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Abstract

Author: Samuel Power
Thesis Title: Exploring Probability Measures with Markov Processes

In many domains where mathematical modelling is applied, a deterministic description of
the system at hand is insufficient, and so it is useful to model systems as being in some
way stochastic. This is often achieved by modeling the state of the system as being drawn
from a probability measure, which is usually given algebraically, i.e. as a formula. While
this representation can be useful for deriving certain characteristics of the system, it is
by now well-appreciated that many questions about stochastic systems are best-answered
by looking at samples from the associated probability measure. In this thesis, we seek to
develop and analyse efficient techniques for generating samples from a given probability
measure, with a focus on algorithms which simulate a Markov process with the desired
invariant measure.

The first work presented in this thesis considers the use of Piecewise-Deterministic
Markov Processes (PDMPs) for generating samples. In contrast to usual approaches,
PDMPs are i) defined as continuous-time processes, and ii) are typically non-reversible with
respect to their invariant measure. These distinctions pose computational and theoretical
challenges for the design, analysis, and implementation of PDMP-based samplers. The
key contribution of this work is to develop a transparent characterisation of how one can
construct a PDMP (within the class of trajectorially-reversible processes) which admits
the desired invariant measure, and to offer actionable recommendations on how these
processes should be designed in practice.

The second work presented in this thesis considers the task of sampling from a
probability measure on a discrete space. While work in recent years has made it possible
to apply sampling algorithms to probability measures with differentiable densities on
continuous spaces in a reasonably generic way, samplers on discrete spaces are still largely
derived on a case-by-case basis. The contention of this work is that this is not necessary,
and that one can in fact define quite generally-applicable algorithms which can sample
efficiently from discrete probability measures. The contributions are then to propose a
small collection of algorithms for this task, and verify their efficiency empirically. Building



on the previous chapter’s work, our samplers are again defined in continuous time and
non-reversible, each of which offer noticeable benefits in efficiency.

The third work presented in this thesis concerns a theoretical study of a particular class
of Markov Chain-based sampling algorithms which make use of parallel computing resources.
The Markov Chains which are produced by this algorithm are mathematically equivalent
to a standard Metropolis-Hastings chain, but their real-time convergence properties are
affected nontrivially by the application of parallelism. The contribution of this work is
to analyse the convergence behaviour of these chains, and to use the ‘optimal scaling’
framework (as developed by Roberts, Rosenthal, and others) to make recommendations
concerning the tuning of such algorithms in practice.

The introductory chapters provide a general overview on the task of generating samples
from a probability measure, with particular focus on methods involving Markov processes.
There is also an interlude on the relative benefits of i) continuous-time and ii) non-reversible
Markov processes for sampling, which are intended to provide additional context for the
reading of the first two works.
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Chapter 1

Introduction

1.1 Understanding Probability Measures

through Simulation

In mathematical modelling, one is often faced with trying to understand large, complex
systems, involving numerous variables undergoing nontrivial interactions. As the com-
plexity of such systems grows, a deterministic description of their behaviour may become
insufficient, and so it is often enlightening to model them as stochastic in nature. In
particular, it is common to specify the possible states of the system in terms of some
probability measure π. Instead of talking about what will happen in the system, one
now begins to talk about what could happen, what is likely to happen, and other such
questions, couched in the language of uncertainty. This can enable a richer description of
such systems, and has been an influential approach in many disparate domains. Below, we
outline a few of these domains, with an eye towards providing context for the range of
fields in which stochastic models have been adopted, and why they are a natural fit.

• Statistics - In modern statistical modelling, it is near-universal to model the
behaviour of data, given model parameters, as being drawn from some appropriate
probability distribution. Stochastic modelling allows statisticians to systematically
account for variations in observations which are impossible or challenging to model
in a purely mechanistic way. Exploring the generative process behind a statistical
model allows us to understand what sort of behaviour we are encoding in our
specification of the model, and is an invaluable tool for assessing whether a given
statistical model is appropriate for a certain task. Bayesian statistics (see e.g.
[Jay96, Rob07, RC13, GCS+13] for coverage of various aspects of this vast field)
takes this approach one step further, and quantifies uncertainty about the parameters
of the model in a probability measure as well, known as the posterior distribution.
Exploring the posterior distribution of a statistical model is akin to exploring the
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space of possible explanations of the data, weighted according to how well each
explanation aligns with both the data, and our a priori understanding of the system.
We note that a number of other non-‘strictly-Bayesian’ approaches to statistical
learning often exploit similar perspectives; see e.g. [DT12, Gue19] for some examples
of this framework.

• Natural Sciences - Across the natural sciences, stochastic modelling provides a
lens through which to understand both dynamic and static systems. While ordinary
differential equations provide a useful first approximation to a number of systems
of interest, they are by their very nature overconfident about how a system will
evolve in time. This makes them particularly unreliable for studying the long-time
behaviour of systems which are close to deterministic, but under the influence of
some perturbation (deterministic, stochastic, systematic, or otherwise), as there will
typically be some bias incurred, whose effects become more pronounced over time.
A useful strategy is to account for these perturbations, fluctuations, and drift as an
intrinsic stochastic aspect of the system, acknowledging that while there may be
some regular patterns to the evolution of the system, a purely deterministic model
will become insufficient at some stage. Some concrete examples of dynamical models
in the sciences which have fruitfully been modelled by stochastic techniques can
be found in Systems Biology [Wil07, Wil18], Ecology [Woo10], Chemical Kinetics
[AH12, Gal16, LBGY16], Genetics [BZB02, BCSJ12, GT94], and Particle Transport
[JW95, Vea97, MMN+13, RF13, Lux18].

Static models of the natural world can also be viewed through a stochastic lens.
One common source of such models comes from systems which evolve in continuous
time, but on sufficiently fast timescales that, at any given time, they have relaxed
to some equilibrium measure, and their behaviour can thus be summarised through
that measure. This view is particularly natural in the context of Statistical Physics
[VW77, Sok97, NB99, Kra06, KW09, BCH+12, LB14a], Molecular Simulation [FS01,
SRL10], and Chemical Physics [PR09], and also arises in areas somewhat further
afoot, including Quantum Chemistry [Cre81, RCALJ82, HLR94] and Quantum Field
Theory [DKPR87],

• Signal Processing - Various forms of online signal processing involve estimating
the state of some partially-observed system, and it is natural to model uncertainty
about both i) the dynamics of the system, and ii) the unknown state of the sys-
tem. Modelling the dynamics and observations in a purely-deterministic way has
a deficiency in that when the true system deviates from the model, many meth-
ods will exhibit a bias which gets worse and worse over time. Standard tasks of
this form include (Nonlinear) Filtering [CR11b, DGA00, Fea98, Smi13] and Data
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Assimilation∗ [Eve09, LSZ15, RC15, VLCR15], as well as Multi-Target Tracking
[HLCP02, VSD03]. Similar comments apply to Control Theory and Stochastic Ap-
proximation [KY03, BMP12], which tend to operate with similar models, though
with slightly different specific goals.

• Finance and Operations Research - While there exist simple models in which
a deterministic treatment is sufficient, it is by now well-established that financial
systems are best-modelled by structures which acknowledge uncertainty in the
form of stochastic models. Finance is in some sense a natural candidate for this
treatment, due to the impact of forces operating at widely-differing scales (individual
behaviour, national and governmental actions, short- and long-term effects). We refer
to [Jäc02, GG06, LEc09, McL11, Gla13] for various accounts of stochastic modelling
and computation in the context of finance. For similar reasons, Econometrics
[Gew89, Cre12] has often been treated in a stochastic fashion. Queueing Theory
[AG07, Asm08, Bré13] deviates somewhat from the previous two examples, as it is
typically couched in the terminology of discrete-event systems and jump processes,
rather than continuous motion. As such, the randomness in question primarily
models the intervals between different events taking places, as well as the nature of
those events.

• Discrete Structures and Counting - A key observations in the study of discrete
structures has been that in order to find an element with a particular property, instead
of carrying out a careful, deterministic search for such an element, it can be instructive
to instead consider generating an element randomly, and using probabilistic arguments
to reason about how likely it is for that random element to possess that property.
This is the so-called probabilistic method (surveyed and exposited beautifully in
[AS04]), and has been highly influential in the study of combinatorics and the analysis
of discrete structures more broadly; see also [SJ89, JS89, JS96, RK13] for related
applications.

• Uncertainty Quantification - In recent years, there has been some coalescence
between lines of research in Bayesian Statistics, Engineering, Inverse Problems, and
Data Assimilation, into a community now united under the banner of ‘Uncertainty
Quantification’. Broadly speaking, the problems at hand tend to involve real physical
systems occurring in the natural sciences, often derived from a differential equation
of some form. These systems are then typically observed indirectly, giving rise to
an inverse problem (see e.g. [DS17, Stu10, BGL+17]). Particular challenges in this
region stem from the high-dimensional parameter spaces, computationally-intensive

∗The terms are largely synonymous / refer to similar models; the communities corresponding to these
terms do not necessarily overlap in accordance with that.
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model evaluations, and nonlinear forward maps. The probabilistic treatment of
these problems has become increasingly prevalent in recent years, as deterministic
methods have shown themselves to be somewhat limited in fully capturing the
subtleties induced by these complex models. One is often observing data of much
lower dimension than the parameter of interest, with an observation map which
is far from linear, and a dataset which is far from large enough for a localised
approximation to the model to provide a satisfactory picture. Stochastic models
force the scientist to confront these unpleasant truths in a more overt way, and
encourage a more thorough approach to quantification of uncertainty.

The common threads are broadly as follows: there is some system of interest (physical,
inferential, artificial, or otherwise) which it is appropriate to model as stochastic, due to
some aleatoric or epistemic uncertainty about its state and evolution. The uncertainty
in the stochastic system is something which we would like to understand the scope of;
if a deterministic representation were sufficient, then one would typically use it directly.
However, the source and interpretation of the randomness involved can be quite diverse.
For example:

• In inferential contexts (e.g. Bayesian Statistics, Uncertainty Quantification, ...),
the uncertainty is a way of encapsulating our beliefs about the parameters of some
statistical problem.

• In stochastic models of real physical systems (e.g. Chemical Kinetics, Ecology,
Molecular Dynamics), the uncertainty might represent fluctuations of the system
at scales which we cannot resolve analytically or mechanistically, and be used to
understand the stability of the overall system to perturbations at these levels.

• In more theoretical contexts (e.g. Statistical Physics), the uncertainty in the system
is often taken as innate, and the interest is in understanding the typical behaviour
of the system, the scales at which fluctuations occur, and the stability of these
conclusions with respect to model parameters (e.g. temperature).

The first step in building models of this from is to derive some algebraic representation of
the measure, usually in the form of a density with respect to some appropriate dominating
measure. Given such an algebraic representation, one can then begin to ask analytical
and structural questions about the measure: on which sets does this measure place mass?
Does it satisfy certain smoothness and regularity conditions? By asking these questions
first, we get a sense for which mathematical tools will be available for us when interacting
with the measure going forward.

While qualitative questions of this form are useful for gaining an abstract understanding
of the measure, they cannot always tell the whole story. When it comes time to ask
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quantitative questions about the measure at hand, it is often the case that standard
analytic and algebraic tools can fall short, or at least become more challenging to apply.
Archetypal tasks of this form involve computing expectations under the measure, such
as moments of functions, probabilities of specific events, marginal densities of given
variables, and so on. When it comes to computing expectations under a given measure,
the availability of analytically-tractable solutions is the exception, rather than the rule,
and the same generally holds true for tasks involving a quantitative understanding of the
measure.

One of the beautiful flexibilities of probability measures is that they are not purely
analytical objects; they are also intimately tied to the notion of random variables, a rich
connection which enables a more tangible representation of what the measure represents.
Given a probability measure π, one can associate to it a random variable X, and by
studying the properties of this random variable, one can begin to probe the properties of
π.

Given access to a simulator which can generate realisations of the random variable X,
a number of doors spring open, which can enable us to ‘explore’ the content of π. One can
assess the typical properties of a sample from π, uncover patterns in how different samples
vary (and do not), as well as using the samples to carry out concrete computations, as is
done in the Monte Carlo method (see e.g. [Ham13]). While there is a well-understood
appreciation for the latter application, the former are perhaps under-emphasised. Drawing
samples can help us to answer questions about π which we already have, but it can also
be used in a more exploratory fashion, by looking at samples, and using them to prompt
new questions which would be difficult to dream up from a purely analytical standpoint†.
Given the complexity of many stochastic systems of interest, it is an important challenge
to derive methodological tools for understanding ‘what is going on’ with a given system,
in a broad sense. Being able to draw samples from a probability measure is a well-posed
first step in this direction, which enables the formation of a more coherent picture of the
problem at hand, in a very general setting.

It is thus a primary contention of this thesis that it is of value to derive algorithmic
techniques which facilitate the efficient exploration of probability measures. While the
chief application domain for such methods is arguably in Monte Carlo computations, where
a number of additional considerations (such as variance reduction, post-processing, and
much more) come into play, the core focus of this thesis is to derive and analyse procedures
which can deliver those samples in the first place. We hope that this presentation allows
for a more focused exposition of the key concepts.

†For example, in the context of materials science, the use of molecular simulation as a scientific tool
has been compared (see e.g. [SRL10]) to a ‘computational microscope’.
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1.2 Techniques for Exploration of Probability Measures

Settling on the task of exploring probability measures by simulation, the practical question
arises of exactly how one ought to go about this. It is fair to say that the answer to this
question cannot be answered with a single procedure, due to the diversity of stochastic
systems which are encountered in practice. As is typical in computation, the algorithmic
solution to a problem is contingent upon the resources which the problem affords you, and
different tools are suitable under different problem settings. As such, it is useful to think
of stochastic simulation less as a unified method, and more as a toolbox; a collection of
methods which can be deployed in conjunction with one another, depending upon the
precise nature of the problem at hand. Here, we present a survey of some of the most
useful tools. We begin with tools which make strong assumptions, and can thus solve the
simulation problem in a strong sense. From there, we gradually work towards tools which
are more broadly-applicable, but deliver solutions at a greater cost, either computationally,
or by inducing some bias.

1.2.1 Exact Sampling Techniques

1.2.1.1 Inversion Sampling

Perhaps the most widely-used ingredient of exact sampling methods is inversion sampling.
For this algorithm to apply, it is necessary that both π and its cumulative distribution
function (CDF) F can be manipulated directly. This typically restricts the applicability
of the method to low-dimensional state spaces (in particular, most applications are to
one-dimensional distributions), or countable discrete state spaces, and to measures π which
are reasonably well-understood. The significance of this method is not that it allows for
the direct solution of many hard problems, but that the solution of hard problems will
typically involve sub-problems which are amenable to this treatment.

For probability measures π which are supported on the real line R, one can sample
realisations of X ∼ π directly by Algorithm 1.

Algorithm 1 Sampling X ∼ π by inversion, π supported on R

1. Sample u ∼ U [0, 1].

2. Let x = inf{y ∈ R : F (y) > u}, where F (y) =
∫ y
−∞ π(t)dt.

3. Output x.

The same technique applies to π which are supported on some countable set X .
Supposing without a loss of generality that X = Z>1 = {1, 2, . . .}, one can apply Algorithm
2.
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Algorithm 2 Sampling X ∼ π by inversion, π supported on Z

1. Sample u ∼ U [0, 1].

2. Let x = min{k ∈ Z>1 : F (k) > u}, where F (k) =
∑k

j=1 π(j).

3. Output x.

One immediate roadblock to using Inversion Sampling is the requirement that the CDF
of π be directly available, which is not always the case, even for low-dimensional problems.

1.2.1.2 Rejection Sampling

An easy way to extend the scope of Inversion Sampling is to consider π for which the CDF
is not necessarily available, but such that π ≈ ν for a ν which is amenable to inversion
sampling. More precisely, suppose that π(x) 6M · ν(x) for all x, where ν can be sampled
from exactly, and M is a known ‘bounding constant’. One can then draw samples from π

using the technique of Rejection Sampling, presented as Algorithm 3.

Algorithm 3 Rejection Sampling X ∼ π with proposal ν, bounding constant M

1. Set a = 0. Until a = 1, do:

(a) Sample x ∼ ν (using e.g. Algorithm 1 or 2).

(b) Sample u ∼ U [0, 1].

(c) If u < π(x)
M ·ν(x)

, set a = 1.

2. Output x.

This greatly extends the scope of exact sampling, as it allows one to sample from any
measure π of which we have pointwise knowledge, and which we can globally upper-bound
by some measure ν which we understand well; see [Dev06] for an encyclopaedic collection
of examples to this effect. Crucially, once a bound is found, no integration is required.
However, the algorithm now has a random running time, and if the bounding constant M
is too large, this run time will grow.

One approach to reducing M is to use more flexible families of ν. For example, if ν(x)

can be decomposed as a mixture of N components, i.e. we can write ν(x) =
∑N

i=1 piνi(x)

with p a probability vector, and each of the νi a probability measure for which exact
sampling is possible, then one can sample from ν using Algorithm 4. By using N separate
components, it is often possible to tune the parameters of ν such that M is much closer to
1 than would be possible with a single component.
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Algorithm 4 Mixture Sampling from ν(x) =
∑N

i=1 piνi(x)

1. Sample I ∼ p, i.e. set I = i with probability pi.

2. Sample x ∼ νi(x).

3. Output x.

One can also construct such mixtures adaptively, as in [GW92]. However, these methods
can only help up to a point; as the dimension of the problem increases, one typically
expects that even the optimal choice of M will grow exponentially with dimension (or
that the complexity of representing ν will grow exponentially). This means that the
scope of direct rejection sampling is largely restricted to low-dimensional problems, or to
high-dimensional measures which are very close to solvable already; see e.g. [VPD19] for
an example of the latter.

1.2.1.3 Recursive Sampling

The difficulty of rejection sampling in high dimension essentially stems from trying to
get a correct sample in one hit, i.e. generating a d-dimensional vector x ∼ ν, and then
checking whether it ‘looks right’ under π. A more sensible approach would be to generate
the vector x in parts, making sure that each of the parts looks right in sequence, and then
outputting the final vector. This is the idea behind Recursive Sampling, usually known as
Ancestral Sampling (see e.g. [Bis06]).

To give a simple example, suppose that we want to sample a d-dimensional vector
x ∼ π(x) = π(x1, . . . , xd). In principle, one can always decompose this target measure into
a product of marginal and conditional distributions, as

π(x1, . . . , xd) = π(x1) · π(x2|x1) · π(x3|x1, x2) · · · · · π(xd|x1, . . . , xd−1).

Provided that each of these conditional distributions can be sampled from, the whole
measure can be sampled from, using Algorithm 5.

Algorithm 5 Sequential Recursive Sampling X ∼ π(x) = π(x1, . . . , xd)

1. For i = 1, 2, . . . , d:

(a) Sample xi ∼ π(xi|x1, . . . , xi−1) (using e.g. Algorithm 1, 2, or 3).

2. Output x = (x1, . . . , xd).

Note that the procedure above works (in principle) for any ordering of the variables
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(x1, . . . , xd), though in practice, some orderings may be more efficient than others. Moreover,
the decomposition need not be sequential per se. Suppose that the indices {1, 2, . . . , d}
can be equipped with the structure of a partial order ≺ (directed acyclic graph; see
[Lau96, KF09]), such that for each i, the conditional distribution π(xi|x≺i) = π (xi|{xj}j≺i)
is possible to sample from. This structure is relatively common in the specification of
prior models in Bayesian statistics, as well as in various generative models used in machine
learning; see e.g. [GDM+14, UML14, GGML15, KSJ+16, HKLC18, WL20a, WL20b]. One
can then use Algorithm 6 to generate samples from π.

Algorithm 6 General Recursive Sampling X ∼ π(x) = π(x1, . . . , xd) with partial order ≺

1. Specify an ordering on indices such that {i1, . . . , id} = {1, . . . , d}, and i1 ≺ · · · ≺ id
under the partial order ≺.

2. For j = 1, . . . , d,

(a) Sample xij ∼ π(xij |{xik}k<j).

3. Output x = (x1, . . . , xd).

Note that the complexity of both Algorithms 5 and 6 is linear in d, i.e. linear in
the complexity of representing the sample. This is a substantial improvement upon the
typically-exponential complexity of trying to sample such an x ‘in one hit’. Moreover, for
certain partial ordering structures, the real-time cost of this algorithm can be reduced
further when parallel processing is available, particularly when the associated directed
acyclic graph has low depth.

At this point, it is worth remarking on the modular nature of these algorithms. In
Algorithms 5 and 6, the method demands samples from certain conditional distributions,
but is otherwise agnostic as to how they were generated; one can use inversion, rejection,
or any other technique at one’s disposal. This is a desirable feature, and one which a large
majority of simulation algorithms favour. If a simulation method is modular in this way, it
can easily and unbiasedly be embedded into other simulation methods. Interesting models
are often high-dimensional and not amenable to explicit computation. As such, in order
to make them surmountable, we need to find ways of handling them which are modular.
This is one explanation for why certain communities within the field of simulation place
such a high premium on unbiased and asymptotically-unbiased methods; by eliminating
sources of bias, one can more safely nest methods inside more complicated algorithms. In
what follows, it will be left implicit that the source of samples does not matter, unless
specifically noted.

25



1.2.2 Importance Sampling, and Variants

The exact sampling techniques derived above are quite powerful, but also hinge upon
quite strong assumptions. Inversion samplers are available only for a small class of very
nice measures, rejection samplers require knowledge of certain global upper bounds, and
recursive samplers require that the measure at hand admit a convenient decomposition
into conditional distributions from which we can sample exactly.

Unfortunately, it is often the case that none of these conditions hold in a meaningful
sense. One then needs to reassess how ‘exact’ a sample needs to be in order to be useful,
and the nature of approximations which can be afforded.

One relaxation which is often used is the following: instead of demanding a collection
of exact samples from π, consider taking a collection of samples from some other measure
ν such that‡ the support of ν contains the support of π, and then associate to each sample
x a weight w(x) > 0, which assesses how close x is to being a draw from π, in some sense.
This is the basis of importance sampling, which is typically implemented as in Algorithm 7.

Algorithm 7 Importance Sampling X ∼ π with proposal ν

1. Sample x ∼ ν.

2. Compute w = w(x) = π(x)
ν(x)

.

3. Output (x,w).

The premise of importance sampling is essentially that an appropriately-weighted
collection of inexact samples can be ‘as good’ as an unweighted collection of exact samples,
if one is primarily interested in computing expectations under π. Note that

Eν [w(x)f(x)] =

∫
ν(x)w(x)f(x)dx

=

∫
ν(x)

(
π(x)

ν(x)

)
f(x)dx

=

∫
π(x)f(x)dx,

and as such, that importance sampling enables unbiased estimation of expectations under
π, without ever drawing samples from π. For certain applications, one is more interested
in the computation of expectations than in drawing samples, and so importance sampling
can be a useful tool.

‡In greatest precision and generality, it is necessary that the measure π be absolutely continuous with
respect to ν; see e.g. [Bil08] for a precise definition of this notion. For most finite-dimensional, practical
applications, it suffices that both measures admit densities with respect to Lebesgue measure, and that
the support of π is contained in that of ν.
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Note that importance sampling can also be implemented in a recursive fashion. For
example, suppose that we want to generate weighted samples from π(x) = π(x1:T ). We
will generally not have a clean decomposition of π into conditionals and marginals, as
exploited in 5, but we can often still construct a sequence of interpolating measures which
start with a low-dimensional target, and end up with the full π. Suppose then that we fix
a sequence of measures {πt(x1:t)}Tt=1, such that for each t, πt can be evaluated exactly, and
πT = π. Similarly to 5, we assume existence of a proposal distribution q(x1:T ) which can
be decomposed into a sequence of proposal distributions {qt(xt|x1:t−1)}Tt=1, all of which
can be both sampled from and evaluated. Given these tools, we can generate a weighted
sample from π using Algorithm 8, also known as Sequential Importance Sampling (SIS).

Algorithm 8 Sequential Importance Sampling X ∼ π, interpolating sequence {πt}Tt=1,
proposals {qt}Tt=1

1. Sample x1 ∼ q1(x1), and set w1 = π1(x1)
q1(x1)

.

2. For 1 < t 6 T , sample xt ∼ qt(xt|x1:t−1), and set wt = wt−1 · πt(x1:t)
πt−1(x1:t−1)·qt(xt|x1:t−1)

3. Output (x,wT ).

It should be noted that SIS is equivalent to basic importance sampling with proposal
q(x1:T ) = q1(x1) ·

∏
1<t6T qt(xt|x1:t−1). However, the form of Algorithm 8 will be useful for

certain extensions of IS which we present below.
A shortcoming of SIS is that the weights which are generated along the way can

become highly variable. For even moderate T , if one generates N weighted samples using
Algorithm 8, it will often be the case that one weight is orders of magnitude larger than
all of the other weights. This is known as the weight degeneracy problem of importance
sampling.

As written, these importance sampling methods require that the densities of π and ν be
known exactly, and that ν can be sampled from exactly. While this is true in an interesting
range of cases, the condition on π will often be too strong. In complex stochastic problems,
it is typically the case that π is only known up to a multiplicative factor, i.e.

π(x) =
γ(x)

Z

where γ can be evaluated exactly, but Z cannot. In this setting, the intractability of Z
implies that one cannot evaluate w(x). A common solution is to use the same samples
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from ν to estimate Z, using the fact that

Z =

∫
γ(x)dx =

∫
ν(x)

(
γ(x)

ν(x)

)
dx.

Using w(x) to now denote γ(x)/ν(x), one can apply Algorithm 9, usually known as
Self-Normalised Importance Sampling (SNIS)§.

Algorithm 9 Self-Normalised Importance Sampling X ∼ π(x) = γ(x)/Z, with proposal
ν, N particles

1. For a = 1, . . . , N :

(a) Sample xa ∼ ν.

(b) Compute ŵa = w(xa) = γ(xa)
ν(xa)

.

2. Compute Ẑ = 1
N

∑N
a=1 w

a.

3. For a = 1, . . . , N , compute wa = ŵa/Ẑ.

4. Output ({(xa, wa)}Na=1, Ẑ).

One can then estimate expectations under π as

Eπ[f(x)] ≈ 1

N

N∑
a=1

waf(xa)

which is a consistent estimator. Further details on the convergence of estimators derived
by importance sampling arguments can be found in [Liu08, APSAS17, CD18, HR19].

We note that the idea of SNIS can naturally be fused with Sequential Importance
Sampling, i.e. suppose that that we fix a sequence of measures {πt(x1:t)}Tt=1, such that for
each t, πt can be evaluated up to a multiplicative factor, i.e.

πt(x1:t) =
γt(x1:t)

Zt

where γt can be evaluated exactly, Zt cannot, and πT = π. We again assume existence
of a proposal distribution q(x1:T ) which can be decomposed into a sequence of proposal
distributions {qt(xt|x1:t−1)}Tt=1, each of which can be both sampled from and evaluated.
One can then apply Algorithm 10.

The applicability of SNIS to situations where π is only available up to a constant
represents an important widening of scope for these methods. However, as the method

§Note that in this presentation of the algorithm, the weights are scaled such that the typical size of a
weight w is of order 1, uniformly in N .
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Algorithm 10 Self-Normalised Sequential Importance Sampling X ∼ π with interpolating
sequence {πt}Tt=1, proposals {qt}Tt=1, N particles

1. For t = 1,

(a) For a = 1, . . . , N ,

i. Sample xa1 ∼ q1(x1).
ii. Compute ŵa1 =

γ1(xa1)

q1(xa1)
.

(b) Set Ẑ1 = 1
N

∑N
a=1 ŵ

a
1 .

(c) For a = 1, . . . , N , compute wa1 = ŵa1/Ẑ1.

2. For 1 < t 6 T ,

(a) For a = 1, . . . , N ,

i. Sample xat ∼ qt(xt|xa1:t−1).
ii. Set xa1:t = (xa1:t−1, x

a
t ).

iii. Compute ŵat = ŵat−1 ·
γt(xat )

γt−1(xa1:t−1)·qt(xat |xa1:t−1)
.

(b) Set Ẑt = 1
N

∑N
a=1 ŵ

a
t .

(c) For a = 1, . . . , N , compute wat = ŵat /Ẑt.

3. Output ({(xa1:T , w
a
T )}Na=1, {Ẑt}Tt=1).
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is still fundamentally an importance sampling approach, at least naively, it cannot be
expected to behave well in higher-dimensional spaces, where the variability of the weights
will again lead to degeneracy. In this setting, it is useful to take the ideas underlying
Algorithms 8 and 9, and fuse them with another idea: resampling.

The key idea behind resampling is to consider the weights obtained by (Self-Normalised)
Importance Sampling, and use them to focus attention on promising partial samples. For
example, let t� T , and let x = x1:t be a partial sample with very low weight. It is often
reasonable to assume that the event of x being evolved into a full sample x1:T which has
a large weight has quite low probability, and so it is unlikely to develop into a sample
which represents π well. By contrast, if the weight of x is large, then we might hope that
it is on track to develop into a sample which is close to π. This intuition is put to use in
Sequential Importance Sampling with Resampling (SISR), presented as Algorithm 11.

Algorithm 11 Sequential Importance Sampling with Resampling, Targets {πt}Tt=1, Pro-
posals {qt}Tt=1, N particles

1. For t = 1,

(a) For a = 1, . . . , N ,

i. Sample xa1 ∼ q1(x1).
ii. Compute ŵa1 =

γ1(xa1)

q1(xa1)
.

(b) Set Ẑ1 = 1
N

∑N
a=1 ŵ

a
1 .

(c) For a = 1, . . . , N , compute wa1 = ŵa1/Ẑ1.

2. For 1 < t 6 T ,

(a) For a = 1, . . . , N ,

i. Sample aat = Categorical
(
{ 1
N
wbt}Nb=1

)
, and set x̂a1:t−1 = x

aat
1:t−1

ii. Sample xat ∼ qt(xt|x̂a1:t−1).
iii. Set xa1:t = (x̂a1:t−1, x

a
t ).

iv. Compute ŵat =
γt(xat )

qt(xat |x̂a1:t−1)
.

(b) Set Ẑt = Ẑt−1 ·
(

1
N

∑N
a=1 ŵ

a
t

)
.

(c) For a = 1, . . . , N , compute wat = ŵat /Ẑt.

3. Output ({(xa1:T , w
a
T )}Na=1, {Ẑt}Tt=1).

In SISR, as in SIS, one maintains a weighted collection of N particles, such that for
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any t 6 T , one has the approximation

πt(x1:t) ≈
1

N

N∑
a=1

wat δ(x
a
1:t, dx1:t).

The distinction with SIS comes from the resampling step at the beginning of each time
step. The resampling step takes as input a weighted system of N distinct particles, and
outputs an equally-weighted system of 6 N particles, possibly with repetitions. The
downside of resampling is the loss of diversity in particles which it causes, but the upside
is that each of the remaining particles is, in some sense, ‘equally important’. In particular,
this behaviour leads to more stable weights, mitigating the weight degeneracy problem
and leading to more reliable estimates. It is in general hard to rigorously characterise
the circumstances under which SISR should be strictly preferred to plain SIS (see [JD08]
for some discussion on ‘optimality’ within certain forms of SISR), but in practice, it is
well-understood that for challenging, high-dimensional models, resampling is extremely
useful.

We note that SISR is typically better-known by the name Sequential Monte Carlo
(SMC, see e.g. [Smi13]). SMC was historically developed for applications in filtering of
state-space models [GSS93, Kit96, DM97], but over time, it has become clear that the SMC
methodology is a ‘first-class citizen’ in the toolbox of sampling techniques, with applications
which extend far beyond filtering. For this reason, our presentation has thus focused more
on the generality of the SMC framework, rather than its historical roots in the context of
state-space models. We refer the interested reader to [DMDJ06, NLS14, LJN+17, NLS19]
for some illustrative examples of how this general framework can be applied to a diverse
range of tasks.

1.2.3 Iterative Sampling

Direct sampling methods make strong assumptions about the target distribution, and
produce exact samples. Importance sampling methods make weaker structural assumptions,
and by producing samples which are not drawn from the true target, provide an incomplete
if useful solution. The question stands as to whether, for a sufficiently wide class of
probability measures π, there is a practical algorithmic solution which can generate
samples which are distributed according to π.

The technique of Markov Chain Monte Carlo (MCMC) is aimed at closing this gap.
MCMC accepts that while a ‘true exact sample’ might be out of reach, an approximate
sample is still useful, particularly if one can iteratively process that approximate sample
in a way which reduces the approximation error. At a high level, this is the approach of
MCMC: begin by drawing a sample from some distribution and iteratively whittle away
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the inexactness, thus pushing it closer in law to a true draw from π. The promise is that
these iterations will get you close enough to π eventually ; the cost is in just how long
‘eventually’ might take.

This approach seems appealing enough in principle, provided that one can find an
appropriate iterative scheme for transforming samples. The usual perspective on this task
is to find some stochastic channel or Markov kernel K, such that if one inputs an exact
sample from π to the channel, then the output of the channel is also marginally a sample
from π. That is, as measures,∫

x∈X
π(x)K(x→ y)dx = π(y), (1.1)

or more informally¶, πK = π. If this condition holds, we say that the Markov kernel K
leaves π invariant, or that K admits π as an invariant measure.

We have thus transformed the task of sampling from a probability measure into writing
down a fixed-point equation which is solved by π. Provided that the Markov kernel K is
contractive around π in some suitable sense, the route is clear: at the level of measures,
start with some initial measure ν0, evolve it by applying the kernel, i.e. iterate νt = νt−1K

for t > 1, and then hope that νt converges to π as t → ∞. This can be made more
concrete by viewing the iteration at the level of samples, where it corresponds to drawing
a sample x0 ∼ ν0, and then sequentially generating a Markov chain, by iteratively drawing
xt ∼ K(xt−1 → xt). Under this procedure, xt is then marginally distributed according to
νt, and so it becomes closer and closer in law to π.

Algorithm 12 Markov Chain with Transition Kernel K, Initial Measure ν0

1. Sample x0 ∼ ν0.

2. For t > 1, sample xt ∼ K(xt−1 → xt).

The challenge is then to identify Markov kernels K which i) can be implemented
practically, ii) admit π as an invariant measure, iii) actually converge towards π in the
limit, and iv) ensure that this convergence is as fast as possible. Points i), ii), and iii) are
essentially qualitative in nature; whereas point iv) is a quantitative demand, emphasising
that the practical efficiency of these algorithms is characterised by the speed at which νt
converges to π.

It is this strategy which will be pursued for the remainder of this thesis. We focus our
attention on MCMC in particular because it is applicable under very general circumstances,
it is robust to changes in model structure, and it has shown itself to be consistently capable
¶In this section, we will use somewhat ‘colloquial’ notation for measures, Markov kernels, and so on;

for a proper measure-theoretic treatment of these notions, see e.g. [MT12].
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of providing useful solutions in the context of complex, high-dimensional models across a
range of application domains. It holds the promise of dynamically exploring probability
measures of interest in principle, and is broadly feasible in practice.
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1.3 Iterative Exploration, and MCMC

We begin the presentation of MCMC algorithms by outlining how one can develop
practically-feasible Markov kernels K which admit a prescribed π as an invariant measure.
By ‘practically-feasible’, we mean that it is possible to draw exact samples from the
distribution K(x → dy) for any given x in a reasonable amount of time. A priori, this
should not necessarily be easy, as the condition given in Equation (1.1) involves calculating
an integral under π, which is generally challenging.

1.3.1 Reversibility

A first step towards a more tractable problem is to demand a condition which is more
stringent than (1.1), but which is easier to verify for a given (π,K). In particular, it is
desirable to identify a condition which depends only on local properties of (π,K). One
such condition is that (π,K) satisfy

π(x)K(x→ y) = π(y)K(y → x) for all x, y ∈ X . (1.2)

When this holds, we say that K is π-reversible, or that (π,K) together satisfy detailed
balance. We can see that this condition implies (1.1) by noting that if (1.2) holds, then∫

x∈X
π(x)K(x→ y)dx =

∫
x∈X

π(y)K(y → x)dx

= π(y)

∫
x∈X

K(y → x)dx

= π(y).

As such, we have a condition on the pair (π,K) which implies that K admits π as an
invariant measure, and is easily-checkable in practice.

We comment briefly that because we have narrowed our search space to considering only
reversible kernels K, it might be natural to worry that we are missing out on something,
i.e. that there could exist non-reversible kernels with nicer convergence properties. While
the latter point is true, the former is somewhat subtler: by first understanding reversible
kernels, it in fact becomes easier to systematically construct these non-reversible kernels.
Indeed, compositions of π-reversible kernels need not be π-reversible, in much the same
way that products of self-adjoint matrices need not be self adjoint. Fortunately, for our
purposes, reversibility is just the means to the ends of π-invariance, and while reversibility
isn’t conserved under composition, π-invariance is. As such, one can easily construct
non-reversible, π-invariant kernels simply by composing simple reversible kernels. With
few exceptions, this is actually how most practical non-reversible kernels are constructed,
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a point which will be discussed at length in Section 1.6 of this chapter. As such, we assure
the reader that it is sufficient to initially focus our attention on reversible kernels.

Equipped with reversibility, we can now properly begin our search for practical kernels
K. We will first present two elementary techniques for deriving π-reversible kernels, which
can then be used as building blocks for constructing more advanced methods. We note
preemptively that although each of the two techniques can, in principle, be viewed as
a special case of the other (see e.g. [Fin15] for a discussion of this point, as well as
several other similar connections arising in Monte Carlo), it is instructive to present them
separately, as the philosophies behind them are in a sense quite distinct, and it is useful
to be able to apply each mindset separately in a given scenario.

1.3.2 Gibbs Sampling

The first technique is known as ‘Gibbs Sampling’ (see e.g. [GG84, SR93, CG92] for
its introduction, and early applications to Bayesian statistics), and is fundamentally a
model-centric approach to navigating the target measure. At its heart, Gibbs sampling
relies on the availability of

1. A meaningful partitioning of the variable x = (xi)i∈I , and

2. A tractable collection of conditional distributions, i.e. for i ∈ I, it must be possible
to draw samples from π

(
xi|{xj}j∈I\{i}

)
= π(xi|x−i).

Note that the latter condition is far weaker than what is required of the earlier recursive
algorithms (e.g. Algorithms 5, 6), as one only requires one-dimensional distributions,
conditioned on all other variables. Going forward, we will denote the ith complete
conditional distribution, conditioned on X−i = x−i, by πi(·|x−i).

For a given i ∈ I, consider now the Markov transition defined by

1. Sample yi ∼ πi(·|x−i).

2. Set y = (x−i, yi).

This corresponds to replacing the ith coordinate of x by a random draw from its full
conditional distribution. The associated transition kernel can then be written as

Ki(x→ dy) = δ(x−i, dy−i) · πi(dyi|x−i).
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One can then compute that

π(dx) ·Ki(x→ dy) = π(dx) · δ(x−i, dy−i) · πi(dyi|x−i)

= π(dx−i) · πi(dxi|x−i) · δ(x−i, dy−i) · πi(dyi|x−i)

= π(dx−i) · δ(x−i, dy−i) · πi(dxi|x−i) · πi(dyi|x−i)

= π(dy−i) · δ(y−i, dx−i) · πi(dxi|y−i) · πi(dyi|y−i)

= π(dy−i) · πi(dyi|y−i) · δ(y−i, dx−i) · πi(dxi|y−i)

= π(dy) ·Ki(y → dx),

and hence deduce that Ki is π-reversible. This is good news: if our target measure admits
tractable full conditional distributions, then we have a collection of Markov kernels {Ki}i∈I
which each leave π invariant. As highlighted earlier, although a composition of π-reversible
Markov kernels needn’t be reversible, a composition of π-invariant Markov kernels still is,
and so composing the Ki still gives us a π-invariant Markov kernel. This gives rise to the
Systematic Scan Gibbs Sweep, as presented in Algorithm 13.

Algorithm 13 Systematic Scan Gibbs Sweep for π, I = {1, . . . ,M}, start at x0

1. For i = 1, . . . ,M ,

(a) Sample xi ∼ Ki(x
i−1 → xi).

2. Output xM .

The term ‘sweep’ here refers to the fact that the update passes over each variable xi
at least once. There are also alternative protocols for such sweeps, e.g. one can consider
alternative deterministic orderings of the variables, or one can even randomise the order
in which the variables are updated, leading to the Random Scan Gibbs Sweep. Perhaps
interestingly, there is no universal dominance between the two options; sometimes a given
Systematic Scan is to be preferred, and sometimes a given Random Scan is to be preferred;
see e.g. [LWK95, LC06, RR15, HDSMR16, MM17] for details, theoretical results, and
further discussion on this topic. We note also that the Systematic Scan Gibbs sampler
can also be made reversible relatively easily by symmetrising the process, i.e. update the
variables in the order 1, 2, . . . , (M − 1),M, (M − 1), . . . , 2, 1.

The significance of Gibbs sampling from the perspective of algorithm development is
its fundamental modularity. It provides assurance that one can construct a procedure
which iteratively performs only local updates (which are typically easier to both reason
about and program), and still end up with a π-invariant Markov chain. Even when
applying algorithms which are superficially quite different to Gibbs sampling, this concept
may still be at work, as identifying and exploiting tractable structure within a complex,
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high-dimensional measure is a key tool for building efficient algorithms.

1.3.3 Metropolis-Hastings Updates

The second technique is a device known as the Metropolis-Hastings filter (partially derived
in [MRR+53], and then elaborated into its modern form in [Has70]), and in contrast to
the Gibbs sampler, is comparatively model-agnostic as a construction. The essence of the
MH filter is that one begins with some ‘proposal’ kernel q, which usually does not already
admit π as an invariant measure, and then critiques the moves proposed by q according
to a stochastic gating procedure. That is, when the chain is situated at xt, the proposal
kernel generates a candidate location yt ∼ q(xt → yt), and then one takes xt+1 ∈ {xt, yt}
according to a randomised decision rule.

Denoting the probability of ‘accepting’ a proposed move from x to y as α = α(x →
y) ∈ [0, 1], one can write down the transition kernel corresponding to the above procedure
as

K(x→ dy) = q(x→ dy) · α(x→ y) + (1− ᾱ(x)) · δ(x, dy)

ᾱ(x) =

∫
y∈X

q(x→ dy) · α(x→ y).

ᾱ(x) here represents the average rate at which proposed moves away from x are accepted,
and is generally not known explicitly.

In order to guarantee that this kernel generates a π-invariant Markov chain, we demand
that K be π-reversible. This will allow us to derive an expression for α, and hence an
implementable algorithm. Writing down Equation (1.2) for y 6= x (noting that it holds
trivially for y = x), we obtain

π(x)K(x→ y) = π(y)K(y → x)

π(x)q(x→ y) · α(x→ y) = π(y)q(y → x) · α(y → x)

α(x→ y) = α(y → x) · π(y)q(y → x)

π(x)q(x→ y)
.

Now, noting that we must have α ∈ [0, 1], we can deduce that

α(x→ y) 6 αMH(x→ y) = min

(
1,
π(y)q(y → x)

π(x)q(x→ y)

)
,

and in fact, taking α = αMH is sufficient for (1.2) to hold. Moreover, although there are
other valid choices of α which ensure π-reversibility, it was shown by [Pes73] that whenever
αMH can be computed, then it should be preferred. See e.g. [GŁR17, VGŁR20] for some
specific applications in which αMH is not available, and so other acceptance probabilities
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should be considered.
It should be emphasised that the generality of the Metropolis-Hastings filter is quite

remarkable, in terms of how little it demands of the user; the proposal kernel q can have
nothing in particular to do with the structure of the target π, and the algorithm will still
generate a π-invariant Markov chain. Of course, for practical purposes, it is important to
design q judiciously (and approaches to doing so will be discussed in subsequent sections) to
ensure favourable convergence behaviour, but even without that, the Metropolis-Hastings
filter provides you with a foot in the door, a Markov chain with π as an invariant measure,
and some hope of being able to approximately sample from an otherwise-intractable target
measure. Pseudocode for a generic Metropolis-Hastings chain is presented in Algorithm
14.

Algorithm 14 Metropolis-Hastings Update for π, with proposal q

1. At x, propose a move to y ∼ q(x→ y).

2. Compute r(x→ y) = π(y)q(y→x)
π(x)q(x→y)

.

3. Sample u ∼ U [0, 1].

4. If u < r, output y; otherwise, output x.

1.3.4 Convergence of Markov Chains

Before proceeding to more advanced algorithms, it is worth pausing to discuss the gap
between constructing i) a Markov chain which leaves π invariant, and ii) a Markov chain
which converges rapidly to π. In a sense, leaving π invariant only ensures that if the chain
is initially distributed according to π, then it retains that property; it does not ensure that
it gets closer to π if you started somewhere else. For example, the ‘do nothing’ Markov
kernel K(x → y) = δ(x, dy) admits any measure as an invariant measure, but will not
converge to anything useful for nondegenerate targets. The purpose of the exposition
which follows is thus to highlight some obstructions which can prevent a Markov chain
from converging, rather than to give exposition to tools for showing convergence. When
designing Markov chains for practical applications, the first step is to avoid falling into
traps which will impede asymptotic convergence; this section is intended to help the reader
avoid such traps.

