, . . . L in the multi-step proposal sequence {θkr}
L
k=1 for

each dimension i = 1, . . . , d of θ the value of γ
k+1/2
ri is determined numerically as an implicit fixed

point of (12.1) and the value of θk+1ri as an implicit fixed point of (12.2).
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Mean Stdev Skewness Ex Kurtosis Sample Correlation
AUD/USD -0.0074 0.7019 0.4444 1.8868 1 0.4814 0.4776 0.5454 0.3614
GBP/USD -0.0074 0.5281 0.0517 0.6827 1 0.3233 0.7123 0.3787
CAD/USD -0.0144 0.4657 0.0039 0.7231 1 0.3874 0.2698
EUR/USD -0.0115 0.6268 0.0640 0.6330 1 0.3995
JPY/USD 0.0087 0.6031 -0.2978 1.5496 1

Table 3: Summary Statistics

χ2 quantile 0.75 0.90 0.99
BEKK -99549.8 -99549.6 -99549.6
Diagonal BEKK (full C) -99584.9 -99584.7 -99584.6
Diagonal BEKK (diagonal C) -100209.9 -100209.7 -100209.6

Table 4: Log-marginal likelihoods
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Figure 3: Time-series of log-differences in foreign exchange rates
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Figure 4: Conditional Log-Posterior Kernels for parameter matrices C,F and G from the
BEKK model. Each parameter is plotted conditional on the other parameters being fixed at
a point of high mass in the posterior density.
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Figure 5: Conditional Correlations: BEKK, Diagonal F, G BEKK, Diagonal C, F, G BEKK