One potential obstruction to convergence is known as reducibility. If the invariant
measure π is supported on a set S, it is important that, from any starting point x, the
Markov chain be able to reach all of S, eventually. If the chain is ultimately ‘trapped’ in
some set S ′ * S, we call the chain reducible; if not, the chain is irreducible. To be more
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precise, for t > 1, define the iterated Markov kernel Kt recursively by

Kt(x→ dy) =

∫
z∈X

Kt−1(x→ dz)K(z → dy).

Kt is the Markov kernel corresponding to t steps of the Markov chain defined by K. Given
a positive measure ϕ on the space X , we say that K is ϕ-irreducible if for all x ∈ X and for
all set A such that ϕ(A) > 0, there exists a t = t(x,A) > 0 such that

∫
y∈AK

t(x→ dy) > 0.
Note that this is a qualitative statement, i.e. it states that the chain can enter a certain
set eventually, and says nothing about how long this might take.

Irreducibility of a Markov chain is essentially sufficient to guarantee that the chain has
a unique invariant measure (one can find details to this effect in e.g. [Gey98, MT12]). As
such, if we run a Markov chain driven by some irreducible, π-invariant Markov kernel K,
and the chain converges in law to some probability measure µ, then it must be the case
that µ = π.

The next obstruction is guaranteeing whether the chain does indeed converge to
something. The barrier which one should have in mind here is that even though the chain
might be able to reach any set eventually, there could be a positive probability that this
never actually happens. For example, it is known that the simple random walk on Zd is
transient for d > 3, i.e. for any x ∈ Zd, t > 0,

P (Xs = x for some s > t) < 1.

Thus, with some positive probability, the walk never returns to the site x. Similar notions
can be defined on general state spaces, corresponding to behaviour which is qualitatively
similar to ‘drifting off to infinity’.

A Markov chain is said to be ϕ-recurrent if it is not transient, i.e. if every set A of
positive measure under ϕ is visited infinitely often. It is said to be Harris recurrent if
there exists a ‘small set’ A and a probability measure ν such that

1. The hitting time

τA = min{t > 0 : Xt ∈ A}

satisfies P(τA <∞|X0 = x) = 1 for all x ∈ X , and

2. For some λ ∈ (0, 1),m > 1, and for all x ∈ A, and B ⊂ X , it holds that∫
y∈B

Km(x→ dy) > λ · ν(B).

The first condition ensures that the chain cannot drift off to infinity indefinitely, as it
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must always return to the set A eventually; it is in some sense ‘anchored’ at A. The second
condition ensures that from any location x ∈ A, the transition kernels K all look somewhat
similar, and so the behaviour of the chain inside this set is relatively homogeneous. One
should view A as being something like the ‘bulk’ of the measure π; as a hub to which the
chain will return regularly.

Under the assumption of Harris recurrence, aperiodicity, and the following additional
assumption on average hitting times

sup
x∈A

Ex[τA] <∞,

it can be shown that the resulting Markov chain has a unique invariant measure, which
it converges to. Note that on its face, this is again a qualitative result, though there is
implicit quantitative information included in the constant λ.

Finally, one comes to the question of quantitative convergence of Markov chains to
their equilibrium distribution. In cases of interest, for time-homogeneous Markov chains,
one cannot expect better than exponential rates of convergence, i.e. if δxKt is the law of
a π-invariant Markov chain started at x and run for t steps, one cannot hope for faster
convergence than

d
(
δxK

t, π
)
6 c(x) · exp(−λt) (1.3)

for some c(x) ∈ (0,∞), λ > 0, where d is some appropriate metric on the space of
probability measures (for example, it is common to work with the total variation metric,
or the Wasserstein / transport metric; see [Dal17] for definitions of both.). If this holds,
we say that the chain is exponentially ergodic (sometimes ‘geometrically ergodic’). If the
prefactor c(x) is bounded from above uniformly in x, then the term ‘uniformly ergodic’ is
used. These titles are essentially the gold standard for convergence of MCMC algorithms,
and allow for a number of useful corollaries to be deduced, e.g. Laws of Large Numbers,
Central Limit Theorems, concentration inequalities, etc. for functionals of the path of the
chain. These are of particular interest in the context of Monte Carlo integration, where
path functionals are used as a proxy for computing integrals under π.

Without probing into the precise mathematical details, we will quickly sketch what
can cause an ergodic Markov chain to fail to be exponentially ergodic. One potential issue
is the existence of poorly-behaved parts of the target measure, in which the chain can
take a long time to move even a small distance. For example, suppose we are using a
Metropolis-Hastings chain, and the state contains sets in which the average acceptance
probability gets arbitrarily small. In these situations, ergodicity implies that the chain
will eventually leave these sets, but that the exit times will become hard to control, e.g.
they may have infinite expectation. This is generally a symptom of the Markov kernel
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being poorly-adapted to the target measure, and tends to arise for very inhomogeneous
targets. Some instructive examples of this can be found in [Liv15].

Another issue can be when the chain continues to make moves of a reasonable size,
but is poorly-confined, e.g. the chain makes excursions into the tails of the distribution,
and takes a long time to turn around and return to the ‘bulk’ of the distribution. This is
relatively common when running the Metropolis-Hastings algorithm with local proposals
on heavy-tailed targets, as the resulting Markov chain essentially devolves into a random
walk when it ventures into the tails. Further details and intuition on this point can be
found in [JH00, JT03, JR07]. While this can to some extent be ameliorated by the use of
tailored proposal mechanisms, this issue is often symptomatic of the target measure being
quite diffuse in its current parametrisation.

Broadly speaking, a Markov chain will tend to exhibit geometric ergodicity when i)
the target measure has tails which are not too heavy (lighter than exponential tends to be
sufficient), ii) the target measure is not too rough or inhomogeneous (in terms of the length
scales on which the density varies), and iii) the chain is able to successfully make moves of
a fixed magnitude, uniformly across the space, with reasonable probability. Pathologies in
the convergence of Markov chains can often be identified through the failure of one of the
above three conditions.

Finally, we note that it is of substantial interest, both theoretically and practically,
to undertake a quantitative study of exponential ergodicity, i.e. to identify explicit
values of λ such that Equation 1.3 holds. This is a challenging task, which almost
always requires problem-specific tools, particularly when seeking sharp estimates of λ.
We will not comment on this further in this work, and refer the interested reader to
[Dal17, MS17, CCBJ18, DCWY19, SL19] for some recent developments on the topic.
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1.4 Design and Implementation of Practical

MCMC Algorithms

In designing a practical MCMC algorithm for sampling from a given target measure, there
are a number of considerations which need to be taken into account. In this section, we
outline one possible workflow for identifying and resolving these considerations in sequence.
At a high level, the workflow is as follows:

1. Identify a class of moves which can be used to navigate the space on which the target
measure resides.

2. Identify an ideal sub-class of moves which is well-adapted to the specific target
measure.

3. Devise a practically-feasible approximation to these ideal moves, and determine how
to satisfactorily resolve any approximation errors which are induced in doing so.

4. Having specified the set of moves from which the Markov chain will be constructed,
detail how this chain will be simulated on a computer.

5. Finally, consider how any free parameters in the definition of the algorithm i) would
be set ideally, and ii) should be tuned in practice.

This workflow emphasises some particular elements of the design process, and in many
applications, some of these steps will be considerably more involved than others. For
example, in intractable likelihood models (broadly interpreted), there may be little room
for creativity in the first two steps, whereas the latter three necessitate far more subtle
care and attention. By contrast, in high-dimensional models on continuous spaces with
explicit, differentiable densities, the first three steps will often be comparatively important,
and the latter two might be more automatic. Nevertheless, this framing is introduced as a
strategy for highlighting the distinct phases of algorithm design, with the hope that the
decisions made in each phase can, to some extent, be decoupled and resolved separately.

1.4.1 Phase 1: Markov Processes for Navigating a Space

When seeking a class of moves with which to navigate a given space, the first step is to
catalog the types of motion which are well-defined on the space. When considering Markov
processes, there are essentially only a few things which a single particle exploring a space
can do, which are

• jump randomly from one place to another
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• drift deterministically along the flow of some vector field

• diffuse randomly around the current location

and superpositions of these. We will focus on continuous-time processes, as in this
setting, the distinction between the three types of motion is most unambiguous.

On a discrete space, these notions all essentially coincide, but it is standard to view a
Markov process on a discrete space as a Markov Jump Process (MJP), i.e. the path of
a particle which stays at each state x for a random duration T ∼ Exp(Λ(x)) and then
jumps randomly to one of its neighbours y ∼ q(x→ y). We call Λ(x) the total jump rate
out of x, and q(x→ y) is the transition probability from x to y. It is also sometimes useful
to define λ(x→ y) = Λ(x)q(x→ y), the jump rate from x to y.

On a continuous space, MJPs can take many different flavours. Three which are of
particular interest are i) global jumps, ii) coordinate-wise global jumps, and iii) local
jumps.

A global jump process is specified by a jump rate function Λ, and a jump distribution
ν, and can be implemented by Algorithm 15. Such processes are memoryless in a very
strong sense; their next location is independent of even the chain’s current location.

Algorithm 15 Global Jump Process

1. at x,

(a) Sample T ∼ Exp(Λ(x)).

(b) Sample y ∼ ν.

(c) Stay at x for time T , and then jump to y.

By contrast, a coordinate-wise global jump process is specified by a collection of
coordinate-wise jump rate functions {λi}di=1, and a collection of coordinate-wise jump
distributions {νi}di=1. They can be implemented by Algorithm 16. These models can
be viewed as an abstraction of the idea behind Gibbs sampling, i.e. make moves by
changing one coordinate at a time, but with the option to make more general moves in
that coordinate.

Finally, a local jump process can be specified by a jump rate function Λ as before,
as well as some transition kernel q(x → y) which is ‘local’ to x, e.g. q(x → y) =

U (dy|{y : |y − x| < r}), where U(dx|S) is the normalised uniform measure on the set S.
One then implements such a process via Algorithm 17. This is distinguished from the
previous two classes of MJP by the implication that q should depend explicitly on the
current location of the chain, x.

Markov Jump Processes are illustrative to study in the context of simulation, as they
exist on very general spaces, which allows for their analysis to be relatively agnostic to
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Algorithm 16 Coordinate-Wise Global Jump Process

1. at x,

(a) Compute Λ(x) =
∑d

i=1 λi(x).

(b) Sample T ∼ Exp(Λ(x)).

(c) Set I = i with probability λi(x)/Λ(x).

(d) Sample yi ∼ νi(yi|x−i), and write y = (x−i, yi).

(e) Stay at x for time T , and then jump to y.

Algorithm 17 Local Jump Process

1. at x,

(a) Sample T ∼ Exp(Λ(x)).

(b) Sample y ∼ q(x→ y).

(c) Stay at x for time T , and then jump to y.

the details of the space in question. Moreover, given a discrete-time Markov chain, one
can extend it to a continuous-time MJP by subordinating the chain to a unit-rate Poisson
process, i.e. to include a random exponentially-distributed holding time in between jumps
of the chain, while making the same moves. This is a useful trick, as certain analytical
computations in the study of Markov processes are simplified when working in continuous
time, relative to discrete-time Markov chains.

Beyond MJPs, continuous spaces can also accommodate dynamics with drift and
diffusion. Drift is best understood in terms of Ordinary Differential Equations (ODEs),
i.e. the particle follows the motion of some vector field b according to the dynamics
dx = b(x)dt. As the solutions of ODEs are deterministic given their initial conditions, it
is rare to use them for sampling in isolation, and so one typically injects some form of
stochasticity into the system to generate exploration. While this can be done by adding in
jumps (a hybrid which is known as a Piecewise-Deterministic Markov Process, or PDMP),
a more common route is to perturb the path of the ODE with additive noise. This gives
rise to a Stochastic Differential Equation (SDE). An SDE is specified not only by a drift
function b, but also a diffusion coefficient σ, with which one writes

dx = b(x)dt+ σ(x)dW,

where dW represents a stochastic noise term which perturbs the motion of the particle.
This should be interpreted approximately as saying that over a small time-scale h, a
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particle moves from x to x + h · b(x) +
√
h · σ(x) · ξ, where ξ ∼ N (0, I). This can be

given a more rigorous interpretation (see e.g. [Pav14] for a practical introduction). A
desirable feature of SDEs is that their evolution is purely local in nature, which makes
their approximate simulation less challenging than jump processes. Moreover, when the
diffusion matrix Σ(x) = σ(x)σ(x)T is full rank for all x, the transition probabilities of an
SDE (and of most standard numerical approximations thereof) admit a density, which
opens the doors to their use in Metropolis-Hastings algorithms.

Finally, we note that all three of these ingredients can be combined, giving rise to
the so-called ‘Jump SDEs’. Strictly speaking, even this does not fully cover the entire
world of Markov processes (we have, for example, neglected to discuss Levy processes; see
[App09] for an account), but it is fair to say that the vast majority of practical simulation
algorithms are based around the core three elements of jumps, drift, and diffusion. We
refer to [Sim17, SZTG20] for a couple of interesting, rare exceptions.

1.4.2 Phase 2: Markov Processes of a Given Invariant Measure

Having provided a rough taxonomy of Markov processes, the next task is to identify which
of these would sample correctly from our target measure π in principle, deferring concerns
of computation for the time being.

A key tool in establishing that a continuous-time Markov process admits a given
invariant measure is to study the so-called infinitesimal generator of the process (which
we will simply refer to as the ‘generator’). Given a time-homogeneous Markov process Xt,
the generator L is usually defined by its action on smooth, bounded functions f as

(Lf)(x) , lim
t→0+

E[f(Xt)|X0 = x]− f(x)

t
.

One can then extend the action of L to the space of all functions for which the above
limit exists, the domain of L, usually written as D(L). In all of the cases which we will
consider, L acts linearly on functions. For ODEs, and SDEs, L takes the form of a first-
and second-order differential operator respectively, whereas for MJPs, L takes the form
of an integral operator. For processes which combine the behaviour of several dynamical
processes, the generator is formed by additive superposition, e.g. a Piecewise-Deterministic
Markov Process (PDMP) consists of jumps and deterministic drift, and so will have a
generator which is the sum of an integral operator (corresponding to the jumps) and a
first-order differential operator (corresponding to the drift).

The significance of the generator is that provides us with a tool for checking algebraically
whether the process admits π as an invariant measure. The following can be found in e.g.
[EK09].
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Theorem 1. Let L be the generator of a time-homogeneous Markov process on some space
X , and let π be a probability measure on X .

1. If, for all f ∈ D(L), it holds that

E [(Lf) (x)] = 0 (1.4)

then the Markov process admits π as an invariant measure.

2. Moreover, if for all f, g ∈ D(L) ∩ L2(π), it holds that

E [(Lf) (x)g(x)] = E [f(x) (Lg) (x)] (1.5)

then the Markov process is also π-reversible.

The utility of this condition is that it provides us with a way of establishing an analytic
property of the Markov process (its invariant measure) by algebraic manipulation. In
particular, for ODEs and SDEs, verifying either of Equations 1.4 or 1.5 will boil down
to an exercise in integration by parts. As such, with minor exceptions for the occasional
more-exotic Markov process, the generator method is typically the standard approach for
verifying‖ that a given Markov process admits the invariant measure which we desire.

To apply this method, we begin by studying Markov Jump Processes. Given an MJP
with jump rates λ(x→ y) = Λ(x)q(x→ y), its generator can be computed as

Lf(x) =

∫
λ(x→ y) [f(y)− f(x)] dy

=

(∫
λ(x→ y)f(y)dy

)
− Λ(x)f(x).

Note that L is an integral operator, and in particular, acts non-locally on f . A particular
consequence of this is that it becomes difficult to check that an MJP admits π as an
invariant measure when it is not π-reversible. More precisely, to show π-invariance, we
would want to show that Eπ [Lf(x)] = 0 for all f , and so we compute

Eπ [Lf(x)] =

∫
π(x)

(∫
λ(x→ y)f(y)dy − Λ(x)f(x)

)
dx

=

∫ ∫
π(x)Λ(x)q(x→ y)f(y)dydx−

∫
π(x)Λ(x)f(x)dx.

Now, supposing with mild∗∗ loss of generality that we can rescale the jump rates such that
‖We comment here that characterising D(L) is not always easy, and so a full justification that a given

process admits a given invariant measure can become technical. However, for heuristic calculations, one
tends to ignore such technicalities, which while non-rigorous, can nonetheless be useful as a sanity check.
∗∗In principle, this expectation could be infinite. This is typically not the case for well-behaved jump

processes, and is especially atypical for practical samplers.
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Eπ [Λ(x)] = 1, we can apply Bayes’ rule to the joint distribution Π(x, y) = π(x)Λ(x)q(x→
y) to assert the existence of probability measures πΛ,q(y) and qTπ,Λ(y → x) such that

π(x)Λ(x)q(x→ y) = πΛ,q(y)qTπ,Λ(y → x).

We thus continue with our previous development:∫ ∫
π(x)Λ(x)q(x→ y)f(y)dydx−

∫
π(x)Λ(x)f(x)dx

=

∫ ∫
πΛ,q(y)qTπ,Λ(y → x)f(y)dydx−

∫
π(x)Λ(x)f(x)dx

=

∫
πΛ,q(y)f(y)dy −

∫
π(x)Λ(x)f(x)dx

=

∫ (
πΛ,q(x)− π(x)Λ(x)

)
f(x)dx,

from which we can deduce that the MJP leaves π invariant precisely when πΛ,q(x) =

π(x)Λ(x). While true, this condition is of limited use in most practical scenarios, as
characterising πΛ,q requires the calculation of integrals.

As such, for the remainder of this section, we will focus our attention only on MJPs
which are reversible with respect to the desired target measure. Fortunately, this scenario
is far more tractable. Noting from the earlier discussion that the MJP will be π-reversible
precisely when E [(Lf) (x)g(x)] = E [f(x) (Lg) (x)], we compute

E [(Lf) (x)g(x)] =

∫
π(x) (Lf) (x)g(x)dx

=

∫
π(x)

(∫
λ(x→ y)f(y)dy − Λ(x)f(x)

)
g(x)dx

=

∫ ∫
π(x)λ(x→ y)f(y)g(x)dydx−

∫
π(x)Λ(x)f(x)g(x)dx

=

∫ ∫
π(y)λ(y → x)f(x)g(y)dydx−

∫
π(x)Λ(x)f(x)g(x)dx

Performing a similar calculation for E [f(x) (Lg) (x)], we see that this equality will hold
iff for all f, g ∈ D(L),∫ ∫

π(y)λ(y → x)f(x)g(y)dydx =

∫ ∫
π(x)λ(x→ y)f(x)g(y)dydx (1.6)

⇐⇒ π(x)λ(x→ y) = π(y)λ(y → x) for all x, y. (1.7)

We can now use this to design MJPs with invariant measure π.
As a first example, consider a global jump process, where the jumps are drawn from

some fixed measure ν, and the jump rate is to be determined. The condition given
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in equation 1.6 implies that we must have π(x)Λ(x)ν(y) = π(y)Λ(y)ν(x), and hence
Λ(x) ∝ ν(x)/π(x). The intuition is as follows: if x is more likely to have been drawn from
π than from ν, then it is a good point, and we should remain there longer; hence Λ(x)

will be smaller. A careful reading will reveal that this process is essentially equivalent to
importance sampling, where instead of assigning a weight w(x) = π(x)/ν(x) to a particle
at x, one instead waits at x for a random amount of time, which has expectation w(x).

Moving onwards, consider now a coordinate-wise global jump process, where, for
i = 1, . . . , d, at rate λi(x), the ith coordinate jumps to yi ∼ νi(yi|x−i). Checking Condition
1.6 with y = (x−i, yi), we see that we must have

λi(x) ∝ νi(xi|x−i)
π(xi|x−i)

up to a multiplicative function of x−i. The same intuition holds as in the fully-global case;
any coordinate which is particularly ‘out-of-equilibrium’ in the sense that π(xi|x−i) �
νi(xi|x−i) should be encouraged to be resampled. In the case where νi(xi|x−i) = π(xi|x−i)
for all i, the rates λi can all be taken equal to 1, and this is precisely a random-scan
Gibbs sampler with exponential holding times between updates. The case in which
(νi(xi|x−i), π(xi|x−i)) are unequal but close is studied as a ‘Tempered Gibbs Sampler’ in
[ZR19] with some success.

Finally, consider the more general case of a local jump process based on accept/reject-
type jumps, i.e. the jump rate from x to y is given by q(x→ y)α(x→ y), where q(x→ y)

is a Markov kernel, and α(x→ y) ∈ [0, 1] can be evaluated. Condition 1.6 now necessitates
that

π(x)q(x→ y)α(x→ y) = π(y)q(y → x)α(y → x),

and the discussion from Subsection 1.3.3 of this chapter implies that taking α = αMH will
again deliver us a π-reversible chain. Doing so will generate a continuous-time Markov
process which is equivalent to a Metropolis-Hastings chain, but with independent and
identically-distributed Exp(1) holding times in between each jump. We emphasise that
this construction is more of a theoretical tool, rather than a practically-useful algorithmic
modification of usual Metropolis-Hastings.

Moving onto ODEs, we begin by noting that the flow of a nontrivial ODE can essentially
never be in detailed balance with respect to a measure, as if x flows to y in time t, it will
be exceedingly rare that y also flows to x in time t, unless both points lie on opposite
points of a closed orbit (‘antipodal’), and it is essentially impossible for this to hold for all
t. On the contrary, these flows are in some sense ‘strictly irreversible’; x flows to y if and
only if y flows to x backwards in time.

To understand when the flow of an ODE can leave a measure invariant, begin by noting
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that the ‘generator’ corresponding to the ODE dx = b(x)dt is given by

Lf(x) = 〈b(x),∇f(x)〉.

As such, in order to leave π invariant, we examine the equality Eπ [Lf(x)] = 0, which can
be rewritten (under appropriate smoothness and tail conditions on b, f , and π) as

Eπ [Lf(x)] =

∫
π(x)〈b(x),∇f(x)〉dx

= −
∫

div (π(x)b(x)) f(x)dx.

We can thus deduce that to admit π as an invariant measure, it is necessary and sufficient
that div (πb) = 0. In [MCF15, MFCW19], an explicit construction is provided, which
allows for π-invariant vector fields b to be generated systematically.

Theorem 2. Let π be the density of a probability measure supported on all of Rd, and let
b(x) be a vector field on Rd. If the flow of this vector field leaves π invariant, then there
exists a skew-symmetric matrix-valued function Q(x) such that

b(x) = Q(x)∇ log π(x) + Γ(x)

where Γi(x) =
d∑
j=1

∂xjQij(x) for i = 1, . . . , d.

A particularly neat case is that of divergence-free or volume-preserving fields, i.e.
vector fields for which div b ≡ 0. In this special case, the condition for invariance reduces
to 〈∇π, b〉 = 0, i.e. that the density π is conserved along the flows of the ODE. A
particularly prominent application of such flows has been the Hamiltonian Monte Carlo
(HMC) algorithm [Nea11, HG14, Bet17], and its extension to Riemannian manifolds in
[GC11].

Before moving on, we emphasise that as ODEs have deterministic flows, it is usually
the case in practice that only using ODE dynamics will fail to generate an ergodic process,
and one will not sample correctly from the desired measure. Nevertheless, this should not
dissuade us from considering ODEs as a part of the simulation toolbox, as they can be
fruitfully combined with other techniques, together with which one can sample correctly.

Finally, we come to SDEs. The Markov process corresponding to the diffusion

dx = b(x)dt+ σ(x)dW
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has generator given by

Lf(x) = 〈b(x),∇f(x)〉+
1

2
Tr
[
Σ(x)∇2f(x)

]
where Σ(x) = σ(x)σ(x)T

Characterising the pairs of (b,Σ) which leave π invariant is more challenging than in the
ODE case, as b and Σ interact nontrivially. Fortunately, this has also been addressed by
the work of [MCF15, MFCW19], who provide a full characterisation of diffusion processes
which admit a given π as invariant measure.

Theorem 3. Let π be the density of a probability measure supported on all of Rd, and
consider the diffusion given by

dx = b(x)dt+ σ(x)dW.

• If this diffusion is reversible with respect to π, then there exists a positive-semidefinite
matrix-valued function D(x) such that

σ(x)σ(x)T = 2D(x)

b(x) = D(x)∇ log π(x) + Γ(x)

where Γi(x) =
d∑
j=1

∂xjDij(x) for i = 1, . . . , d.

• If this diffusion admits π as an invariant measure, then there exist a positive-
semidefinite matrix-valued function D(x), and a skew-symmetric matrix-valued func-
tion Q(x), such that

σ(x)σ(x)T = 2D(x)

b(x) = (D(x) +Q(x))∇ log π(x) + Γ(x)

where Γi(x) =
d∑
j=1

∂xj (Dij(x) +Qij(x)) for i = 1, . . . , d.

The key content of this theorem is twofold. The first conclusion is that any π-reversible
diffusion can be specified by a positive-definite matrix-valued function D(x), which can
be viewed as a sort of preconditioner, emphasising important directions in the space.
Dynamics of this form can thus be viewed as consisting of

1. purely dissipative behaviour, as the dynamics of dx = D(x)∇ log π(x)dt try to
dissipate the ‘energy’ V (x) = − log π(x)
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2. structured uniform exploration, through the action of the stochastic flow dx =

Γ(x)dt+
√

2D(x)dW , which admits the uniform measure as an invariant measure.

The second conclusion is that any π-invariant diffusion is a superposition of a π-invariant
ODE (as specified by Q) and a π-reversible SDE (as specified by D). As such, any
π-invariant Markov process with continuous sample paths can be uniquely decomposed
into a purely reversible part, which explores the space systematically, while dissipating
excess energy, and a purely non-reversible part, which circulates mass around the space in
a directed manner.

To make this discussion slightly more concrete, we present some examples of how this
framework can be used to generate MCMC algorithms.

Example 1. Taking D(x) ≡ 1, Q(x) ≡ 0 gives rise to the standard Overdamped Langevin
Diffusion

dx = ∇ log π(x)dt+
√

2dW.

This is in some sense a ‘canonical’ diffusion for sampling purposes, and is well-studied (e.g.
it is treated extensively in [Pav14]). It can be viewed as a gradient flow which is perturbed
by additive noise; the SDE tries to move into regions of high probability by performing
gradient ascent on the function log π(x), and then explores the target measure through the
additional noise injection.

Example 2. Taking D(x) ≡ C,Q(x) ≡ 0 for some fixed matrix C 6= I gives rise to the
standard Preconditioned Overdamped Langevin Diffusion

dx = C∇ log π(x)dt+
√

2CdW.

At a high-level, this corresponds to the original Overdamped Langevin diffusion, applied in
a different coordinate system. By applying a change of basis in this way, the diffusion can
often be made to equilibrate more rapidly, by emphasising different directions in the state
space.

Example 3. It can be useful to design dynamics which operate in an extended space, which
contains the original space as a subspace. A common choice is to augment the space with a
‘momentum’ variable p (usually equipped with a N (0, I) distribution), and let the particle
dynamically explore this joint (x, p) space, often referred to as ‘phase space’.

Making this augmentation, one can set

D(x, p) =

(
0 0

0 0

)
, Q(x, p) =

(
0 −I
I 0

)
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to obtain the dynamics

dx = p dt

dp = ∇ log π(x) dt.

These are Hamilton’s equations of motions, given the ‘Hamiltonian’ H(x, p) = − log π(x) +
1
2
|p|2. Note that these dynamics are both volume-preserving and energy-preserving (i.e H

is conserved along the flows of this ODE).

Example 4. Working in phase space once more, we can take

D(x, p) =

(
0 0

0 γI

)
, Q(x, p) =

(
0 −I
I 0

)

to obtain the so-called Underdamped Langevin Dynamics

dx = p dt

dp = ∇ log π(x) dt− γpdt+
√

2γdW.

Relative to Hamiltonian dynamics, this process dissipates momentum (through the dp =

−γpdt term), while also adding noise to the momenta (through the dp =
√

2γdW term) to
ensure exploration. Note that the diffusion matrix in this setting is not full-rank.

For the interested reader, a number of diverse other examples are given in [MCF15,
MFCW19]. Some especially novel applications of this approach in recent years have
involved constructing systems of interacting particles undergoing a ‘collaborative diffusion’
using this methodology; we refer to [NR19, GINR19, DNS19] for some recent advances in
this burgeoning research area.

A reasonable question to ask here is whether an optimal choice for (D,Q) exists. A
complication here is that this is really two questions; i) which choice of (D,Q) would give
the optimal continuous-time dynamics, and ii) which dynamics can be efficiently discretised,
such that the practically-implemented algorithm mixes quickly and correctly as well. In
any case, both questions are quite challenging. There is a standing conjecture in the convex
geometry community (implicit in the discussion in [Kol14, Kla14, KM16, KK17, KK19])
that in continuous time, the optimal choice of D, fixing Q ≡ 0, is given by the so-called
Kaehler-Einstein metric. This metric is defined implicitly by the following construction:

1. For any probability measure π on Rd which i) is centered at the origin (i.e. Eπ[x] = 0)
and ii) is not supported in a strict subspace of Rd, there exists a log-concave measure
µ(dy) = exp(−Φ(y)) on Rd such that if y ∼ µ, then x = ∇Φ(y) is marginally drawn
according to µ.
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2. As Φ is convex, it admits a convex conjugate Φ∗.

3. The Kaehler-Einstein metric is then defined as

DKE(x) = ∇2Φ∗(x)

Unfortunately, the Kaehler-Einstein metric has the practical shortcoming that in almost
all cases of interest, computing this D is intractable. A key barrier is that identifying and
computing the so-called ‘mirror map’ Φ is extremely difficult, and essentially corresponds
to the solution of a high-dimensional nonlinear PDE. As such, trying to work directly with
the Kaehler-Einstein metric will generally not be an option, unless the target measure
is extremely simple. However, if one can reproduce qualitative features of the Kaehler-
Einstein metric with a tractable choice of D, some sort of practical ‘approximate optimality’
may be achievable.

In practice, D(x) is typically taken to be either i) the identity matrix, ii) (an approxi-
mation to) the covariance matrix of the posterior, or iii) some other matrix which reflects
the curvature of the posterior, either locally or globally. There exist a small number of
highly-structured situations in which a bespoke choice of metric is both clear and easy
to implement. For example, [HKRC18] construct a metric for sampling from Dirichlet
measures on the simplex, such that the resulting process converges uniformly fast in time,
for all settings of the parameters of the Dirichlet distribution. Nevertheless, despite the
fact that variable-metric MCMC approaches have shown practical benefits in a number of
applications, the present consensus seems to view them as perhaps too complicated for
inexperienced users to apply. It is thus typically more common to rely on general-purpose
gradient-based samplers like basic Langevin or Hamiltonian Monte Carlo instead, perhaps
applying an appropriate reparametrisation along the way.

Implicit in the theorem of [MCF15, MFCW19] is the fact that if two Markov processes
each admit π as an invariant measure, then the superposition of these two processes (in
an appropriate sense) will also admit π as an invariant measure. This is a useful tool
for constructing samplers; one can simply dip into the cookbook of π-invariant Markov
processes, combine them additively in some proportions, and be done with it. What is not
always clear is whether this provides the complete picture. In the case of diffusions, there
is a particularly clean decomposition into ‘reversible diffusion’ and ‘purely non-reversible
ODE’. Such decompositions are not always apparent a priori; one goal of this thesis is to
identify and elucidate such decompositions in novel settings.
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1.4.3 Phase 3: Discretisation and Adjustment

of Markov Processes

We now come to the question of how to simulate these processes, either exactly or
approximately, in a manner which enables us to recover valid samples from our target
distribution. The situation depends heavily on the class of moves under consideration, and
so the exposition is divided up accordingly.

For Markov Jump Processes, one needs to be able to i) simulate the holding times, and
ii) simulate the transition kernels. The extent to which these are difficult tasks depends
on precisely how the process is specified. If the MJP is given in terms of a total jump rate
Λ(x) and normalised transition kernels q(x→ y), then the holding times are exponentially
distributed with rate Λ(x), and can thus be simulated efficiently. Provided the transition
kernels q can be simulated from in any form, e.g. rejection sampling, then one can simulate
the full MJP without discretisation error.

On the other hand, if the MJP is only specified by state-to-state jump rates λ(x→ y),
a little more work is necessary. Suppose we can bound

λ(x→ y) 6 Λ̄(x) · r(x→ y)

uniformly in y, where Λ̄ can be computed explicitly, and r(x→ y) is a Markov kernel from
which samples can be easily drawn. Defining α(x→ y) = λ(x→ y)/

(
Λ̄(x) · r(x→ y)

)
∈

[0, 1], we can write λ(x → y) = Λ̄(x) · r(x → y) · α(x → y), which naturally suggests a
rejection sampling-type approach, as in Algorithm 18.

Algorithm 18 Rejection Sampling Markov Jump Process

1. Sample T ∼ Exp(Λ̄(x)).

2. Sample y ∼ r(x→ y).

3. Sample U ∼ U [0, 1].

4. Stay at x for time T , and if U 6 α(x→ y), then also jump to y.

One example of this method is the so-called ‘Metropolis-Hastings Jump Process’, i.e. a
Metropolis-Hastings Markov chain with exponentially-distributed holding times in between
jumps. In this case, Λ(x) =

∫
q(x→ y)α(x→ y)dy is not analytically available, and so

the first method does not apply. Nevertheless, Algorithm 18 enables the process to be
simulated without discretisation error.

For ODEs, exact simulation is typically intractable for nontrivial dynamics, i.e. if the
dynamics are not those of a linear dynamical system, or reducible to something similarly
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elementary, then one will need to resort to numerical discretisation. An extra difficulty
pertaining to ODE proposals is that they are deterministic, and as such, the transition
kernels will generally not admit a density with respect to the target measure.

Consider first using a proposal corresponding to the exact flow of some ODE, that
is, fix some time-step ∆t > 0, and for t > 0, let φt(x) be the ‘flow map’ of the ODE
dx = b(x)dt, i.e. the location, at time t of a particle which started at x0 = x. Extend this
to t < 0 by defining φt(x) as the location at time |t| of a particle initialised at x0 = x,
under the flow of the reversed vector field, i.e. dx = −b(x)dt. Note that {φt(·)}t∈R then
forms a group under composition, and in particular, that (φt ◦ φ−t) (x) = x for all (x, t).

With these definitions established, one can define the proposal kernel

q(x→ dy) =
1

2
δ (φ∆t(x), dy) +

1

2
δ (φ−∆t(x), dy) ,

i.e. with probability 1/2, the particle follows the flow of the ODE forwards in time for
∆t units of time; with the remaining probability, it instead follows the flow of the ODE
backwards in time.

In order to make sense of this proposal in the Metropolis-Hastings filter, one needs
to work with its most general formulation (see e.g. [Gre95, Tie98]), which is typically
presented at the level of measures. More precisely, let π be the target measure, and let q
be the proposal kernel. Under the condition that the measures Π(dx, dy) = π(dx)q(x→ y)

and ΠT (dx, dy) = π(dy)q(y → dx) are mutually absolutely continuous, it is possible to
define the Radon-Nikodym derivative

r(x→ y) =
dΠT

dΠ
(x, y).

With this established, one can run the standard Metropolis-Hastings filter, using α(x→
y) = min(1, r(x→ y)), and thus generate a Markov chain with π as its invariant measure.

With this formulation in hand, it can be shown that the relevant Radon-Nikodym
derivative for a proposed move from x to y = φ∆t(x) is given by

r(x→ y) =
π(y)

π(x)
·
∣∣∣∣det

(
∂y

∂x

)∣∣∣∣ ,
where ∂y

∂x
is the Jacobian matrix of the flow from x to y. In particular, r can be computed,

enabling the use of ODE proposals in a Metropolis-Hastings scheme.
Suppose now that we are using a numerical discretisation of the ODE, giving us an

approximate flow map φ̂∆t(x) ≈ φ∆t(x). It is then essential that our approximate flow
map be exactly invertible, i.e.

(
φ̂∆t ◦ φ̂−∆t

)
(x) = x for all x, as otherwise, the measures

Π and ΠT could have disjoint support, and thus r(x→ y) would have trivial behaviour,
rendering our algorithm unable to move. This requirement is known as reversibility of the
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discretisation scheme; we contrast this with the reversibility of the Markov process.
An immediate consequence of this is that, in the context of using ODE proposals

in MCMC, one must be very careful in designing an appropriate numerical integrator.
In particular, commonly-used approaches like Euler’s methods (explicit and implicit),
explicit multistep methods (e.g. Adams-Bashforth), and explicit multistage methods
(Runge-Kutta) will generally not work (see e.g. [Ise09] for details on these methods, and
more). Some implicit methods can be made to work - for example, the trapezoidal rule is
symmetric in its endpoints by construction, and is thus immediately reversible - but the
majority of off-the-shelf integrators are not constructed for use in MCMC, and as such,
will not be suitable.

An approach which is generally more reliable is to additively decompose the vector
field into simpler constituent vector fields, the flows of which can each be solved exactly.
This is known as splitting in the field of numerical analysis. For the purposes of MCMC, it
is often easiest to work with symmetric splittings, where the exact sub-flows are composed
in a symmetric fashion. For example, consider the ODE given by

dx = (x− x2)dt.

Although this ODE can in principle be solved exactly, it is much easier to solve its
constituent parts. In particular, the flow of dx = xdt for time t is given by φ(1)

∆t(x) =

exp(∆t)x, and the flow of dx = −x2dt is given by φ(2)
∆t(x) = x/ (1 + ∆t · x). One can then

approximate the flow map by

φ̂∆t(x) =
(
φ

(2)
∆t/2 ◦ φ

(1)
∆t ◦ φ

(2)
∆t/2

)
(x),

and standard methods suffice to show that this composition gives rise to a consistent
approximation of the true flow map.

Note now that because both φ(1) and φ(2) are the exact flow maps of an ODE, they
each form a group, and it is thus elementary to check that

(
φ̂−∆t ◦ φ̂∆t

)
(x) = x, i.e. that

the approximate flow map is a reversible discretisation of the ODE. It is a useful exercise
to convince oneself that this would not be the case if we had instead taken φ̂∆t = φ

(1)
∆t ◦φ

(2)
∆t .

The most commonly-used MCMC algorithm which directly incorporates ODE dynamics
is Hamiltonian Monte Carlo (see [Nea11, Bet17] for reviews), which follows the dynamics

dx = pdt

dp = ∇ log π(x)dt.
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Fortunately, these dynamics naturally suggest a splitting into tractable subsystems, namely

A :

dx = p dt

dp = 0 dt

B :

dx = 0 dt

dp = ∇ log π(x) dt.

These systems admit exact flow maps, namely

φ
(1)
∆t(x, p) = (x+ ∆tp, p)

φ
(2)
∆t(x, p) = (x, p+ ∆t∇ log π(x)),

and composing them in the manner described above gives rise to the so-called leapfrog
integrator, which is used in most standard implementations of HMC. See [SRL10, GC11,
BPSSS11, LM16, CSASS19] for some scenarios in which more exotic splittings are either
required or desirable.

When it comes to SDEs, there are different tools available, depending on the precise
details of the diffusion at hand. Roughly speaking, from the point of view of MCMC
simulation, there are three categories of SDE:

1. One-dimensional SDEs with constant diffusion coefficient and a specific drift form,
which can be simulated exactly, using the rejection sampler of [BR05, BPRF06,
BPR06].

2. SDEs with a full-rank diffusion matrix, which can be discretised with the Euler-
Maruyama method, leading to numerical approximations which admit a tractable
transition density.

3. Hypoelliptic SDEs with a rank-deficient diffusion matrix, which are generally treated
with splitting methods.

In what follows, we will largely overlook the first category, as it has only been applied
in quite a narrow context, and is not a tool for general-purpose MCMC in the same sense
as the other two approaches.

For SDEs in the second category, one approximates the flow of the SDE dx = b(x)dt+

σ(x)dW for time ∆t, started at x, by the so-called Euler-Maruyama method:

y ≈ x+ ∆t · b(x) +
√

∆t · σ(x)ξ where ξ ∼ N (0, I).

In general, the law of y will not be equal to the true law of x(∆t) under the SDE, but
for sufficiently small ∆t, it will get increasingly close. For our purposes, this is not so
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important; we do not win by approximating the SDE arbitrarily well; we win by generating
a Markov chain which converges to the desired invariant measure as quickly as possible. As
such, we take this numerical discretisation, and use it as the basis for a Metropolis-Hastings
algorithm, i.e. we define

Σ(x) = σ(x)σ(x)T

q(x→ y) = N (y|x+ ∆t · b(x),∆t · Σ(x)) ,

and use q as a proposal kernel. Note that because Σ has full rank throughout the space, q
has positive density everywhere, and so the Metropolis-Hastings ratio r(x→ y) is always
well-defined. It is thus relatively straightforward to apply these methods for use in MCMC.
They are primarily deployed in the context of simulating overdamped Langevin diffusions,
see e.g. [RT96, Per15, DM17]. There has also been work on developing multi-stage variants
of the Euler-Maruyama method (also known as Runge-Kutta methods), which are able
to increase the range of ∆t for which the integrator produces stable trajectories; see e.g.
[VPZ19]. When used without Metropolis-Hastings corrections, these methods will incur a
nonzero bias, but by increasing the range of feasible timesteps, they are able to equilibrate
much more rapidly. In this context, there are alternative approaches for handling this
induced bias (e.g. [Gil15]) which are perhaps more appropriate than Metropolis-Hastings
corrections; we will revisit this point in greater depth later on.

In the third listed class of SDEs, for which the diffusion matrix is rank-deficient, a
naive discretisation of the SDE can give rise to transition densities which are supported on
a proper subspace of the state space, which can lead to degeneracies. The most common
instance of this problem is the Underdamped Langevin diffusion, given by

dx = pdt

dp = ∇ log π(x)dt− γpdt+
√

2γdW.

In this setting, it is useful to take cues from the ODE setting, and split up the dynamics
into tractable sub-problems whose dynamics can be solved exactly. Along the same lines
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as the leapfrog integrator, we might decompose the system as

A :

dx = p dt

dp = 0 dt

B :

dx = 0 dt

dp = ∇ log π(x) dt

O :

dx = 0 dt

dp = −γp dt+
√

2γdW.

We recall from our earlier discussion that the first two systems can be solved exactly;
readers who are familiar with SDEs will recognise that the third system is also amenable
to exact treatment. This is the Ornstein-Uhlenbeck process, an autoregressive diffusion
admitting N (0, I) as its invariant measure, and whose transition densities are given
explicitly as

POU
t (p→ dp′) = N (dp′| exp(−γt)p, (1− exp(−2γt)) I)

for t > 0. In particular, the transition densities are Gaussian, and can thus be simulated
exactly. A standard symmetric splitting approach would then be to compose these exact
flows, e.g. the ‘ABOBA’ method would consist of the following moves:

1. x← x+ ∆t
2
p

2. p← p+ ∆t
2
∇ log π(x)

3. p′ ∼ POU
∆t (p→ dp′)

4. p← p+ ∆t
2
∇ log π(x)

5. x← x+ ∆t
2
p

More details on the construction and analysis of splitting schemes can be found in [LM16].
We note that there are a wide range of SDEs to which these methods are applied; we point
to [LR09, LNT09, JL11, MMW+19, CKP20] for a taste of other complex diffusions which
can be efficiently treated by splitting techniques.

For PDMPs, which are built as a hybrid of ODEs and MJPs, one has to consider
additional details. In specifying a PDMP, one prescribes i) the vector field b(x) which
the process will deterministically follow, ii) the jump rate Λ(x) which will specify when
jumps occur, and iii) the jump kernel Q(x→ dy) which specifies where the process will
jump to at these events. This combination adds an additional complication, in that the
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rates at which jumps occur are now time-varying, and so the event times now form an
inhomogeneous Poisson process.

To simulate PDMPs directly in continuous time, we must first stipulate that the
dynamics are tractable, i.e. our particle is moving under the motion of a vector field b,
such that we explicitly know the flow map corresponding to b. Provided that the event
rate at x is given by Λ(x), the probability of no events happening in the next t units of
time is given by

P(τ > t) = exp

(
−
∫ t

0

Λ(Xs)ds

)
= exp

(
−
∫ t

0

Λ(φs(X0))ds

)
,

where we recall that φs is the flow map of the vector field b for s units of time. As
such, unless we are blessed with a pair of (Λ, φ) such that the integral above can be
computed analytically, we will need to find some upper bound, i.e. some Λ̄x which satisfies
Λ̄x(t) > Λ(φt(x)) for t > 0, and whose integral can be computed and inverted quickly.
We can then use a rejection procedure akin to that used in Algorithm 18 for MJPs. We
will also need to sample from the transition kernel q(x→ y) when events do occur; this
is typically more straightforward in applications. We note also that there are certain
discrete-time Markov chains which admit interpretations as discretisations of PDMPs; see
[Gus98, VBCDD17, Mon19, PA20] for some illustrative examples.

Finally, Jump-SDEs involve all three key dynamics (drift, diffusion, and jumps), and as
a result, are particularly challenging, which has arguably limited their direct application
in the context of MCMC simulation thus far. We refer to [CR11a, Pol15, PJR16] for some
examples of how their exact simulation can be tackled in certain highly-structured, low-
dimensional scenarios, and to [PFJR16, WRS19, WPRS19] for some recent applications
of Jump SDEs (specifically, killed diffusions with regeneration) to MCMC.

Before moving onto the next stage in the workflow, it is worth touching on the variety
of inexact approaches to simulation, where the Metropolis-Hastings correction either plays
a minor role, or is cast out of the picture entirely. The appeal of these methods is that one
no longer needs to play by the rules of reversibility, exact π-invariance, and so on, any more.
One might instead take the approach that the exact dynamics would provide an exact
solution to our problem, and so we can focus our efforts on getting a good approximation
to the ideal dynamics, rather than on carefully reproducing the invariant measure. This
opens the doors to the use of more elaborate numerical integration schemes which can
deliver improved stability, accuracy, and adaptivity; see e.g. [VPZ19, LWME19, Kle20]
for some examples.

The cost is, of course, that the asymptotic exactness, for which we have otherwise
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been striving, is now gone. This is particularly upsetting from a modularity point of view:
once any of the Markov kernels involved in the overall Markov chain becomes inexact,
the chain as a whole is liable to become inexact, and it can become difficult to obtain a
full understanding of the biases induced by this inexactness. There are other approaches
to bias correction, e.g. using Stein’s method to select, prune, and reweight samples (e.g.
[LL16, CMG+18, HSR20, RCC+20]), using Multi-Level Monte Carlo methods (reviewed
with supreme clarity in [Gil15]) to reduce error (both bias and variance), reducing the
step-size over time (as in e.g. [WT11]) such that the bias diminishes, or any of a number
of other techniques. Ultimately, which of these is to be preferred will depend on the
application at hand, and the extent to which different biases are tolerable to the user.

1.4.4 Phase 4: Model Structure and Implementation Details

The previous discussions can guide us toward a theoretical algorithm which, if implemented
correctly, should be able to explore a target measure which we specify. However, there are
a number of important considerations which will affect the details of how one implements
such an algorithm, particularly with regard to the efficiency and complexity of each step.
In this section, we outline some of these considerations, with particular care to how they
arise for different families of sampler.

For a Gibbs sampler, perhaps the key consideration is to identify which blocks can
be resampled in parallel without inducing a bias. Given a subset of indices J ⊂ I such
that {xj}j∈J are separated in the relevant graphical model (an ‘independent set’, in
graph-theoretic terminology), one has that

π
(
{xj}j∈J |{xi}i∈I\J

)
=
∏
j∈J

π(xj|{xi}i∈I\J),

enabling the parallel resampling of all variables with indices in J . As such, identifying
independent sets within the graphical model allows for the application of parallel updates
within Gibbs sampling, which can reap considerable practical benefits; some perspectives on
this problem are collected in [GLGG11]. There is also a question of how to schedule these
updates (deterministic, random, synchronous, asynchronous, etc.) for which the conclusion
is currently not entirely clear; we refer again to [LWK95, LC06, RR15, HDSMR16, MM17]
for a variety of perspectives on this matter. Similar comments apply to Metropolis-within-
Gibbs samplers.

For Metropolis-type samplers, the key cost of implementation tends to be evaluations of
the target density, and functionals thereof, e.g. the gradient of the log density (the negative
of the ‘potential’, in physics parlance) is a key ingredient of MALA, HMC and other
algorithms. While historically, users have coded up these gradients by hand, it has become
increasingly common (and efficient) to outsource gradient computations to automatic
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differentiation packages; two popular modern such packages are Tensorflow [AAB+15] and
JAX [BFH+20]. An additional consideration is that these potentials are often formed
as the sum of many simpler terms (this is particularly true in Bayesian inference and
statistical physics), and so it can be beneficial to distribute the computation of these
individual terms and their gradients as well; tools like CasADi [AGH+19] (developed in the
context of optimal control) are noted to be particularly well-adapted to such challenges.

For MJPs, it is often the case that jump times and jump locations are decoupled;
when appropriate, it can be useful to distribute these computations. For MJPs on discrete
spaces, computing the total jump rate out of a given state x involves calculating the sum
of the jump rates between x and its neighbours y; this is again possible to distribute. For
ODEs and SDEs, there are few additional considerations, aside from how to efficiently
compute the relevant gradients.

For PDMPs, the chief computational difficulty arises in computing the jump times,
which occur according to an inhomogeneous Poisson process. As such, to be simulated
exactly, one typically needs to identify some analytically-tractable upper bound to the
event rate, which is difficult to automate, as any such bounds must hold globally. When
the target measure is in some sense decomposable (e.g. factorises according to a graphical
model), and each component is log-concave (or otherwise structured), this can be more
manageable. A fully black-box implementation of any existing PDMP seems challenging
at present.

Finally, there are certain model-specific challenges which can arise, essentially corre-
sponding to when certain parts of the system are fast to compute, and other parts are more
expensive. Standard examples include Uncertainty Quantification in Inverse Problems
[Stu10, DS17], where evaluating the likelihood often involves the (expensive) numerical
solution of a Partial Differential Equation, or in Approximate Bayesian Computation (ABC,
[BZB02]), where likelihood access comes purely through the form of simulations from the
forward model, which are again often expensive. In these situations, it is instructive to i)
use computational resources to accelerate the expensive sub-routines of the algorithm as
best possible, and ii) avoid calls to these expensive components where unnecessary. See
e.g. [CF05, EHL06, Pra16, PB20] for some approaches to this problem.

1.4.5 Phase 5: Tuning and Refinement of MCMC Algorithms

Once the structure of the implementation of an MCMC algorithm is decided, there will
still typically be a number of free parameters to be set in the algorithm, which we will
collectively denote by θ. While it will often be the case that the algorithm retains its
theoretical guarantees irrespective of the value of θ, the practical performance of an MCMC
algorithm will often depend heavily on their setting.

A key first step is to identify which parameters θ remain free (at a suitable level of
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abstraction), and to understand which aspects of the algorithm’s performance they will
influence. For example, a step-size parameter in a Metropolis-Hastings scheme typically
induces a fairly transparent trade-off: small step-sizes will correspond to high acceptance
rates, but slow exploration, whereas large step-sizes will accelerate the motion of the chain
when moves are accepted, but these acceptances will become less frequent. By contrast,
some free parameters will qualitatively change the pathwise behaviour of the chain; for
example, the choice of diffusion matrix in an SDE will induce a certain geometry on
the target space, analogously to the role of preconditioning in deterministic numerical
computation.

Once the free parameters θ are identified and understood, it is natural to seek an
‘optimal’ setting of these parameters. To this end, the next step is usually to fix a working
definition of what optimality might mean, derived either from some theoretical considera-
tion, or from a tractable heuristic. Note that this is not always entirely straightforward.
In reality, the key quantity which we are seeking to optimise is usually the speed at which
the Markov chain converges to equilibrium, which i) can be hard to reliably estimate, and
ii) can be even harder to use within an optimisation loop.

In practice, for efficient and robust adaptation of free parameters in MCMC algorithms,
it is typically necessary to formalise the adaptation task in the form

optimise L(θ) over θ ∈ Θ or

solve H(θ) = 0 for θ ∈ Θ,

where L or H can be estimated directly from a run of the algorithm. In the optimisation
setting, it is typically also necessary that the gradient of L with respect to θ can be
estimated, though there some situations in which this requirement can be relaxed. The
reasoning is clear: one needs some way of approximately measuring how close to optimal
we are, and some information which can help us to update θ in the right direction. Specific
choices of objectives will be discussed in later sections.

An important choice is how one adjusts these parameters in practice. If the parameters
vary over the course of the algorithm, the Markov process in question is now time-
inhomogeneous, which means that many of the theoretical aspects underpinning the
MCMC approach do not necessarily continue to hold as-is. As such, a safe approach is
to run the algorithm for some fixed amount of time, use the information from that run
to set the parameters, and then fix those parameters for the remainder of the run. The
remainder will then be a time-homogeneous Markov process, and standard theoretical
considerations will apply.

A bolder approach is to simply continue adjusting parameters dynamically over the run
of the chain. When done with appropriate care (see e.g. [AT08, RR09] for specifics), this
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can be highly efficient, without sacrificing the theoretical properties of the original chain.
This is conceptually appealing, in the sense that you might hope to eventually converge to
the ‘true’ optimal parameter in some limit, leading to an optimal Markov process. This
is the realm of adaptive algorithms, where the algorithm uses information accumulated
over the course of its run to tune itself, allowing for performance which is comparable to
having known and used the true optimal parameters, right from the start.††

We conclude by making some more general comments relating to the implementation
and tuning of several common sampler types, as well as to their interplay with different
model types.

To begin with, Gibbs samplers typically require few decisions to be made, so are quick
to get up and running (as algorithms); the same cannot necessarily be said for their mixing
behaviour, which can be quite poor when the variables are highly correlated. One also
tends not to have many options when a Gibbs sampler goes wrong; occasionally a change
of parametrisation will help things (see e.g. [GSC95, Pap03, PRS07, YM11, PRZ20] for
useful examples), but there are not too many other options for improving the mixing of a
Gibbs sampler, aside from switching to a different method.

Metropolis-Hastings algorithms with uninformed random walk proposals also typically
require few user choices to be made. There is the step-size, and then perhaps the
covariance matrix of the randomness as well. See [HST99, HST01, HST05, Vih12] for
some adaptation strategies which apply in this context. Of course, even well-optimised
random-walk proposals can only incorporate limited information about the target, and so
the mixing of the chains can struggle as the complexity of the target grows.

For Metropolis-Hastings algorithms with proposals derived from ODEs and SDEs,
there is usually a bit more work required in order to get the algorithm up and running.
One needs to choose a discretisation scheme, and determine how to properly correct for
discretisation error. As in the case of RWMH, there is typically also some freedom in
choosing the step-size and a preconditioning matrix of some flavour. Note that in contrast
to RWMH, the behaviour of such chains in the transient and stationary phase of the
algorithm can be quite distinct (see e.g. [CRR05, KOS18, KOS19] for discussion on this
point), as the use of gradient information allows the chain to move more aggressively in
the tails. While broadly beneficial for mixing behaviour, it is worth commenting that this
can complicate tuning. However, broadly speaking, one should expect these approaches
to mix more rapidly, as the motion of the chain is well-informed by gradient information
about the target density, allowing for a systematic exploration of the target.

PDMPs are a middle ground in terms of decisions and complexity. Typically, there
††We note that ‘adaptive’ is often used somewhat loosely to denote an algorithm which tunes its own

parameters over the course of its run, without comment on (approximate) optimality of the resulting
algorithm. See Section 4.3 of [Ora19] for some interesting comments on the semantic drift of this
terminology over recent years.
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are few free parameters to be set (this is arguably a more general virtue of working in
continuous time), but the ‘exact’ parts of the process are more challenging to implement.
In particular, computing event times requires the simulation of an inhomogeneous Poisson
process, which requires explicit and tractable upper bounds on the event rate. This
typically means more work for the user, as these bounds must (at present) be derived on a
case-by-case basis. Once these algorithms are up and running, their mixing behaviour is
relatively satisfactory; present consensus seems to be that they clearly out-perform methods
like Gibbs sampling and Random Walk Metropolis-Hastings, and can be competitive with
MALA and HMC, depending on the target measure.

For highly-structured, modular models, Gibbs sampling is naturally able to use this
structure to its advantage, particularly when parallel computing is an option. When
the mixing of Gibbs sampling is unsatisfactory, but one prefers not to switch directly to
MALA or HMC, one can try middle-ground solutions like MALA-within-Gibbs and HMC-
within-Gibbs, for which the benefits of structure can still be useful (see [Béd17, TMM20]
for additional discussion). The Local Bouncy Particle Sampler of [BCVD18] shows some
promise of potentially getting the best of both worlds here, for reasons which will be
expanded upon in greater detail in subsequent sections.

For models in which the target is in some sense intractable (Pseudo-Marginal, Doubly-
Intractable, ABC, Expensive Likelihood, ‘Big Data’ Problems, etc.), much of the difficulty
arises in getting to a stage where it is possible for the chain to admit the correct invariant
measure. It is possible to use more advanced proposal schemes in these settings (as in e.g.
[ADL16, GS17, SBF18]), but it is fair to say that much of the foundational work thus far
has focused on making any form of MCMC feasible for these models. This is of course
changing gradually.
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1.5 Roadmap

The preceding review first sought to outline why stochastic modelling is valuable, and why
exploring stochastic models via simulation is a useful tool. Subsequently, we introduced
several general simulation-based methods for exploring probability measures, before zoom-
ing in on Markov Process-based solutions to this problem. Restricting our attention to this
approach, we then proceeded to outline a high-level workflow for constructing practical
Markov process-based algorithms which will correctly sample from a given target measure,
and how they can be made efficient.

This discussion notwithstanding, the general problem of designing efficient MCMC
algorithms for a given probability measure is far from solved. There remain classes of
models whose structure is challenging to exploit, interesting proposal mechanisms with
poorly-understood behaviour, and challenges in how to optimally deploy computational
resources. As such, there remains a persistent need for mathematical tools and techniques
with which to address these gaps.

In this dissertation, we present three pieces of original work, targeted at expanding our
understanding of the design and analysis of MCMC algorithms.

1. In Chapter 2, we study the application of Piecewise-Deterministic Markov Processes
(PDMPs) to Markov chain-based simulation. PDMPs are a non-reversible, continuous-
time family of Markov processes, and as such, stand in stark contrast to the ambient
paradigm of reversible, discrete-time Markov chains, built on the foundations of
Gibbs sampling and the Metropolis-Hastings algorithm. Some applications of PDMPs
to Monte Carlo simulation have already shown promise, and although accompanying
theory has made rapid progress in recent years, there remain a number of unanswered
questions in the area. In this work, we study the versatility of PDMPs, with a
focus on characterising how one can adapt the methodology underpinning existing
samplers (e.g. the Bouncy Particle Sampler of [BCVD18], the Zig-Zag Process of
[BFR19], the Coordinate Sampler of [WR20], etc.) to PDMPs which are driven by
more general classes of vector fields. Attention is also paid to how such novel PDMPs
can be designed to respect the modular structure which arises in many applications.

2. In Chapter 3, we continue on the theme of non-reversible sampling in continuous time,
but with a focus on sampling from measures which are supported on discrete spaces.
Such tasks are widespread across MCMC, and have a (perhaps unfair) reputation
for requiring bespoke, model-specific algorithmic solutions. We contend that this
need not be the case, and present a framework for constructing useful discrete
samplers, which sample in continuous time and apply under quite general conditions.
Moreover, we derive novel non-reversible discrete samplers, which outperform their
reversible counterparts in practice. A key ingredient of the construction is to highlight
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exploitable symmetry structures which recur across a range of practical discrete
sampling tasks. Focusing on this common ground allows us to democratise the
landscape of discrete sampling, enabling the simple application of efficient general-
purpose samplers to generic problems on discrete spaces.

3. In Chapter 4, we devote our attention to the theoretical study of parallelism-enhanced
MCMC algorithms, and to clarifying how parallel computing resources ought to
be exploited in the context of sampling. The main contribution is to study a
simple parallel version of the Metropolis-Hastings algorithm, and characterise its
asymptotic efficiency via the ‘Optimal Scaling ’ paradigm of Roberts and coauthors
(e.g. [RGG97, RR98, RR01, BPR+13]. Our theoretical results provide predictions
and guidance for how much of an efficiency gain should be expected for a given
number of processors, which are in excellent agreement with our experimental study.
These results provide concrete recommendations for the MCMC practitioner, and
suggest a pathway towards the further theoretical study of other parallelism-enhanced
MCMC algorithms.

Due to the key role played in both Chapter 1 and 2 by non-reversibility and continuous-
time Markov processes, we will first provide a review of these topics, with a focus on their
role in simulation-based exploration of probability measures. We then present the three
main works in the order outlined above.
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1.6 Interlude: Continuous-Time and

Non-Reversible Sampling

In this section, we revisit the genesis of Markov process-based sampling algorithms in
the discrete-time, reversible paradigm, and explore why this paradigm predominated
for so long, why alternatives are worth considering in principle, what has enabled these
alternatives to become practical in recent years, and which challenges remain.

1.6.1 Reversibility: Why?

To recapitulate, a Markov kernel K is reversible with respect to the measure π if

π(x)K(x→ y) = π(y)K(y → x)

as measures. We initially motivated this condition as a tractable approach to constructing
Markov processes which admit π as an invariant measure, where the tractability stems
from the local nature of the condition. Moreover, two key building blocks of MCMC
algorithms — the Gibbs sampler, and the Metropolis-Hastings filter — are reversible, and
are easy to work with precisely because of this property. One result of this is that, to the
sampling community at large, reversible algorithms are perceived as safe and familiar.

An additional contributing factor to the prevalence of reversible Markov processes
in the MCMC literature is that they possess particularly nice analytical properties. In
particular, defining the generator of a discrete-time Markov chain as

(LKf) (x) =

∫
K(x→ y) [f(y)− f(x)] dy,

one can show that π-reversibility of K is equivalent to the self-adjointness of LK as an
operator on L2(π). The same connection holds true for continuous-time reversible Markov
processes.

As a result of this connection, a number of functional-analytic tools become available for
studying reversible Markov chains, many of which stem from spectral theory. This simplicity
can be viewed as a higher-level analog of the phenomenon that symmetric matrices can be
diagonalised with respect to an orthogonal basis, and are thus often more mathematically
convenient to work with than general matrices. As such, a key convenience of reversible
Markov processes is that they provide the theorist with a well-studied collection of tools
for understanding their behaviour.
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1.6.2 Reversibility: Why Not?

One simple if uninspiring reason to consider non-reversible Markov processes (for any
task) is that they are a broader class of processes. A more convincing answer comes from
considering the qualitative properties of reversible and non-reversible chains respectively.
Examining the condition for reversibility, one notes that when the process has converged
to stationarity, given any pair of states (x, y), one is equally likely to see a transition from
x to y as from y to x, over any period of time. This suggests that the chain lacks a sense
of direction, and that one might expect to observe backtracking behaviour. This is indeed
borne out in practice.

To design Markov chains with improved mixing behaviour, it thus seems sensible to
imbue them with some sense of directionality, such that the chain can systematically
circulate around the state space, while also undergoing stochastic exploration. A priori,
it is perhaps not clear that this is possible to do properly, or that it will yield nontrivial
practical improvements. Fortunately, work in recent years has convincingly exhibited that
it is both possible and worthwhile to study such non-reversible chains. Here, we will work
through some examples of how this can be accomplished, in the hopes that it exposes the
underlying principles of how one constructs non-reversible MCMC algorithms.

1.6.3 Non-Reversibility: How?

We begin by considering a simple example of a reversible MCMC algorithm, namely the
ubiquitous Random-Walk Metropolis-Hastings algorithm. Fix a step-size h > 0, and
consider the Metropolis-Hastings algorithm with proposal q(x→ y) = N (y|x, hI), with
steps as in Algorithm 19. We note explicitly that this algorithm generates a π-reversible
Markov chain.

Algorithm 19 Random Walk Metropolis-Hastings Update for π, with step-size h

1. At x, propose a move to y ∼ N (y|x, hI).

2. Compute r(x→ y) = π(y)/π(x).

3. Sample u ∼ U [0, 1].

4. If u < r, output y; otherwise, output x.

The standard description of this algorithm is that from x, a new location y is proposed,
and then either accepted or rejected. However, one can reframe the algorithm as proposing
a direction v = y − x, and then either taking a step in that direction, or not. Consider
now the joint distribution Π(x, v) = π(x) · N (v|0, hI), and the deterministic proposal
T : (x, v) 7→ (x + v,−v). Note that T is both volume-preserving and an involution, i.e.
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(T ◦ T ) (x, v) = (x, v). One can then rewrite Algorithm 19 as a Metropolis-within-Gibbs
chain, with Π as its invariant measure, as in Algorithm 20.

Algorithm 20 Random Walk Metropolis-Hastings Update for π, with step-size h

1. At (x, v), resample v ∼ N (v|0, hI).

2. Propose a move to (y, w) = T (x, v)

3. Compute r((x, v)→ (y, w)) = π(y)/π(x).

4. Sample u ∼ U [0, 1].

5. If u < r, output (y, w); otherwise, output (x, v).

A key conceptual difference here is that we are now explicitly keeping track of the
‘direction’ variable v. The benefit of this approach is that we can thus seek to modify the
algorithm in a way which encourages persistent behaviour in a given direction, rather than
picking a completely random new direction at each step.

Note that if we omit step 1 in Algorithm 20, the direction is reversed after a successful
move. This is perhaps counter-productive, as we would hope that continuing to move in
an accepted direction would be fruitful. We can thus add in an additional deterministic
‘flip’ move to negate this behaviour, giving rise to the non-reversible Algorithm 21.

Algorithm 21 Non-Reversible Random Walk Metropolis-Hastings Update for π, with
step-size h

1. At (x, v), propose a move to (y, w) = T (x, v)

2. Compute r((x, v)→ (y, w)) = π(y)/π(x).

3. Sample u ∼ U [0, 1].

4. If u < r, output (y, w); otherwise, output (x, v).

5. Set v = −v.

In this setting, when we accept a move, we try to continue moving in the same direction,
whereas if we reject a move, we instead reverse our direction and attempt to retrace our
steps. A shortcoming of this approach is that the chain now becomes reducible, only
moving back and forth along the line in direction v. A simple modification is to include
a ‘gentle refreshment of the direction’, whereby v is blended with independent Gaussian
noise at each step, as in Algorithm 22.

A similar algorithm is proposed in [Gus98]; see also [Bie16, Mai18] for some related
constructions. Some analysis of this class of algorithms is provided in [DHN00, Hil00],

70



Algorithm 22 Non-Reversible Random Walk Metropolis-Hastings Update for π, with
step-size h, refreshment parameter θ

1. At (x, v), propose a move to (y, w) = T (x, v)

2. Compute r((x, v)→ (y, w)) = π(y)/π(x).

3. Sample u ∼ U [0, 1].

4. If u < r, output (y, w); otherwise, output (x, v).

5. Set v ← −v.

6. Sample ξ ∼ N (ξ|0, hI), and set v ← cos θ · v + sin θ · ξ.

showing that their convergence behaviour can be considerably better than the original
reversible algorithm in appropriate limiting regimes. A particularly illustrative result in
[DHN00] establishes that when considering Markov chains on the set {1, 2, . . . , N}, the
natural reversible Markov chain takes Õ(N2) time to converge to equilibrium, whereas
the corresponding non-reversible chain takes only Õ(N). This gap between ‘diffusive’ and
‘ballistic’ scaling of mixing times is emblematic of what one hopes to gain when introducing
non-reversibility.

While this is a simple example, it is nevertheless fairly illustrative of how many non-
reversible MCMC algorithms are constructed. One first introduces some auxiliary variables
which encode the ‘directionality’ of the proposals in some way, then rewrites the dynamics
of the chain in terms of these extended variables, and finally modifies the dynamics such
that the chain can follow a given direction in a coherent manner.

A second example begins by observing a specific Markov kernel which leaves a given
distribution invariant, without being reversible, and then building from there. To be more
specific, define the measure π, supported on R+, by

π0(dx) = exp(−x)dx for x > 0,

i.e. an exponential distribution of unit rate. Now, let h > 0, and consider the Markov
kernel f(x → y) which is generated by i) sampling z ∼ Exp(h), and then ii) setting
y = (1 + h) ·min(x, z). One can compute an expression for this kernel as

f(x→ y) = exp(−hx) · δ ((1 + h)x, dy)

+ (1− exp(−hx)) ·

(
h

1+h
exp

(
− h

1+h
y
)
· I [0 < y < (1 + h)x]

1− exp(−hx)

)
dy,

and moreover, one can verify that f leaves π0 invariant. However, it is clear that it cannot
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be π0-reversible; for small x, the chain essentially drifts deterministically to the right,
and for large x, the chain jumps approximately-uniformly into the area to its left. This
behaviour is clearly distinct from its time reversal‡‡, which we can compute explicitly as

b(x→ y) =
1

1 + h
· δ
(

x

1 + h
, dy

)
+

h

1 + h
· exp

(
−
{
y − x

1 + h

})
· I
[
y >

x

1 + h

]
dy,

i.e. shrink x by a factor of (1 + h), and then with probability h
1+h

, sample z ∼ Exp(1) and
then add it to the previous value.

Now, one could attempt to use either of f or b in isolation to build a Metropolis–
Hastings algorithm for sampling from distributions on R+, which are close in law to π0,
e.g. π(x) = π0(x)`(x), where ` is a slowly-varying term. While this is conceptually sound,
if implemented naively, this will generally not be an effective strategy. The central issue
is that by using only one of these two proposals, one will often propose moves from x to
y such that the corresponding move from y to x has zero probability, thus leading to an
acceptance rate of 0.

A solution is to consider both proposals at once. Write q(x→ y; +1) = f(x→ y), q(x→
y;−1) = b(x→ y), and consider sampling from the target Π(x, τ) = π(x)R(τ), where as
before, R(τ) is the uniform or ‘Rademacher’ distribution on τ ∈ {±1}. One can then
define a ‘Forward-Backward’ Metropolis-Hastings Markov chain, using Algorithm 23.

Algorithm 23 Reversible Forward-Backward Metropolis-Hastings for π = π0(x)`(x), with
step-size h

1. At (x, τ), sample y ∼ q(x→ y; τ), and propose a move to (y,−τ).

2. Compute r((x, τ)→ (y,−τ)) = `(y)/`(x).

3. Sample u ∼ U [0, 1].

4. If u < r, output (y,−τ); otherwise, output (x, τ).

Note that because the proposal kernels are in balance with respect to the base measure
π0, the acceptance ratio simplifies to only involving the function `. This is a recurrent
feature for proposals which are designed with the prior in mind. Our initial construction
again generates a reversible chain, but naturally suggests a means for inducing non-
reversibility; namely, deterministically flipping τ at the end of each step. This gives rise to
Algorithm 24, which is now genuinely non-reversible, and will naturally exhibit persistent
behaviour in line with this.

This illustrates a second useful principle for designing non-reversible MCMC algorithms:
if one is considering some ideal dynamics which leave π invariant, but are not π-reversible,
‡‡Defined by π0(x)f(x→ y) = π0(y)b(y → x).
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Algorithm 24 Non-Reversible Forward-Backward Metropolis-Hastings for π = π0(x)`(x),
with step-size h

1. At (x, τ), sample y ∼ q(x→ y; τ), and propose a move to (y,−τ).

2. Compute r((x, τ)→ (y,−τ)) = `(y)/`(x).

3. Sample u ∼ U [0, 1].

4. If u < r, output (y,−τ); otherwise, output (x, τ).

5. Flip τ ← −τ .

then it is instructive to study the time-reversal of those dynamics, and stitch them together
with the original dynamics in some fashion. We will see further examples of this principle
in later chapters.

A final, more advanced example of a non-reversible MCMC algorithm which stems from
perturbing an existing, reversible algorithm is the ‘non-reversible overdamped Langevin
diffusion’ (see e.g. [HHMS93, HHMS05, LNP13, RBS15]). By the results of [MCF15,
MFCW19], one can show that for any skew-symmetric matrix J , the following diffusion
admits π as an invariant measure

dx = (I + J)∇ log π(x)dt+
√

2dW. (1.8)

For J = 0, one recovers the usual (π-reversible) overdamped Langevin diffusion; for
J 6= 0, the diffusion is non-reversible, but still admits π as an invariant measure. In
particular, taking the time-reversal of this diffusion corresponds to replacing J by −J .
Theoretical results demonstrate that in continuous time, relative to taking J = 0, this can
either improve convergence rates, reduce asymptotic variance, or both (see e.g. [HHMS93,
HHMS05, LNP13]. Crucially, it never worsens either aspect.

There is thus a challenge: the ideal, continuous-time process is not π-reversible, but if
we are to discretise this diffusion, and naively use it as a proposal within a Metropolis-
Hastings algorithm, then the resulting Markov chain will be π-reversible. We are essentially
coercing a proposal which is not π-reversible (even approximately) to be so, and one might
expect this to cause problems.

To be more precise, for h > 0, write

q(x→ y; J) = N (y|x+ h(I + J)∇ log π(x), 2hI).
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Then, when J = 0, one has that

log
π(y)q(y → x; J)

π(x)q(x→ y; J)
� h3

whereas when J 6= 0, instead

log
π(y)q(y → x; J)

π(x)q(x→ y; J)
� h,

i.e. compared to the original MALA, we should expect to observe worse acceptance rates
when using a comparable step-size, even though our numerical integrator is ‘as good’ as
before. This is perhaps a concerning disparity.

A preferable approach is to note that the time-reversal of the diffusion in Equation 1.8
has the same form, but with J negated. With this in mind, one can compute that

log
π(y)q(y → x;−J)

π(x)q(x→ y; J)
� h3.

That is, although the non-reversible diffusion proposals fail to be in detailed balance with
respect to π, there is a sort of ‘skew-detailed balance’ at play between this pair of proposals.
This is a notion which will show itself to be a key ingredient of non-reversible MCMC in
subsequent chapters.

The utility of this observation is that it encourages us to extend our state-space to
include a variable which dictates whether to use J or −J for our proposal. Let R(τ) again
be the Rademacher distribution on τ ∈ {±1}. We can then define our extended target
measure as Π(x, τ) = π(x)R(τ), and construct a reversible Metropolis-Hastings chain
according to Algorithm 25.

Algorithm 25 Non-Reversible Diffusion Proposal, Reversible Metropolis-Hastings Update
for π, with step-size h

1. At (x, τ), sample y ∼ q(x→ y; τJ), and propose a move to (y,−τ).

2. Compute r((x, τ)→ (y,−τ)) = π(y)q(y→x;−τJ)
π(x)q(x→y;τJ)

.

3. Sample u ∼ U [0, 1].

4. If u < r, output (y,−τ); otherwise, output (x, τ).

Of course, we are in some sense back where we started: even though we have reasonable
acceptance rates again, we are still generating a reversible Markov chain! Our dynamics
will not see the benefit of the fleeting non-reversibility of the proposals either; if we accept
a move, then we flip τ , and begin moving according to the opposite dynamics again.
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Fortunately, there is a simple fix to this: at the end of each step, deterministically flip τ .
This will give rise to Algorithm 26, generating a genuinely non-reversible Markov chain,
still with Π as its invariant measure, but now with the persistent non-reversible dynamics
we were initially hoping for. We note also that a related construction can be applied
to the underdamped Langevin diffusion, as in [DNP17]. Note that this is non-obvious;
the underdamped Langevin diffusion is already non-reversible, and so the construction is
non-trivial in that it makes the dynamics ‘even more’ non-reversible, in a certain sense.

Algorithm 26 Non-Reversible MALA Update for π, with step-size h, skew-symmetric
matrix J

1. At (x, τ), sample y ∼ q(x→ y; τJ), and propose a move to (y,−τ).

2. Compute r((x, τ)→ (y,−τ)) = π(y)q(y→x;−τJ)
π(x)q(x→y;τJ)

.

3. Sample u ∼ U [0, 1].

4. If u < r, output (y,−τ); otherwise, output (x, τ).

5. Flip τ ← −τ .

A desired outcome of this sub-section is to have demonstrated some recurrent common
features of useful non-reversible Markov chains as a primer towards more advanced
applications in subsequent chapters.

1.6.4 Limitations of Non-Reversibility

Having established that the systematic construction of non-reversible MCMC algorithms
is within reach, it is worth setting some reasonable expectations about what these new
methods are able to bring us, and what they are not. What is well-established by now
is that non-reversible methods are able to provide improved rates of convergence to
equilibrium, and reduced asymptotic variance for estimates of expectations under the
stationary measure. A slightly subtle question concerns whether the mixing behaviour
is most improved in the transient phase of the chain, or once it has already converged
to stationarity; see [VM20] for discussion on this point. One might also ask whether
non-reversibility allows the resulting chain to overcome multimodality; this is true up to
a point (see e.g. [GGZ18] for some results to this effect), but not arbitrarily; ultimately,
Markov processes undergoing local exploration will struggle to overcome steep potential
barriers. A final question might ask whether non-reversibility can confer an algorithm with
additional robustness to high-dimensionality. At present, the answer appears to be no;
robustness to dimension seems to generally be a function of how accurately the underlying
stochastic process can be simulated, and this is not immediately impacted by modifying
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the dynamics to be non-reversible§§.
An interesting theoretical aspect of non-reversible Markov processes is that they often

require new techniques. In particular, a generic strategy for establishing the convergence
to equilibrium of a Markov process is to show that some ‘divergence measure’ between
the law of the process at time t, denoted by µt, and the invariant measure of the process,
denoted by π, tends to 0 as t grows, i.e. D(t) = D(µt, π)→ 0 as t→∞. For reversible
processes, it is often the case that D′(t) 6 0, i.e. the process monotonically dissipates the
divergence between the current law and the equilibrium measure, always growing closer to
its target. With extra work, one then aims to show that D(t) will in fact decrease all the
way to 0. For non-reversible processes, this approach will not generally work directly; even
if D(t) is ultimately tending towards 0 - perhaps even at an asymptotically faster rate
than its reversible counterpart - it will often be the case that, at least for small values of t,
the divergence will actually increase. This counterintuitive phenomenon has necessitated
novel techniques, involving the construction of non-standard divergence functions (e.g.
[DMS15, DPBCD18, ADNR18]), time-averaging approaches (e.g. [CLW19]), reflective
couplings (e.g. [BREZ18, EGZ19]), and more. It is perhaps fair to say that a unified
theory for establishing the convergence of non-reversible Markov processes to equilibrium
does not yet exist in the same way that it arguably does for reversible processes. The
onslaught of new results in this area over recent years gives the author hope that a clearer
theoretical picture is not too far over the horizon.

There are also some high-level questions about non-reversible MCMC algorithms which
remain at least partially open. When does non-reversibility help most? When is it worth
trying? Does it ever make things worse? Is there a systematic and optimal way of ‘de-
reversibilising’ reversible MCMC algorithms? Should one tune non-reversible algorithms
with the same policies with which one tunes reversible algorithms? Intuition for these
problems is still in its genesis, without even speaking of a full theoretical resolution.

1.6.5 Discrete-Time: Why?

Discrete-time MCMC algorithms have been preferred historically partially due to their
ease of implementation; conceptually, a discrete-time algorithm is usually easier to gain
an intuition for, and the abstract algorithm corresponds fairly directly to the practical
algorithm which one programs on a computer. More concretely, the natural implementation
of both the Gibbs sampler and the Metropolis-Hastings algorithm takes place in discrete
time. While these algorithms can in principle be embedded into continuous time, this
approach has borne limited fruit in terms of practical improvements thus far. As such,

§§However, it is worth noting that several non-reversible MCMC schemes admit smoother sample paths
than ‘related’ reversible schemes. This can make them easier to simulate more accurately in some respects;
see [MMW+19, CKP20] for some examples to this effect.
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discrete time has very much been the status quo for some time now. We point to [CRR03]
for some early discussion on the use of continuous-time samplers in the context of trans-
dimensional targets, i.e. models whose components lie in a space of varying dimension.

1.6.6 Discrete-Time: Why Not?

If discrete-time Markov processes are natural to consider because they typically reflect
how an algorithm is implemented in practice, then continuous-time Markov processes are
natural to consider because they often reflect some idealisation of the algorithm at hand,
and can thus serve as a means of building intuition for how the discrete chain will behave.
It is often the case that the convergence behaviour of a discrete-time Markov chain can be
grappled with by first analysing the behaviour of the continuous-time analogue (which
is usually simpler, due to the absence of numerical errors and discrete events), and then
subsequently realising the discrete chain as an approximation to the continuous chain,
tracking the approximation errors appropriately, and ultimately unraveling this story to
deduce the behaviour of the original chain.

1.6.7 Limitations and Challenges of Continuous-Time

Of course, the preceding discussion essentially views continuous-time processes as pure
idealisation. This erasure skips over the reality that, in fact, there do exist nontrivial, useful,
continuous-time Markov processes which can be simulated without incurring discretisation
error. Moreover, in addition to the theoretical and conceptual appeal of working directly
in continuous time, there is often also a further practical benefit: if no discretisation needs
to occur, then there are fewer algorithmic choices (step-size, numerical integration scheme,
etc.) upon which the user needs to decide upon. As such, it is worth considering whether
continuous-time Markov processes can actually be used practically for the exploration of
probability measures.

To begin with, it is worth emphasising there is no free lunch. If we want our algorithm
to use fast-mixing dynamics, to converge to the desired invariant measure, and to be
exactly-implementable all at once, then the class of available algorithms is inevitably
somewhat narrow. Moreover, even when we can achieve all of these features in principle, it
might be computationally expensive or require substantial user input to do so in practice. A
specific aspect of this which often arises is that for the exact simulation of continuous-time
processes, one often requires some form of non-local information, e.g. bounds on some
function related to the process dynamics. When such information is readily available, then
it is rewarding to be able to exploit it algorithmically, but it should be acknowledged that
acquiring such information can a priori be quite challenging.

To make this somewhat more concrete, consider the classes of process we described
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in Section 1.4 of this chapter. Exact simulation of ODEs is rarely possible, and when
possible, is even more rarely ergodic for the target measure. Exact simulation of SDEs
is essentially only practical in low dimension, and existing methods require that both of
(log π,∇ log π) can be explicitly bounded globally, which severely limits their applicability
to practical problems. Similar comments apply to Jump-SDEs and Levy SDEs, though
usually with additional, more severe complications.

This leaves us with MJPs and PDMPs. MJPs are particularly friendly creatures in
the context of continuous-time simulation, as although they evolve directly in continuous
time, they only actually move around at discrete instances in time. When situated at a
location x, one only needs to calculate the jump rates to possible neighbours, which is a
local procedure.

The situation with PDMPs is slightly more complicated. As with ODEs, when
considering only dynamics which can be simulated exactly, there is a relatively limited
range of interesting options available. Notably, in contrast to ODEs, one can generally
build ergodic Markov processes out of PDMPs, and these can be made to converge to
equilibrium relatively quickly. A slightly upsetting limitation remains, in that constructing
an ODE which is both i) possible to simulate exactly and ii) capable of using information
about the target distribution to productively guide its exploration, is usually not possible
for interesting targets. Nevertheless, even fairly uninformed dynamics (e.g. straight lines,
as in [BCVD18, BFR19, WR20] and elliptical orbits, as in [VBCDD17]) can be used as a
basis for constructing efficient PDMP-based sampling algorithms.

Computationally, a key challenge of simulating PDMPs arises from the need to control
the rate at which events occur, which takes place according to an inhomogeneous Poisson
process with state-dependent event rate λ(t) = Λ(Xt). In order to simulate these events,
one needs to be able to invert the mapping t 7→

∫ t
0
λ(s)ds, or an appropriate upper bound

thereof. The difficulty is thus twofold: one needs analytic control of i) how the event rate
depends on the position, via Λ(x), ii) how the position X depends on time t, via the flow
of the ODE, and iii) how the two intertwine, i.e. how the composite λ(t) = Λ(Xt) behaves
over time. Depending on how structured Λ(x) and Xt are, this task of finding appropriate
bounds can be quite challenging. One common scenario is that Λ is naturally expressed as
a sum of many terms. Even when each term can be bounded reasonably tightly, it will
often be the case that aggregating individual bounds into a bound on the sum will lead to
looseness. Typically this will manifest in the form of the resulting algorithm ‘expecting’ an
event to happen sooner than is necessary, thus wasting computational time, and slowing
the progress of the algorithm.

As ever, there is a tension between what we would like to be able to do, and what we
are able to do efficiently in practice. When considering the allure of exact continuous-
time simulation for exploration of probability measures on continuous space, PDMPs
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currently seem to represent the most promising option. It is not yet possible to apply them
automatically (relative to e.g. Metropolis-Hastings- or Gibbs sampling-type techniques),
but gradually, model structures are being identified which are both widespread, and able
to accommodate such automation, to some extent.

In closing, the adoption of both non-reversible and continuous-time sampling techniques
seems to have initially been held at bay by virtue of their deviation from techniques with
which the community is more familiar, with Metropolis-Hastings and Gibbs-type algorithms
in particular representing the status quo. These novel classes of samplers are, in various
ways, at odds with this traditional paradigm, which has lent them the impression of being
harder to work with. Perhaps the key insight of the advances in these areas over recent
years has been that although ‘generic’ non-reversible and continuous-time samplers might
be intractable in some form, we are seldom working with generic processes. In contrast,
practical sampling methods are highly-structured, regardless of the particular paradigm,
due to the far-from-arbitrary nature of algorithm design. As such, it seems misleading to
describe an entire class of processes as being ‘intractable’ or otherwise; the real marker of
utility will be whether or not the class in question contains specific structured instances
which can be handled naturally.

In the specific context of harnessing non-reversibility for MCMC sampling, the key sub-
structure which renders them tractable is that they are often expressible as a composition
of reversible parts which complement one another in a specific way. The usual recipe
is i) a Markov kernel K which, when applied in isolation, would generate a proper π-
reversible, ergodic Markov chain, ii) a highly-degenerate Markov kernel F , which although
π-reversible, would generally produce a chain with some mixture of reducibility, periodicity,
or other ergodicity-breaking behaviour, and iii) an interplay between K and F which, in
some way, encourages the chain to move into new parts of the state space, rather than
back-tracking into already-explored areas. In most examples of which the author is aware,
F will typically involve some sort of flip-based symmetry, which can usually be interpreted
as a time-reversal operator of sorts. It would be interesting to identify other symmetries
which can be used to systematically generate non-reversible chains with useful properties.

With respect to the application of continuous-time processes to sampling, the essential
observation has been that trying to reproduce generic continuous-time dynamics exactly
will be challenging in most cases, but that a rich class of dynamics can be induced by
considering simple combinations of simple dynamics. Advances have stemmed not from
identifying increasingly complicated vector fields whose flows can be solved exactly, but
from interweaving simple flows in simple ways, repeatedly, by splitting techniques and
switching dynamics, as in PDMPs. At a high level, one can observe similar phenomena
in Bayesian modelling, where useful, novel priors are often specified as the marginal
distributions of simple hierarchical constructions involving elementary distributions (e.g.
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[CPS10, LL10, PS10, ACD11, ADL13, PV17]), rather than by cooking up elaborate
densities by writing down long formulas. Another striking example of this principle has
been the deep learning boom of the past decade, whereby some of the most successful
regression models are specified simply by the repeated composition of linear transformations
and a single (!) nonlinear mapping, rather than by invoking special functions directly.

It has been eye-opening to see how, over the past few years, these classes of Markov
processes have gone from seeming arcane, out-of-reach, and intractable, to becoming
first-class citizens in the world of sampling algorithms, based essentially around identifying
minimal structural properties which make them easy to work with. The author eagerly
awaits seeing which other wild beasts in the world of sampling are tamed in the years
to come, and which essential structures are identified in order to enable their practical
utility.
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Chapter 2

A Complete Characterisation of
Trajectorially-Reversible PDMPs

Abstract
Piecewise-Deterministic Markov Processes (PDMPs) have arisen in recent years as an
efficient means of sampling from a probability measure using non-reversible dynamics.
Although the PDMP framework accommodates a wide range of underlying dynamics
in principle, existing approaches have tended to use quite simple dynamics, such as
straight lines and elliptical orbits.

In this work, we present a procedure which enables the application of general
dynamical systems in the PDMP framework to sample from a given measure. The
construction leverages the notion of trajectorial reversibility, which expands the
domain of applicability of PDMPs to include dynamics which are not equipped with
symmetries a priori. It is established that the procedure is both correct (i.e. generates
Markov processes which admit the correct stationary measure) and complete (i.e.
all correct processes take this form) in a general setting. Specific, constructive
recommendations are also made for how to implement the resulting algorithms in
practice.

2.1 Introduction

In this paper, we study the task of sampling from a probability measure using Markov
chain Monte Carlo (MCMC). Historically, such algorithms have been built out of reversible
Markov chains, with the Metropolis-Hastings algorithm (see [MRR+53, Has70, Tie98,
DSC98]) in particular providing a general-purpose framework for converting generic
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proposal mechanisms into asymptotically-correct sampling schemes. As a result of the
simplicity of the Metropolis-Hastings procedure, a vast proportion of the MCMC literature
is built around constructing and studying reversible Markov chains.

There has been a persistent interest in non-reversible methods over the years as well.
Much of this interest was driven by a number of works (e.g. [Gus98, CLP99, DHN00,
Nea04, CH13, SDMD14, RBS15, DLP16, Bie16, MFCW19]) which demonstrated that
introducing non-reversibility into a reversible chain can improve rates of convergence
to equilibrium, often substantially. In recent years, non-reversible methods have moved
into the spotlight as a result of the advent of Piecewise-Deterministic Markov Processes
(hereafter, PDMPs). These are stochastic processes, evolving in continuous time, which
use a combination of deterministic dynamics and jumps to navigate the state space.
In particular, the introduction of generally-applicable schemes like the Bouncy Particle
Sampler of [BCVD18] and the Zig-Zag Process of [BFR19] have exhibited that constructing
non-reversible Markov processes which admit the correct stationary distribution is both
possible and practical. Additional generalisations of these PDMPs have shown improved
robustness and convergence properties under various scenarios (e.g. [MKK14, WR17,
PGCP17, ST17, WR20]).

The construction of PDMPs often allows them to suppress backtracking behaviour
and reach equilibrium rapidly. Although the PDMP framework accommodates a wide
range of underlying dynamics in principle, existing approaches have tended to use quite
simple dynamics, such as straight lines and elliptical orbits (though a notable exception is
the recent work of [TT18]). In [VBCDD17], sufficient conditions are given for a PDMP
using general ODE dynamics to admit the correct stationary measure. Here, this picture
is completed, by supplying matching necessary conditions, under a natural symmetry
assumption on the process. With this characterisation established, it is then possible to
provide a constructive outline of how to build the sampler, given a choice of dynamics.

More precisely, suppose a target measure µ(dz) is specified, and one is able to simulate
an ODE system of the form dz = b(z)dt efficiently both forwards and backwards in time.
This paper outlines how to explicitly specify an algorithm which uses the b-dynamics to
produce a PDMP which admits µ as a stationary measure. Correctness of this procedure
is verified in a general setting, and the construction is proven to be complete, in the
sense that any correct PDMP (within the class of trajectorially reversible PDMPs, a
classification which is described in Section 2.2) must take this specific form. Through this
characterisation, it is then possible to contextualise a number of PDMP variants (e.g. the
Zig-Zag Process, Local BPS, Coordinate Sampler) with the notion of a ‘split’ PDMP (see
Section 2.3), which allows for a more transparent picture of how different event-generating
mechanisms can fit together cohesively in the context of PDMPs.

Most closely related to this work is [VBCDD17], who in addition to providing sufficient
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conditions for a range of processes to admit the correct stationary measure, also devote
attention to the discrete-time and ‘doubly-stochastic’ families of PDMPs. The work
presented here should be viewed as complementary; the framing allows for the removal of
certain symmetry assumptions (e.g. the existence of certain measure-preserving involutions
is automatic here, rather than assumed a priori), and by supplying necessary conditions
for stationarity to match the existing sufficient conditions, it is more straightforward to
sketch out a constructive recipe for designing PDMP algorithms. Particular attention
is also devoted here to the role of trajectorial reversibility in designing correct PDMPs,
as well as a more in-depth analysis of the relevant abstract quantities which govern the
behaviour of a PDMP.

The structure of the paper is as follows. Section 2 reviews the basics of PDMPs, and
introduces two structured classes of PDMPs, the time-enriched and split time-enriched
PDMP. Section 3 introduces a new class of PDMP-type algorithms, and establishes that
this class is, in an appropriate sense, necessary and sufficient for constructing µ-stationary
PDMPs. Section 4 provides the proofs of this claim. Section 5 uses this characterisation of
µ-stationary PDMPs to propose a collection of new processes, the relative merits of which
are discussed from the point of view of convergence, ease of implementation, and the class
of models to which they can be fruitfully applied. Finally, Section 6 recapitulates, and
provides a discussion on the outlook for PDMPs in MCMC.
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2.2 Piecewise-Deterministic Markov Processes

In this section, Piecewise-Deterministic Markov Processes are defined, and their algorithmic
implementation is sketched. With this established, two variants of PDMPs, the Time-
Enriched and Split Time-Enriched PDMPs are introduced, and are placed in the context
of existing PDMPs by way of examples. Finally, trajectorial reversibility, a symmetry
property satisfied by many PDMPs of practical interest, is introduced.

2.2.1 Basics of PDMPs

Piecewise-Deterministic Markov Processes (PDMPs) are a class of continuous-time stochas-
tic processes, which were introduced in [Dav84]. For the purposes of this work, a PDMP
can be thought of as the trajectory of a particle following the flow of an ordinary differential
equation (ODE), interspersed with random jumps. Throughout, we work on the space
Z = RN for some N ∈ N, noting that the results of [DGM18b] allow much of what follows
to be generalised to the case where Z is a smooth closed Riemannian sub-manifold of RN .
Now, define:

Definition 2.2.1. A Z-valued PDMP (Zt)t>0 is specified by

1. A vector field b on Z, which is globally C1 and grows at most linearly at infinity, i.e.

∃C > 0 such that ‖b(z)‖ 6 C(1 + ‖z‖) for all z

Note that this ensures that the system dz = b(z)dt has a solution for all t > 0.

2. A rate function λ : Z → [0,∞), which is continuous and locally integrable along flows
induced by b. That is, if z(t) is a solution to dz = b(z)dt, then for any T <∞, we
have

∫ T
0
λ(z(t)) dt <∞.

3. A Markov Kernel Q(·, ·), that is, a map Q : Z × B(Z)→ [0, 1] such that

• ∀A ∈ B(Z), the map z 7→ Q(z, A) is measurable.

• ∀z ∈ Z, the map A 7→ Q(z, A) is a probability measure on Z.

where B(Z) is the Borel sigma-algebra on Z. Going forward, we will write the latter
map as Q(z → dz′), i.e.

Q(z, A) =

∫
z′∈A

Q(z → dz′).

We say that (Zt)t>0 is a PDMP ‘driven by b’ with ‘event rate’ λ and ‘jump kernel’ Q.

It bears commenting that in some other works (e.g. [DGM18b]), it is preferred to
characterise the dynamics by their flow maps, rather than the underlying vector field.
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This allows for a slightly greater generality of underlying dynamics to be considered. In
this work, the chosen convention is to work directly with the vector field, as many of the
calculations presented herein involve the infinitesimal generator of the process at hand,
and by working directly with the vector field, many of these calculations become more
transparent.

Informally, one can think of Zt as a process which deterministically follows the vector
field b until an ‘event’ occurs. These events occur according to an inhomogeneous Poisson
process of rate λ(z), i.e. the intensity varies along the path of Z. If an event occurs at z,
then z is replaced by a draw from Q(z → dz′), and the process then resumes following the
vector field.

Pseudocode for implementing such a PDMP is outlined in Algorithm 27, borrowing
the presentation from [VBCDD17].

Algorithm 27 PDMP

1. Initialize Z0 arbitrarily on Z, and set t0 = 0.

2. for k = 1, 2, . . . do

(a) For s > 0, let z be the solution to

dz = b(z)dt

z(0) = Ztk−1

(b) Sample an inter-event time Tk, where Tk is a non-negative random variable such
that

P (Tk ≥ t) = exp

[
−
∫ t

s=0

λ (z(s)) ds

]
.

(c) For s ∈ (0, Tk), set Ztk−1+s = z(s).
(d) Set tk = tk−1 + Tk and sample

Ztk ∼ Q
(
Zt−k

, dZtk

)
.

Recall that the infinitesimal generator (hereafter, simply ‘generator’) L of a stochastic
process (Xt)t>0 acts on functions u by

(Lu) (x) = lim
t→0+

E[u(Xt)|X0 = x]− u(x)

t

for all functions u such that the limit exists. In what follows, the form of the generator of
a process will be asserted without additional comment; for the processes considered herein,
one can verify the correctness of these claims by checking the conditions from Section 7 of
[DGM18b].
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For PDMPs of the form described above, the generator is given by

Lu(z) = 〈b(z),∇zu(z)〉+ λ(z)

∫
z′∈Z

Q(z → dz′) [u(z′)− u(z)] .

An eminent example of a PDMP is the Bouncy Particle Sampler (BPS). In this
algorithm, one is interested in sampling from the distribution π(dx) = exp(−U(x))dx, but
constructs a PDMP on an extended state space with coordinates z = (x, v), where v is an
auxiliary variable representing velocity. The PDMP is specified as follows:

z = (x, v)

b(z) = (v, 0)

λ(z) = max(〈v,∇U(x)〉, 0)

Q(z → dz′) = δ(x, dx′) · δ(Rx(v), dv′)

where Rx(v) =

(
I − 2

(∇U(x)) (∇U(x))T

(∇U(x))T (∇U(x))

)
v.

This process can be shown to admit µ(dz) = π(dx)ψ(dv) as a stationary measure, where ψ
is any spherically-symmetric distribution of finite first moment (e.g. uniform on the sphere,
isotropic Gaussian). In this process, the variable of interest x follows a piecewise-linear
path, with its velocity jumping upon the occurrence of an event. In effect, events happen
when the particle is heading towards regions of lower probability, discouraging the process
from spending too much time in regions of low probability under µ. In Section 3, it will
be shown that for systems with incompressible dynamics (i.e. div b = 0.), the event rate
essentially must behave in this way; for compressible systems the situation is slightly
more subtle.

It bears emphasising that in applications, almost all PDMPs follow the BPS in being
defined on an extended state space. Typically, the variable of interest x is augmented with
an auxiliary variable v which represents some sort of velocity or momentum (as will be
seen in several examples later in this work). In principle, though, this need not be the
case, and one can certainly imagine scenarios in which the auxiliary variable corresponds
to something else entirely. This has not been fully explored in practice yet. In any case,
the theory in this paper is presented as agnostic to the choice of augmentation, i.e. all
results are presented directly in terms of the joint coordinate z. As the analysis in Sections
3 and 4 will show, choosing to work in this setting is sufficiently general to recover the
corresponding statements in those more specialised cases.
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2.2.2 Time-Enriched PDMPs

We introduce here our first extension of PDMPs, the notion of a time-enriched PDMP.
These are PDMPs for which the state of the process contains both i) the position of a
particle, and ii) a discrete random variable τ ∈ {±1}. As such, the implied state space is
thus Z × {±1}. The interpretation throughout will be that τ represents the ‘direction of
time’, in the sense that when τ = 1, the particle follows the flow of the ODE forwards
in time, and when τ = −1, the particle follows the flow of the ODE backwards in time.
Note that this does not correspond to the usual extended variable augmentations (e.g.
velocity, momentum); the continuous part of the process lives in the same state space as
before, but now has an additional discrete component attached.

More precisely, we define

Definition 2.2.2. A Z × {±1}-valued time-enriched PDMP (TE-PDMP) (Zt, τt)t>0 is
specified by

1. A vector field b on Z, which is globally C1 and grows at most linearly at infinity, i.e.

∃C > 0 such that ‖b(z)‖ 6 C(1 + ‖z‖) for all z

Note that this ensures that the system dz = b(z)dt has a solution for all t > 0.

2. A rate function λ : Z → [0,∞), which is continuous and locally integrable along flows
induced by b both forwards and backwards in time. That is, if z(t) is a solution to
dz = b(z)dt, then for T <∞, we have that both∫ T

0

λ(z(t)) dt <∞,
∫ 0

−T
λ(z(t)) dt <∞

for any z(0).

3. A pair of Z-valued Markov Transition kernels, {Qτ (z → dz′)}τ∈{±1}.

Having specified a TE-PDMP with the above information, it is now possible to describe
their dynamical behaviour. Informally, TE-PDMPs deviate from standard PDMPs by
being able to follow the flows of their vector field both forwards and backwards in time,
that is, by solving

dz = τb(z)dt

for both τ = 1 and τ = −1. The new discrete variable τ dictates which direction of time
the process is adhering to and remains constant in between jumps. Events happen in
much the same way as for regular PDMPs, noting that now the event rate λ can depend
on both of (z, τ). Finally, a more substantial deviation is that the jump dynamics Q have

87



a specific structure, namely, one first resamples z according to Qτ (z, dz′), and then τ is
deterministically flipped to −τ , i.e.

QJoint((z, τ)→ (dz′, dτ ′)) = Qτ (z → dz′) · δ(−τ, dτ ′).

As such, the process evolves by the z-coordinate following the flow of the vector field in the
direction of time τ , until it experiences an event. When the event occurs, the z coordinate
jumps according to Qτ , and τ jumps to −τ .

The pseudocode in Algorithm 28 outlines how to simulate such a process. For TE-

Algorithm 28 TE-PDMP

1. Initialize (Z0, τ0) arbitrarily on Z × {±1}, and set t0 = 0.

2. for k = 1, 2, . . . do

(a) For s > 0, let z be the solution to

dz = τk−1b(z)dt

z(0) = Ztk−1

(b) Sample an inter-event time Tk, where Tk is a non-negative random variable such
that

P (Tk ≥ t) = exp

[
−
∫ t

s=0

λ (z(s), τk−1) ds

]
.

(c) For s ∈ (0, Tk), set Ztk−1+s = z(s).
(d) Set tk = tk−1 + Tk and sample

Ztk ∼ Qτk−1

(
Zt−k

, dZtk

)
.

(e) Set τk = −τk−1.

PDMPs of the form described above, the generator is given by

Lu(z, τ) = τ〈b(z),∇zu(z, τ)〉+ λ(z, τ)

∫
z′∈Z

Qτ (z → dz′) [u(z′,−τ)− u(z, τ)] .

It is worth pausing to remark that although the concept of a TE-PDMP does not
subsume all possible PDMPs, it is relatively natural in light of the existing PDMPs which
are currently used for sampling, many of which are easily expressed in the TE-PDMP
framework. For example, returning to the previous example of the Bouncy Particle Sampler,
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when µ(dx) = exp(−U(x))dx, one can define a TE-PDMP with

b(x, v) = (v, 0)

λ(z, τ) = max (τ〈v,∇U(x)〉, 0)

Qτ (z → dz′) = δ(x, dx′) · δ(−Rx(v), dv′),

which produces the same algorithm. Similar constructions exist for other algorithms in
the literature, examples of which will be provided later in this paper.

2.2.2.1 Trajectorial Reversibility

We also extend the definition of trajectorial reversibility (see e.g. [DM13]) to TE-PDMPs.

Definition 2.2.3. Fix a time-enriched PDMP (Zt, τt)t>0 with a unique stationary mea-
sure, and let (Z ′t, τ

′
t)t>0 denote the law of this PDMP as evolved backwards in time from

stationarity. Say that (Zt, τt)t>0 is trajectorially reversible if

(Z ′t, τ
′
t)t>0

d
= (Zt,−τt)t>0,

i.e. the time reversal of the process is equal in law to the original process, with the direction
of time flipped.

One utility of this concept is that it elucidates the sense in which many existing PDMPs
are ‘almost’ reversible, i.e. modulo a simple involution. It is reasonable to expect that
for general dynamics∗, it will typically be necessary for non-reversible methods to obey a
condition of this form, in the same way that discrete-time MCMC algorithms are typically
built by composing reversible kernels. It is easy to check that reversible Markov chains have
the correct stationary distribution precisely because reversibility (i.e. the detailed balance
condition) is local in nature, and thus easily verified. In the same way, it is typically
straightforward to verify that trajectorially-reversible Markov chains admit the desired
stationary measures. We note that this concept is closely linked to (µ,Q) self-adjointness,
as described in [AL19].

∗For an interesting deviation from this trend, note that in [MDS17], the authors seem able to circumvent
this restriction somewhat by restricting to a setting in which the dynamics are linear and the velocity
distributions are spherically-symmetric.
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2.2.3 Split Time-Enriched PDMPs

We describe here the Split Time-Enriched PDMP (Split-TE-PDMP). This construction is
initially motivated by the observation that when considering PDMPs on high-dimensional
spaces, there is often an incentive to allow the process to act in distinct ways on the
different coordinates. To this end, define the following:

Definition 2.2.4. Given a space Z and a positive integer D, a State Space Decomposition
of Z into D parts is a D-tuple of subspaces (Z1, . . . ,Zd) such that Z =

∏D
i=1Zi. We call

D the ‘size’ of the decomposition.

In contrast to basic TE-PDMPs, the idea for Split TE-PDMPs is that some coordinates
of the vector z might follow the vector field b forwards in time, with the others following
backwards in time. Thus instead of requiring a single ‘direction of time’ variable τ , we
will now need τ ∈ {±1}D, and allow the process to evolve under the flow of

dz = τ � b(z)dt

where � is the elementwise (Hadamard) product, i.e. τ � b(z) = (τ1b1(z), · · · , τDbD(z)).
In the basic TE-PDMP, upon the occurrence of an event, the value of τ is deterministi-

cally flipped to its negative. In the case of higher-dimensional τ , this approach will be
limited: even though there are 2D possible values for τ , over the course of the process, it
would only cycle between two values, namely, its initial value and its negative. As such, it
is reasonable to consider more general classes of updates for the τ variable, with an eye
towards applying them after a jump occurs in a Split-TE-PDMP.

Definition 2.2.5. Given a space Z equipped with a state space decomposition of size D,
a Flipping Operator is an involutive map F : {±1}D → {±1}D.

Given a suitably rich class of flipping operators, it will be possible to explore a wider
range of values of τ by applying flips in different combinations. However, if there is only
the one type of event, it is less clear how one should choose which flipping operator should
be applied after such an event.

A useful solution is to consider PDMPs which accommodate multiple event types, each
of which is tied to a unique flipping operator. That is, take some positive integer M , and
consider a PDMP with M event rates, {λj}Mj=1, each of which is associated to a flipping
operator Fj. Upon the occurrence of an event of type j, the state z jumps according to
some prescribed jump dynamics Qτ

j , and then the value of τ is replaced by Fjτ . This can
be made more precise as follows:

Definition 2.2.6. Fix a space Z, and fix a state space decomposition into D parts as
Z =

∏D
i=1Zi. A split time-enriched PDMP (Split TE-PDMP) compatible with this
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decomposition is a stochastic process (Zt, τt) taking values in
∏D

i=1Zi × {±1}D, and is
specified by

1. D vector fields {bi}Di=1 which take Z-valued inputs, and produce Zi-valued vectors as
outputs. We stipulate that each of the bi is globally C1 and grows at most linearly at
infinity. Note that if we write

b = (b1, · · · , bD),

then this guarantees that for all τ ∈ {±1}D, the system ż = τ � b(z) has solutions
for all time.

2. M rate functions {λj}Mj=1 : Z × {±1}D → [0,∞), each of which is continuous and
locally integrable along flows induced by b both forwards and backwards in each time
direction. That is, if z(t) is a solution to ż = τ � b(z) for some τ ∈ {±1}D, then
for each j and for all T <∞, we have that

∫ T
0
λj(z(t), τ)dt <∞.

3. M families of Z-valued Markov Transition kernels, Qτ
j (z → dz′), where τ ranges over

{±1}D.

4. M flipping operators Fj : {±1}D → {±1}D

The main differences between Split TE-PDMPs and the previous two settings are the
following:

1. There are now multiple τ variables, allowing for finer control of the dynamics of the
system. In particular, the particle can be following the flow of the ODE forwards in
time on some of the subspaces, whilst following it backwards in the others.

2. There are now multiple distinguished event types, and associated to each, a specific
involution. More precisely, events of type j occur at the rate λj . When such an event
occurs, z is then resampled according to the Markov kernel Qτ

j , and τ jumps to Fjτ .
This distinction allows for the sources and effects of qualitatively different event types
to be analysed in a disentangled fashion.

The pseudocode in Algorithm 29 outlines how to simulate such a process. For Split
TE-PDMPs of the form described above, the generator is given by

Lu(z, τ) =
D∑
i=1

τi〈bi(z),∇ziu(z, τ)〉

+
M∑
j=1

λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′) [u(z′,Fjτ)− u(z, τ)]

To make this construction more concrete, we offer a few specific examples of Split
TE-PDMPs, with an eye towards giving some intuition as to how such splittings arise
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Algorithm 29 Split TE-PDMP

1. Initialize (Z0, τ0) arbitrarily on Z × {±1}D, and set t0 = 0.

2. for k = 1, 2, . . . do

(a) For s > 0, let z be the solution to

dz = τk−1 � b(z)dt

z(0) = Ztk−1

(b) For j = 1, · · · ,M , sample an inter-event time Tj,k, where Tj,k is a non-negative
random variable such that

P (Tj,k ≥ t) = exp

[
−
∫ t

s=0

λj (z(s), τk−1) ds

]
.

Let j0 = arg minj Tj,k, and let Tk = Tj0,k.
(c) For s ∈ (0, Tk), set Ztk−1+s = z(s).
(d) Set tk = tk−1 + Tk.
(e) Set τk = Fj0τk−1, and sample

Ztk ∼ Q
τk−1

j0

(
Zt−k

, dZtk

)
.

naturally in applications.

Example 5 (The Zig Zag Process). In the Zig Zag Process (as presented in [BFR19]),
assume that our variable of interest can be written as x = (x1, · · · , xD), and adjoin
a velocity variable v = (v1, · · · , vD). Consider again straight-line dynamics, i.e. take
b(x, v) = (v, 0), as in the BPS. In the Zig Zag Process, however, there are now M = D

types of event — one for each dimension — and thus one must specify D event rates and
D jump dynamics. Define now

λi(z, τ) = max (τi〈vi, ∂xiU(x)〉, 0)

Qτ
i (z → dz′) = δ(z, dz′)

Fiτ = (τ−i,−τi)

Informally, in the Zig-Zag Process, an event of type i occurs when the particle is travelling
into regions of lower probability in the ith coordinate. After an event of a given type, the
particle changes its direction in the corresponding coordinate. In the standard formulation
of the Zig Zag Process, this manifests throught the jump vi 7→ −vi, but in the Split TE-
PDMP setup, the jump kernel is instead trivial with respect to z, with all of the jump
dynamics absorbed into flipping τi. Perhaps surprisingly, this means that the distribution
of the velocity v is now degenerate, i.e. ψ(dv) = δ(1D, dv) rather than uniform on {±1}D,
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as in the original presentation of the Zig Zag Process.
While this might initially appear to be a fairly trivial equivalence (i.e. we have ‘just’

shifted the jumps from v to τ), it is worth noting that when ψ is nondegenerate (e.g. has
continuous support), this construction makes it far simpler to design jump dynamics which
lead to the correct stationary measure, as well as accommodating other variations on the
Zig Zag Process. This is studied further in Section 5.

Example 6 (Local BPS / Factor Graph BPS). In the Local BPS (introduced in [BCVD18]),
assume instead that the target measure can be written in the form of a factor graph, i.e.

π(dx) =

(∏
a∈F

exp (−Ua(x∂a))

)
dx

i.e. the measure has a density which can be written as a product of many ‘factor potentials’
exp(−Ua(x∂a)) (see e.g. [FKLW97] for an introduction to this topic), each of which depends
only on a subset of the x-variables. The Local BPS uses this structure to allow for different
types of event corresponding to each factor of this density. In effect, one defines the events
such that an event of type a occurs when the term Ua is growing too quickly. More precisely,
one has

bi(x, v) = (vi, 0) for i = 1, · · · , D

λa(x, v, τ) = max

(∑
i∈∂a

τi〈vi,∇Ua(x)〉, 0

)
Qτ
a(z → dz′) = δ(x, dx′) · δ(v−∂a, dv′−∂a) · δ(−Ra

x(v∂a), dv
′
∂a)

where Ra
x(v) =

(
I − 2

(∇Ua(x∂a)) (∇Ua(x∂a))T

(∇Ua(x∂a))T (∇Ua(x∂a))

)
v

Faτ = (τ−∂a,−τ∂a).

Note that the gradients of Ua can be understood as being taken with respect to x∂a. We
thus have that when factor a incites an event, the velocities adjacent to that factor jump
according to the operator Ra

x, and then the time variables τ adjacent to that factor are
flipped. A potential benefit of this formulation over the original BPS is that each event
modifies only the most-relevant subset of the velocity coordinates.

Example 7 (BPS with Refreshment). In the naive implementation of the BPS, one only
observes events when the particle is heading into regions of lower probability. In some
examples, this process will suffer from reducibility issues, e.g. when applied to a spherical
Gaussian target, there is a ball around the origin which the process cannot enter. As such,
it is typical to add in a ‘refreshment’ event type, which allows a probability of completely
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resampling the velocity from its marginal, independently of location. This can be written as

λNatural(x, v) = max (τ〈v,∇U(x)〉, 0)

λRefresh(x, v) = γ > 0

Qτ
Natural(z → dz′) = δ(x, dx′)δ(−Rx(v), dv′)

Qτ
Refresh(z → dz′) = δ(x, dx′)ψ(dv′)

FNaturalτ = FRefreshτ = −τ.

While one could, in principle, use mixture distributions to write this algorithm with a
single event type and jump dynamics, it can be argued that distinguishing between the
different event types further elucidates the structure of the algorithm. This also simplifies
the analysis and comparison of algorithms.

Finally, for completeness, we also generalise the definition of trajectorial reversibility
to split TE-PDMPs, noting that τt will now be vector-valued.

Definition 2.2.7. Fix a split time-enriched PDMP (Zt, τt)t>0, with associated involutions
{Fj}Mj=1 and a unique stationary measure, and let (Z ′t, τ

′
t)t>0 denote the law of this PDMP

as evolved backwards in time from stationarity. Then we say (Zt, τt)t>0 is Fj-trajectorially
reversible if

(Z ′t, τ
′
t)t>0

d
= (Zt,−τt)t>0,

i.e. the time reversal of the process is equal in law to the original process, with all directions
of time flipped.
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2.3 PDMPs for Monte Carlo

2.3.1 Main Algorithms and Theorems

In this section, PDMPs are contextualised with regard to their applications in Monte
Carlo methods. The focus will thus be on constructing PDMPs which admit a prescribed
probability measure µ as their stationary measure.

The tactic pursued in this work is to instead construct a TE-PDMP with stationary
measure µ̃ given by

µ̃(dz, dτ) = µ(dz)R(dτ),

where R is the uniform (‘Rademacher’) distribution on {±1}. It is assumed that µ has a
C1 density with respect to Lebesgue measure, given by

µ(dz) = exp (−H(z)) dz.

In the sequel, it will be useful to work in terms of the following natural objects
associated to a given TE-PDMP.

Definition 2.3.1. For a given driving vector field b(z) and a given target measure µ(dz) =

exp(−H(z))dz, the Raw Event Rate of b with respect to µ is defined as

r(z, τ) = τ [〈b(z),∇H(z)〉 − div b(z)]

The Natural Event Rate of b with respect to µ is then defined as

λ0(z, τ) = σ(r(z, τ))

where σ(u) = max(0, u).

The raw event rate r is a real-valued quantity which describes the propensity for our
process to experience an event at (z, τ). It comprises two terms, an energy gain term
〈b(z, τ),∇H(z)〉, and a compressibility penalty term div b(z, τ). In effect, the energy gain
term encourages events when the process is heading towards regions of lower probabil-
ity, whereas the compressibility penalty prevents the process from squeezing too much
probability mass into any area.

Equally, by virtue of the equality

r(z, τ) exp(−H(z)) = −div (b(z, τ) exp(−H(z))) , (2.1)

one can also think of r as a measure of the extent to which the dynamics are evenly
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circulating probability mass around the target measure.
Given r, the natural event rate λ0 is obtained by taking the positive part, i.e. λ0 = σ(r).

This allows us to interpret λ0 as the rate of a bona fide Poisson process.

Definition 2.3.2. A Refreshment Rate on the space Z is a function γ : Z → [0,∞).

As discussed in Section 2.3, the refreshment rate γ allows events to occur, even when
the dynamics are circulating probability mass well. Typically, γ can be thought of as
a tool for introducing additional randomness into the system, which often improves the
ergodic properties of the process, allowing it to explore the space by jumping between
different flows of the ODE.

Definition 2.3.3. For a a given driving vector field b(z), a given target measure µ(dz) =

exp(−H(z))dz, and a given refreshment rate γ(z), the (Total) Event Rate is defined as

λ(z, τ) = λ0(z, τ) + γ(z)

where λ0 is the natural event rate of b with respect to µ.

The total event rate λ is then obtained as a superposition of the natural event rate
and the refreshment rates, and dictates the rate at which events actually occur under the
law of the process.

Definition 2.3.4. For a a given target measure µ(dz) = exp(−H(z))dz, event rate λ(z, τ),
and τ ∈ {±1}, the Jump Measure of (µ, λ, τ) is defined as

Jτ (dz) ∝ µ(dz)λ(z, τ).

Finally, the jump measure Jτ denotes the law of the Z-value of the process, at
stationarity, conditioned on a jump just having occurred, with the direction of time just
before the jump being τ . This measure allows for the behaviour of the chain to be tracked
at jumps, rather than only between them. This allows for a simplified analysis of the
time-reversed process.

In what follows, a number of conditions will be assumed of our process, which are spelt
out more explicitly in Section 4. Informally, the conditions impose that the target measure
is smooth, that the flows of the associated ODE are well-behaved, and that the event
rates behave sensibly along those flows, such that events happen neither too frequently
(i.e. explosively so) nor too infrequently (i.e. an event should happen in finite time).

With these definitions in mind, one can consider in earnest the question “Given a
vector field b and a target measure µ, is it possible to design a TE-PDMP which uses the
dynamics of b to draw samples from µ?”. The first conclusion of this work is to answer
this question in the affirmative.
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Informal Theorem 1: Let µ(dz) be a target measure, and let b be a driving vector
field. Define an event rate λ by λ = λ0 + γ, where λ0 is the natural event rate of b with
respect to µ, and γ is a refreshment rate. For each τ ∈ {±1}, take Qτ to be a Jτ -reversible
Markov kernel, where Jτ is the jump measure of (µ, λ, τ). Then, the TE-PDMP driven
by b, with event rate λ, and with jump dynamics Qτ , is trajectorially-reversible, and is
stationary with respect to µ̃.

Moreover, a subsequent conclusion is that this characterisation is complete, i.e. that
any trajectorially-reversible TE-PDMP with the correct stationary measure must take this
form.

Informal Theorem 2: Suppose that (Zt, τt)t>0 is a trajectorially-reversible TE-PDMP
driven by the vector field b, with event rate λ, jump dynamics Qτ , and admitting µ̃ as a
stationary measure. Then there exists a refreshment rate γ such that λ = λ0 + γ, where
λ0 is the natural event rate of b with respect to µ, and the kernels Qτ are reversible with
respect to the jump measures Jτ of (µ, λ, τ).

Furthermore, if one wishes to use a split TE-PDMP to draw samples from µ, this is also
possible. In this case, one must specify a priori a state space decomposition Z =

∏D
i=1Zi

and posit a vector field b = (b1, · · · , bD). It will also be helpful to define the following
notion.

Definition 2.3.5. Consider a given driving vector field b(z) and a given target measure
µ(dz) = exp (−H(z)) dz, both defined on a space Z admitting a state space decomposition
into D parts as Z =

∏D
i=1Zi, and letM be a positive integer. An Event Rate Decomposition

of b with respect to (µ, {Zi}Di=1) into M parts is given by a collection of M functions
(r1, . . . , rM), each mapping Z × {±1}D → R, and a collection of M flipping operators,
{Fj}Mj=1, satisfying

r(z, τ) =
M∑
j=1

rj(z, τ)

for all j, rj(z,−τ) = −rj(z, τ)

for all j, rj(z,Fjτ) = −rj(z, τ).

Abbreviate such a decomposition of r by r ` {rj}Mj=1.

By analogy with the previous section, we introduce the following notation and termi-
nology:

Definition 2.3.6. For a given driving vector field b(z), a given target measure µ(dz) =

exp(−H(z))dz, a state space decomposition into D parts as Z =
∏D

i=1Zi, and an event
rate decomposition

(
{rj}Mj=1, {Fj}Mj=1

)
, define the the jth Raw Event Rate of b with respect

to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1) as rj(z, τ). The jth Natural Event Rate of b with respect
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to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1) is then defined as

λ0
j(z, τ) = σ(rj(z, τ))

where σ(u) = max(0, u).

Definition 2.3.7. Given a a state space decomposition into D parts as Z =
∏D

i=1Zi
and an event rate decomposition

(
{rj}Mj=1, {Fj}Mj=1

)
, a Refreshment Rate Collection on the

space Z × {±1}D is a collection of M functions {γj}Mj=1 : Z × {±1}D → [0,∞).
If it holds in addition that

for all j, γj(z,−τ) = γj(z, τ)

for all j, γj(z,Fjτ) = γj(z, τ)

then we say that the refreshment rate collection is compatible with the state space and event
rate decompositions.

Definition 2.3.8. For a given driving vector field b(z), a given target measure µ(dz) =

exp(−H(z))dz, a state space decomposition into D parts as Z =
∏D

i=1Zi, an event rate
decomposition

(
{rj}Mj=1, {Fj}Mj=1

)
, and a refreshment rate collection {γj}Mj=1, the jth (Total)

Event Rate is defined as

λj(z, τ) = λ0
j(z, τ) + γj(z, τ)

where λ0
j is the jth natural event rate of b with respect to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1).

Definition 2.3.9. For a given target measure µ(dz) = exp(−H(z))dz, a collection of
event rates {λj(z, τ)}Mj=1, and τ ∈ {±1}D, the jth Jump Measure of (µ, {λj}Mj=1, τ) is
defined as

Jτj (dz) ∝ µ(dz)λj(z, τ).

Define now a modified extended target measure

µ̃(dz, dτ) = µ(dz)
D∏
i=1

R(dτi).

The corresponding (informal) theorems are as follows:
Informal Theorem 3: Let µ(dz) be a target measure, and let b be a driving vector

field. Fix a state space decomposition into D parts as Z =
∏D

i=1Zi, an event rate
decomposition

(
{rj}Mj=1, {Fj}Mj=1

)
, and a refreshment rate collection {γj}Mj=1 which is

compatible with these decompositions. Define a sequence of event rates {λj}Mj=1 by
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λj(z, τ) = λ0
j(z, τ) + γj(z, τ), where λ0

j is the jth natural event rate of b with respect
to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1). For each τ ∈ {±1}D, j ∈ {1, · · · ,M}, take Qτ

j to be a
Jτj -reversible Markov kernel, where Jτj is the jth Jump Measure of (µ, {λj}Mj=1, τ), and such
that for all τ ∈ {±1}D, Qτ

j = Q
−Fjτ
j .

Then, the Split TE-PDMP driven by b, with event rates {λj}Mj=1, and with jump
dynamics {Qτ

j}Mj=1, is trajectorially-reversible and stationary with respect to µ̃. Moreover,
the event rates of this process satisfy λj(z, τ) = λj(z,−Fjτ) for all j.

Informal Theorem 4: Let µ(dz) be a target measure, and b be a driving vector field.
Fix a state space decomposition into D parts as Z =

∏D
i=1Zi, and a sequence of flipping

operators {Fj}Mj=1 : {±1}D → {±1}D. Suppose that (Zt, τt)t>0 is a trajectorially-reversible
Split TE-PDMP, driven by the vector field b, with event rates {λj}Mj=1, with jump dynamics
{Qτ

j}Mj=1, using {Fj}Mj=1 : {±1}D → {±1}D as flipping operators, and admitting µ̃ as a
stationary measure. Assume also that for all j, it holds that λj(z, τ) = λj(z,−Fjτ) and
Qτ
j = Q

−Fjτ
j .

Then,

1. There exists an event rate decomposition r ` {rj}Mj=1 which is compatible with the
collection of flipping operators {Fj}Mj=1.

2. There exists a refreshment rate collection {γj}Mj=1 which is compatible with {Fj}Mj=1,
such that

for all j, λj = λ0
j + γj,

where λ0
j is the jth natural event rate of b with respect to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1).

3. For all j, τ , the jump dynamics Qτ
j is reversible with respect to the jth Jump Measure

of (µ, {λj}Mj=1, τ).

Formal statements and rigorous proofs of the above informal theorems are provided in
Section 4.

2.3.2 Discussion

We pause here to discuss some features of the processes described in the foregoing results,
and situate them in the context of existing work and future directions for this field.

2.3.2.1 Convergence to Stationary Measure

It is worth highlighting that the statements of our theorems only guarantee that the
PDMPs admit µ̃ as a stationary measure. In particular, we have not claimed that the
PDMPs must converge to this stationary measure, nor have we made quantitative claims

99



about this convergence. Such claims are typically quite involved, and are addressed in
other lines of work (see for example [DBCD19, DGM18a, ADNR18]).

2.3.2.2 Design of Refreshment Rate

A key design choice when constructing a PDMP is the refreshment rate, γ. Although
taking γ = 0 still leads to a process with µ as a stationary measure, it is understood that
the resulting process can have issues with reducibility and ergodicity — informally, the
chain becomes ‘too deterministic’, and despite decorrelating quickly, may still be slow
to reach equilibrium. At the other end of the spectrum, taking γ too large leads to the
process instead being ‘more random than necessary’, inducing diffusive behaviour and
slowing convergence to equilibrium.

In practice, it is observed that PDMPs are generally quite robust to the choice of γ,
and taking γ between 0.5 and 1 tends to be a sensible choice across a range of examples,
see the comment in [RBC15]. Nevertheless, note that when the target measure in question
has either light (lighter than a Gaussian) or heavy (heavier than a double-exponential),
then the situation is more subtle, but still manageable; see [DBCD19] for details.

Note also that [AL19] give some Peskun-type ordering results for comparing PDMPs.
In the case of the Zig-Zag process, they indicate that in order to minimise asymptotic
variance, one should refresh as little as possible. However, it is not immediate that this is
the best thing to do given a finite computational budget; the reader is referred to [VM20]
for some enlightening examples related to this point.

2.3.2.3 Design of Augmentations

In applications, it is rare to construct a PDMP directly on the original state space, and
is more common to first attach an auxiliary variable v with law ψ, write z = (x, v), and
ultimately target the extended measure given by

µ(dx, dv) = π(dx) · ψ(dv).

Note briefly that, in principle, the law of v could also depend on x (c.f. Riemannian
Manifold HMC, [GC11]), though to the best of the authors’ knowledge, this is yet to be
explored. Thus far, the augmentation has generally come from a physical motivation,
with v representing a momentum or velocity. While these augmentations have found a
great deal of success thus far, it seems clear that there is substantial room for further
creativity in this area. The choice of augmentation directly dictates µ, and is closely tied
to the choice of dynamics b. As such, this choice will be instrumental to the success of the
resulting PDMP.

Some principal considerations are then i) what the augmentation v represents, ii)
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which family of dynamics will be used on the extended state space, and iii) how v will
be distributed. Typically, the latter of these considerations tends to be most flexible,
particularly once the first two have been decided upon.

When working in extended state spaces, the jump dynamics are typically designed to
fix x, so that the sample paths of x are continuous, i.e.

Qτ ((x, v)→ (dx′, dv′)) = δ(x, dx′) · qτ (v → dv′|x)

where qτ (·|x) must be reversible with respect to jτx(dv) ∝ ψ(dv)λ(x, v, τ).
When working with non-standard dynamics, the process of designing such a q is not

always immediate. Here, some general strategies for this task are presented:

1. In some cases, it will be tractable to draw exact samples from jτx , using e.g. rejection
sampling. When possible, this is generally a good choice. In fact, there is reason to
suspect that this might be the optimal choice, in the sense of Peskun.

2. When this is not possible, one can instead attempt to sample from the restriction of
jτx to some simpler set. In particular, if the simpler set is finite and of moderate size,
this resampling step effectively becomes trivial. A more general formulation of this
construction is the following. Suppose that for each τ , there is a symmetric relation
∼τ on Z such that if z ∼τ z′, then λ(z, τ) = λ(z′, τ). Writing Rz,τ = {z′ : z ∼τ z′},
one can define the kernel

Qτ (z → dz′) = µ(dz′) �z′∈Rz,τ ,

i.e. the kernel Qτ (z → dz′), conditioned to land in Rz,τ . This can be shown to be
Jτ -reversible, and thus leads to a process with the correct stationary measure. Some
examples of this include the Bouncy Particle Sampler, which takes

R(x,v),τ = {(x, v′)} where v′ = −v + 2 · 〈v,∇U(x)〉
‖∇U(x)‖2

2

∇U(x)

and the Generalised BPS of [WR17], which takes

R(x,v),τ = {(x̃, ṽ) : x̃ = x, 〈v,∇U(x)〉 = 〈ṽ,∇U(x)〉}.

In the first case, the resampling step is deterministic; in the second case, it corresponds
to sampling the restriction of a Gaussian measure to a linear subspace. In both cases,
this is straightforward.

3. When such symmetries and uniformities are not available, one can simply use a
Metropolis-Hastings step which targets jτx . It should be noted, however, that when
such steps are rejected, the PDMP will directly backtrack on its previous path, which

101



is typically suboptimal.

2.3.2.4 Computational Implementation Considerations

On the topic of implementing such methods, it should be kept in mind that essentially,
one only needs to be able to carry out the following procedures: i) simulate the dynamics
of b for all values of τ , ii) simulate events from the relevant Poisson process(es), and iii)
simulate transitions from the jump kernels.

Exact simulation of dynamics has been achieved thus far by using straight-line and
elliptical dynamics; we hope that more flexible choices of dynamics become tractable going
forward. Note that in discrete-time MCMC, many algorithmic advances have come by
making use of more efficient target-informed dynamics, and we envision that the same will
ultimately be true for PDMPs.

While fairly straightforward from the theoretical perspective, simulating the relevant
Poisson processes for PDMPs appears (at present) to be the implementation-side bottleneck
for the widespread adoption of PDMPs. As the events are usually simulated through a
combination of superposing and thinning simpler Poisson processes, a key element ends
up being finding tractable upper bounds to σ(rj(z, τ)) as z moves along the flows of the
ODE. Typically, these must be derived on a case-by-case basis. It would be of great public
utility to construct generic dynamics b for which such bounds are easily derived.

Finally, simulation of the jump dynamics should always be designed so as to be fairly
straightforward; the previous section provides some constructive recommendations as to
how to make this possible.

2.3.2.5 Optimality and Ordering

Having established in reasonable generality what the conditions are for a TE-PDMP to
be trajectorially-reversible with respect to a given measure µ, one may begin to discuss
notions of optimality and ordering between PDMPs. Being able to compare the different
options is practically important, as it allows for informed decisions to be made on which
processes should be expected to converge most rapidly, and thus provide the most useful
results.

A first question is how this comparison ought to even be framed. In the discrete-time,
reversible setting, a common tool is to use Dirichlet forms and the Peskun ordering. For
K a π-reversible Markov kernel, one can define the Dirichlet form of K, acting on pairs of
functions in L2(π) by

EK(f, g) = Ex∼π
[
Ey∼K(x→y) [f(x) · {g(x)− g(y)}]

]
(2.2)

=
1

2
Ex∼π

[
Ey∼K(x→y) [{f(x)− f(y)} · {g(x)− g(y)}]

]
. (2.3)
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EK is then a positive-semidefinite bilinear form, with intimate ties to the spectral decom-
position of the Markov kernel K, and thus to the convergence behaviour of the associated
Markov chain. Similar notions can be derived for continuous-time, π-reversible Markov
processes, through an appropriate re-definition in term of the infinitesimal generator of
the process.

The Peskun ordering (see e.g. [Pes73, Tie98, LM08] is based on a comparison principle,
which states that if K1, K2 are both π-reversible Markov kernels, and if EK1(f, f) >

EK2(f, f) for all f , then the asymptotic variance of estimators derived from the chain
driven by K1 are no greater than the asymptotic variance of estimators derived from
the chain driven by K2. One then says that K1 ‘dominates K2 in the sense of Peskun’.
This indicates that, from the Monte Carlo perspective, the chain driven by K1 should be
preferred. Note the slightly subtle point that the Peskun ordering does not establish that
either chain converges to equilibrium at a faster rate.

For general non-reversible chains, the Peskun ordering is not directly applicable, and
so there is a necessity for new tools with which to study these processes. Fortunately, in
the restricted setting of trajectorially-reversible processes, there is recent work making
inroads in this direction. The work of [AL19] exploits trajectorial reversibility in order
to define a generalised Dirichlet form, which allows for a similar comparison principle
to be applied. The picture is particularly simple in the discrete-time case, and avoids
some of the functional-analytic details which can impede mathematical progress in the
continuous-time case. The reader is encouraged to consult the cited work for additional
detail on the technical aspects of this construction.

With these tools, it is natural to ask whether one can derive optimal choices of (b, λ,Q)

for time-enriched PDMPs, and their split variants. At present, with respect to continuous-
time PDMPs, the techniques of [AL19] have only been able to provide rigorous ordering
results in a fairly limited setting (comparing two Zig-Zag Processes with distinct event
rates, in dimension at most 2) thus far. The present author has not yet been able to
extend this any further. Nevertheless, it seems appropriate to conjecture what the optimal
settings might be, in the language of this work.

Consider first the most restrictive case: fix a target measure µ, a driving vector field b,
and an event rate λ; how should the jump dynamics Q be chosen? As any such Qτ must
be reversible with respect to the jump measure Jτ , our first conjecture is that the optimal
jump dynamics are given by the ‘most random’ such Qτ , i.e. resampling z′ from Jτ itself:

Conjecture 1. For a given target measure µ, driving vector field b, and event rate λ, the
optimal jump dynamics are given by Qτ (z → dz′) = Jτ (dz′) ∝ µ(dz′)λ(z′, τ).

Conjecture 2. For a given target measure µ, driving vector field b, and event rate λ, if
the position can be partitioned as z = (x, v), and the jump dynamics are required to fix x,
then the optimal jump dynamics for v are given by Qτ (v → dv′|x) ∝ ψ(dv′)λ(x, v′, τ).
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The author suspects that, when practically feasible, these choices would genuinely be
very efficient, i.e. they are not simply an artifact of the choice to use the Peskun ordering.

Taking another step back, one can fix a target measure µ, and a driving vector field b;
how should the event rate λ be chosen? Given that the set of admissible choices is given
by the halfspace {λ : λ > λ0}, it is perhaps natural to conjecture that the optimal event
rate is the minimal choice:

Conjecture 3. For a given target measure µ and driving vector field b, the optimal event
rate is given by λ(z, τ) = λ0(z, τ), the natural event rate of b with respect to µ.

In contrast to the previous case, using this choice of event rate in practice requires
caution. As described earlier, in some cases (e.g. isotropic Gaussian target), this apparently
‘optimal’ choice can actually fail to be ergodic for the target measure. This can be
highlighted as a potential blind spot of the Peskun ordering; while it is able to compare
processes which leave a given measure stationary, it cannot necessarily reason about
whether the process will actually converge to that measure.

Going one step further, given only a target measure µ, one may want to reason about
whether an optimal choice of dynamics exists. One complication is that one can always
linearly rescale b to obtain a faster process, and so it is natural to impose some constraints
on the class of b we optimise over. One could choose to normalise b by imposing a constraint,
e.g. b ∈ B , {b : Eµ[‖b(z)‖2

2] 6 1}, but it is not clear that this is a meaningful choice of
normalisation. As such, the author is not yet prepared to speculate further on what an
optimal setting of b for a given target measure might be.

Finally, in the light of the Split TE-PDMP formalism, it is natural to wonder whether
an optimal splitting exists. The final conjecture of this section that in the continuous-time
setting, it is in fact optimal to not split at all, i.e.

Conjecture 4. For a given target measure µ and driving vector field b, the optimal
decomposition of r is to take M = 1 and set r1 = r.

Note that a split- and non-split TE-PDMP do not strictly evolve on the same state
space, and so some care should be taken in formulating this claim appropriately.

It should also be emphasised that this claim is a statement about ordering processes in
the time-scale of the process itself, and not necessarily in terms of computational time. In
particular, splittings can often lead to tighter bounds on the corresponding event rates,
and hence to more efficient simulation of event times, which can make a substantial impact
on how rapidly the chain mixes in real time.

2.3.2.6 Discrete-Time PDMPs

Note that all of the above results are stated in continuous time. Although a number of
discrete-time PDMPs (see [Bie16, Gus98, VBCDD17, ST17, WRS18]) have been proposed

104



and analysed, this work chooses to focus exclusively on the continuous-time setting.
One reason for this is that the continuous-time setting simplifies certain concerns

dramatically. For example, in continuous time, the splitting perspective allows for the
Local BPS and Zig-Zag Process to be treated in a unified way, as they both simply
correspond to decomposing the expression for the raw event rate r. In contrast, the
discrete-time analog of the Local BPS (the factorised filter of [Mic16]) does not naturally
hint at a discrete-time Zig-Zag Process. The event rates for the Local BPS hinge upon an
additive decomposition of the energy H, which works just as easily in discrete time. In
contrast, for the Zig-Zag Process, the event rates are based around a coordinate-based
decomposition of the rate of change of the energy along trajectories, which does not
translate as neatly.

With this being said, it should be remarked that the recent work in this area has
greatly improved our understanding of discrete-time PDMPs, and it seems conceivable that
extending them to more general dynamics may not be too far away. Indeed, in [Mon19],
the author successfully constructs a discrete-time Zig-Zag process, making use of a novel
class of Markov chains termed ‘kinetic walks’. It will be interesting to see whether this
construction can be naturally generalised to systematically translate other PDMPs into
the discrete-time setting.

2.3.2.7 Subsampling

One major selling point for PDMPs has been their promise for allowing ‘exact’ MCMC
while using subsampling techniques (see e.g. Sections 4 and 5 of [BFR19]). This aspect
has largely been glossed over thus far in this work. The reason for this is that from a
theoretical perspective, the subsampling mechanism effectively corresponds to a specific
choice of splitting, e.g. in the BPS case

r(z, τ) = τ 〈v,∇U(x) 〉

= τ 〈v,∇
∑
i

Ui(x) 〉

=
∑
i

τ 〈v,∇Ui(x) 〉

→ ri(z, τ) , τ 〈v,∇Ui(x) 〉,

and similar splittings can be derived for the case of subsampling with control variates. As
in the general case, practical success here will depend strongly on finding practical upper
bounds on the resulting event rates.
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2.3.2.8 A Pipeline for Devising PDMPs

A byproduct of the characterisation provided in the previous sections is that it suggests a
modular recipe for devising PDMPs with desired properties. We detail this below, in the
hopes that it will be instructive for readers with an interest in devising their own PDMPs
for sampling.

When beginning the sampling task in earnest, one must first specify a target measure
µ(dz), and thus implicitly, an energy functionH(z). If a PDMP of any sort is to be involved,
one must then specify the vector field b(z) which will be driving the dynamics. The raw
event rate r(z, τ) is thus specified automatically, and can be computed explicitly. One can
then form a valid event rate λ by combining the natural event rate λ0(z, τ) = σ(r(z, τ))

together with a chosen refreshment rate, γ(z). Finally, one computes the jump measure
Jτ (dz) = µ(dz) · λ(z, τ) using the previous information, and can thus begin to choose a
jump kernel Qτ which is in detailed balance with respect to this jump measure. This
workflow is detailed visually in Figure 2.1.

b r λ Q

H γ

Figure 2.1: Flow Chart for Constructing a TE-PDMP

The workflow for a Split TE-PDMP is similar, but branches off partially after the raw
event rate is specified. The branching point is that one must now exhibit an additive
decomposition of this raw event rate as

r(z, τ) =
M∑
j=1

rj(z, τ)

and decorate each of these summands with an involution Fj : {±1}D → {±1}D such that
rj(z,Fjτ) = −rj(z, τ). Once this is established, the remainder of the workflow is quite
similar; one constructs event rates by adding the natural event rates together with a chosen
refreshment rate, and then chooses each of the jump kernels to be reversible with respect
to the corresponding, fully-specified jump measure. This is detailed visually in Figure 2.2,
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noting that the inner plate denotes repetition (i.e. the inner workflow should be carried
out for j = 1, . . . ,M).

b r rj λj Qj

H γj

Figure 2.2: Flow Chart for Constructing a Split TE-PDMP
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2.4 Theory

2.4.1 Assumptions

In this section, the theorems of the previous section are proven. Throughout, we make the
following assumptions, noting that there may be some redundancy among them.

Assumption 1. Our target measure µ(dz) is a probability measure with density exp(−H(z))

with respect to Lebesgue measure, where H(z) is C1 on Z, and the driving vector field b
satisfies ‖b(z)‖ 6 C(1 + ‖z‖) for some C ∈ (0,∞).

The condition on µ guarantees that the target measure has full support, and thus no
boundary complications arise. The condition on b is used to guarantee the existence of
flows of the ODE for all time.

Assumption 2. The process (Zt, τt) admits some stationary measure, µ̃, and the total
event rate λ satisfies the following conditions:

• The total event rate λ(z, τ) is continuous in z for each fixed τ .

• Under the stationary measure µ̃, the total event rate has finite expectation, i.e.
Eµ̃[λ(z, τ)] <∞.

• Along the flows of b, λ is locally integrable, and has infinite integral over (0,∞), i.e.
if z(t) is a solution to dz = b(z)dt, then for any T <∞, we have

∫ T
0
λ(z(t)) dt <∞

and
∫∞

0
λ(z(t)) dt =∞. As such, with probability 1, a jump always occurs eventually.

• Let NT be the number of events observed in the period 0 6 t 6 T . For all (z, τ, T ),
it holds that E(z,τ)[NT ] < ∞, i.e. from any starting conditions, the chain is non-
explosive.

• After a jump, the expected waiting time until the next jump is finite, i.e. EJτ [T1] <∞.

These conditions are largely lifted from [LP13], with appropriate adaptations and
omissions. Note in particular that many of their conditions can be dropped due to other
assumptions which are made here; further details relating to this are provided in the
appendix. The utility of these conditions is to reason about the time-reversal of the
processes we discuss; in particular, to guarantee that they exist.

Assumption 3. The jump dynamics Qτ are continuous with respect to their starting
location, i.e. for Borel sets A, Qτ (z′ → A)→ Qτ (z → A) as z′ → z along the flows of b.

This condition is also taken from [LP13]; we separate it as an assumption because it
involves the jump dynamics, rather than only considering the behaviour of the flow or
event rates.

Now, writing C1
c (Z) for the space of continuously-differentiable functions u : Z → R,

assume:
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Assumption 4. For t > 0, u ∈ C1
c (Z), define the linear operator Pt by

Ptu(z, τ) = E[u(Zt, τt)|Z0 = z, τ0 = τ ].

Assume also that the semigroup (Pt)t>0 is smoothly, compactly approximable (the definition
of this is taken from [DGM18b], and is provided in the appendix).

Together with the assumption that the chain is non-explosive and that Eµ̃[λ(z, τ)] <∞,
this allows for Corollary 22 of [DGM18b] to be applied. For the purposes of this work, the
significance of this corollary is that it guarantees that

Eµ̃[Lu(z, τ)] = 0 ∀u ∈ C1
c (Z) =⇒ (Zt, τt) admits µ̃ as a stationary measure.

A priori, to show that µ̃ is a stationary measure for the PDMP, one would have to show
that these expectations vanish for all u ∈ D(L), which can be considerably more involved.

2.4.2 Correctness of Algorithms and Trajectorial Reversibility

The following theorems concern the formal statement of Informal Theorem 2.3.1 and
Informal Theorem 2.3.1, namely, that the processes described are trajectorially reversible,
and admit the desired stationary measure.

Theorem 4. Let (µ, b) be a measure and a vector field satisfying Assumption 1 and let γ
be a refreshment rate. Let the raw event rate r be given by r(z, τ) = τ [〈b(z),∇H(z)〉 − divzb(z)],
the natural event rate λ0 be given by λ0(z, τ) = σ(r(z, τ)), and set λ = λ0 + γ. Suppose
that λ then satisfies Assumption 2. Suppose that for each τ , the kernel Qτ satisfies
Assumption 3 and is reversible with respect to Jτ , where Jτ (dz) ∝ µ(dz)λ(z, τ) is the
jump measure of the process. Suppose that the semigroup (Pt)t>0 associated to the process
satisfies Assumption 4.

Then the TE-PDMP driven by b, with event rate λ = λ0 + γ, and jump dynamics Qτ

is µ̃-stationary, where µ̃(dz, dτ) = µ(dz)R(dτ), and moreover, is trajectorially reversible
with respect to this measure.

Theorem 5. Let (µ, b) be a measure and a vector field satisfying Assumption 1. Fix
a state space decomposition into D parts as Z =

∏D
i=1Zi, an event rate decomposition(

{rj}Mj=1, {Fj}Mj=1

)
, and a refreshment rate collection {γj}Mj=1 which is compatible with

these decompositions.
Define a sequence of event rates {λj}Mj=1 by λj(z, τ) = λ0

j(z, τ) + γj(z, τ), where λ0
j is

the jth natural event rate of b with respect to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1). Suppose that
for each j, λj then satisfies Assumption 2.
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For each τ ∈ {±1}D, j ∈ {1, · · · ,M}, take Qτ
j to be a Jτj -reversible Markov kernel,

where Jτj is the jth jump measure of (µ, {rj}Mj=1, b, λ), and such that for all τ ∈ {±1}D, Qτ
j =

Q
−Fjτ
j . Suppose that for each j, τ , the kernel Qτ

j satisfies Assumption 3
Suppose that the semigroup (Pt)t>0 associated to the process satisfies Assumption 4.
Then, the Split TE-PDMP driven by b, with event rates {λj}Mj=1, and with jump

dynamics {Qτ
j}Mj=1, is trajectorially-reversible and stationary with respect to µ̃. Moreover,

the event rates of this process satisfy λj(z, τ) = λj(z,−Fjτ) for all j.

We will first prove that the processes are stationary with respect to the desired measure.
Then, we can verify that they are trajectorially reversible with respect to that measure.

To this end, we begin with some preliminary lemmas, proofs of which are provided in
the appendix. We abuse notation slightly and write C1

c (Z) for all functions u : Z ×{±1}D

such that for all τ ∈ {±1}D, we have that u(·, τ) is compactly supported and continuously
differentiable on Z.

Lemma 6. For all u ∈ C1
c (Z),

Eµ̃[〈b(z, τ),∇zu(z, τ)〉] = Eµ̃[r(z, τ)u(z, τ)]

Lemma 7. For all u ∈ C1
c (Z),

Eµ̃

[
λ(z, τ)

∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)

]
= Eµ̃[λ(z,−τ)u(z, τ)]

Lemma 8. For all u ∈ C1
c (Z), for all j = 1, · · · ,M ,

Eµ̃

[
λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′)u(z′,Fjτ)

]
= Eµ̃[λj(z,Fjτ)u(z, τ)]

Now, by Assumption 4, to establish that the process is µ̃-stationary, it suffices to
show that

∀u ∈ C1
c (Z), Eµ̃[(Lu)(z, τ)] = 0.

Since

(Lu)(z, τ) = 〈b(z, τ),∇zu(z, τ)〉+ λ(z, τ)

(∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)− u(z, τ)

)
,
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we can write

Eµ̃[(Lu)(z, τ)] = Eµ̃[〈b(z, τ),∇zu(z, τ)〉]

+ Eµ̃

[
λ(z, τ)

∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)

]
− Eµ̃[λ(z, τ)u(z, τ)]

= Eµ̃[r(z, τ)u(z, τ)] + Eµ̃[λ(z,−τ)u(z, τ)]− Eµ̃[λ(z, τ)u(z, τ)]

= Eµ̃[{r(z, τ)− [λ(z, τ)− λ(z,−τ)]}u(z, τ)]

= 0

where the first equality is by definition, the second by applying the preceding lemmata, the
third by rearranging terms, and the fourth by calculating that λ(z, τ)− λ(z,−τ) = r(z, τ).
An entirely analogous argument supplies the proof for the Split TE-PDMP case.

Next, we establish trajectorial reversibility. In the proof, we directly address the basic
TE-PDMP case, noting that the same argument applies in the Split TE-PDMP case.

Proof. Let (Zt, τt) be a TE-PDMP driven by the vector field b, with stationary measure µ̃
given by µ̃(dz, dτ) = µ(dz)R(dτ), event rate given by λ = λ0 + γ, where λ0 is the natural
event rate of b with respect to µ, and jump dynamics Qτ .

By Assumptions 2, 3, the results of [LP13] (hereafter LP) can be applied.
Define the ‘embedded chain’ ((Z−k , τ

−
k ), (Z+

k , τ
+
k ))k>1 as the state of the process imme-

diately before and after the kth jump occurs, respectively. Applying Proposition 2 and
Theorem 1 of LP, deduce that ((Z−k , τ

−
k ), (Z+

k , τ
+
k )) has stationary measure given by

Π
(
(dz−, dτ−), (dz+, dτ+)

)
∝ µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+)δ(−τ−, dτ+).

Define Π+(dz+, dτ+),Π−(dz−, dτ−) as the marginal distributions under Π of (z+, τ+)

and (z−, τ−) respectively, noting that Π−(dz−, dτ−) ∝ µ(dz−)R(dτ−)λ(z−, τ−) = Jτ
−

(dz−)

is equal to the jump measure, as defined earlier. Moreover, using the Jτ -reversibility of
the jump dynamics Qτ , see that

Π
(
(dz−, dτ−), (dz+, dτ+)

)
∝ µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+)δ(−τ−, dτ+)

= µ(dz+)R(dτ−)λ(z+, τ−)Qτ−(z+ → dz−)δ(−τ−, dτ+)

= µ(dz+)R(dτ+)λ(z+,−τ+)Q−τ
+

(z+ → dz−)δ(−τ+, dτ−)

where the latter equality comes by noting that the joint distribution constrains that
τ− = −τ+. As Q−τ+(z+ → dz−)δ(−τ+, dτ−) is a Markov kernel, one can marginalise out
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(z−, τ−) to obtain that

Π+(dz+, dτ+) ∝ µ(dz+)R(dτ+)λ∗(z+, τ+),

where λ∗ is defined by λ∗(z, τ) = λ(z,−τ).
Applying Proposition 4 of LP, we can calculate that the time reversal of our process is

also a PDMP, with event rate given by λ∗(z, τ). Moreover, unpacking Proposition 5 of LP,
the jump dynamics of the reversed process Q∗ must satisfy

Π+(dz+, dτ+)Q∗((z+, τ+)→ (dz−, dτ−)) = Q((z−, τ−)→ (dz+, dτ+))Π−(dz−, dτ−).

Expand the left-hand side as

Π+(dz+, dτ+)Q∗((z+, τ+)→ (dz−, dτ−))

=µ(dz+)R(dτ+)λ∗(z+, τ+)Q∗((z+, τ+)→ (dz−, dτ−))

=µ(dz+)R(dτ+)λ∗(z+, τ+)Q∗((z+, τ+)→ (dz−, dτ−)),

and the right-hand side as

Q((z−, τ−)→ (dz+, dτ+))Π−(dz−, dτ−)

=µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+)δ(−τ−, dτ+)

=µ(dz+)R(dτ+)λ∗(z+, τ+)Q−τ
+

(z+ → dz−)δ(−τ+, dτ−),

this equality can be rewritten as

µ(dz+)R(dτ+)λ∗(z+, τ+)Q∗((z+, τ+)→ (dz−, dτ−))

=µ(dz+)R(dτ+)λ∗(z+, τ+)Q−τ
+

(z+ → dz−)δ(−τ+, dτ−),

again using the Jτ -reversibility of Qτ , the constraint that τ− = −τ+, and the definition of
λ∗. Taking regular conditional probabilities of (z−, τ−) with respect to (z+, τ+), we obtain
that

Q∗((z+, τ+)→ (dz−, dτ−)) = Q−τ
+

(z+ → dz−)δ(−τ+, dτ−),

or

Q∗((z+, τ+)→ (dz−, dτ−)) = (Q∗)τ
+

(z+ → dz−)δ(−τ+, dτ−),

where (Q∗)τ (z → dz′) = Q−τ (z → dz′) for each τ .
Finally, the dynamics of the forward process are driven by b(z, τ) = τb(z); it is
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immediate that the dynamics of the backward process are driven by b∗(z, τ) = −b(z, τ) =

b(z,−τ). We thus know that the time-reversal of the process is a PDMP, driven by b∗,
with event rate λ∗ and jump dynamics Q∗.

To establish trajectorial reversibility, it must be shown that the original TE-PDMP
(Zt, τt)t>0 and its time-reversal with τ flipped, (Z∗t ,−τ ∗t )t>0, when each initialised at
stationarity (i.e. from µ̃), have the same law. We will do so by exhibiting a coupling.

As both chains admit the same stationary measure, µ̃, we can couple them exactly at
t = 0, by

(z, τ) ∼ µ̃

(Z0, τ0) = (z, τ)

(Z∗0 , τ
∗
0 ) = (z,−τ).

We will then show, by induction, that the processes can be coupled so that i) jumps occur
for both processes at the same times, ii) the processes remain equal after the jumps occur,
and iii) the processes stick together in between jumps. By Assumption 2, the process is
non-explosive, and so such a coupling will be well-defined for all time, proving equality in
law.

For i), suppose that the kth jump occurred at time tk, and that the processes are equal
immediately after the jump, i.e. we have Z+

tk
= (Z∗)+

tk
, τ+
tk

= −(τ ∗)+
tk
. The initial value

problems defining the flows for both processes are then identical, and thus so are their
flows, i.e. until the next jump occurs, Zt = Z∗t and τt = −τ ∗t . Moreover, the event rates
for the two processes are synchronised, as λ∗(Z∗t , τ ∗t ) = λ(Z∗t ,−τ ∗t ) = λ(Zt, τt). As the
two Poisson processes governing the jump times are identical, we couple them so that the
next jump occurs at the same time for both processes, i.e. tk+1 = t∗k+1. Now, because
(Q∗)τ (z → dz′) = Q−τ (z → dz′), we have that

(Q∗)
(τ∗)−tk+1 ((Z∗)−tk+1

→ dz′) = Q
(−τ∗)−tk+1 ((Z∗)−tk+1

→ dz′)

= Q
τ−tk+1 ((Z∗)−tk+1

→ dz′)

= Q
τ−tk+1 (Z−tk+1

→ dz′),

i.e. the laws of Z+
tk+1

and (Z∗)+
tk+1

are identical. As such, we again couple them to be
exactly equal. Finally, the jumps of τ for both processes are deterministic flips. As
τ−tk+1

= −(τ ∗)−tk+1
before the jump, it then holds deterministically that τ+

tk+1
= −(τ ∗)+

tk+1
,

i.e. they remain opposed after the jump. As such, the two processes can be coupled exactly
for all time and are thus equal in law.

113



2.4.3 Completeness of Characterisation

These theorems represent the formal statement of Informal Theorem 2.3.1 and Informal
Theorem 2.3.1.

Theorem 9. Let (µ, b) be a measure and vector field satisfying Assumption 1. Suppose
(Zt, τt)t>0 is a trajectorially-reversible TE-PDMP driven by b, with event rate λ satisfying
Assumption 2, stationary measure µ̃, where µ̃(dz, dτ) = µ(dz)R(dτ), and jump kernels
Qτ satisfying Assumption 3.

Then,

1. For τ ∈ {±1}, Qτ is Jτ -reversible, where Jτ (dz) ∝ µ(dz)λ(z, τ) is the jump measure
of the process, and

2. There exists a refreshment rate γ : Z → [0,∞) such that the event rate is given by
λ = λ0 + γ, where λ0 is the natural event rate of the vector field b with respect to the
measure µ.

Proof. Under the assumption of trajectorial reversibility, we have that the pre-/post-jump
measure Π, given by

Π((dz−, dτ−), (dz+, dτ+)) ∝ µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+)δ(−τ−, dτ+)

is symmetric up to a sign flip in the τ variables, i.e. S#Π = Π, where S((z−, τ−), z+, τ+)) =

((z+,−τ+), z−,−τ−)). This can be written as

µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+)δ(−τ−, dτ+)

= µ(dz+)R(d(−τ+))λ(z+,−τ+)Q−τ
+

(z+ → dz−)δ(τ+, d(−τ−))

Taking regular conditional probabilities of (z−, τ−, z+) with respect to τ+ on both sides,
and using the symmetry of R, this becomes

µ(dz−)R(dτ−)λ(z−, τ−)Qτ−(z− → dz+) = µ(dz+)R(dτ−)λ(z+, τ−)Qτ−(z+ → dz−),

and taking regular conditional probabilities once more, this time of (z−, z+) with respect
to τ−, see that

µ(dz−)λ(z−, τ−)Qτ−(z− → dz+) = µ(dz+)λ(z+, τ−)Qτ−(z+ → dz−),

i.e. Jτ
−

(dz−)Qτ−(z− → dz+) = Jτ
−

(dz+)Qτ−(z+ → dz−).

Thus, any TE-PDMP of the form described must have jump dynamics which are reversible
with respect to the jump measure.
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To characterise the form of the event rate, we first note that

∀u ∈ C1
c (Z), Eµ̃[(Lu)(z, τ)] = 0.

Retracing the steps in the proof of Theorem 4, and noting that Lemma 7 applies due to
the Jτ -reversibility of Qτ , we can deduce that

λ(z, τ)− λ(z,−τ) = r(z, τ).

If we write λ(z, τ)− λ0(z, τ) = γ(z, τ), this gives that γ(z, τ)− γ(z,−τ) = 0, and hence
that γ is independent of τ , i.e. there exists a function γ : Z → R such that

λ(z, τ) = λ0(z, τ) + γ(z).

To deduce positivity of γ, we note that λ must be nonnegative. Now, for each z, there
exists a τ such that r(z, τ) 6 0 =⇒ λ0(z, τ) = 0. As such,

∀τ, λ(z, τ) > 0 =⇒ inf
τ
λ(z, τ) > 0

=⇒ inf
τ

{
λ0(z, τ) + γ(z)

}
> 0

=⇒ inf
τ

{
λ0(z, τ)

}
+ γ(z) > 0

=⇒ γ(z) > 0.

Thus, we have that

λ(z, τ) = λ0(z, τ) + γ(z).

for some nonnegative function γ, and the proof is complete.

Theorem 10. Let µ(dz) be a target measure, and b be a driving vector field satisfying
Assumption 1.

Fix a state space decomposition into D parts as Z =
∏D

i=1Zi, and a sequence of flipping
operators {Fj}Mj=1 : {±1}D → {±1}D.

Suppose that (Zt, τt)t>0 is a trajectorially-reversible Split TE-PDMP, driven by the
vector field b, with event rates {λj}Mj=1, with jump dynamics {Qτ

j}Mj=1, using {Fj}Mj=1 :

{±1}D → {±1}D as flipping operators, and admitting µ̃ as a stationary measure. Suppose
that the event rates {λj}Mj=1 all satisfy Assumption 2, and the jump kernels Qτ

j all satisfy
Assumption 3.

Assume also that for all j, it holds that λj(z, τ) = λj(z,−Fjτ) and Qτ
j = Q

−Fjτ
j .

Then,
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1. There exists an event rate decomposition r ` {rj}Mj=1 which is compatible with the
collection of flipping operators {Fj}Mj=1.

2. There exists a refreshment rate collection {γj}Mj=1 which is compatible with {Fj}Mj=1,
such that

for all j, λj = λ0
j + γj,

where λ0
j is the jth natural event rate of b with respect to (µ, {Zi}Di=1, {rj}Mj=1, {Fj}Mj=1).

3. For all j, τ , the jump dynamics Qτ
j is reversible with respect to the jump measure Jτj .

Proof. The proof that each set of jump dynamics is reversible with respect to its corre-
sponding jump measure proceeds similarly to before, using the assumption of trajectorial
reversibility together with the techniques of [LP13], but instead looking at the embedded
chains corresponding to events of type j. Specifically, the same steps establish that the
invariant measure of the embedded chain of pre-post events of type j can be written as

Πj((dz
−, dτ−), (dz+, dτ+)) ∝ µ(dz−)R(dτ−)λj(z

−, τ−)Qτ−

j (z− → dz+)δ(Fjτ−, dτ+).

By trajectorial reversibility, this measure is symmetric up to a flip in the τ variables, i.e.

µ(dz−)R(dτ−)λj(z
−, τ−)Qτ−

j (z− → dz+)δ(Fjτ−, dτ+)

=µ(dz+)R(d(−τ+))λj(z
+,−τ+)Q−τ

+

j (z+ → dz−)δ(−Fjτ+, d(−τ−)).

Observing the constraint that τ+ = Fjτ− and taking regular conditionals of z± given τ±,
it thus holds that

µ(dz−)λj(z
−, τ−)Qτ−

j (z− → dz+) = µ(dz+)λj(z
+,−Fjτ−)Q

−Fjτ−
j (z+ → dz−).

By assumption, for all (j, τ), it holds that λj(z, τ) = λj(z,−Fjτ) and Qτ
j = Q

−Fjτ
j . This

allows the above to be rewritten as

µ(dz−)λj(z
−, τ−)Qτ−

j (z− → dz+) = µ(dz+)λj(z
+, τ−)Qτ−

j (z+ → dz−),

which is equivalent to the statement that Qτ−
j is reversible with respect to the jump

measure Jτ−j
To establish the existence of an event rate decomposition of r which is compatible with

{Fj}Mj=1, first note that the same argument from the non-split case leads to

M∑
j=1

[λj(z, τ)− λj(z,Fjτ)] = r(z, τ),
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and so taking rj(z, τ) = λj(z, τ)− λj(z,Fjτ) yields a valid decomposition. As in the non-
split case, one can then deduce that for each j, the function λj(z, τ)− λ0

j(z, τ) is invariant
under the action of Fj, thus implying that we can write λj(z, τ) = λ0

j(z, τ) + γj(z, τ) for
some Fj-invariant function γj.

Now, recalling that rj(z,Fjτ) = −rj(z, τ), observe that for any (z, τ), it holds that
min {λ0(z, τ), λ0(z,Fjτ)} = 0. Hence,

∀τ, λ(z, τ) > 0 =⇒ min {λ(z, τ), λ(z,Fjτ)} > 0

=⇒ min
{
λ0(z, τ), λ0(z,Fjτ)

}
+ γj(z, τ) > 0

=⇒ γj(z, τ) > 0.

We can thus write that

λj(z, τ) = λ0
j(z, τ) + γj(z, τ).

for some nonnegative and Fj-invariant function γj. Recalling our earlier assumption that
λj(z, τ) = λj(z,−Fjτ), it can be deduced also that γj must satisfy γj(z, τ) = γj(z,−τ),
confirming that the putative collection of event rates {γj}Mj=1 is compatible with the
collection of flipping operators. The proof is thus complete.
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2.5 Applications and New Processes

In this section, a number of new PDMPs are introduced. The focus is on exposition,
highlighting how the framework developed in this paper lends itself to the clean development
of new processes. Some of the examples focus on accommodating new classes of dynamics,
whereas others focus on how model structures can be exploited through appropriate
splittings.

2.5.1 Zig-Zag Process with Alternative Velocity Distributions

In the standard presentation of the Zig-Zag Process, it is fixed a priori that the velocity
of each coordinate takes values in {±1}. One application of the results in the previous
section is to demonstrate how the Zig-Zag Process can be generalised to other velocity
distributions. For now, assume the velocity distribution is of product form, i.e.

ψ(dv) =
D∏
i=1

ψi(dvi).

Under the standard Zig-Zag dynamics with b(x, v) = (v, 0), one recovers the same raw
event rates for all choices of ψ, as the dynamics do not affect the velocity. However, the
jump dynamics must change. In particular, the ith jump measure becomes

Jτi (x, v) =

{
π(dx) ·

∏
j 6=i

ψj(dvj)

}
· ψi(dvi) · λi(x, v, τ)

=⇒ jτx,i(dvi) ∝ ψi(dvi) · σ
(
τivi

∂U

∂xi

)
.

In many cases of interest, one will be able to sample from the restricted jump measure
jτx,i(dvi) directly. For example, assuming with mild loss of generality that τi ∂U∂xi > 0, it can
be verified that:

• If ψi(dvi) = N (dvi|0, 1) has a Gaussian distribution, then the new velocity should be
drawn from a Rayleigh distribution, ψ̂i(dvi) ∝ vi exp

(
−1

2
v2
i

)
, vi > 0.

• If ψi(dvi) = Unif(dvi|(−1, 1)) has a Uniform distribution, then the new velocity should
be drawn from a Beta distribution, ψ̂i(dvi) ∝ vi · I [0 6 vi 6 1].

Allowing for these variations in velocity distribution could be useful in developing precon-
ditioned variants of the Zig-Zag process and enable other forms of adaptation.
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2.5.2 A Non-Uniform Coordinate Sampler

In the Coordinate Sampler of [WR20], the distribution over velocities is uniform over each
of the 2d axis-aligned unit vectors. This indicates that the process will eventually spend
an equal amount of time travelling in each direction. In some situations, this may not be
appropriate, particularly when the target measure only varies significantly in few directions.
As such, one may consider taking the distribution over velocities to be non-uniform, e.g.

ψ(dv) =
D∑
i=1

pi ·
(
δ(ei, dv) + δ(−ei, dv)

2

)

where {pi}Di=1 is a vector of probabilities, summing to 1, and {ei}Di=1 are the coordinate
vectors. This formulation allows for the emphasis of different directions.

Extending the Coordinate Sampler to this setting is straightforward. The dynamics
remain the same, the event rates remain the same, and all that needs to change is the
jump kernel. Computing the jump measure as

Jτ (x, v) = π(dx)ψ(dv)λ(x, v, τ)

where λ(x, v, τ) = (τ〈v,∇U(x)〉)+ ,

it can be seen that it suffices to set the new velocity to ±ei with probability proportional
to pi

(
±τ ∂U

∂xi

)
+
in order to sample from the correct invariant measure. Note that this

resampling can be done exactly in time O(D), as in the original scheme. An interesting
open problem is to derive suitable heuristics and justifications for non-uniform settings of
p. This could allow for efficient adaptive variants of the Coordinate Sampler which are
able to focus their attention on the most challenging coordinates in the target distribution.

2.5.3 Dynamics with Acceleration

Consider the setting of the Bouncy Particle Sampler, i.e. one wants to sample from
π(x) = exp (−U(x)), using an auxiliary velocity variable v ∼ ψ(dv) = N (dv|0, I). A
number of existing PDMPs in this setting use straight-line dynamics, i.e. b(x, v) = (v, 0).
A benefit of this setting is that the paths of the process can be expressed as polynomials
in t, which allows for comparatively simple bounds on the event rate.

With this in mind, one could begin to consider ‘higher-order’ PDMPs whose sample
paths evolve as a polynomial in t. For example, consider a variant of the BPS in which
the velocity of the particle is also changing at a constant rate, i.e. b(x, v) = (v, a) with
a ∈ Rd fixed. The flows of this vector field can be given explicitly as polynomials in t, and
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one can then compute the resulting raw event rate as

r(x, v) = 〈v,∇U(x)〉+ 〈a, v〉

= 〈v,∇U(x) + a〉.

One can interpret this as a standard BPS, applied to the biased potential Ua(x) =

U(x) + 〈a, x〉. One can even take this construction a step further and allow a to vary as
well, e.g. assert that a ∼ N (da|0, I), and take b(x, v, a) = (v, a, 0). One would obtain the
same event rates again, though now with the tacit assumption that the acceleration a

should also be resampled at event times.
A potential benefit of this process would be that it accommodates more interesting

paths than straight lines, while also admitting tractable expressions for the paths. Due
to the faster movement of the paths, however, it might be expected that events happen
more frequently, or that existing bounds on event rates might become quite loose. The
extent to which these tradeoffs can be navigated effectively will govern the practicality of
simulating such processes.

2.5.4 Nonlinear Dynamics

PDMPs with linear dynamics, such as the BPS and the Zig-Zag process, have the property
that when sampling from distributions on constrained spaces, they may run into boundary
complications. This may be considered either a bug or a feature. If it is preferred not
to worry about such issues, it may be desirable to directly construct dynamics which
remain on the interior of the space. For example, when sampling variables which are
constrained to remain positive, one could use the vector field b(x, v) = (xv, 0), with paths
x(t) = x(0) · exp (vt), which remain positive for all times. In this case, the flow is no longer
incompressible, and so the divergence term in the raw event rate surfaces:

r(x, v) = x · v · U ′(x)− v.

Similarly, for variables constrained to lie in (−1, 1), one could define the vector field
b(x, v) = ((1− x2) · v, 0), which admits sample paths x(t) = tanh

(
tanh−1(x(0)) + vt

)
.

Again, the flow is compressible, and one computes the raw event rate as

r(x, v) = (1− x2) · v · U ′(x) + 2xv.

Similar constructions may be useful for variables which are constrained to lie on manifolds,
where it is preferable to let the variables evolve directly on the manifold. One challenge
associated with these flows is that computing bounds on the event rates may be especially
difficult.
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2.5.5 Zig-Zag Process with Localised Events

The Zig-Zag Process simplifies this computation by decomposing the natural event rate
according to contributions from different coordinates in the state space. By contrast, the
Local BPS simplifies the computation of event rates by decomposing the natural event rate
according to contributions from distinct factors in the target measure. The relative benefits
of each of these approaches depends on the scenario: the Zig-Zag Process is naturally
geared towards simplifying high-dimensional problems, whereas the Local BPS is adapted
to the setting in which the target measure is composed as a product of many terms, each of
which depends on few variables. There are reasonable parallels to the distinction between
coordinate descent and stochastic gradient descent methods in optimisation.

In practice, it is common to encounter both of these issues at once, that is, a high-
dimensional target measure composed of many terms. It is thus natural to consider hybrid
approaches, with the aim of recovering the best of both worlds. One such approach† would
be to take the contributions from each factor (as in the Local BPS), and then decompose
them according to contributions from each coordinate. That is, write

r(x, v, τ) = 〈τ � v,∇U(x)〉

=
∑
i∈V

τi〈vi,∇U(x)〉

=
∑
i∈V

τi

〈
vi,
∑
a∈∂i

∇Ua(x)

〉
=
∑
i∈V

∑
a∈∂i

τi〈vi,∇Ua(x)〉

and define ri,a(x, v, τ) = τi〈vi,∇Ua(x)〉. For all variable-factor pairs (i, a), one can then
define Fi,a = Fi to be the map from {±1}V to itself which flips only τi. Theorem 2
then indicates that by prescribing that events of type (i, a) occur at rate λ0

i,a(x, v, τ) =

σ (ri,a(x, v, τ)), and that upon the occurrence of such a jump, the ith velocity is resampled
from vi ∼ ψ(vi) · λ0

i,a(x, v, τ), and the ith direction of time variable is flipped to −τi, the
resulting process will admit the desired invariant measure.

A downside of this formulation is that there are now more event types to monitor (as
many types as there are edges in the associated factor graph), but an upside is that each
of these event types should be simpler to control. There is also the somewhat ambiguous
effect that each event now affects only a small subset of the velocity variables. To the best
of the author’s knowledge, this is empirically observed to be beneficial, but a theoretical
justification is not yet forthcoming.

†During the completion of this work, a related construction was used in [BGvdMS20].
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2.5.6 Blocked Bouncy Particle Sampler

In some cases, even when the target measure does not admit a clean factorisation into
distinct terms, one might still want to update certain blocks of variables in a coupled
manner. Consider now a slight generalisation of the BPS setup, where the velocity is now
written as w, and its components come from possibly-distinct Gaussian‡ distributions, i.e.

ψi(wi) = N (wi|0,Σi).

Suppose now that we decorate the variables V with a block structure B, where each block
b ∈ B represents a subset of variables in V . The blocks are allowed to overlap. For a
variable i, write ∂i for the set of blocks which contain i. Similarly, for a block b, write ∂b
for the set of variables which are contained in b.

Assume now that for each variable i, we fix a probability distribution p over the blocks
in which it lies, i.e. for each i ∈ V , it holds that∑

b∈∂i

pi,b = 1.

One can then develop the decomposition

r(x,w, τ) = 〈τ � w,∇U(x)〉

=
∑
i∈V

τi

〈
wi,

∂U

∂xi

〉

=
∑
i∈V

τi

〈
wi,

(∑
b∈∂i

pi,b

)
· ∂U
∂xi

〉

=
∑
b∈B

(∑
i∈∂b

pi,b · τi
〈
wi,

∂U

∂xi

〉)
.

Now, define

rb(x,w, τ) =
∑
i∈∂b

pi,b · τi
〈
wi,

∂U

∂xi

〉
,

and denote by Fb the map from {±1}V to itself which flips only {τi}i∈∂b. Theorem 2 then
suggests taking λb(x,w, τ) = σ (rb(x,w, τ)) (possibly supplemented by some refreshment

‡Other distributions can be accommodated, but working with Gaussian measures streamlines the
presentation.
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term), and a natural choice for Qτ
b is to deterministically set

v′∂b = −v∂b + 2 · 〈v∂b,∇U(x)〉
‖∇U(x)‖2

2

∇U(x)

v′−∂b = v−∂b,

i.e. a specular reflection, in the same vein as the Local BPS. In this setting, an event of
type b indicates that the block x∂b is heading in an unproductive direction, and so one
should modify only the corresponding velocities v∂b. The pi,b parameters denote the extent
to which the variable i ‘belongs’ to the block b.

In [VGS20], this construction is carried out with Σi = |∂i|2 · Idi , pi,b ≡ |∂i|−1, and
then reparametrising vi = wi/|∂i|. Note that the choice of Σi may lead to anisotropic
velocity distributions; the extent to which this is desirable will depend on the nature of
the target distribution. An interesting direction would be to explore the potential benefits
of choosing non-uniform pi,b, perhaps with the goal of making the distribution of the event
rates {λb}b∈B more flat, or otherwise easier to control.

2.5.7 PDMPs by Vector Field Switching

In some situations, it may desirable to not restrict oneself to using a single vector field to
drive the dynamics of the process, and instead consider a collection of vector fields. For
example, suppose that one can exactly evaluate the flows of the vector field bω for all ω in
some index set Ω. Positing a probability distribution ψ(dω) over this index set, one can
consider constructing a time-enriched PDMP with invariant measure µ(dz) ·ψ(dω) ·R(dτ),
where the dynamics are given by

dz = τ · bω(z)dt,

with (ω, τ) held constant in between jumps. Following Theorem 2, it is then natural to
specify event rates as

λ(z, ω, τ) = σ (τ · rω(z))

where rω(z) = 〈bω(z),∇H(z)〉 − divbω(z).

Restricting to jump kernels which leave z fixed, any resampling of ω must be reversible
with respect to the constrained jump measure

jτz (dω) = ψ(dω) · λ(z, ω, τ).
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In the case where the index set Ω is finite, a sensible solution is to sample exactly from
Jτz (dω), which can be done in time O(|Ω|).

A benefit of this construction is that it allows for more interesting dynamics to be
obtained by composing elementary flows, rather than working only with a single, simple
vector field.

2.5.8 The Leapfrog PDMP

A construction which is closely related to the paradigm of vector field switching is that
of vector field splitting. Consider the task of sampling from π(dx) = exp (−U(x)) while
using an auxiliary momentum variable p ∼ N (0, I). In Hamiltonian Monte Carlo, one
seeks to approximate the flow of the vector field b(x, p) = (p,−∇U(x)), which is typically
not exactly solvable. The standard numerical approach to approximating the flow is to
use a splitting approach, by writing

b(x, p) = b+1(x, p) + b−1(x, p)

where b+1(x, p) = (p, 0)

b−1(x, p) = (0,−∇U(x))

and noting that each of b±1 have explicitly solvable, linear flows. The standard ‘Leapfrog’
integrator then alternates between solving the dynamics of each of these two flows for a
fixed unit of time. As this unit tends to 0, the approximate flow which is generated in this
way will converge to the true flow.

From the point of view of this work, one can instead consider constructing a continuous-
time process which alternates between solving each of these flows for a random amount
of time. The PDMP framework provides a simple means for realising this procedure.
More precisely, it can be computed that for ω ∈ {±1}, the raw event rate is given by
rω(x, p) = ω · 〈p,∇U(x)〉. One thus defines an event rate λ by

λ(x, p, ω) = σ (rω(x, p))

and stipulates that, at jumps, all that happens is that ω flips to −ω, i.e. we switch
to following the other flow. In particular, neither x nor p change at a jump. Using a
modification of the results presented earlier, one can again show that the dynamics of
this process preserve the desired invariant measure; the proof of this can be found in the
appendix.

A key aspect of this process is that although the only dynamics which it uses are
straight lines (as in the Bouncy Particle Sampler, Zig Zag Process, and other examples),
there are still two distinct flows at play, namely, the flow which updates the position, and
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the flow which updates the momentum. By alternating between the two types of flow in
this structured way, one can expect more interesting dynamical behaviour. Moreover, the
momentum updates incorporate information about the gradient of the target measure far
more explicitly than in alternative PDMPs, which should lead to better-informed dynamics.
The author is currently investigating this further.

Finally, it bears mentioning that in the case where π(x) can be written as a change-of-
measure from a Gaussian measure, i.e.

dπ

dπ0

(x) ∝ exp (−Ψ(x)) where π0(dx) = N (x|0, C),

then it is common to define the law of the momentum variable as being N (p|0, C−1). This
can be viewed as a preconditioning procedure. The resulting Hamiltonian dynamics can
thus be written as

dx = Cpdt

dp = −C−1xdt−∇Ψ(x)dt.

One can observe that when ∇Ψ ≡ 0, the system is a simple harmonic oscillator, whose
dynamics can be solved explicitly. This suggests an alternative splitting scheme, namely

b(x, p) = b+1(x, p) + b−1(x, p)

where b+1(x, p) = (Cp,−C−1x)

b−1(x, p) = (0,−∇Ψ(x)).

One can again compute the raw event rate, which is now given by rω(x, p) = ω · 〈p,∇Ψ(x)〉.
A PDMP can be constructed in the same way as before, that is, jumps occur at rate
λ(x, p, ω) = σ (rω(x, p)), and at their occurrence, one flips ω. A distinction from the
previous case is that one is now alternating between elliptical and linear dynamics, rather
than between linear and linear.
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2.6 Discussion

This work has explored a general-purpose procedure for constructing PDMPs which admit
a given invariant measure. The construction is valid under widely-applicable assumptions
and makes the algorithm design pipeline as transparent as possible, giving concrete
recommendations for how to design event rates and jump dynamics correctly.

A key element of the construction is the role of trajectorial reversibility, a relaxation of
the standard detailed balance condition. By making this structural assumption on the
process, one can often obtain more rapidly-mixing dynamics, while still retaining a local
flavour which allows for simple verifications of the algorithms’ correctness. This can be
viewed as a natural interpretation of ‘lifting’, as explored in [CLP99, Vuc16].

Some key challenges related to PDMPs which are particularly worthy of further
attention concern optimality and design of improved algorithms. The theoretical work
carried out over recent years has allowed for a much clearer understanding of how to
construct and study PDMPs for Monte Carlo simulation, and the community is now in a
position to ask questions about when a certain PDMP may be optimal among a certain
class of processes. Developing answers to this question will doubtless guide practical and
algorithmic developments.

Moreover, it should be reiterated that many of the most striking advances in designing
fast-mixing MCMC algorithms in recent years have been driven by well-chosen variable
augmentations and target-informed proposals. It is remarkable that many existing PDMPs
have found such success while using fairly generic augmentations and dynamics; it seems
likely that with more careful choices, PDMPs could offer great potential benefits. It is
hoped that the work presented herein can support and guide such developments.
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2.7 Appendix

2.7.1 Proof of Lemmas

2.7.1.1 Proof of Lemma 6

Proof.

Eµ̃[〈b(z, τ),∇zu(z, τ)〉] = ER [Eµ[〈b(z, τ),∇zu(z, τ)〉]]

= ER

[∫
Z
〈b(z, τ),∇zu(z, τ)〉 exp(−H(z))dz

]
= ER

[∫
Z
u(z, τ)divz (−b(z, τ) exp(−H(z))) dz

]
= ER

[∫
Z
u(z, τ)r(z, τ)b(z, τ) exp(−H(z))dz

]
= ER [Eµ[r(z, τ)b(z, τ)]]

= Eµ̃[r(z, τ)u(z, τ)]

where the third equality uses the divergence theorem, and the fourth uses the expression
for r given by the formula in equation 2.1.

2.7.1.2 Proof of Lemma 7

Proof.

Eµ̃

[
λ(z, τ)

∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)

]
= ER

[
Eµ[λ(z, τ)

∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)]

]
= ER

[∫
z∈Z

µ(dz)λ(z, τ)

∫
z′∈Z

Qτ (z → dz′)u(z′,−τ)

]
= ER

[∫
z∈Z

∫
z′∈Z

µ(dz)λ(z, τ)Qτ (z → dz′)u(z′,−τ)

]
= ER

[∫
z∈Z

∫
z′∈Z

µ(dz′)λ(z′, τ)Qτ (z′ → dz)u(z′,−τ)

]
= ER

[∫
z′∈Z

µ(dz′)λ(z′, τ)u(z′,−τ)

]
= ER

[∫
z′∈Z

µ(dz′)λ(z′,−τ)u(z′, τ)

]
= Eµ̃ [λ(z′,−τ)u(z′, τ)] .

where the fourth equality uses the Jτ -reversibility of Qτ , the fifth uses that Qτ (z′ → dz)
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is a probability measure for each z′, and the sixth uses the symmetry of R.

2.7.1.3 Proof of Lemma 8

Lemma 11. For all u ∈ C1
c (Z), for all j = 1, · · · ,M ,

Eµ̃

[
λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′)u(z′,Fjτ)

]
= Eµ̃[λj(z,Fjτ)u(z, τ)]

Proof.

Eµ̃

[
λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′)u(z′,Fjτ)

]
= ERD

[
Eµ[λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′)u(z′,Fjτ)]

]
= ERD

[∫
z∈Z

µ(dz)λj(z, τ)

∫
z′∈Z

Qτ
j (z → dz′)u(z′,Fjτ)

]
= ERD

[∫
z∈Z

∫
z′∈Z

µ(dz)λj(z, τ)Qτ
j (z → dz′)u(z′,Fjτ)

]
= ERD

[∫
z∈Z

∫
z′∈Z

µ(dz′)λj(z
′, τ)Qτ

j (z
′ → dz)u(z′,Fjτ)

]
= ERD

[∫
z′∈Z

µ(dz′)λj(z
′, τ)u(z′,Fjτ)

]
= ERD

[∫
z′∈Z

µ(dz′)λj(z
′,Fjτ)u(z′, τ)

]
= Eµ̃ [λj(z

′,Fjτ)u(z′, τ)] .

As in the previous lemma, the fourth equality uses the Jτj -reversibility of Qτ
j , the fifth uses

that Qτ
j (z
′ → dz) is a probability measure for each z′, and the sixth uses the symmetry of

RM under any flipping operator Fj.

2.7.2 Conditions from Löpker and Palmowski

Here, the relevant definitions from [LP13] are reproduced, as Assumptions 2 & 3 in
Section 4 are small modifications of their setup. We translate their conditions into the
terminology of this paper, and adapt them to the TE-PDMP setting in a natural way.
Throughout, work with a TE-PDMP with driving vector field b, event rate λ, and transition
dynamics Q.

Definition 2.7.1. (LP Condition A) Let z(t) be the solution to ż = b(z), and denote the
map from z(0) = z to z(t) = z′ by z′ = ϕ(z, t). Let Nt be the number of events which occur
in the time interval [0, t]. We assume that:

1. For all z ∈ Z, τ ∈ {±1}, there is an ε(z, τ) > 0 such that
∫ ε(z,τ)

0
λ(ϕ(z, t), τ)dt <∞.
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2. For all z ∈ Z, τ ∈ {±1},
∫∞

0
λ(ϕ(z, t), τ)dt =∞.

3. For all z ∈ Z, τ ∈ {±1}, t > 0, we have that E[Nt|Z0 = z, τ0 = τ ] <∞.

4. For all z ∈ Z, τ ∈ {±1}, we have that Q((z, τ), (z, τ)) = 0.

These are all implicit in Assumption 2; (1) is strengthened to λ having a finite
integral for all times, (2) and (3) are reproduced exactly, and (4) is not needed. This is
because in the case of TE-PDMPs, the τ variable always jumps at an event. As such,
there are no such ‘phantom jumps’ where a jump nominally occurs, but the chain does
not move.

Definition 2.7.2. (LP Condition B) Let z(t) be the solution to ż = b(z), and denote the
map from z(0) = z to z(t) = z′ by z′ = ϕ(z, t). Let B(Z) denote the Borel sets in Z. We
assume that:

1. The process (Zt, τt)t>0 has a stationary measure µ̃ on Z × {±1}.

2. The event rate λ satisfies Eµ̃[λ(z, τ)] <∞.

3. For each τ ∈ {±1}, the map z 7→ λ(z, τ) is continuous.

4. For all A ∈ B(Z), z ∈ Z, and τ ∈ {±1}, we have Qτ (ϕ(z, t), A) → Qτ (z, A) as
t→ 0.

5. Let ∂Z denote the boundary of the space Z, and define ∂hZ = {z ∈ Z : dist (z, ∂Z) 6

h}. We then assume that Q((z, τ)→ ∂hZ × {±1})→ 0 uniformly over z ∈ Z, and
τ ∈ {±1}.

(1), (2), and (3) are included as part of Assumption 2, and Condition (4) is As-
sumption 3. (5) can be dropped, as by Assumption 1, the target measure µ has full
measure on Rd, and thus the boundary ∂Z does not exist.

Definition 2.7.3. (LP Condition C) Let ΠQ denote the stationary measure of the PDMP
immediately after a jump. Define T1 as the time it takes for the first jump to occur. We
then assume that EΠQ [T1] <∞.

The authors introduce this condition to ensure that the stationary measure of their
process is absolutely continuous; in this work, this condition is assumed directly in
Assumption 1, and is thus omitted.

Definition 2.7.4. (LP Condition D) Let z(t) be the solution to ż = b(z), and denote the
map from z(0) = z to z(t) = z′ by z′ = ϕ(z, t). Let ΠQ denote the stationary measure of
the PDMP immediately after a jump. Let µ̃ denote the stationary measure of the PDMP.
We assume that:

1. ΠQ is absolutely continuous with respect to µ̃, with Radon-Nikodym derivative β(z, τ) =
dΠQ
dµ̃

(z, τ).
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2. For all z ∈ Z, τ ∈ {±1}, there is an ε(z, τ) > 0 such that
∫ ε(x)

0
β(ϕ(z,−t), τ)dt <∞.

These conditions can be deduced from our other assumptions; for our processes, we
can directly calculate both ΠQ and µ̃, and thus verify (1) with an explicit formula for β.
(2) can be deduced by comparing the form of this β to the original λ and then applying
our strengthened variant of LP’s condition A1.

2.7.3 Definition from Durmus, Guillin, Monmarché

Here, the relevant definitions from [DGM18b] are reproduced, in order to give a precise
and maximally self-contained statement of their Definition 20, that is, their condition for
a PDMP semigroup to be ‘smoothly and compactly approximable’.

In this work, the authors say that a PDMP semi-group has ‘characteristics (ϕ, λ,Q)’
where, in this work, we would say that the process is driven by the vector field b which
has flow maps given by ϕ, has event rate λ, and jump dynamics Q. In this section, we
adopt their terminology, where the PDMP in question is named (Xt)t>0 and lives on the
manifoldM.

Definition 2.7.5. (DGM Definition 16) We say that a differential flow ϕ on M and
a Markov kernel Q are compactly compatible if for all compact K ⊂ M, T > 0, there
exists a compact set K̃ ⊂M satisfying: for all n ∈ N, {ti}ni=1,

∑n
i=1 ti 6 T , there exists a

sequence of compact sets {Ki}ni=1 ⊂M such that, setting K0 = K:

1. For all 1 6 i 6 n, Ki depends only on {tj}ij=1

2. ∪ni=0Ki ⊂ K̃

3. For all 0 6 i 6 n− 1, 0 6 si+1 6 ti+1, 0 6 sn+1 6 T −
∑n

j=1 Tj, it holds that

∪x∈Kisupp Q(ϕti+1
(x), ·) ⊂ Ki+1

ϕsi+1
(Ki) ⊂ K̃

ϕsn+1(Kn) ⊂ K̃

Definition 2.7.6. (DGM Assumption 2) Let (Pt)t>0 be a non-explosive PDMP semi-group
with characteristics (ϕ, λ,Q). Assume that for all T > 0, there exists M > 0 such that for
all x ∈M and 0 6 t 6 T , supp Pt(x, ·) ⊂ B(x,M).

Definition 2.7.7. (DGM Assumption 3) The characteristics (ϕ, λ,Q) satisfy

1. the flow ϕ and the Markov kernel Q are compactly compatible;

2. λ ∈ C1(M), and for all f ∈ C1(M), λQf ∈ C1(M), and there exists a locally
bounded function Ψ :M→ R+ such that for all x ∈ K,

‖∇(λQf)(x)‖ 6 ‖Ψ‖∞,K · sup{|f(y)|+ ‖∇f(y)‖ : y ∈ supp {Q(x, ·)}}
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where

‖Ψ‖∞,K = sup
x∈K
‖Ψ(x)‖

(Qf)(x) = Ey∼Q(x→dy)[f(y)]

(λQf)(x) = λ(x) · (Qf)(x)

3. The mapping (t, x) 7→ ϕt(x) is in C1(R+ ×M), and for all compact K ⊂ M and
t > 0, it holds that

sup{‖∇ϕs(x)‖ : 0 6 s 6 t, x ∈ K} <∞

Definition 2.7.8. (DGM Definition 20) We say that the PDMP semigroup (Pt)t>0 with
characteristics (ϕ, λ,Q) is smoothly and compactly approximable if for all ε > 0, there exist
characteristics (ϕ, λε, Qε) satisfying (DGM A2, DGM A3) and

sup
x∈M,A∈B(M)

{(λε(x) ∧ λ(x)) · |Qε(x,A)−Q(x,A)|+ |λε(x)− λ(x)|} 6 ε.

2.7.3.1 Proof of Correctness for the Leapfrog PDMP

The generator for the Leapfrog PDMP can be written as

Lu(x, p, ω) = 〈bω(x, p),∇x,pu(x, p, ω)〉+ σ (rω(x, p)) · (u(x, p,−ω)− u(x, p, ω))

where rω(x, p) = ω · 〈p,∇U(x)〉.

We will show that for all u ∈ C1
c (Z), it holds thatEµ̃ [Lu(x, p, ω)] = 0, where µ̃(dx, dp, dω) =

exp(−U(x))dx · N (p|0, I) ·R(dω), where R is again the Rademacher distribution on {±1}.
Begin by computing that

Eµ [〈b1(x, p),∇x,pu(x, p, ω)〉] =

∫ ∫
µ(x, p)〈p,∇xu(x, p, ω)〉dxdp

=

∫
N (p|0, I)

∫
exp (−U(x)) 〈p,∇xu(x, p, ω)〉dxdp

=

∫
N (p|0, I)

∫
exp (−U(x)) 〈p,∇xU(x)〉 · u(x, p, ω)dxdp,

= Eµ [〈p,∇U(x)〉 · u(x, p, ω)]
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using integration by parts. Similarly, compute that

Eµ [〈b−1(x, p),∇x,pu(x, p, ω)〉] =

∫ ∫
µ(x, p)〈 − ∇xU(x),∇pu(x, p, ω)〉dxdp

=

∫
exp (−U(x))

∫
N (p|0, I)〈 − ∇xU(x),∇pu(x, p, ω)〉dpdx

=

∫
exp (−U(x))

∫
N (p|0, I)〈 − ∇xU(x), p〉 · u(x, p, ω)dpdx

= Eµ [〈 − ∇xU(x), p〉 · u(x, p, ω)] .

Deduce thus that

Eµ [〈bω(x, p),∇x,pu(x, p, ω)〉] = ω · Eµ [〈p,∇U(x)〉 · u(x, p, ω)] = Eµ [rω(x, p) · u(x, p, ω)]

Now, consider

Eµ̃ [σ (rω(x, p)) · (u(x, p,−ω)− u(x, p, ω))]

=Eµ̃ [σ (rω(x, p)) · u(x, p,−ω)]− Eµ̃ [σ (rω(x, p)) · u(x, p, ω)]

=Eµ̃ [σ (r−ω(x, p)) · u(x, p, ω)]− Eµ̃ [σ (rω(x, p)) · u(x, p, ω)]

=Eµ̃ [σ (r−ω(x, p))− σ (rω(x, p)) · u(x, p, ω)] ,

using only that R is invariant under the flipping of ω. Now, compute explicitly that

σ (r−ω(x, p))− σ (rω(x, p)) = −rω(x, p).

Finally, collect these observations to see that

Eµ̃ [Lu(x, p, ω)]

=Eµ̃ [〈bω(x, p),∇x,pu(x, p, ω)〉] + Eµ̃ [σ (rω(x, p)) · (u(x, p,−ω)− u(x, p, ω))]

=Eµ̃ [rω(x, p) · u(x, p, ω)] + Eµ̃ [−rω(x, p) · u(x, p, ω)]

= 0,

and thus deduce the required result. Apply the results from [DGM18b] to extend this to
all u in the domain of L, and deduce that µ̃ is an invariant measure for the process.
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Chapter 3

Accelerated Sampling on Discrete
Spaces with Non-Reversible Markov
Processes

Abstract
We consider the task of MCMC sampling from a distribution defined on a discrete
space. Building on recent insights provided in [Zan19], we devise a class of efficient
continuous-time, non-reversible algorithms which make active use of the structure of
the underlying space. Particular emphasis is placed on how symmetries and other
group-theoretic notions can be used to improve exploration of the space. We test our
algorithms on a range of examples from statistics, computational physics, machine
learning, and cryptography, which show improvement on alternative algorithms. We
provide practical recommendations on how to design and implement these algorithms,
and close with remarks on the outlook for both discrete sampling and continuous-time
Monte Carlo more broadly.

3.1 Introduction

In this work, we concern ourselves with Markov Chain Monte Carlo (MCMC) simulation
of distributions defined on discrete state spaces.

On continuous spaces, there has been a great deal of successful work on how to
construct efficient MCMC proposals which work in great generality. Much of this success
has stemmed from identifying continuous-time dynamical processes (ODEs, SDEs, PDMPs)
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which admit the desired invariant measure, and then discretising those processes to form
tractable discrete-time chains.

This approach has apparently seen less use in the discrete setting. A reasonable
justification for this is that differential equations do not exist per se on discrete spaces,
and so extending this approach to derive appropriate dynamics for discrete spaces seems
to pose some challenges at first. However, one can note the following: it is essentially
the case that, on discrete spaces, the various notions of Markov process on continuous
spaces (ODEs, SDEs, PDMPs, etc.) all collapse to the same notion, that of a Markov
Jump Process (MJP).

From the perspective of algorithm design, this presents a great simplification: any
continuous time sampler on a discrete space must arise as an MJP. The first contribution
of this work is to explicitly construct a family of MJPs which admit a desired invariant
measure. Moreover, in contrast to the usual scenario on continuous state spaces, it is
possibly to dispense entirely with discretisation and to simulate the process exactly in
continuous time. In addition to motivating this general-purpose sampling algorithm
for discrete spaces, which we term∗ the Locally-Balanced Jump Process (LBJP), this
construction will allow us to retroactively justify the success of certain existing approaches
to discrete sampling.

A second aspect of discrete sampling which is worthy of attention is how one can
improve the computational efficiency of a sampler by making use of the symmetric and
algebraic structure available in a state space. In particular, it is often the case that a state
space X is naturally acted upon by a group of symmetries G. Given such structures, which
abound in applications, the natural question is how to best exploit them algorithmically.
The second contribution of this work is to present a trio of algorithms which offer a generic
solution to this question. The first, which we term the Tabu Sampler is adapted to settings
where G is generated by low-order elements, and encourages the process to avoid re-using
generators across short-to-medium timescales, thus preventing backtracking behaviour.

In contrast, the latter two algorithms focus on the scenario where the group is generated
by elements of high or infinite order. They are thus constructed to instead encourage
persistent motion across the state space, re-using generators so long as they are driving
the dynamics in productive directions. The two schemes presented are the discrete
Coordinate Sampler (dCS) and discrete Zig-Zag Process (dZZ), each named by analogy with
corresponding algorithms in the literature on Piecewise-Deterministic Markov Processes
(PDMPs), namely the works of [BFR19, WR20].

All three of the algorithms are devised to be non-reversible, and as been witnessed in a
range of applications, this appears to have a beneficial effect upon convergence behaviour.

∗An earlier version of this worked named this process the ‘Zanella process’, due to its genesis in the
work of [Zan19]. While we still wish to celebrate the author’s contribution, we have since opted to change
the name to be more descriptive.
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We demonstrate that all of the schemes above are asymptotically exact in the standard
MCMC sense, in each case by establishing either reversibility or skew-reversibility. We
explain how to implement these schemes in practice and provide a number of numerical
experiments, as well as code. We also offer concrete recommendations on how and when
each of these samplers should be applied in practice. We close with some discussion of
potential future work in this area.

3.2 Continuous-time Algorithms on Discrete Spaces

3.2.1 Motivation: Locally-Balanced MCMC in Continuous Time

In this section, we construct the Locally-Balanced Jump Process (LBJP) algorithm for
sampling from a distribution π supported on a discrete space X . We begin by introducing
the notion of a Markov Jump Process (MJP).

Definition 3.2.1. A Markov Jump Process is a continuous-time Markov process taking
values in a countable state space X . Such a process is characterised by its jump rates,
λ(x→ y), defined such that, as h→ 0+

P(Xt+h = y|Xt = x) = h · λ(x→ y) + o(h) for y 6= x

P(Xt+h = x|Xt = x) = 1− h · Λ(x) + o(h)

where Λ(x) =
∑

y λ(x→ y). The generator of such a Markov process is given by

Lf(x) =
∑
y

λ(x→ y) [f(y)− f(x)] .

We will also require the notion of reversibility as it pertains to MJPs.

Definition 3.2.2. A Markov Jump Process with generator L is reversible with respect to
the measure π if, for all f, g ∈ L2(π), it holds that

Eπ [(Lf)(x)g(x)] = Eπ [f(x)(Lg)(x)] .

By considering f(x) = I[x = a], g(x) = I[x = b], one can show that this is equivalent to

π(x)λ(x→ y) = π(y)λ(y → x) for all x, y ∈ X

The utility of reversibility is that it is a sufficient condition for the MJP to admit π as
an invariant measure, and moreover, it is a local condition, and is hence easily verifiable.
As such, a standard approach to constructing Markov processes with a given invariant
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measure is to explicitly construct a process which is reversible with respect to that measure.
We now proceed along these lines.

In order to make our search for such a process more tractable, we make two simpli-
fications. Firstly, we assume that our discrete space X admits the structure of a graph,
that is, there is some set of edges E ⊂ X × X which encodes the notion of locality in
the space. We assume throughout that the graph is undirected, i.e. if (x, y) ∈ E , then
(y, x) ∈ E also. If (x, y) ∈ E , we will call x and y neighbours, and interpret these points as
being ‘close’, in some suitable sense. We use the shorthand ∂x = {y ∈ X : (x, y) ∈ E} to
denote the neighbourhood of x, i.e. the set of all points in X which are adjacent to x; we
assume throughout that the graph is locally finite, i.e. that each vertex has finitely-many
neighbours..

Secondly, we will restrict ourselves to considering Markov Jump Processes (MJPs)
(Xt)t>0 on X which satisfy the following desiderata:

1. The process can only jump from x to y if y ∈ ∂x.

2. For x ∈ X , y ∈ ∂x, the jump rate from x to y, λ(x→ y), is purely a function of π(y)
π(x)

.

3. Xt is in detailed balance with respect to π.

The first of these ensures that Xt respects the graphical structure of the model. The second
is a simplifying assumption which streamlines the analysis, and can be weakened†. The
third is sufficient to ensure that Xt be ergodic with respect to π (under mild additional
assumptions), and is crucial for the validity of the procedure as a Monte Carlo method.

As established earlier, the third condition can be written as

∀(x, y) ∈ E, π(x)λ(x→ y) = π(y)λ(y → x).

Applying the second condition, we write λ(x → y) = g
(
π(y)
π(x)

)
for some function g, and

thus see that

π(x)g

(
π(y)

π(x)

)
= π(y) · g

(
π(x)

π(y)

)
g

(
π(y)

π(x)

)
=
π(y)

π(x)
· g
(
π(x)

π(y)

)
g(t) = t · g(1/t) for t =

π(y)

π(x)
.

As such, we deduce that for an algorithm of this form to satisfy all of our desiderata,
irrespective of the target distribution π, it is necessary and sufficient that λ(x → y) =

g
(
π(y)
π(x)

)
for some function g satisfying g(t) = t · g(1/t). We refer to such g as balancing

†For greatest generality, one could take λ(x → y) to be the product of a function of π(y)
π(x) with a

symmetric function S(x, y).
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functions. As such, for the remainder of this section, we fix a balancing function and study
the resulting process, which we term the Locally Balanced Jump Process.

Algorithm 30 Locally-Balanced Jump Process for sampling from π(x), x ∈ X
1. At x ∈ X ,

(a) For y ∈ ∂x, compute λ(x→ y) = g
(
π(y)
π(x)

)
.

(b) Compute Λ(x) =
∑

y∈∂x λ(x→ y).
(c) Sample a waiting time T ∼ Exponential(rate = Λ(x)).
(d) Sample a new location y ∈ ∂x with probability λ(x→y)

Λ(x)
.

(e) Advance time by T .
(f) Jump to y.

Informally, the process can be seen as a random walk which observes its neighbours,
weighs up which of the neighbours is most preferable as a next location, and then chooses to
jump there after a random amount of time. Note that by operating directly in continuous
time, the algorithm is ‘rejection-free’.

A reasonable analogy in continuous state spaces is the (overdamped) Langevin diffusion
process, in the sense that both processes are ‘weakly greedy’; they naturally gravitate
towards regions of higher probability, while retaining the ability to explore regions of lower
probability from time to time. This analogy is developed further in the work [LZ19].

The optimal choice of g is not necessarily clear a priori. Empirically, some sensible
choices include g(t) ∈

{√
t,min(1, t), t

1+t

}
. We note that in [Zan19], there seems not to

be a universally-optimal choice of g; it appears to be genuinely task-dependent. We are
unsure of whether the same reasoning holds for the continuous-time process. Moreover, as
is often the case with continuous-time processes, if one wants to compare different choices
of g, it is necessary choose a normalisation of some sort. This is because for any balancing
function g, one could equally take 2g as the balancing function, and obtain a process which
converges twice as fast — by the clock of the process, but certainly not in real life! Upon
selecting a normalisation (e.g. g(1) = 1), it may be possible to derive an optimality result,
in the spirit of [Pes73].

The chief cost of this algorithm is the repeated computation of expressions of the form
π(y)
π(x)

. Many target distributions of interest admit convenient factorisation structures, and
in these settings, computing π(y)

π(x)
can be considerably cheaper than computing either of

π(x), π(y) (even up to a normalising constant). As such, when wall-clock time is a concern,
it is imperative to carry out these computations judiciously. In situations where one does
not have such simplifications, or where the chosen graphical structure is dense (i.e. each
state has many direct neighbours), then the cost can grow somewhat. We expect that it
is still generally worthwhile to work with the LBJP (as opposed to Random Walk-based
algorithms), but it is difficult to say anything concrete at this level of generality. We
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present the LBJP as a worthy baseline for general discrete sampling tasks, relative to
random-walk based samplers. We have found it to be simple, transparent, and reliable
on unimodal tasks, in particular for Bayesian sampling with highly-informative posterior
distributions.

In terms of related work, the LBJP bears a strong connection to Kinetic Monte Carlo
algorithms (also ‘KMC’, see e.g. [ELVE19]) which have long been used in the computational
physics community, but which may not be well-known to statisticians. An early example
of this is the ‘N -Fold Way’ of [BKL75], which can be viewed as a discrete-time analog
of the LBJP. The ‘Waiting Time Method’ (WTM) of [DS01], was derived by embedding
the N -Fold Way into continuous time, and is almost directly identical to the LBJP. We
learned of these references through the recent work of [Bal17], which essentially puts the
WTM approach back into discrete time, but with some useful algorithmic simplifications
for target measures of a given structure. Our use of balancing functions was motivated
by the work of [Zan19], which also prompted our interest in structured discrete sampling
more broadly.

3.2.2 Simulation on Spaces with Algebraic Structure

In the design of the LBJP above, the implicit assumption of a graphical structure of
the space X is made. It is often clear what the graphical structure is, but there is no
guarantee that it facilitates sampling some arbitrary distribution π on X . Often the form
of π implies that a subset of edges are much more natural to travel along than others, and
this distinction is often not as clear when working at the abstract level of a graph. In this
section we will observe that in a number of applications, the state space X is, in addition,
also naturally furnished with an algebraic structure. That is, there exist a group G which
acts on X . Informally, this means that there is a set G of ‘actions’ g such that for any
x ∈ X , we can make sense of what it means to perform the action g upon the state x and
obtain a new state y = ‘g ? x’, where we by the latter mean applying the action g to x. To
make this more rigorous, we first recall the definition of a group.

Definition 3.2.3. A group is a set G, equipped with a binary operation • : G×G→ G,
satisfying the four group axioms:

1. For all g, h ∈ G, g • h ∈ G. (Closure)

2. For all g, h, k ∈ G, (g • h) • k = g • (h • k). (Associativity)

3. There is an element, the identity element, id ∈ G such that for all g ∈ G, g • id =

id • g = g.

4. For all g ∈ G, there is an element h = g−1 ∈ G such that g • h = h • g = id.

We denote a group by (G, •).
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In what follows, we will generally write the composition of group elements as g · h
rather than g • h to reduce clutter, in practice overloading the multiplication operator.

To motivate our approach, we will consider a simple but relevant case which illustrates
how a space can be associated with a group. Begin by considering a set S of n elements,
i.e., a set isomorphic to [n] ≡ {1, 2, · · · , n − 1, n} and consider the set of all one-to-one
functions from S to itself. If we equip this set with the operation of function composition,
this is known as the symmetric group Σn ≡ (Σn, ◦). The elements in Σn corresponds to all
permutations of the objects in S, so the symmetry group gives us a natural way to travel
everywhere between points of S by selecting the components of Σn appropriately.

Nonetheless, from an algorithmic perspective, the symmetric group is often vast and
unmanageable, as the order (number of elements) of Σn is n!. It is therefore much more
useful to identify, if possible, a subset consisting of the ‘fundamental’ elements, i.e. the
building blocks of the group, allowing us to decompose any permutation into a series of
simple steps. This is akin to the notion of a basis for a vector space, and such a collection
is known as a generating set :

Definition 3.2.4. Let (G, ·) be a group, and let Γ ⊂ G be a subset. Define 〈Γ〉 to be the
smallest subgroup of G which contains Γ. If 〈Γ〉 = G, then we say that Γ is a generating set
for G and call the elements of Γ generators. A generating set Γ is furthermore symmetric

if γ ∈ Γ =⇒ γ−1 ∈ Γ.

Thus with a generator set Γ, it is possible to decompose any element g ∈ G to a series
of simple group operations. As such, we might consider designing a sampling procedure
which moves around the state space by applying elements of Γ to the current state, without
ever needing to consider the entirety of G all at once. The concept of a group action makes
this heuristic formal:

Definition 3.2.5. Given a set X and a group (G, ·), a group action is defined as an
operation ? mapping G×X to X satisfying:

1. ∀x ∈ X , id ? x = x.

2. ∀g, h ∈ G, g ? (h ? x) = (g · h) ? x.

From the definition, we can see that group actions offer a convenient language with
which to formulate motion between the states of a space X . The samplers we introduce
below will in every case carry out exploration on the target space via repeated applications
of group actions to X . Since objects in Γ generate G, we can furthermore restrict ourselves
to only consider group actions of the generators. However, the form of the generating
set can often be determined by the specific application we consider, rather than being
determined automatically by the state space in isolation. In order to make these notions
somewhat more concrete, we first provide two examples equivalent to the space X = [n]

139



we considered above, but where the target distributions of interest induce significantly
different generator sets:

Example 8 (Matching/Linkage (e.g. [BWBS19, Zan19])). Suppose we have two sets
of covariates, {Yi}Ni=1 and {Zj}Nj=1, which correspond to the same individuals, but in an
unknown order. A natural task is to align these two sets, i.e. to identify a bijective mapping
σ : [n]→ [n] such that Yi and Zσ(i) correspond to the same individual. This set of maps is
just the symmetric group on n elements Σn, introduced above. As X is already a group in
this case, the natural choice is to take G to be the same group, i.e. to set G = Σn. Since
there is no ordering structure to the covariates, a reasonable choice of generating set Γ is
the set of all transpositions, i.e. mappings τi,j which results in group actions given by

y = τi,j ? x⇐⇒


yj = xi

yi = xj

yk = xk for k 6= i, j.

In words, applying the action τi,j to x would thus correspond to swapping our beliefs about
which Z covariates correspond to Yi and Yj respectively. The cardinality of |Γ| in this case
is n(n− 1)/2.

Example 9 (Ranking). Suppose now that we have n individuals, and we want to rank
them in some way. As in the matching case, the underlying state space is X = Σn, and it
is natural to take G = Σn as well. However, because the ordering of [n] is now meaningful
for our problem, it is more natural to use the set of all adjacent transpositions as
a generating set for our task, i.e. to use {τi,j}|i−j|=1. Applying the mapping τi,i+1 then
corresponds to swapping our beliefs about the relative rankings of the individuals who were
previously ranked in ith and (i + 1)th position. This generator set is just of cardinality
(n− 1).

The above examples illustrates how different algebraic structures can be exploited to
serve our goal of sampling a particular distribution, and also be used to make the set of
possible directions much more manageable in size. We now consider other spaces where
the group is significantly different from the symmetric group.

Example 10 (Binary Spin Systems). In statistical physics, one commonly studies binary
spin systems on graphs. Here, there is an underlying graph G0 = (V,E), and for each
vertex i, there is a binary ‘spin’, σi ∈ {±1}. The state space of interest is then given by
X = {±1}|V |. The simplest group action one can define for such a system is generated
by picking a vertex i, and flipping the spin at that vertex, i.e. setting σ′i = −σi. If we
call that flipping move γi, then Γ = {γi}i∈V with cardinality |V | generates a group (G, ·)
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which acts on X . This group is isomorphic to the product of cyclic groups, ZV2 , and is
often directly identified as such.

Example 11 (Subset Selection). Fix a finite set S, and consider the task of selecting a
subset A ⊂ S. The state space is then given by the power set of S, which is naturally
isomorphic to {0, 1}S, by taking a 1 in the ith coordinate to mean ‘element i is included in
the subset A’. Mathematically, this is now essentially equivalent to the spin system setting;
one can define γi to act as

γi ? A =

A\{i} if i ∈ A

A ∪ {i} if i /∈ A,

i.e. delete i if it is already in A, otherwise include it. Again, taking Γ = {γi}i∈S generates
a group (G, ·) which acts on X and is isomorphic to ZV2 .

Example 12 (Lattice Distributions). Consider a lattice L ⊆ Zn for some integer n, and
a distribution π defined over all points of X = L. Many classical discrete distributions
used in probability and statistics are of this form. In this case, for a given point x ∈ L,
we can define a move as either increasing or decreasing the value of a particular index xi,
i = 1, 2, . . . , n:

y = γi ? x⇐⇒

yi = xi + 1

yj = xj, j 6= i

In this case it is clear that the inverse γ−1
i corresponds to subtracting 1 from the ith index

of x. Then the symmetric generating set Γ = {(γi, γ−1
i )}i∈{1,2,...,n} generates a group which

acts on X .

Example 13 (Lattice Polymers). In computational chemistry, one toy model for protein
folding is given by lattice polymers, see e.g. [PGT94]. Here, one fixes a lattice L ⊂ Z3,
a positive integer N , and considers the space XN of length-N walks on L, i.e. sequences
(x0, · · · , xN) ∈ LN+1 such that d(xi, xi+1) = 1 for all i. One also defines a potential
function V : XN → R ∪ {∞}, and then seeks to sample from

π(x) ∝ exp (−V (x)) where x = (x0, · · · , xN).

A polymer is then defined as a walk which never passes through the same lattice site twice,
i.e. i 6= j =⇒ xi 6= xj. In this context, it is useful to then think of the potential function
V (x) as being infinite whenever x is a walk which is not a polymer.

In this context, there is a commonly-used groupoid‡ which acts on XN . This group is
‡A groupoid is a group in which it the group composition operation need only be partially-defined, i.e.

141



1)

a)

b)

2) 3)

Figure 3.1: Illustration of the three types of generators for building polymers in protein
folding.

simplest to describe by specifying its generators.
The first class of generators are those which arise by moving the end link of a walk, i.e.

by taking x0 and moving it to a different neighbour of x1, or taking xN and moving it to a
different neighbour of xN−1, see Figure 3.1, 1).

The second class of generators come from finding subsequences (xi, xi+1, xi+2) which
form an L-shape, and then flipping the orientation of the L as in Figure 3.1, 2). These
are known as ‘L-flips’.

The third class of generators comes from finding subsequences (xi, xi+1, xi+2, xi+3) which
make up 3 of the 4 edges of a square, and then rotating these edges around the missing
edge, as shown in Figure 3.1, 3). These are known as ‘crank-shaft’ moves.

We remark that the algebraic structure generated by these 3 types of move is non-
Abelian, and quite complex. However, as in the cyclic group, the order of the elements in
the generating set can be determined easily, and is low.

We note for completeness that given a space X , a group (G, ·) which acts upon X , and
a symmetric generating set Γ, it is possible to imbue X with a graphical structure directly
via the generators, namely, one declares that x and y are neighbours precisely when there
exists a generator γ ∈ Γ such that y = γ ? x.

We re-emphasize that the benefit of this group-centred formulation over the general
discrete space setting is that the space now ‘looks the same’ from all states x; no matter
where in the space you are, the set of directions in which you are able to move remains
the same (in graph-theoretic terms, this is known as transitivity). In particular, even
though the graph may now have many edges, the ‘effective’ number of edges is now fixed
at |Γ|. This opens us up to constructing more structured stochastic processes with which
to sample from distributions defined on X , as notions such as velocity and directionality
can now be made sense of in a principled way.

there may exist elements which cannot be composed with one another.
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3.2.2.1 Designing Non-Reversible Markov Processes on Discrete Spaces

In this section, we will outline some general principles for designing non-reversible Markov
processes of a given invariant measure, on a structured discrete space. A core benefit of
non-reversibility is that it allows for the construction of Markov processes which avoid
back-tracking behaviour, which is often wasteful.

An observation we have found to be useful is that on discrete spaces with algebraic
structure, the benefits of non-reversibility are qualitatively different, depending on whether
the generators of the associated group are low-order, or high-order.

Definition 3.2.6. Let (G, ·) be a group, and let g ∈ G \ {id}. We say that g has order k
if gk = id, and if gj 6= id for 0 < j < k. If there is no such k, we say that g has infinite
order. We also say that the identity element id has order 1.

In particular, if a group has low-order generators (e.g. γ2 = id), then there is little
benefit in repeatedly applying the same generator, as one swiftly ends up back in a
previously-visited state. As such, we might believe that non-backtracking behaviour is
best approached by discouraging the repeated use of generators.

In contrast, when the generators have high, or even infinite order, repeatedly applying
a generator is taking the process to new states, which allows for persistent motion and
exploration. With this in mind, on such spaces, we will try to construct processes which
encourage the re-use of generators, when fruitful.

A useful notion in the high-order setting is that of a reduced generating set.

Definition 3.2.7. Let Γ be a generating set for a group G. We say that Γ0 ⊂ Γ is a
reduced generating set if, for all γ ∈ Γ0, either γ = γ−1, or γ−1 /∈ Γ0.

Note that a generating set can only be both symmetric and reduced if every element is
an involution, i.e. for all γ ∈ Γ0, γ

2 = 1. The significance of this condition is that it makes
it easier to construct processes which are strongly non-reversible, i.e. when it is possible to
move in the direction γ, we can stipulate that moving in direction −γ is forbidden. This
is a particularly direct way of avoiding back-tracking behaviour.

In the algorithms which follow, we construct non-reversible Markov processes with a
particularly tractable form of non-reversibility, known as skew-reversibility.

Definition 3.2.8. Let X be a discrete state space equipped with an involution S : X → X .
Let π be a probability measure on X such that for all x ∈ X , π(x) = π(S(x)). Let
Q : L2(π)→ L2(π) be the operator given by Qf(x) = f(S(x)).

A Markov Jump Process with generator L is skew-reversible with respect to the measure
π and the involution S if, for all f, g ∈ L2(π), it holds that

Eπ [(QLf)(x)g(x)] = Eπ [f(x)(QLg)(x)] .
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By considering f(x) = I[x = a], g(x) = I[x = b], one can show that this is equivalent to

π(x)λ(x→ y) = π(S(y))λ(S(y)→ S(x)) for all x, y ∈ X

Λ(x) = Λ(S(x)) for all x ∈ X

A useful feature of skew-reversibility is that, as with standard reversibility, it provides
a checkable, local condition, which ensures that the MJP in question leaves π invariant.
We will repeatedly use this fact to construct algorithms in the remainder of this section.

In our examples, we will construct processes which are not skew-reversible on the
original space X , but on an augmented space§ of the form (x, u, τ) ∈ X × U × {±1}.
Roughly speaking, when the binary variable τ is equal to 1, the process will use a certain
set of dynamics to move around, and when τ = −1, the process will run those dynamics
backwards in time, in a suitable sense. The generality of the construction will mean that
we can easily construct skew-reversible Markov processes which admit the correct invariant
measure, without requiring additional symmetry assumptions on the state space or target
distribution.

3.2.3 Tabu Sampler: Self-Avoiding Walks on Spaces With

Low-Order Generators

The first such process is adapted to the scenario in which the generating set consists
of low-order elements, that is, for γ ∈ Γ, we have that γk = id for k > 2 a relatively
small integer. In many cases (e.g. Bayesian variable selection, binary spin systems, and
permutation problems), we can in fact take k = 2, and we focus on this case. The heuristic
reasoning we apply in this setting is that one should prefer to avoid re-using generators, as
if one applies the generator k times, the process has effectively backtracked. As such, we
construct an MJP which, over short-to-medium timescales, is able to avoid such behaviour.
Due to this property, we term the process the Tabu sampler, by analogy with the Tabu
search meta-heuristic [GL98], which is commonly used in combinatorial optimisation.

The process operates on an extended state space, obtained by augmenting the original
space X with two types of variables. The first is, for each generator γ, to append an
indicator variable α(γ) ∈ {±1}. The second is a global indicator variable τ ∈ {±1}. All
of these variables are equipped with the uniform distribution over {±1}.

The behaviour of these variables is as follows: when τ = 1, one is only able to move
by using generators such that α(γ) = 1, and when τ = −1, one is only able to move by
using generators such that α(γ) = −1. Upon making a jump using the generator γ, one
flips the variable α(γ), thus preventing it from being re-used. When the set of available

§Though note that the discrete Zig-Zag sampler (as described below) suppresses the dependence on τ .
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moves becomes too small/unfavourable, the τ variable flips, and the previously-unavailable
generators become available once more. We refer to the path of the process between these
τ -flipping events as an ‘excursion’.

The simplicity of the stationary uniform distribution of the α(γ) variables obscures
their effective behaviour. In practice, the α variables function as a simple binary memory
bank, encoding the successful trajectories of the past: as the algorithm is entering regions
of low probability, the typically more desirable backward moves are stored for later use
instead, giving the sampler the ability to escape potential wells. The Markov process
resulting from running the Tabu sampler is therefore in practice memory-augmented,
which is most clearly seen if one resets the α variable mid-run (while still leaving the
target invariant). In this case, the sampler loses its sense of direction despite having
mixed, and typically spends a long time rebuilding the memory bank before it resumes
efficient exploration. Thus the α-variable provide a transparent mechanism for avoiding
backtracking behaviour, which is necessary for navigating rough energy landscapes.

Algorithm 31 Tabu Sampler for Sampling π(x), x ∈ X , when γ2 = id for all γ ∈ Γ

1. At x ∈ X , {α(γ)}γ∈Γ ∈ {±1}Γ, τ ∈ {±1},

(a) For γ ∈ Γ such that α(γ) = τ , compute λ(γ;x, α, τ) = g
(
π(γ·x)
π(x)

)
.

(b) For γ ∈ Γ such that α(γ) = −τ , compute λ(γ;x, α,−τ) = g
(
π(γ·x)
π(x)

)
.

(c) Compute

Λ(x;α, τ) =
∑
γ∈Γ

λ(γ;x, α, τ) · I[α(γ) = τ ]

Λ(x;α,−τ) =
∑
γ∈Γ

λ(γ;x, α,−τ) · I[α(γ) = −τ ]

Λ(x;α) = max (Λ(x;α, τ),Λ(x;α,−τ)) .

(d) Sample a waiting time T ∼ Exponential(rate = Λ(x;α)), and advance time by T .
i. With probability Λ(x;α,τ)

Λ(x;α)
,

A. Sample a new direction γ ∈ Γ with probability λ(γ;x,α,τ)·I[α(γ)=τ ]
Λ(x;α,τ)

.
B. Flip the value of α(γ) to −α(γ).
C. Jump to y = γ · x.

ii. With probability Λ(x;α)−Λ(x;α,τ)
Λ(x;α)

, flip the value of τ to −τ .

From an implementation perspective, the Tabu sampler is essentially the same com-
plexity as the LBJP; the main cost is still the repeated access to quantities of the form
π(γ·x)
π(x)

. One now has to also maintain the (α, τ) variables, but this cost is negligible.
An interpretation of the Tabu sampler that can make clear its behaviour is the

following. Consider the |Γ|-dimensional hypercube. For each jump, an entire dimension of
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Figure 3.2: An illustration of the Tabu sampler on the 2× 2× 2 hypercube. The initial
position is illustrated with a light blue dot, the available jumps after applying a generator
are coloured light green. For each position, indices available via applications of available
generators are coloured black, unavailable locations are light grey. Initially, τ = 1, and all 3
generators are available to use. As the sampler jumps by successively applying generators,
the cardinality of the available state-space is halved at each iteration. Furthermore, after
3 jumps the sampler has run out of options, forcing a flip of time (by setting τ = −τ).
This subsequently makes the previously used generators available, and, in this case, all
positions become available to the sampler again.

the hypercube is removed from the set of accessible points, i.e., after a jump, the side of
the cube associated with γ is inaccessible until τ changes direction. In this sense the Tabu
sampler performs a dimension reduction at each jump until a reversal of time occurs, after
which all previously inaccessible dimensions are made available again. In figure 3.2 we
illustrate this behaviour in the simple case of the 2× 2× 2 hypercube.

We remark quickly on an interesting ‘self-tuning’ property of the Tabu sampler, namely,
the mechanism which allows for τ to flip. If the total event rate out of the current state,
Λ(x;α, τ) is heavily-dominated by the total event rate out of its mirror state, Λ(x;α,−τ),
then the process is highly likely to flip τ in order to access the mirror state. In effect,
the process is able to discern that flipping τ would provide a wider range of desirable
neighbours to jump to, and is thus somewhat able to adapt to being out of equilibrium in
this respect. This also implies that the Tabu sampler will be more effective if the posterior
density is multi-modal, as this will encourage diversity in the neighbour set. In numerical
experiments, we will estimate the mean excursion as the average number of events of type
(d).i which occur before each flip of τ . The realized mean excursion can be interpreted as
a proxy for the complexity of the target distribution, as more accepted jumps indicate
that the distance between regions of high probability is larger. This situation is one where
the Tabu sampler can be expected perform better relative to the LBJP; see the examples
in Section 3.3.2 for numerical evidence of this.

The most closely-related existing work of which we are aware is the SARDONICS
algorithm presented in [HWDF13]. This is a discrete-time algorithm in which a guided,
self-avoiding path of length k is constructed sequentially, the final state of which is then
used as a Metropolis-Hastings proposal. While appealing in principle, the algorithm admits
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some complications; in particular:

• Despite constructing a path of length k, the proposal ultimately only involves the
final state. As such, the self-avoiding path could pass through good potential states
which it ultimately has to ignore. As such, the proposal mechanism can be wasteful.

• Tuning of k, or tuning of the randomisation procedure for k is nontrivial.

• As k grows, the complexity of computing the Metropolis-Hastings ratio also grows.

In contrast, the Tabu sampler which is presented in this work softens the constraint of
being fully self-avoiding, but retains the propensity of being approximately self-avoiding
over short-to-medium timescales. As such, from a practical point of view, it appears to
present a tractable alternative which retains most of the desirable behaviours of the fully
self-avoiding construction.

3.2.4 Persistent Piecewise Deterministic Markov Processes

for Spaces With High Order Generators

Our second class of algorithms is instead adapted to the setting of high- or infinite-order
generators. A reasonable picture to have in mind for this setting is taking X to be the
lattice Zd, with generators given by the axis-aligned unit vectors. Here, it is less clear
that self-avoidance would be beneficial, and it may instead be preferable to encourage
the re-use of generators, in order to allow for persistent motion across the space. This
heuristic motivates the design of our two Discrete PDMP algorithms.

3.2.4.1 Discrete Zig-Zag Process

While it is possible to construct a version of the Tabu sampler which can handle low-order
generators of order greater than two, we found that designing such an algorithm was
slightly less natural, and required more tuning choices to be made. We thus opted instead
to seek an algorithm which would retain the high-level behaviour of the Tabu sampler,
while being more straightforward to tune and implement. This led us to the discrete
Zig-Zag Process (dZZ).

The dZZ process also operates on an extended state space, though uses a different
augmentation. Throughout, we work with a reduced generating set Γ0, and for each
γ ∈ Γ0, we augment the state space with a binary variable θ(γ), equipped with the uniform
distribution over {±1}. The role of θ(γ) is as follows: at any given time, the process may
only use the generator γ either forwards (moving from x to γ · x, when θ(γ) = 1), or
backwards (moving from x to γ−1 · x, when θ(γ) = −1). Meanwhile, if it were sufficiently
beneficial to use the generator γ in the opposite direction, then with high probability, the
process will flip θ(γ). In this sense, the process is ‘self-tuning’ in the same fashion as the
Tabu sampler.
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Algorithm 32 Discrete Zig-Zag Process for Sampling π(x), x ∈ X

1. At x ∈ X , θ ∈ {±1}Γ0 ,
(a) For γ ∈ Γ0, compute

λ(x, γ; θ) = g

(
π(γθ(γ) · x)

π(x)

)
λ(x, γ;−θ) = g

(
π(γ−θ(γ) · x)

π(x)

)
Λ(x, γ) = max (λ(x, γ; θ), λ(x, γ;−θ))

(b) Compute Λ(x) =
∑

γ∈Γ0
Λ(x, γ).

(c) Sample a waiting time T ∼ Exponential(rate = Λ(x)), and advance time by T .
(d) Sample a generator γ with probability Λ(x,γ)

Λ(x)
, and

i. With probability λ(x,γ;θ)
Λ(x,γ)

, jump to y = γθ(γ) · x.
ii. Otherwise, flip the value of θ(γ) to −θ(γ).

A favourable aspect of this process is that it is relatively robust to poorly-scaled targets;
if any of the available directions are good, then the process is able to sniff them out.
The per-iteration cost is comparable to the LBJP, but the non-reversibility allows for a
desirable persistent behaviour.

An added by-product of the dZZ process is that the output of this algorithm can
suggest new directions which one could add to the generating set; if one often sees moves
where an application of γ1 is followed by an application of γ2, then one can reasonably
augment the generating set to include the move γ2 ? γ1. This presents one opportunity for
adaptation of these algorithms; we leave exploration of this idea to future work.

3.2.4.2 Discrete Coordinate Sampler

For our third algorithm, we explicitly aim to solve problems in which the group is generated
by high-order elements. In this setting, we seek to exhibit persistent behaviour across the
space, i.e. if moving from x to γ · x is successful, then we will attempt to make additional
moves to γ2 · x, γ3 · x, and so on.

As in the previous two cases, we operate on an extended state space, though the
interpretation is now somewhat different. We first add in a variable v, taking values in
our symmetric generating set Γ, which is drawn according to some symmetric distribution
ψ (i.e. such that ψ(v) = ψ(v−1). We then include a ‘direction of time’ variable τ , which is
equipped with the uniform distribution on {±1}. In effect, v behaves as a velocity, and τ
dictates whether to follow the velocity forwards or backwards in time.

Broadly, the walk attempts to follow the velocity in the direction of time τ . When the
walk is heading towards regions of higher probability, δ(x, v,−τ) will be equal to 0, and
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Algorithm 33 Discrete Coordinate Sampler for Sampling π(x), x ∈ X , v ∼ ψ(v)

1. At x ∈ X , v ∈ Γ, τ ∈ {±1},
(a) Compute

δ(x, v, τ) = g

(
π(vτ · x)

π(x)

)
δ(x, v,−τ) = g

(
π(v−τ · x)

π(x)

)
∆(x, v) = max (δ(x, v, τ), δ(x, v,−τ)) .

(b) Sample a waiting time T ∼ Exponential(rate = ∆(x, v)), and advance time by T .
i. With probability δ(x,v,τ)

∆(x,v)
, jump to y = vτ · x.

ii. Otherwise, with probability ∆(x,v)−δ(x,v,τ)
∆(x,v,τ)

, sample a new velocity w according to

Q(w|x, τ) =
ψ(w)ρ(x,w, τ)

Z(x)

Z(x) =
1

2

∑
τ∈{±1}

∑
γ∈Γ

ψ(γ)ρ(x, γ, τ),

where

ρ(x, v, τ) = [δ(x, v,−τ)− δ(x, v, τ)]+

set the value of v to w, and flip the value of τ to −τ .
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thus the walk will continue make moves in the direction vτ . Once the walk has started
to head towards regions of lower probability, the δ(x, v,−τ) term will begin to dominate,
and the walk will instead try to modify its own velocity, and pursue a new direction.

We note that relative to the discrete Zig-Zag Process, the computational complexity of
making a single forwards jump with the discrete Coordinate Sampler is much cheaper; in
particular, it is independent of the size of the generating set. This represents a substantial
benefit in certain high-dimensional scenarios. The cost is then that some robustness is lost;
as the discrete Zig-Zag process is always able to look in multiple directions, it should be
able to adapt to changing ‘curvature’ more gracefully. In contrast, for ‘anisotropic’ target
distributions, the discrete Coordinate Sampler will likely have to resample its velocity
variable quite frequently, which could offset the reduced per-iteration cost.

We caution quickly that there is an odd pathology which can cause the sampler to
become reducible when sampling from highly-symmetric target distributions. In particular,
if there is a subset S ⊂ X and a generator v such that δ(x, v, τ) = δ(x, v,−τ) for all x ∈ S,
then whenever a velocity jump event is experienced in S, the newly-resampled velocity
cannot be equal to v, and this can lead to reducibility under certain circumstances. This
is often not a problem - in particular, if the other velocities can allow the process to exit
the set S, then the problem typically vanishes - but for certain initialisations, this can
cause undesirable behaviour. As a safeguard, we generally recommend adding in a small
refreshment mechanism, i.e. at some constant rate, the velocity v is resampled from its
marginal distribution.

3.2.5 Related Work

The most closely-related work we are aware of comes from the literature on non-reversible
MCMC. A good starting reference is [DHN00], which presents an in-depth study of
a sampler of this form on the state space X = {1, 2, · · · , N}. A number of related
constructions are also presented; in particular, the ‘fiber algorithm’ described therein
directly motivated the construction of our discrete Zig-Zag Process, which of course bears
many similarities to the more recent Zig-Zag Process of [BFR19]. [CLP99, TCV11, Vuc16]
are all also closely related in spirit, each focusing on how non-reversibility can be harnessed
in order to improve convergence to equilibrium. In the continuous setting, a number of
sampling algorithms based around Piecewise Deterministic Markov Processes (PDMPs)
have also been presented with great success (we recommend [VBCDD17] for a recent
technical overview); these behave in much the same way (hence the name) and served as a
large part of the motivation.

150



3.3 Numerical Examples

In this section we first discuss implementation choices for practitioners, and subse-
quently provide numerical evidence of the performance of the Tabu, dC and dZZ sam-
plers. Code in Python 3 for all examples are available online at https://github.com/
jvorstrupgoldman/tabu_dc_dzz.

3.3.1 Implementation of Continuous-time Samplers

As discussed previously, a MJP on a discrete space can be implemented exactly without
discretization error, as no numerical integration is necessary. To estimate statistical
quantities Eπ[f(x)] for f : X → R from a realisation of a process (X)t∈[0,T ], two approaches
are available. By ergodicity, the empirical time-average approaches the true expectation
in the limit:

lim
T→∞

1

T

∫
[0,T ]

f(Xs)ds = Eπ [f(x)] ,

and the integral on the left-hand side may be calculated explicitly as

1

T

∫
[0,T ]

f(Xs)ds =
∑
k≥1

τk − τk−1

T
f(Xτk),

where the sum ranges over each event-time and Xτk is the value of the process just after
the k’th event. Alternatively, a thinning procedure can be applied to the process. In this
case, a thinning interval 0 < ϑ < T is chosen such that T

ϑ
is an integer, and at each of

these thinning times the process state is stored. Expectations are then calculated simply
via the empirical average

Eπ [f(x)] u
ϑ

T

T
ϑ∑
i=0

f(Xi·ϑ).

The resulting difference in the estimates from using the thinned samples is in practice
completely negligible, however, the thinning procedure allows one to explicitly define the
process run-time T when pre-allocating storage for each thinned sample, while the discrete
time integral-approach requires pre-allocating storage for each event-time, which implies
that the final time T is random, or that unused excess storage is necessary. For these
reasons, we apply the thinning method to generate samples while the algorithm is running.
After an initial trial run, we set the thinning rate ϑ to approximately be equal the mean
event-time after the process has reached stationarity. In other words, in this case we on
average expect a single event to have occurred for each thinned sample.
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3.3.1.1 Choice of Balancing Function

In [Zan19] it is shown that balancing functions in general are Peskun-optimal [Pes73]
weighting functions. Furthermore, while the author establishes that in the particular case
of independent Bernoulli variables the Barker balancing function is the optimal choice,
there is still far from a complete theory concerning the optimal choice of g for general
targets π(x).

To explore these issues, we consider the embedded jump chain (x̂k)k≥1 of the LBJP,
which is the discrete-time Markov chain consisting of values of the process evaluated after
each event-time τk, i.e. x̂k = Xτk , where τ0 = 0. The invariant distribution of the jump
chain (hereafter, the ‘jump measure’) is determined by the choice of balancing function as

πJg (x) ∝ π(x)Λ(x) = π(x)

(∑
y∈∂x

λ(x→ y)

)
= π(x)

(∑
y∈∂x

g

(
π(y)

π(x)

))
.

By studying the effects of the balancing function on the jump measure, we can seek to
understand its effects on the mixing of the underlying Markov process.

One approach which may prove insightful here is to consider how the choice of g affects
the metastability of the jump chain. In particular, if the jump measure exhibits lower
energy barriers between modes, we should expect more desirable mixing behaviour.

A more concrete way to probe this relationship is to study the ratio of the target
distribution π to the jump measure πJ , as it provides a sense of where the jump process
places emphasis relative to the target. We present here some simple one-dimensional
examples on X = [50], where the neighbourhood structure is defined by setting ∂x =

{x − 1, x + 1}. In Figure 3.3, we plot three distributions of increasing complexity, and
the corresponding jump measures for the different balancing functions. We also test the
non-balanced (or ‘globally-balanced’) weighting function g(t) = t to contrast its behaviour.

One heuristic for desirable behaviour is for the jump measure to be remain close to π,
as larger discrepancies require more effort from the continuous time process to correct for.
This heuristic argument is related to what is put forward in [Zan19, Section 2.1] in favour
of balancing functions.

It is clear from Figure 3.3 that an increased complexity of the target distribution
emphasises the need for balanced weighting functions, but even within the class of balancing
functions, one can observe significant differences in behaviour. For the Metropolis balancing
function, modes are over-emphasized in the jump measure, while low-probability regions
are visited significantly less often. The square root is generally more robust around modes,
but in contrast to the Metropolis balancing function, puts significantly higher probability
on extreme regions. The Barker function seems in general to balance the best features of
Metropolis and square root, with reasonably stable behaviour around peaks and troughs,
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Figure 3.3: Upper row: Three distributions (Triangle, Beta-Binomial(10, 20) and a
marginal of a mixture of lattice Gaussians) and their jump-chain invariant distributions
for the three admissible balancing functions and the global balancing function. Lower row:
Relative ratio of the jump-distribution to the invariant, πJg (x)/π(x).

and significantly less erratic tail behaviour. The non-balanced function performs better
than its local counterparts for relatively flat targets, but for more interesting targets
performs exactly opposite to what is desired.

3.3.2 Examples with Low Order Generators

We here present five examples that cover a wide swathe of discrete models applied in
statistics, machine learning and physics. For each of the examples it is the case that the
generators are of order 2. As a benchmark, we compare our non-reversible samplers only
to the LBJP. We view this as a fair comparison, as i) the LBJP is a generic sampling
algorithm (i.e. it is not adapted to a specific model structure) which uses only local
information, and ii) the results presented in [Zan19] demonstrate its superior performance
relative to other generally-applicable discrete samplers, such as the Hamming Ball sampler
of [TY17], random walk proposals, and Gibbs-type schemes. In Table 3.1, we provide a
short summary of the performance of the Tabu sampler relative to the LBJP in terms of
the ratio of effective sample size per second (ESS/s)¶, with higher being better for the
¶Care has been taken to ensure that the implementation of the samplers is fully comparable in terms

of computational resources spent per event.
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Tabu sampler. We also note the mean excursion, which we defined above as average length
of the self-avoiding walk. As mentioned, the mean excursion provides a good indication of
the complexity of the target distribution, and we in general expect the performance of
the Tabu sampler relative to processes that allow backtracking to increase as the mean
excursion goes up. For each experiment, we ran the samplers 5 times and averaged over
each run. Furthermore, for the experiments involving simulated data, we also re-initialized
the data to increase the accuracy of the comparison.

Target Statistic MX T/L

Bayesian Variable Selection Number of parameters 6.0 1.57
Conditional Permutation Test Hamming distance from mode 12.8 1.16
Sherrington-Kirkpatrick Model Energy 83.4 79.89
Log-Submodular Point Process Sensor count 31.8 24.48
Determinantal Point Process Number of points 11.0 4.98

Table 3.1: Summary of performance for target distributions with order-2 generators over
5 runs. ‘MX’ is the mean excursion time, i.e. the average number of events between a
time-reversal of τ . ‘T/L’ is the ratio of ESS/s for the Tabu sampler relative to the LBJP
after burn-in, discarding the first 20% of 100, 000 samples. Each ESS calculation is carried
out with autocorrelation lags up to order 3000.

3.3.2.1 Bayesian Variable Selection

The probabilistic selection of covariates in problems such as regression has long been an
active part of theoretical and applied Bayesian statistical research [MB88, GM97, LSD+03].
While efficient algorithms exist for fitting many of the most popular Bayesian models, the
hierarchical framework allows for complex interactions that can make posterior exploration
very difficult. We analyze here a hierarchical Bayesian model presented in [SC13], which
postulates that the m-dimensional observation vector y in a linear regression framework is
observed through

y | β, x, σ2, Z ∼ N (ZIxβ, σ2Im),

with covariates Z ∈ Rm×n, parameters β ∈ Rn and the matrix of active covariates Ix = Inx,
with the binary inclusion vector x ∈ X = {0, 1}n our target variable. The group action
here is equivalent to the one presented for spin glasses in Example 10, with the generator
in this case instead given by picking a single entry in x, xi, and setting x′i = 1− xi. To
achieve a closed form marginal posterior that is independent of (β, σ2)

π(x|Z, y) =

∫
π(x|Z, y, β, σ2)d(β, σ2),

154



we pick conjugate priors

p(β|σ2, x) = N (0, v2σ2Ix), p(σ2) = IΓ
(
w

2
,
λw

2

)
, p(x) = U(x|X ),

with IΓ the inverse-gamma distribution and U(·|X ) the normalised uniform law on X .
Setting the hyper-parameter vector (w, v, λ) as in [GM97], we use the Concrete Compressive
Strength dataset, originally analysed in [Yeh98], which includes 8 covariates used to explain
the compressive strength of concrete, as measured in giga-Pascals. The dataset is augmented
with a constant column of ones, five logarithmic variables, and first-order interactions of
the log-transformed and initial covariates for a total of n = 92 parameters and m = 1030

observations in the saturated model. We do not enforce main effects restrictions, which
implies that interaction terms can be included independently of whether baseline covariates
are included in the model or not. To have manageable rate sizes, the Barker balancing
function g(t) = t

1+t
is actually needed in this case, as the change in probability from

changing the variable subset can be substantial. The goal of sampling π(x) is to derive
the marginal inclusion probability ρi = Eπ[1xi=1(x)] of each variable in the model, rather
than just MAP estimates as is commonly done. The resulting inclusion probabilities from
the Tabu sampler or the LBJP are virtually indistinguishable from the ones estimated in
[SC13, Figure 5], in comparison with the huge variability observed for the discrete-time
adaptive MCMC and standard MCMC samplers there. Nonetheless, the total number of
evaluations of the posterior density is higher for the LBJP and the Tabu sampler compared
to the tailor-made SMC procedure applied by [SC13], which only evaluates the density
once per iteration.

To evaluate the effective sample size, we decide against using the energy, as the posterior
is dominated by a single configuration, and this mode is often revisited. Rather, we use
the number of active variables as the test statistic. It is noteworthy here that there
seems to be limited benefit available from using the Tabu sampler for this dataset, as
the posterior appears to be sufficiently well-behaved that the self-avoiding behaviour is
largely unnecessary. As such, using locally-balanced proposals allows for the posterior to
be explored properly and efficiently. In fact, across some time-scales, the self-avoiding
property of the Tabu sampler can actually impede the mixing of the chain, as the sampler
can corner itself and be forced to move in a bad direction, recall Figure 3.2 where the
sampler ran out of options after 3 jumps. This stands in contrast to the LBJP, which
is always able to revert to a previous configuration. Nonetheless, the slightly better
performance of the Tabu sampler over repeated runs can reassure us that self-avoidance
does not lead to worse performance overall.
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3.3.2.2 Conditional Permutation Test

We here consider a version of the matching problem already described in Example 8.
Let S = {1, 2, . . . , n} and consider the space X = Σn of permutations of S. The goal
is to explore likely orderings of S that have high likelihood under our model, which we
now describe. For all integer combinations (i, j) ∈ S × S we associate a likelihood of
that particular pairing given by ωi,j, where ωi,j ∼ logN (0, σ2) independently. For any
permutation x ∈ X we define the target density as

π(x) =
1

Z

n∏
i=1

ωi,xi ,

with Z =
∑

x∈X
∏n

i=1 ωi,xi the normalizing constant. For large σ2 the log-normal has
quite heavy tails, and thus the distribution will be dominated by some pairings being
much more likely than others, giving rise to multimodality. However, in comparison
with for example the much more narrow distribution of the correlation coefficients Jij
in the Sherrington-Kirkpatrick model below, only a few steps are on average needed to
travel between close modes. In practice, for the most difficult i.i.d. case considered in
[Zan19] where n = 500 and σ2 = 5, the average excursion length is around 13, which is
comparable to what was observed in the determinantal point process example of Section
3.3.2.5. Overall, the Tabu sampler performs similarly to the LBJP, indicating that there is
little benefit of avoiding backtracking behaviour when the distribution is very peaked at
the modes.

3.3.2.3 Spin Glasses: The Sherrington-Kirkpatrick Model

Spin glasses are a class of models of magnets with competing ferromagnetic and antiferro-
magnetic interactions, and which are widely studied in statistical physics, in particular
condensed matter, but also applied in diverse fields such as protein folding [BW87], neuro-
science [FT06] and spatial economics [Kru94]. As in example 10, consider a 2-dimensional
lattice V = L2

n with side-length n, where each vertex is inhabited by a binary spin
xi ∈ {±1}. We let |V | ≡ n2 be the overall cardinality of the graph.

We will analyze the Sherrington-Kirkpatrick (SK) model, a lattice-wide model with
random interactions on V, implying that the graph (V,E) is complete, i.e. fully connected.
The log-probability, or negative Hamiltonian H, of the target is

log π(x) ≡ −βH(x) =
1

n

n∑
i=1

n∑
j=1

Jijxixj + h
n∑
l=1

xl =
1

n

n∑
i=1

xi
∑
j 6=i

Jijxj + h
n∑
l=1

xl +
Jll
nh
,

where Jij ∼ N (0, β2(2n)−1) if i 6= j and 0 otherwise, and h > 0. In both cases, we
simply absorb the inverse temperature β into the likelihood constant h and the correlation
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coefficient. It follows that there are |V |2 interaction terms, so the model scales in storage
costs at order O(n4). The SK model generalizes many of the common spin-glass models:
If Jij = c, a constant, for all (i, j) ∈ L2

n, the model reduces to the Curie-Weiss model. On
the other hand, if the model is local in the sense that two vertices (i, j) and (l,m) only
interact when |i− l|+ |j −m| = 1, the model reduces to the Edwards-Anderson model.
Finally, if both simplifications are assumed, we revert to the classical Ising model.

With the generator flipping the ith vertex denoted by γi, we can exploit the sum-
structure of the probability distribution when calculating the rates. The jump rates can
be calculated via

λ(γi;x) = g

(
π(γix)

π(x)

)
= g (exp {H(γix)−H(x)})

= g

(
exp

{
4

n
xi

(
n∑
j=1

Jijxj +
1

2
h

)})
.

More importantly, the update of vertex l given a previous update at i is simply given by
∂lH(γix) = − 8

n
Jilxixl, which significantly speeds up computations. We evaluate the model

with n = 100, β = 1 and h = 0.1. For initialisation, we pick x0 = {1, 1, 1, . . . , 1, 1}. The
highly multi-modal nature of the Hamiltonian is a situation where the Tabu sampler can
be expected to do well, as proper exploration is contingent upon leaving potential wells,
which should be easier as generators leading back towards the well are removed from α(γ).

In practice, we observe that for our spin-system with 10,000 spins, the average excursion
length of the Tabu sampler is 83, or nearly 1% of the possible spins. In comparison with the
four other examples, this is the highest observed excursion length, indicating that modes
are distantly spaced for the Sherrington-Kirkpatrick model, in comparison for example
with the conditional permutation test of Section 3.3.2.2. We conjecture in general that the
Tabu sampler will perform better than other neighbourhood-based samplers the further
spaced modes are in terms of group actions required to reach a neighbourhood of a mode;
we postpone theoretical analysis to future work. In terms of ESS/s, the Tabu sampler
performs close to two order of magnitudes better than the LBJP, which already in the
discrete-time experiments of [Zan19] was shown to perform 40-50 times better for the same
metric, in the much simpler case of a ferromagnetic 2D Ising model, than random walk
proposals, the HB sampler [TY17] and the D-HMC sampler [PP13]. In Figure 3.4, we
display the autocorrelation function and the trace plot of the energy for the two samplers.

3.3.2.4 Log-Submodular Distributions I: Facility Location

Modular functions have found broad application within machine learning and combinatorial
optimization (see e.g. [Bac19]) in recent years, and provide a cohesive framework for
modelling repulsion and regularity of subsets of points in space. For some integer m,
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Figure 3.4: Autocorrelation function and energy traceplot for 80, 000 burned-in samples
drawn from the 100× 100 Sherrington-Kirkpatrick Hamiltonian via the Tabu sampler and
LBJP.

consider the set X = 2m. We say a function f : X → R is submodular if for any sets S, T
such that S ⊆ T and any i ∈ X \ T ,

f(S ∪ i)− f(S) ≥ f(T ∪ i)− f(T ),

that is, there are diminishing marginal returns from making sets larger. To define a
probability distribution, we simply let up to proportionality the probability of a given set
S be π(S) ∝ exp{f(S)}. In the following two examples we consider variations on these
kinds of distributions.

We first consider a variation on the facility location problem [CG99, JV01] for internet
access points. Let K denote a non-convex polygon in R2. Inside K we have a set of m
equidistant points consisting of (vl)1≤l≤m, from hereon known as access points. Also in K,
there are n individual users (uj)1≤j≤n placed randomly according to a Gaussian distribution
centered at the centroid of K. For each user uj we calculate the utility available from
using the access point vi as Υij = exp{−κ‖uj − vi‖2}, where κ is a parameter representing
the physical signal decay, the distance is contained in the convex hull of K. Consider the
value function h

h(S) =
n∑
j=1

max
i∈S

Υij;
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the function returns the maximum value that can be extracted for all users given they
optimally use the closest access point available to them. For installation costs, we have
g1(S) = −λ|S| for some fixed cost-parameter λ > 0, where |S| is the cardinality of the set
S. The probability distribution given by

π(S) ∝ exp
{
h(S)− g1(S)

}
is then a log-submodular probability distribution. To incorporate capacity constraints, we
introduce

1. The choice of sensor by user j, given by

C(S, j) = arg max
i∈S

Υij

2. The total number of users of sensor i, given by

B(S, i) =
n∑
j=1

I[C(S, j) = i]

3. The capacity cost function, given by

g2(S) = ψ
m∑
i=1

max{0, B(S, i)−Ψ}

where ψ > 0 models the sensitivity of user response to exceeded capacity, and Ψ ∈ N is the
maximum allowable capacity before bandwidth declines below some acceptable threshold.
Although the function f ′ = h − g1 − g2 is not submodular, it provides an example of a
capacity-constrained facility location problem, and thus an interesting benchmark case,
given that it incorporates significant shifts in probability when capacities are reached for
access points.

As an illustrative example, we consider the case of providing access to randomly placed
users where K is given as in Figure 3.5, a model football stadium. The access point grid
considers a vertical and horizontal spacing of 5 for a total of m = 704 access points, and
a random number of spectators are drawn inside the stadium boundaries with higher
propensity of being along the lateral sides of the field, the expected number of spectators
is 8750. Assuming that each access point provides 100 mbit/s download and upload rates,
we set the capacity constraint to Ψ = 25 users, and λ = ψ = 1, which corresponds to the
complete loss of utility for a single optimally placed user for spectator connected user in
excess of access point capacity. For the utility gained, we use an adjustment factor κ = n.
To assess the capacity for the samplers to provide suitably different configurations of
sensors, we use the number of sensors as the target statistic. The observed mean excursion
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Figure 3.5: Toy-model of a stadium. Each black dot corresponds to a spectator, and each
red dot corresponds to a sensor.

in this example is just below 32 for the Tabu sampler, indicating significant complexity in
the distribution, and the improvement in effective sample size relative to the LBJP exceeds
an order of magnitude. We note that the capacity constraint is rarely breached for this
particular set of parameters, and the resulting log sub-modular density without capacity
constraints exhibit similar results as the constrained one, with just a slight decline in the
relative performance of the Tabu sampler.

3.3.2.5 Log-Submodular Distributions II: Determinantal Point Processes

Similar to the facility location example above, we here consider sampling subsets S of
elements of a pre-fixed set of items [m] = {1, 2, . . . ,m} for some positive integer m. A
determinantal point process (DPP), generically denoted P , is a point process on [m] taking
values in X = 2m, we call each such subset a point configuration, see [KT12] for a very
comprehensive overview. The defining feature of DPPs is that there is some real, positive
semi-definite matrix K, denoted the marginal kernel, that captures a sense of ’closeness’
or similarity of the different items. We then say a point process P is a DPP if whenever
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X ∈ X is a random subset drawn from P and S ⊆ {1, 2, . . . ,m},

P(S ⊆ X) = detKS,

where det · denotes the determinant, and KS is the restriction matrix of K with correspond-
ing rows and columns corresponding to the active indices. In this case, the probability of
including any single entry 1 ≤ j ≤ m in X is just equal to the jth diagonal entry of K, so
in particular for any two indices i, j, we have

P({i, j} ⊆ X) = detK{i,j} = Ki,iKj,j −K2
i,j,

such that the probability is decreasing the closer the two points are in terms of the
marginal kernel. By this property, DPPs explicitly model repulsion of points. A DPP is
also an example of a log-submodular probability distribution, as the determinant is always
increasing in the number of points. For our purposes, it is easier to work with an explicit
form of DPPs known as L-ensembles. Let L be the real M ×M symmetric matrix, such
that

K = L(L+ I)−1 ⇒ L = K(I −K)−1,

whenever the left-hand side exists. In this case, letting X ∼ P be the random variable
associated with the DPP, the probability of selecting exactly the set X = {x1, . . . , xK} is

P(X = X) ∝ detLX ,

where LX is the K ×K matrix with entries given by (LX)i,j = Lxi,xj for 1 6 i, j 6 K.
Furthermore, the normalization constant is given by Z(L) = det (L+ I). An interesting
property is the following: let |X| be the cardinality of X, and write (λi)16i6M for the
eigenvalues of L. The law of |X| is then that of the number of successes in M independent
Bernoulli trials with success probabilities given by pi = λi/(λi+ 1). In particular, it follows
that E [|X|] =

∑M
i=1 λi/(λi + 1).

In this example we will consider m = 500, and for each item i we draw a uniformly
distributed point si in the unit square. To calculate L, we apply the standard squared
exponential kernel L(i, j) = exp{−1

2
‖si − sj‖2}. The expected number of points drawn

from PL is very close to 60 for any random selection of points under this model. We are
interested in how many points are being drawn, and if a varied selection of points is being
chosen, so similarly to the above example, our target statistic is the number of active points
at any time, and the samplers are initiated at S0 = {1, 2, . . . ,m}, e.g. every point is active.
In this case both the Tabu sampler and the LBJP mix well across the posterior, and the
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ESS/s of the log-energy are close, with a slight edge to the Tabu sampler, corresponding
to an improvement in efficiency of about 50%. However, when it comes to the generation
of diverse point clouds, measured by the number of points chosen, the directed movement
of the Tabu sampler leads to the sampler being around 6 times more efficient. In practice,
the LBJP is primarily modifying outliers with high impact, in probability, on the overall
cloud, while the Tabu sampler uses its irreversible behaviour to more effectively change
the composition. Neither sampler ever proposes more than 80 or fewer than 40 points,
and the mean excursion length is 11.

3.3.3 Examples with High-Order Generators

In the following sections we consider two examples of spaces where the order of the
generators are infinite and finite, respectively. We compare our proposed dZZ and dCS
with the LBJP.

3.3.3.1 Lattice Gaussians

Extensions of the Gaussian distribution to discrete observations and spaces have received
some attention, with some examples including variants on Boltzmann machines in machine
learning (as in e.g. [KCHK20, CK20]) and lattice Gaussians. The latter distribution has
since the seminal paper [GPV08] been applied within cryptography schemes, in particular
because these lattice-based encryption methods appear resilient to brute-force algorithms
given even significant quantum computing power (see [Fol14] for extended discussion.)
The hardness part of lattice-based encryption schemes is based on the difficulty of finding
the shortest possible vector (the ’SVP’ in encryption theory) given a lattice [HKR+16].
Furthermore, sampling these distributions require at least 100 bit floating point precision,
adding additional constraints to the implementation of the sampling algorithms. Outside
of quantum cryptography, the lattice Gaussian distribution has also seen use in coding
theory [LB14b] and spatial econometrics [Ans01]. Here we consider a simple toy case
to illustrate the dynamics of the discrete Zig-Zag process, discrete coordinate sampler,
and the LBJP on spaces with higher-order generators. Let d > 1 be a fixed integer, and
consider a set of basis vectors (vi)1≤i≤d in Rd, which in general will be neither normalized
nor mutually orthogonal. We then define a lattice B as the countably-infinite set of vectors

B =

{
d∑
i=1

vizi : z = (z1, · · · , zd) ∈ Zd
}
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For simplicity, we denote by Bz ∈ B the point on the lattice given by the input vector z.
Given an arbitrary lattice B, the centered lattice Gaussian has probability proportional to

π(z) ∝ exp

(
−π‖Bz‖2

2

s2

)
for some Gaussian parameter s > 0. For the distribution to be useful in cryptography, the
variance parameter has to be moderately large; we take s = 500 in order to satisfy the
requirements posited in the BLISS scheme of [DDLL13]. While the choice of lattice basis
is fundamental in cryptographic applications, the extra cost of working on B is negligible.
As such, we focus our attention on working with the natural basis of Zd.

To compare the methods, we initially let d = 3. In this case, it is clear from the
algorithmic constructions that the runtime of the LBJP will be twice that of the dZZ,
while the dZZ again will at least be thrice as slow as the dCS. To elucidate the difference,
we first run the samplers until the algorithm time T = 100, 000 and thin at intervals of
t = 1, and subsequently run until the LBJP and dCS have run for an equivalent amount of
wall-clock time compared to the LBJP (We re-run the experiments multiple times to verify
the consistency in the comparison.) Our initialization point is z0 = (1000, 1000, 1000),
which is far out in the tails of the target.

The results are shown in Figure 3.6 and 3.7. The random-walk like structure of the LBJP
highlights the difficulty in designing good proposal mechanisms for the lattice Gaussian,
since at any given point the change in probability at each neighbour is miniscule. The
consequence is that the locally-balanced weighting function effectively loses its ability to
distinguish meaningfully between neighbouring states, and the sampler begins to resemble
a random walk Metropolis-Hastings sampler. We suspect that for heavy-tailed target
distributions, the LBJP will run into this problem more dramatically.

In contrast to the LBJP, the irreversible dZZ and dCS mix quickly, as their persistent
behaviour drags them towards the mode of the distribution. For this particular target, a
naive implementation (in the sense of not exploiting known modes, symmetries etc. of the
target) of the dCS runs 4.5 times quicker than the dZZ, however the ESS/s is of the same
order.

3.3.3.2 Discrete Lattice Gauge Theories

In particle physics, lattice gauge theory (LGT) is a model of quantum field theory in which
space is discretised onto a lattice. Calculating quantities of interest in lattice gauge theory
involves evaluating high-dimensional integrals, and as such, Monte Carlo methods have
been widely used in this area; see [Reb83] for an introduction. In the standard formulation,
the state of an LGT model is a collection of ‘gauge field’ variables, indexed by the edges
of the lattice, i.e. x = {xi,j}(i,j)∈E(L), where the gauge fields xi,j take values in some Lie
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Figure 3.6: Sampling until internal time T = 100, 000. Upper row: Position of the first
and second coordinate of the 3-dimensional lattice Gaussian. Lower row: traceplot of the
log-probability for the distribution.
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Figure 3.7: Sampling until wall-clock time is equivalent to the runtime to generate
100,000 samples from the discrete zig-zag sampler. Upper row: Position of the first and
second coordinate of the 3-dimensional lattice Gaussian. Lower row: traceplot of the
log-probability for the distribution.
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group, e.g. the group of two-dimensional rotations, SO(2) ∼= S1. It is occasionally of
interest to go one step further, and also discretise the group; this gives rise to a discrete
lattice gauge theory ; see e.g. [Rom07]. We will apply our algorithms to a specific instance
of a discrete LGT.

In particular, we focus on the setting where the lattice is a subset of Z2, the continuous
group is SO(2), and the discrete approximation is given by Zp, i.e. the integers mod p.
Our target distribution is defined as follows: for each 1× 1 square P in the lattice, with
vertices (i, j, k, l), define

V (P ) = 1− cos

(
2π

p
[xi,j + xj,k + xk,l + xl,i]

)
.

For β > 0, we then define the target distribution π as

π(x) ∝ exp

(
−β
∑
P∈L

V (P )

)
.

Our state space is then ZE(L)
P , with generators given by ‘increase xi,j by 1’, for each edge

(i, j). For large p, these generators have high order, and so our PDMP-type algorithms
are appropriate.

For comparison, we let β = 1, p = 53 and consider a 4× 4 subset of Z2. This gives us
P = 9 squares and 24 vertices, for a total of 5324 possible sample combinations, illustrating
the challenges the discrete lattice gauge model poses even in very low dimensions. We
ran each sampler for an equivalent amount of wall-clock time (relative to generating 106

samples with the dCS), thinning approximately at each event of the sampler. Because of
the dependencies across factors, the LBJP and dZZ in this case generate an equal amount
of samples at the same runtime, while we note that the LBJP is thinning at twice the rate.
To compare the resulting dynamics, we consider the following map of time and the first
coordinate

(t, x1) 7→
(
t, cos

(
2π

p
(x1 mod p)

)
, sin

(
2π

p
(x1 mod p

))
,

and plot the resulting movement on the circle in the upper row of Figure 3.8. The dynamics
are consistent with what is observed for the lattice Gaussian, with the LBJP experiencing
difficulty in circumnavigating the whole circle, but the overall energy still mixes reasonably
well. In comparison, the dZZ showcases good persistent behaviour at all times as it applies
the same generators recurrently, while the dCS interestingly enough occasionally covers
the entire circle more than once whenever the coordinate is active. Comparing our new
schemes, the dZZ decorrelates much quicker than the dCS, but also requires access to all
states accessible via a generator at each iteration. The resulting ESS/s is therefore still
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slightly higher for the dCS compared to the dZZ, with approximately 13 and 10 times
improvement on the LBJP, respectively, on average.

Figure 3.8: Sampling until wall-clock time corresponds to 106 samples from the dCS.
Upper row: Position on the circle of the first coordinate up until t = 5, 000. Middle row:
traceplot of the log-probability of the distribution. Lower row: Autocorrelation function
up to order 3, 000, calculated after discarding the first 20% of samples generated.

3.4 Conclusion and Outlook

In this work, we have presented a collection of algorithms which can be used for continuous-
time Monte Carlo sampling on structured, discrete spaces. We have established correctness
of these algorithms, and demonstrated their performance on a collection of examples. A
particular benefit of these samplers is that they each directly use the structure of the
underlying discrete space, and do not rely upon relaxations or embeddings into continuous
spaces to achieve their improved performance.

Going forward, we highlight three directions in which this line of work could be
advanced.

An important starting point would be to carry out a theoretical study of the quantitative
convergence properties of these new samplers, and under which conditions we can expect
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them to mix quickly. On continuous state spaces, one generally believes that log-concavity
is sufficient for most sensible algorithms to mix quickly; on discrete spaces, it is not yet
clear whether there is a similarly easily-verified condition which could ensure fast mixing
of ‘sensible’ Markov chains on general state spaces (though see [Joh17] for some quite
specific steps in this direction). On a related note, there is a wealth of existing work which
makes use of group theory and representation theory to study the mixing behaviour of
Markov chains, typically to uniform distributions. It would be exciting to see whether
these techniques could provide useful answers in the setting of sampling from non-uniform
distributions over structured spaces.

At a directly practical level, there is work to be done on how these algorithms can
fit into the broader Monte Carlo toolbox. For example, we have used a naive thinning
scheme to calculate our sample algorithms; one can imagine that a Rao-Blackwellisation
procedure along the lines of [CR96, DR11] could provide some cheap variance reduction.
One could also try to identify natural couplings for these processes, which could enable
their use in the unbiased estimation schemes of [JOA20]. There is also ample opportunity
to study how parallelism, adaptation schemes, and convergence diagnostics could play a
role in further improving the performance of these algorithms.

Finally, we are excited to see how these techniques could give rise to improved algorithms
for target distributions with a combination of discrete and continuous components. This
could include statistical models with this flavour (e.g. mixture models, as in [RG97, Ste00,
CRR03]), or ‘artificially-discrete’ sampling methods like Parallel Tempering (e.g. [ED05]).
Recent work has shown that continuous-time sampling from continuous distributions can
be done tractably and efficiently; it would be rewarding to connect those techniques with
the methods in this paper.
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3.5 Appendix

3.5.1 Proof Techniques

In this section, consider a Markov Jump Process on a discrete state space U , with jump
rates λ(u→ v), and generator given by

(Lf)(u) =
∑
v∈∂u

λ(u→ v) [f(v)− f(u)] .

For such processes, there are two standard routes to establishing invariance with respect
to a given measure Π.

3.5.1.1 Detailed Balance

The first of these is detailed balance. An MJP is said to be in detailed balance with respect
to Π if

∀f, g ∈ L2(Π), EΠ[(Lf)(u)g(u)] = EΠ[f(u)(Lg)(u)].

It is standard to show that this condition is sufficient for Π to be an invariant measure
for the MJP. By considering f(x) = I[x = u], g(x) = I[x = v], one can show that it is
necessary and sufficient that,

∀u, v ∈ U , Π(u)λ(u→ v) = Π(v)λ(v → u),

which can typically be verified by inspection.

3.5.1.2 Skew-Detailed Balance

The second such route is known as skew-detailed balance. In this case, the space U is
equipped with a map S : U → U , satisfying S(S(u)) = u for all u. Defining the operator
Q by

Qf(u) = f(S(u)),

the MJP is said to be in skew-detailed balance with respect to (Π,Q) if

∀f, g, EΠ[(QLf)(u)g(u)] = EΠ[f(u)(QLg)(u)].
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In what follows, we derive some assumptions under which skew-detailed balance will hold.
In particular, we require following ‘local conditions’

∀u ∈ U , Π(S(u)) = Π(u),

∀u, v ∈ U , Π(u)λ(u→ v) = Π(S(v))λ(S(v)→ S(u)).

Moreover, defining

Λ(u) =
∑
v∈∂u

λ(u→ v),

we require the additional ‘semi-local condition’

∀u ∈ U , Λ(u) = Λ(S(u)).

The local conditions are relatively standard, and crop up in e.g. the literature on
non-reversible discrete-time Markov chains. However, the semi-local condition appears to
be unique to the continuous-time setting, and may be of independent interest.

In any case, under these conditions, the MJP can be demonstrated to be skew-reversible,
and thus leave Π invariant. Indeed, in the proofs which follow, skew-reversibility, rather
than graph or group structure, will be the key ingredient.

We note that if an MJP satisfies the local conditions, but not the semi-local condition,
it is possible to induce skew-detailed balance by including an extra jump type, as follows:
at rate [Λ(S(u))− Λ(u)]+, jump from u to S(u). Indeed, this is how we derived the
algorithms presented in this paper.
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3.5.2 Proofs of Invariance for Individual Algorithms

3.5.2.1 Proof for the LBJP

For the LBJP, one has that

π(x)λ(x→ y) = π(y)λ(y → x),

by construction, as the jump rates are defined using balancing functions. As such, by
detailed balance, the algorithm leaves π invariant.

3.5.2.2 Proof for the Tabu Sampler with Order-2 Generators

For the Tabu Sampler, we will show invariance by establishing that the process is skew-
reversible with respect to the joint invariant measure Π(x, α, τ), and the involution
S(x, α, τ) = (x, α,−τ). In particular, we claim that

Π(x, α, τ)λ((x, α, τ)→ (γ · x, αγ, τ)) = Π(γ · x, αγ,−τ)λ((γ · x, αγ,−τ)→ (x, α,−τ)).

As this transition leaves the probability mass functions of α and τ unchanged, we need
only check that

π(x)λ((x, α, τ)→ (γ · x, αγ, τ)) = π(γ · x)λ((γ · x, αγ,−τ)→ (x, α,−τ)).

Expanding the jump probabilities, this is equivalent to

π(x)g

(
π(γ · x)

π(x)

)
· I[α(γ) = τ ] = π(γ · x)g

(
π(x)

π(γ · x)

)
· I[αγ(γ) = −τ ].

The indicator functions in this expression are equal by construction, i.e. the move from
(x, α, τ) to (γ · x, αγ, τ) is allowed exactly when the move from (γ · x, αγ,−τ) to (x, α,−τ)

is allowed. Moreover, because the jump rates are given in terms of balancing functions,
one has that

π(x)g

(
π(γ · x)

π(x)

)
= π(γ · x)g

(
π(x)

π(γ · x)

)
.

As such, the two sides are genuinely equal. The additional jump rates for transitioning
between (x, α, τ) and S(x, α, τ) = (x, α,−τ) ensure that Λ((x, α, τ)) = Λ(S(x, α, τ)), and
thus by skew-reversibility, the process leaves Π invariant.
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3.5.2.3 Tabu Sampler on General Graphs

One can also define a Tabu Sampler on general graphs, using a similar construction to
enforce that, at any given time, the process can only traverse each edge in one of the two
directions.

More precisely, define an orientation ω to be any function E → V × V which sends the
edge (x, y) to either (x, y) or (y, x), i.e.

for all (x, y) ∈ E, ω(x, y) = (ω−1(x, y), ω+1(x, y)) ∈ {(x, y), (y, x)},

and write Ω for the space of all orientations. Now, construct a Markov process with state
(x, ω, τ) ∈ X × Ω× {±1}, such that at (x, ω, τ), the process can only jump to neighbours
y such that ωτ (x, y) = x. Upon making this jump, the values of (ω−1(x, y), ω+1(x, y)) are
swapped. Moreover, at an appropriate rate, the value of τ is flipped to the negative of its
previous value.

Specifically, one defines a process with local jump rates

λ ((x, ω, τ)→ (y, ωx→y, τ)) = g

(
π(y)

π(x)

)
· I [ωτ (x, y) = x]

and semi-local flipping rate

λ ((x, ω, τ)→ (x, ω,−τ)) =

[∑
y∈∂x

g

(
π(y)

π(x)

)
· {I [ωτ (x, y) = x]− I [ω−τ (x, y) = x]}

]
+

.

An entirely analogous proof establishes that this process will have an invariant measure
which is the product of π(x), the uniform measure over orientations, and the uniform
measure over τ .

In the process described above, there is an orientation assigned to each edge in the
graph. In the original Tabu sampler, there is an orientation which is shared across all
edges of the form x → γ · x. One can generalise this notion of shared edges further, to
obtain various generalisations. This may be useful for models where there is not a group
structure per se, but there is still a notion of edges being similar. Some similar ideas have
been explored recently in [GM20].

3.5.2.4 Proof for the discrete Zig-Zag Process

For the discrete Zig-Zag process, we will show invariance by first establishing that when
only one generator is available, the process leaves Π(x, θ) invariant. As the full discrete
Zig-Zag process can be viewed as a superposition of the single-generator processes, the
infinitesimal generator of the full process is simply the sum of the infinitesimal generators
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of the single-generator processes, and one can thus deduce that the full process leaves Π

invariant.
To estabish that the single-generator process leaves Π invariant, we will show that the

process is skew-reversible with respect to the joint invariant measure Π(x, θ(γ)) and the
involution S(x, θ(γ)) = (x,−θ(γ)). This claim is equivalent to the equality

Π(x, θ) · λ((x, θ)→ (y, θ)) = Π(y,−θ) · λ((y,−θ)→ (x,−θ))

where y = γθ(γ) · x, θ = θ(γ). As in the case of the Tabu sampler, the transition leaves the
probability mass function of θ unchanged, and so we need only check that

π(x) · g
(
π(y)

π(x)

)
· I[x→ y allowed by θ] = π(y) · g

(
π(x)

π(y)

)
· I[y → x allowed by − θ].

Again, the indicator functions are equal by construction, and the use of balancing functions
guarantees that

π(x) · g
(
π(y)

π(x)

)
= π(y) · g

(
π(x)

π(y)

)
.

As such, the two sides are genuinely equal. The additional jump rates for transitioning
between (x, θ) and S(x, θ) = (x,−θ) ensure that Λ((x, θ)) = Λ(S(x, θ)), and thus by
skew-reversibility, the process leaves Π invariant.

Now, let Lγ be the generator of the discrete Zig-Zag process which only uses the
generator γ. The generator of the full process is then given by L =

∑
γ∈Γ0
Lγ . Since each

of these generators is associated to a process which leaves Π invariant, we see that for any
f ∈ L2(Π),

EΠ [(Lγf)(x)] = 0 for all γ ∈ Γ0

=⇒
∑
γ∈Γ0

EΠ [(Lγf)(x)] = 0

=⇒ EΠ

[∑
γ∈Γ0

(Lγf)(x)

]
= 0

=⇒ EΠ [(Lf)(x)] = 0

and thus that the full process also leaves Π invariant.
Note that a simple adaptation of this proof allows for the design a correct variant of

the discrete Zig-Zag process which prefers to use some generators more than others, by
constructing a process with generator Lw =

∑
γ∈Γ0

w(γ)Lγ for some set of positive weights
w. There may be scope for using such a process with an adaptive choice of w to accelerate
sampling.
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3.5.2.5 Proof for the discrete Coordinate Sampler

For the discrete Coordinate Sampler, we will show invariance by a direct computation, as
the mechanism for changing the velocity is somewhat more elaborate than in the other
algorithms. We begin by writing down the generator of the process:

(Lf)(x) = δ(x, v, τ) · [f(vτ · x, v, τ)− f(x, v, τ)]

+ ρ(x, v, τ) ·
∑
w∈Γ

ψ(w)ρ(x,w, τ)

Z(x)
[f(x,w,−τ)− f(x, v, τ)] .

We begin by computing the expectation of the first part of the first term:

EΠ [δ(x, v, τ) · f(vτ · x, v, τ)]

=
∑
x,v,τ

π(x)ψ(v)R(τ)δ(x, v, τ) · f(vτ · x, v, τ)

=
∑
x,v,τ

π(x)ψ(v)R(τ)δ(x, v, τ) · f(vτ · x, v, τ)

=
∑
x,v,τ

π(x)ψ(v)R(τ)g

(
π(vτ · x)

π(x)

)
· f(vτ · x, v, τ)

=
∑
x,v,τ

π(vτ · x)ψ(v)R(τ)g

(
π(x)

π(vτ · x)

)
· f(vτ · x, v, τ)

=
∑
y,v,τ

π(y)ψ(v)R(τ)g

(
π(v−τ · y)

π(y)

)
· f(y, v, τ)

=
∑
y,v,τ

π(y)ψ(v)R(τ)δ(y, v,−τ) · f(y, v, τ)

= EΠ [δ(x, v,−τ) · f(x, v, τ)]

We can thus deduce that

EΠ [δ(x, v, τ) · [f(vτ · x, v, τ)− f(x, v, τ)]] = EΠ [{δ(x, v,−τ)− δ(x, v, τ)} · f(x, v, τ)]
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We now focus on computing the expectation of the first part of the second term:

EΠ

[
ρ(x, v, τ) ·

∑
w∈Γ

ψ(w)ρ(x,w, τ)

Z(x)
f(x,w,−τ)

]

=
∑
x,v,τ,w

π(x)ψ(v)R(τ) · ρ(x, v, τ) · ψ(w)ρ(x,w, τ)

Z(x)
f(x,w,−τ)

=
∑
x,v,σ,w

π(x)ψ(w)R(σ) · ρ(x,w,−σ) · ψ(v)ρ(x, v,−σ)

Z(x)
f(x, v, σ)

=
∑
x,v,σ,

π(x)R(σ)ψ(v)ρ(x, v,−σ)f(x, v, σ)
∑
w

ψ(w)ρ(x,w,−σ)

Z(x)

=
∑
x,v,σ,

π(x)R(σ)ψ(v)ρ(x, v,−σ)f(x, v, σ)

= EΠ [ρ(x, v,−τ)f(x, v, τ)]

and thus that the second term has expectation

= EΠ [{ρ(x, v,−τ)− ρ(x, v, τ)} f(x, v, τ)] .

Now, by noting that

ρ(x, v,−τ)− ρ(x, v, τ) = [δ(x, v, τ)− δ(x, v,−τ)]+ − [δ(x, v,−τ)− δ(x, v, τ)]+

= δ(x, v, τ)− δ(x, v,−τ),

we can add together the two expectation terms, and see that EΠ [(Lf)(x, v, τ)] = 0. Thus,
Π is an invariant measure for the chain.
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Chapter 4

An Optimal Scaling Theory for a
Multi-Core Metropolis-Hastings
Algorithm

Abstract
In this work, we present an implementation of the Metropolis-Hastings algorithm
which makes use of parallel computing resources. The implementation applies
naturally to any family of proposals, including those based on Random Walks,
Langevin Diffusions, and Hamiltonian Dynamics. An attractive aspect of this use
of parallelism is that it permits larger step-sizes to be used in these proposals,
while maintaining the same real-time acceptance rate. Using this perspective, we
formulate an optimal scaling problem in the vein of [RGG97], which, for a given
family of proposals and a given number of processors P , provides a value to which
the acceptance rate of the resulting Markov chain should be tuned. This problem can
be efficiently solved for any fixed P and one can numerically estimate the expected
gain in efficiency over the corresponding single-processor algorithm. Moreover, we
carry out an asymptotic analysis, which establishes how this optimal efficiency gain
scales with the number of processors P .

4.1 Introduction

Markov Chain Monte Carlo (MCMC) is a class of algorithms which are used for ap-
proximate sampling from a desired probability distribution π. The Metropolis-Hastings
Algorithm is a general, widely-applied framework within MCMC, which allows one to
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devise Markov Chains with a desired invariant measure π. In a Metropolis-Hastings chain,
one stochastically proposes moves according to some ‘proposal kernel’ q(x→ y), and then
stochastically accepts or rejects these moves, according to a criterion for how suitable the
transition from x to y is, under the desired invariant measure π. The proposal kernel
q typically depends explicitly on some step-size parameter h, which informs the typical
length-scale of the proposal moves. With such algorithms, there is a fundamental tension.
Proposing moves which are too large will typically lead to low acceptance rates, and a
chain which rarely moves. On the other hand, proposing moves which are too small will
lead to a chain which requires many steps to move a given distance. As such, it is of
clear practical interest to devise optimality criteria which allow users to navigate this
tradeoff and automatically tune their proposal mechanisms to optimise the efficiency of
the resulting algorithm.

One relatively successful criterion has come from the theory of optimal scaling. In this
framework, one first considers deploying a Metropolis-Hastings chain to sample from a
target measure of product form, ΠN(x1, · · · , xN) = π(x1) · · · π(xN). One then identifies a
scaling of h = h(N) such that the acceptance probability of the N -dimensional algorithm
remains of constant order as N grows. Typically, upon an appropriate rescaling of time,
one can show that the path of the first component x1 converges weakly to some stochastic
process in the large-N limit. By analysing the behaviour of the limit process, one can
devise a protocol for tuning the parameters of the chain, such that the speed of convergence
to equilibrium is optimised. This form of analysis has been highly influential, and has been
a significant driver in the development of adaptive MCMC methods, where the parameters
of a proposal are learned on-the-fly and tuned to their optimal setting automatically as
the chain runs.

A separate consideration which has been of recurrent interest in the study of MCMC
algorithms is the role of parallel computing. MCMC is naturally viewed as a sequential
process, and as such, it has not always been clear how parallel computing resources could
be most usefully deployed in improving sampling efficiency. One simple way of employing
parallel resources in a Metropolis-Hastings algorithm would be to use multiple cores to
propose and evaluate several possible moves in parallel, ultimately moving to the first
accepted proposal. This approach could be used with a view towards either i) boosting
the real-time acceptance rate of the algorithm, or ii) making more ambitious moves and
increasing the upper limit of feasible step-sizes.

In this work, we will study this ‘Multi-Core Metropolis-Hastings’ algorithm and verify
this behaviour, i.e. that given P > 1 cores, one should generally increase the proposal
step-size h, thus aiming for a lower acceptance rate for each proposal, while achieving a
higher real-time acceptance rate. Moreover, given a class of proposal kernels, we will derive
explicit numerical expressions for the optimal acceptance rate of the resulting algorithm for
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any finite P . Finally, we characterise the asymptotic behaviour of the optimised algorithm
as P tends to infinity.

The layout of the paper is as follows. In Section 4.2, we describe the classical theory
of optimal scaling for Metropolis-Hastings algorithms. In Section 4.3, we give a precise
formulation of our simple Multi-Core Metropolis-Hastings algorithm. In Section 4.4, we
describe how the efficiency measures used in classical optimal scaling should be adapted
to the multi-core setting and explain how to optimise them. In Section 4.5, we carry out
an asymptotic analysis, giving indications of what range of benefits can be expected as
the number of processors P tends to infinity. Finally, in Section 4.6 we comment on the
outlook for parallelism in MCMC, and discuss other ways in which parallel resources could
be deployed practically for improved MCMC sampling.

4.2 Optimal Scaling Theory

The majority of the theory of optimal scaling for MCMC is carried out in the Metropolis-
Hastings framework, and as such, we present it from this perspective.

4.2.1 Metropolis-Hastings Algorithms

We begin by describing the construction of the Metropolis-Hastings algorithm. We focus
on the task of sampling from a distribution on Rd, with full support and a smooth, positive
density with respect to Lebesgue measure. We assume also that all proposal distributions
have full support and a smooth, positive density. We will also routinely abuse notation and
identify distributions with their densities. Additional settings can certainly be handled
by the framework, but these assumptions simplify the presentation considerably, without
particularly obscuring the main concepts.

Suppose that we are interested in sampling from a distribution π(x), whose density we
can evaluate up to a constant factor. Suppose also that for each x ∈ Rd, there is a proposal
distribution q(x→ y), from which we are able to draw samples, and whose density we can
evaluate exactly. The Metropolis-Hastings algorithm for sampling from π, with proposal q,
proceeds as follows:

The key fact about this algorithm is that it generates sequence of points x which form a
Markov chain with π as an invariant measure. Moreover, under reasonable assumptions on
π and q, as the number of iterations tends to infinity, the distribution of x will converge to
π, and under further assumptions, one can also prove that this convergence is sufficiently
fast that certain Law of Large Numbers- and Central Limit Theorem-type results hold,
i.e. that the samples generated by the algorithm can be used to efficiently estimate
expectations of functions under π.
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Algorithm 34 Metropolis-Hastings algorithm for sampling from π, with proposal q

1. At location x, propose a move to y, where y ∼ q(x→ y).

2. Evaluate the acceptance ratio, given by

α(x→ y) = g

(
π(y)q(y → x)

π(x)q(x→ y)

)
where g(t) = min(1, t).

3. Simulate u ∼ Unif[0, 1], and set b = I[u < α].

4. If b = 1, move to y. Otherwise, remain at x.

In this work, we will focus our attention on three of the most commonly studied families
of proposal distributions. They are the Random Walk proposal,

qRW(x→ y;h) = N (y|x, hI),

the Langevin diffusion proposal,

qLD(x→ y;h) = N
(
y|x+

1

2
h∇ log π(x), hI

)
,

and the Hamiltonian dynamics proposal,

qHD((x, p)→ (y, q);h, T ) = δ(F ◦ L((x, p);h, T ), (dy, dq)).

In the definition of qHD, we define L((x, p);h, T ) as the output of running the leapfrog
integrator to solve Hamilton’s equations of dynamics for T units of time, using time-steps
of size h, starting at the location (x, p). T is typically referred to as the integration
time. Note that Th−1 is implicitly an integer in this formulation. We will later use the
notation L((x, p);T ) to denote the exact solution to Hamilton’s equations, such that for
any (x, p, T ), as h→ 0+, we have that L((x, p);h, T )→ L((x, p);T ). Finally, we define F
by F(x, p) = (x,−p).

In all cases, h > 0 is a step-size parameter, which dictates the scale of the proposal moves
which are being made. When put into the Metropolis-Hastings framework, the resulting
algorithms are known as Random Walk Metropolis-Hastings (RWMH), the Metropolis-
Adjusted Langevin Algorithm (MALA), and Hamiltonian Monte Carlo (HMC) respectively.
We note that in the case of Hamiltonian Monte Carlo, there are some subtle differences.
For one, instead of trying to draw samples from π(x), one tries to draw samples from an
augmented target distribution, given as µ(x, p) = π(x) · N (p|0, I), which admits π as a
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marginal distribution. Moreover, the algorithm in fact alternates between two steps:

1. Propose a move from (x, p) to (y, q) using qHD, accept or reject that move using the
Metropolis-Hastings test.

2. Jump from (x, p) to (x, p′), where p′ is drawn independently from N (p|0, I).

While significant at the level of implementation, these differences will not impede the
mathematical claims which follow. We will not dwell much further on the more esoteric
details of how HMC differs from the other proposals; for the interested reader, [Bet17]
provides a thorough review.

A natural question for each of these proposals concerns how this parameter h ought
to be set. On one hand, for small h, the acceptance ratio α will tend to be close to 1,
and more moves will be accepted. On the other hand, for larger h, the moves which are
accepted will generally be larger in magnitude, relative to their cost of simulation. Striking
a balance between accepting a reasonable proportion of moves, and having those moves be
of a reasonable size, is at the core of defining efficient Metropolis-Hastings schemes.

4.2.2 Overview on Optimal Scaling

The optimal scaling approach to tuning step-sizes can roughly be split into three phases of
calculations.

1. The ‘critical scaling’ calculations, in which one determines the rate at which the
step-size should scale for high-dimensional problems.

2. The ‘continuum limit’ calculations, in which one demonstrates that, when using the
critical scaling to set step-size, an appropriately-rescaled version of the high-dimensional
Metropolis-Hastings chain converges to a certain continuous-time stochastic process.

3. The ‘optimal acceptance’ calculations, in which one uses the continuum limit of the
chain to recommend a target average acceptance rate for the Metropolis-Hastings
chain.

For the critical scaling phase, one first fixes a family of proposals {q(x→ y;h)}x∈X ,h>0,
a target distribution π, and an integer N . One then writes down both the target measure

ΠN(x1, · · · , xN) = π(x1) · · · π(xN),

and the Metropolis-Hastings algorithm for sampling from ΠN , using the proposals {q(x→
y;h)}x∈X , for some h > 0.

Next, assuming that the Metropolis-Hastings chain is initialised at stationarity (though
note that some works relax this assumption at the cost of a more involved analysis, see
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e.g. [CRR05, JLM14, JLM15]), one writes down an expression for the acceptance rate
αN = α(x→ y). Given this expression, one can typically identify a constant γ > 0 such
that, by scaling h = h0 ·N−γ, and sending N → ∞, the acceptance rate αN tends to a
deterministic limit of constant order, i.e.

αN(x→ y)→ A(h0; π) ∈ (0, 1).

For example,

1. For the Random Walk proposal, it was shown in [RGG97] that one can take γ = 1,
and the limiting acceptance probability is then given by

ARW(h0; π) = 2Φ
(
−cRWπ · h1/2

0

)
where Φ is the CDF of a standard Gaussian random variable, and cRWπ is a constant
which depends only on the target distribution π.

2. For the Langevin Diffusion proposal, it was shown in [RR98] one can take γ = 1/3,
and the limiting acceptance probability is then given by

ALD(h0; π) = 2Φ
(
−cLDπ · h

3/2
0

)
where cLDπ is a constant which depends only on the target distribution π.

3. For the Hamiltonian Dynamics proposal, one nominally has two parameters to select, h
and T . The assumption used in [BPR+13] is to treat T as fixed, and set h = T ·bN1/4c−1.
This is asymptotically equivalent to taking γ = 1/4, and we will drop the floor symbols
from here onwards. With these choices, the authors then show that the limiting
acceptance probability is given by

AHD(h0; π) = 2Φ
(
−cHDπ,T · h2

0

)
where cHDπ,T is a constant which depends only on the target distribution π and the
integration time T .

One can also derive expressions of this form for a variety of other proposal distributions,
see e.g. [ARR09, BDM12, BDM14] for some other examples.

For the continuum limit calculations, one then proceeds by studying the N -dimensional
process, with step-size scaling as above, and aims to show that, when rescaled appropriately,
the marginal path law of the first coordinate converges to an appropriate stochastic process.

For example,
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1. For the Random Walk proposal, upon rescaling time by a factor of N , one obtains the
continuous-time Langevin diffusion

dX =
1

2
SRW(h0; π)∇ log π(X)dt+

√
SRW(h0; π)dW

where the speed measure SRW is defined as

SRW(h0; π) = h0 · ARW(h0; π).

This limiting process is equivalent to taking the diffusion dX = 1
2
∇ log π(X)dt+ dW

and then rescaling time by a factor of SRW(h0; π).

2. For the Langevin Diffusion proposal, one instead rescales time by a factor of N1/3 and
obtains the same diffusion

dX =
1

2
SLD(h0; π)∇ log π(X)dt+

√
SLD(h0; π)dW,

albeit with time rescaled by a different factor, given by

SLD(h0; π) = h0 · ALD(h0; π).

3. For the Hamiltonian Dynamics proposal, no time rescaling occurs. Instead, the limiting
process is a Markov chain, defined by iterating the following two steps:

(a) Resample p ∼ N (0, 1).

(b) Compute (y, q) = L((x, p);T ), and with probability AHD(h0; π), move to (y, q),
otherwise, remain at (x, p).

Given such a limiting process, one proceeds to the optimal acceptance calculations. In
this phase, one reasons about how h0 can be tuned, such that the corresponding limiting
stochastic process is mixing as quickly as possible, per unit of work.

For both the Random Walk and Langevin Diffusion proposals, the limiting stochastic
process is a time-rescaled version of the continuous-time Langevin diffusion. Varying h0

only affects the speed at which the diffusion travels, and does not affect the paths it traces
out. As such, we are justified in trying to directly optimise the factor by which time is
rescaled, i.e. the speed measure S(h0; π).

By contrast, for the Hamiltonian dynamics proposal, the variability in the limiting
process comes from the cost of simulating each step of the algorithm. With step-size
h ∼ h0N

−1/4, each step of the algorithm costs ∼ h−1 to simulate, and is then accepted
with probability AHD(h0; π). With this in mind, the authors propose maximising the ratio
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of the acceptance probability to the cost per step, i.e. they define a speed measure as
SHD(h0; π) = h0 · AHD(h0; π).

We summarise the key examples as follows:

Proposal Scaling (γ) Acceptance Rate Speed Measure

Random Walk 1 2Φ
(
−cRWπ · h1/2

0

)
h0 · ARW(h0; π)

Langevin Diffusion 1/3 2Φ
(
−cLDπ · h

3/2
0

)
h0 · ALD(h0; π)

Hamiltonian Dynamics 1/4 2Φ
(
−cHDπ · h2

0

)
h0 · AHD(h0; π)

We note that it is common to reparametrise h0 = Lδ for some ‘dynamical exponent’
δ > 0 depending on the family of distributions, where L is defined such that a typical
proposal move is at a distance ∼ L from the previous point. For example, for diffusive
proposals like the Random Walk and Langevin Diffusion, one can take δ = 2, and for
ballistic proposals like Hamiltonian Dynamics, one instead takes δ = 1. We will adopt this
convention going forward, and abbreviate α(L) = A(Lδ; π), s(L) = S(Lδ; π), leaving the
dependence on π implicit.

In all of our examples, it is possible to write

α(L) = 2Φ
(
−cπ · Lδ/2γ

)
s(L) = Lδ · α(L).

When this is the case, one can then rewrite the speed measure in terms of α as

s(α) = c−2γ
π ·

(
Φ−1

(
1− α

2

))2γ

· α.

A consequence of this expression for the speed measure in terms of α is that although
the optimal value of L will generally depend on the properties of π, the optimal acceptance
rate α∗ is independent of the target measure. As a result, one can tune the step-size of a
Metropolis-Hastings algorithm purely by monitoring the empirical acceptance rate, and
adjusting the step-size accordingly. For more concrete guidance on algorithms with which
to carry out this adaptation, see e.g. [AT08].

4.3 Multi-Core Metropolis-Hastings

When running a Metropolis-Hastings algorithm in practice, one effectively only needs to
store i) the distinct locations which the chain has visited, and ii) for how many units of
time the chain stayed at each of these locations. As such, with other things being equal,
it is desirable to accelerate the procedure of finding new, distinct locations to move to,
provided that the mixing behaviour of the chain is not compromised.
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One scenario under which this can be achieved is when one has access to parallel
computing resources. While on a single-core machine, one has to repeat the propose-
accept-reject procedure sequentially until a new accepted location is found, on multi-core
machines, one can propose and evaluate many potential new states at once in parallel.
In real time, this allows for potential speed-ups. We present a simple version of such
an algorithm below, noting that [SWJ93] present a similar algorithm in the context of
simulated annealing.

Algorithm 35 Multi-Core Metropolis-Hastings, with P processors

1. At location x, for p = 1, . . . , P , in parallel,

(a) Simulate yp ∼ q(x→ y).

(b) Evaluate the acceptance ratio, given by

αp = α(x→ yp) = g

(
π(yp)q(yp → x)

π(x)q(x→ yp)

)
where g(t) = min(1, t).

(c) Simulate up ∼ Unif[0, 1], and set bp = I[up < αp].

2. If bp = 0 for all p, advance time by P , and stay at x

3. Otherwise, let P ∗ = min{p : bp = 1}, advance time by P ∗, and move to yP ∗ .

It is important to note that this algorithm generates the same Markov chain as the
standard Metropolis-Hastings algorithm, and as such, will also converge in law to π.
The differences arise through i) implementation, and ii) the real-time convergence of the
algorithm.

xt xt, yt

ut

xt, yt, bt

Figure 4.1: Schematic for Standard Metropolis-Hastings Implementation
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Figure 4.2: Schematic for Multi-Core Metropolis-Hastings Implementation

A key observation about this new scenario is that the standard optimality criteria
may no longer be appropriate. In particular, if one is interested in how quickly the chain
decorrelates in real time, it seems reasonable that for an efficient scheme, one only really
needs 1 of the P proposals to be accepted at each step. This suggests that one ought to
make more ambitious proposal moves when there are multiple cores available.

4.3.1 Other Parallelisations of MCMC Algorithms

We pause briefly to review other work which uses parallelisation to accelerate MCMC
procedures. We restrict ourselves to procedures which ultimately generate a single Markov
chain; procedures involving multiple chains have a qualitatively different nature, and we
omit them from our discussion.

One approach which has been studied in some depth is ‘prefetching’ as introduced in
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[Bro06]; note also related work on ‘speculative evaluation’ of proposals in [BJB10]. In
prefetching, the goal is to simulate the Markov chain forward k steps in time and use
parallelisation to enable this. The key observation underlying prefetching is that over a
k-step horizon, there are 2k possible sequences of accept-reject decisions which can unfold,
which form a tree structure, and one can assess which of these decisions should ultimately
take place in parallel. Subsequent work [Str10, AKW+14] has focused on efficient ways
of pruning this tree structure, allowing for attention to be focused on more promising
sequences of proposals. These methods can be highly efficient, but tend to assume that
the proposal family is sufficiently simple that multi-step proposals can be generated easily;
this impedes the use of more advanced proposals like discretisations of Langevin diffusions
and Hamiltonian dynamics.

To elaborate, the common assumptions underlying prefetching methods tend to be
that i) the key cost of any MCMC step is likelihood evaluation, ii) proposing moves is
considered to be relatively cheap, and iii) proposing moves several steps ahead is not much
more expensive than proposing one. The first of these is quite reasonable, and the latter
two are holds for random walk proposals. However, for gradient-based proposals, the
cost of evaluating the gradient of the log-likelihood is typically comparable to the cost of
evaluating the likelihood, and so ii) is somewhat less true. The third point is even less
true; understanding where the chain could end up after k steps requires considering at
least k gradient evaluations. As such, these prefetching schemes are not as well-adapted
to scenarios in which gradient-based proposals are available.

One can also use parallelisation to accelerate MCMC algorithms in which individual
steps have random runtimes, e.g. [NMA14] employ parallelism to speed up Elliptical Slice
Sampling, by accelerating the search for a valid point in the ‘slice’. It is also common
practice to speed up individual steps of a blocked Gibbs sampler by updating disjoint
blocks in parallel, as in e.g. the Splash sampler of [GLGG11].

4.4 Optimising Multi-Core Metropolis-Hastings

In what follows, we make the standing assumption that the cost of evaluating π and its
derivatives is much greater than the cost of communication between processors. Suppose
we are using proposals where step-sizes scale as h = Lδ · N−γ, the asymptotic speed
measure is given by s(L) = Lδ · α(L), and the asymptotic acceptance rate is given by
α(L) = 2 · Φ(−cLδ/2γ). We argue that, when P processors are available, the correct
extension of the speed measure is given by

sP (L) = Lδ · αEff
P (L)

αEff
P (L) = 1− (1− α(L))P .
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The justification for this choice is that with each accepted move, one is travelling a distance
of the same order as the single-processor algorithm, but for each real unit of time, the
probability of at least one of the P proposals being accepted is αEff

P (L). We note that this
is compatible with each of the speed measures proposed in the P = 1 setting.

As before, one can re-write the speed measure purely in terms of the limiting acceptance
probability α as

sP (α) ∝
(

Φ−1
(

1− α

2

))2γ

·
(

1− (1− α)P
)
,

up to a multiplicative factor which depends only on π.
We will now maximise this objective function for three commonly used families of

proposals which are used in Metropolis-Hastings schemes. We use α∗P to denote the optimal
acceptance rate for a given family of proposals when P cores are available, and we define
the relative efficiency of the P -processor scheme by

REP = sP (α∗P )/s1(α∗1),

i.e. the ratio of efficiencies of the best P -core algorithm to the best single-core algorithm.
All numerical quantities are reported to 3 significant figures.

4.4.1 Application to RWMH

For random walk proposals, it was shown in [RGG97] that the dimension-robustness
exponent is given by γ = 1. As a result, one can write the speed measure as

sP (α) ∝
(

Φ−1
(

1− α

2

))2

·
(

1− (1− α)P
)
.

Maximising this expression numerically for P ∈ {2k : 0 6 k 6 10}, we obtain that
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P α∗P REP

1 0.234 1.00
2 0.200 1.78
4 0.158 2.99
8 0.114 4.67
16 0.0759 6.82
32 0.0473 9.35
64 0.0280 12.2
128 0.0160 15.3
256 0.00887 18.6
512 0.00482 22.0
1024 0.00259 25.5

Table 4.1: Optimal Acceptance Rates and Relative Efficiency for Multi-Core Random-Walk
Metropolis-Hastings with P = 2k processors for 1 6 k 6 10.

Figure 4.3 shows i) the optimal acceptance rate, ii) the effective acceptance rate at
optimality, and iii) the relative efficiency at optimality vary as P grows. We see that the
optimal acceptance rate decreases, the effective acceptance rate at optimality increases
towards 1, and the relative efficiency at optimality grows steadily. Note that the relative
efficiency grows superlinearly with respect to log2 P , rather than with respect to P .

Figure 4.3: Asymptotics for Random Walk Proposals (horizontal axis is log2 P )

We also superimpose plots of efficiency against acceptance rate for different values of P .
The key points to note are that as P grows, i) the efficiency curves move strictly upwards,
ii) the values of α which maximise the curves move to the left, and iii) all curves lie below
the ‘envelope curve’ s∞(α) ∝

(
Φ−1

(
1− α

2

))2. Similar comments will apply in both of the
following subsections; we will not repeat them explicitly.
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Figure 4.4: Efficiency-Acceptance Plots for RWMH, p = 21, . . . , 26 (horizontal axis is
log2 P )

4.4.2 Application to MALA

For Langevin diffusion proposals, it was shown in [RR98] that the dimension-robustness
exponent is given by γ = 1/3. As a result, one can write the speed measure as

sP (α) ∝
(

Φ−1
(

1− α

2

))2/3

·
(

1− (1− α)P
)
.

Maximising this expression numerically for P ∈ {2k : 0 6 k 6 10}, we obtain that

P α∗P REP

1 0.574 1.00
2 0.466 1.48
4 0.344 2.01
8 0.232 2.53
16 0.145 3.02
32 0.0854 3.46
64 0.0482 3.86
128 0.0264 4.21
256 0.0142 4.53
512 0.00750 4.82
1024 0.00393 5.09

Table 4.2: Optimal Acceptance Rates and Relative Efficiency for Multi-Core Metropolis-
Adjusted Langevin Algorithm with P = 2k processors for 1 6 k 6 10.
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Figure 4.5: Asymptotics for Langevin Diffusion Proposals

Figure 4.6: Efficiency-Acceptance Plots for MALA, p = 21, . . . , 26 (horizontal axis is
log2 P )

4.4.3 Application to HMC

For Hamiltonian dynamics proposals,it was shown in [BPR+13] that the dimension-
robustness exponent is given by γ = 1/4. As a result, one can write the speed measure
as

sP (α) ∝
(

Φ−1
(

1− α

2

))1/2

·
(

1− (1− α)P
)
.

Maximising this expression numerically for P ∈ {2k : 0 6 k 6 10}, we obtain that

191



P α∗P REP

1 0.651 1.00
2 0.528 1.41
4 0.390 1.82
8 0.262 2.21
16 0.162 2.54
32 0.0950 2.83
64 0.0533 3.08
128 0.0290 3.30
256 0.0155 3.49
512 0.00818 3.66
1024 0.00428 3.81

Table 4.3: Optimal Acceptance Rates and Relative Efficiency for Multi-Core Hamiltonian
Monte Carlo with P = 2k processors for 1 6 k 6 10.

Figure 4.7: Asymptotics for Hamiltonian Dynamics Proposals

Figure 4.8: Efficiency-Acceptance Plots for HMC, p = 21, . . . , 26 (horizontal axis is log2 P )

4.4.4 Empirical Verification

In order to assess the extent to which these theoretical predictions are borne out in a
practical setting, we carried out exploratory experiments. If these predictions are to be
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taken seriously, the natural application is to i) run the Multi-Core Metropolis-Hastings
algorithm and ii) tune the step-size such that the acceptance rate matches the theoretical
recommendation. As such, we are chiefly concerned with verifying whether the theoretically
most-efficient acceptance rate is consistent with the empirically most-efficient acceptance
rate setting. If this is borne out, then we are prepared to believe that the theoretical
recommendations are valid. In our experiments, we measure efficiency by dimension-
normalised expected squared jumping distance (ESJD), that is,

ESJDd =
1

d
Ex∼π

[
Ey∼qMH(x→y)

[
|y − x|2

]]
,

where qMH(x→ y) is the transition kernel of the Metropolised chain.
To this end, for each of the proposals {RW, LD, HD}, we ran the Multi-Core Metropolis-

Hastings algorithm with P ∈ {1, 4, 16, 64} cores, on a target formed as an iid product
of D standard Gaussian measures. For the proposals {RW, LD}, we took D = 100, and
ran the chain for 25000 steps. For HD, we took D = 250, and ran the chain for 10000

steps, at each step using s ∼ Unif (1, 2, . . . , 10) steps in the leapfrog integrator. Each chain
was initialised at stationarity, and there were no indications that any of the chains had
difficulty in converging to equilibrium. Each experimental setting of (h, P ) was repeated
between 5 and 10 times, always resulting in well-concentrated estimates of the average
acceptance rate and ESJD. For the plots below, at each setting of (h, P ), we took the
median of the average acceptance rate and ESJD to de-clutter and smoothen the plots.

The key takeaways from the experiments are that the theoretically-optimal acceptance
rates are in reasonable agreement with the empirically-optimal acceptance rates. For both
RW and LD, the recommended α∗ is routinely within ±5% of the empirically-optimal
setting, indicating that the recommendations can be trusted reasonably well. The results
for HD are somewhat less reliable, as even for large d, the optimal step-size decays quite
slowly, and the asymptotic regime is less visible.

Figure 4.9: Plots of ESJD against Average Acceptance Rate for RWMH (left), MALA
(middle), and HMC (right). { Blue, Orange, Green, Red } lines correspond to P =
{1, 4, 16, 64} respectively. In the rightmost plot, the Green line is hidden behind the Red
line.
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4.5 Asymptotic Behaviour of Multi-Core Metropolis-

Hastings in the Large-P Regime

While the finite-P results obtained in the previous section are already directly applicable,
it is also of interest to understand what can be expected in the large-P limit, i.e. to
understand the asymptotic benefits of having many cores available. In this section, we
attempt to answer this question by studying how the relative efficiency of the multi-core
algorithm scales with P .

Theorem 12. Consider a family of proposal distributions {q(x → y;h)}x∈X ,h>0 with
dimension-robustness constant γ, such that the P -processor efficiency measure is propor-
tional to

sP (α) =
(

Φ−1
(

1− α

2

))2γ

·
(

1− (1− α)P
)
.

There exists a positive constant C(γ) < ∞ such that for P > 1, the optimal efficiency
sP (α∗P ) is bounded from above as

sP (α∗P ) 6 C(γ) · (logP )γ .

Moreover, let c > 0, and define α(P ) = c · P−1. There then exists a positive constant
D(c, γ) 6 C(γ) such that for P > 1, the efficiency measure is bounded from below as

sP (α(P )) > D(c, γ) · (logP )γ .

The proof of this theorem can be found in the appendix.
The content of this theorem is twofold. Firstly, it asserts that the gain in relative

efficiency which can be achieved by using the Multi-Core Metropolis-Hastings algorithm is
at most of order (logP )γ , where γ is a constant depending only on the family of proposals.
One immediate implication of this is that parallelism is relatively more beneficial for families
of proposal with a large value of γ, i.e. proposals which are less robust to dimensionality.
We highlight that this does not mean that such proposals should be preferred in general;
the assertion is that their performance will be improved more in relative terms. It is
worth emphasising that the benefits of using smarter proposal distributions will typically
overwhelm the benefits of parallelism.

The second part of the theorem states that, for large P , one can get within a constant
factor of the optimal efficiency simply by scaling the target acceptance rate like α(P ) ∝ P−1.
Unfortunately, we were unable to derive a tight characterisation of the optimal acceptance
rate; one can also get within a constant factor of optimality by scaling α(P ) ∝ P−1−ε for
ε > 0. It would be of theoretical interest to obtain a tight characterisation of how α∗P

194



scales with P . From a practical standpoint, however, this is not a concern, as obtaining
α∗P numerically only requires solution of a 1-dimensional, unimodal maximisation.

A closely-related open problem which remains is to obtain a finer characterisation of the
limiting behaviour of the effective acceptance rate. Empirically, it is clear that αEff

P increases
with P , and we conjecture that it will in fact converge to 1. Note that resolving the
asymptotic behaviour of α∗P would essentially settle this question; in particular, verifying
that 1/α∗P = o(P ) (as we observe numerically) would imply that αEff

P = 1−o(1) as P →∞.
It would again be of theoretical interest to confirm this conjecture, as well as to quantify
the rate at which convergence takes place.
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4.6 Conclusion and Outlook

In this work, we have put forward an MCMC procedure which makes use of parallel
computing resources, and derived results which indicate what one can expect to gain from
using this procedure. To conclude this work, we address three natural follow-up questions,
namely: i) where should this procedure be used?, ii) to which other MCMC schemes
could this framework be extended?, and iii) when using parallel computing resources to
enhance MCMC sampling, is this the right way to go about it? We proceed to address
these sequentially.

One natural use-case for the Multi-Core Metropolis-Hastings algorithm would be in
scenarios where the acceptance rate achievable by existing proposals is already very low.
While it is perhaps trivially true a priori that parallelism would help here, the theory
derived here implies that it would also help more in a relative sense: worse proposals
(lower γ) benefit relatively more from the presence of additional processors (higher P ).
A key candidate in this category would be Reversible-Jump MCMC [Gre95], where
deriving efficient between-model moves remains a difficult task (though see the work of
[BGR03, Gag19] for some guidance on this task). Another candidate would be MCMC
implementations of Approximate Bayesian Computation [MMPT03], where acceptance
rates can also be unstable due to the additional randomness involved with estimating
the intractable likelihood. We note that the r-Hit Kernel of Lee [Lee12] is one approach
which can provably [LŁ14] stabilise these acceptance rates, though requires additional
computation; reducing the real-time cost of this algorithm through parallelisation is a
natural strategy, quite related to the algorithm presented here.

There are of course a number of MCMC algorithms which are not covered by this
framework, perhaps the most obvious being Gibbs sampling [GG84, GS90]. Without
pressing into the details, it seems clear that the use of parallelism in Gibbs-type algorithms
ought to be qualitatively different than for Metropolis-Hastings algorithms; see [GLGG11,
JSW13, TSD20] for some examples in this direction.

A class of Metropolis-Hastings schemes which are not immediately covered by this work,
but to which the analysis could reasonably be extended, are those which involve multiple
algorithmic parameters. One key example is Pseudo-Marginal Metropolis-Hastings [AR09],
in which one needs to tune both i) the proposal step-size, and ii) the computational effort
deployed to estimate the likelihood∗. There are thus multiple scalings at play. To give
a concrete example, given P = P1 · P2 processors, one could make P1 proposal moves,
and then for each of them, form an importance sampling estimator of the likelihood
using P2 samples. Given any such factorisation of P , there will be an optimal step-size
h; one must then also optimise over these factorisations. Extending the analysis of these

∗Note that [Dro14] consider using multi-CPU architectures in this way, but only to estimate the
likelihood more accurately.
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methods to the multi-core setting would likely involve some synthesis of the techniques of
[DPDK15, She16] with the analysis presented herein. It would be particularly interesting
to see how the tradeoff between P1 and P2 is navigated as P grows.

Note that these comments also apply to both ABC-MCMC and Particle Metropolis-
Hastings, which can be viewed as instances of the Pseudo-Marginal framework. Other
related families of algorithms with a multi-stage structure in this vein include Multiple-
Try Metropolis [LLW00, BDM12], and MHAAR Algorithms [ADYC18], and would likely
require similar techniques.

A more recent pair of algorithm families which might be more amenable to direct analysis
are Sequential Proposal MCMC [PA20] and Discrete PDMPs [VBCDD17, ST17, Mon19].
The extent to which these algorithms will benefit from parallelism depends heavily on
the proposal mechanism at hand. In particular, for the HMC-like algorithms proposed
in [PA20, VBCDD17], generating T steps’ worth of proposals must be done sequentially ,
and thus will generally take O(T ), even in real time. In contrast, for the Discrete Bouncy
Particle Sampler of [ST17] and its elliptical variant, under the assumption that no bounce
takes place, step generation can be carried out in constant time, using parallel resources.
Given a suitable optimal scaling result for the dBPS, it would be straightforward to extend
the framework outlined in this work to devise a variant of the dBPS which leverages
parallel structure, and compute the analogous finite-P recommendations and large-P
asymptotics.

In closing, we offer some remarks on the outlook for parallelism in MCMC. Perhaps
the most important question in this domain is precisely how one should employ parallel
computing resources. In this work, we have focused on a scheme which maintains a single
Markov chain, and sets multiple cores to work on trying to get this chain to move around
the space. This setting allows for a transparent analysis, but is far from the only way of
doing things. We present here three particularly promising alternatives, which could each
be used in place of, or in conjunction with, the methods presented in this work.

Firstly, one could consider running multiple independent chains, distributed across
cores. This would be relatively simple to implement and analyse. For example, once all
of the chains have converged to stationarity, this would lead to an Effective Sample Size
approximately P times bigger than the single-core algorithm. However, in real-time, the
chains would converge to equilibrium no quicker than a single chain, and as such, one
has to wait until stationarity is reached to reap the benefits. A practical benefit of this
approach is that by sharing proposal parameters across chains, adaptation can be carried
out more robustly, as the increased number of chains serves to reduce the variability of
the associated stochastic approximation schemes which are typical of adaptive MCMC
(see e.g. [AT08, RR09, AFMP09] for details). A sensible hybridisation of this approach
with the approach of this paper would be to first use the Multi-Core algorithm with a
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large step-size to reach equilibrium, and then once convergence is detected, switch to using
independent chains to collect samples.

Secondly, one could consider running multiple interacting chains, as in [GRG94, GW10,
LMW18, GINR19]. Algorithms of this form are not as well-understood as their non-
interacting counterparts, but progress is being made (see e.g. [NP19, DNS19, GIHLS20]).
One key question in this area which remains unclear is precisely how the chains best
ought to interact in order to improve convergence to equilibrium. Given a suitable
interaction scheme, one can reasonably imagine such chains would be able to outperform
non-interacting approaches.

Thirdly, one could consider running multiple chains, each carrying out distinct tasks, as
in e.g. Umbrella Sampling [TVKWD16] or Parallel Tempering [SW86, ARR11, SBCDD19].
This represents a contrasting ‘Divide-and-Conquer’ approach to sampling, and is perhaps
more typical of how parallelism is employed in other domains. A key practical challenge
here is to ascertain precisely how one ought to divide the task, e.g. which distinct tasks
each core should be solving, but the potential benefits are quite clear: given a suitable
stratification of the task at hand, one can dramatically reduce the complexity of the
problem.
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4.7 Appendix

In this section, we prove Theorem 12 from the main text. We do so by bounding the
growth in efficiency for any possible sequence of acceptance rates α(P ).

Lemma 13. For α ∈ (0, a), with a = 2
(

1− Φ
(

1√
2π

))
≈ 0.689936, it holds that

Φ−1
(

1− α

2

)
6

√
2 log

2

α

Proof. Let z = Φ−1
(
1− α

2

)
, then

α

2
=

∫ ∞
z

1√
2π

exp

(
−1

2
x2

)
dx 6

∫ ∞
z

1√
2π

x

z
exp

(
−1

2
x2

)
dx =

1√
2π

1

z
exp

(
−1

2
z2

)
and hence log 2

α
> 1

2
z2 + log

(√
2πz
)
. Because α ∈ (0, a) implies that z > 1√

2π
, we can

deduce that log 2
α
> 1

2
z2, from which the result follows.

Note that for the three proposal families we consider, the optimal single-processor
acceptance probability is less than a, and thus we can restrict ourselves to sequences of
acceptance rates α(P ) which stay in [0, a) for all P . By Lemma 13, we can bound sP from
above by tP (α) =

(
log 2

α

)γ · (1− (1− α)P
)
, which is simpler to compute with. In what

follows, we will bound the growth of tP from above, and use these bounds to control the
growth of sP .

Proposition 14. If lim infP→∞ α(P ) > 0, then it holds that supP>1 tP (α) <∞.

Proof. Let lim infP→∞ α(P ) = a0; then α(P ) > a0/2 > 0 eventually. One then has that
uniformly in P ,

tP (α) 6

(
log

4

a

)γ
·
(

1− (1− α)P
)

6

(
log

4

a

)γ
from which one deduces that supP>1 tP (α) <∞.

Proposition 15. If lim infP→∞ P · α(P ) = c ∈ (0,∞) ∪ {∞} , then it holds that

sup
P>2

tP (α)

(logP )γ
<∞

Proof. By assumption, we have that P · α(P ) > c̃ = min(c/2, 2) eventually. Hence
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eventually,

tP (α) 6

(
log

2P

c̃

)γ
·
(

1− (1− α)P
)

6

(
log

2P

c̃

)γ
.

Noting that for P > 2, it holds that(
log

2P

c̃

)γ
=

(
logP + log

2

c̃

)γ
= (logP )γ ·

(
1 +

log 2
c̃

logP

)γ
6 (logP )γ ·

(
1 +

log 2
c̃

log 2

)γ
,

we deduce that supP>2
tP (α)

(logP )γ
<∞.

Proposition 16. Under the assumption that

lim inf
P→∞

P · α(P ) = 0

lim sup
P→∞

log
(

1
P ·α(P )

)
logP

= c <∞,

it holds that supP>2
tP (α)

(logP )γ
<∞.

Proof. As lim supP→∞
log( 1

P ·α(P ))
logP

= c, then for sufficiently large P , we have that

log
(

1
P ·α(P )

)
logP

6 2c.

We can then see that log 2
α
6 log 2 + (2c+ 1) logP . Moreover, using Bernoulli’s inequality,

one can bound
(

1− (1− α)P
)
6 Pα. Hence, for P > 2,

tP (α)

(logP )γ
6

(log 2 + (2c+ 1) logP )γ · Pα
(logP )γ

=

(
2c+ 1 +

log 2

logP

)γ
· Pα

6 (2c+ 1 + 1)γ · Pα.

The first term in the product is constant with respect to P , and Pα→ 0 by assumption,
hence the result follows.
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Lemma 17. Let x0 ∈ (0, 1). There exists a constant C > 1 such that for all x ∈ [0, x0]

and for all P > 1, the following inequality holds:(
1− x

P

)P
> exp(−Cx).

Proof. Consider g(x) = log
(

1
1−x

)
. g is convex on [0, 1), hence for any x ∈ [0, x0], once can

bound g from above by its secant S(x) = Cx, where C = g(x0)
x0

. Thus, for all x ∈ [0, x0],
we have

g(x) = log

(
1

1− x

)
6 Cx =⇒ 1− x > exp(−Cx),

and by noting that x ∈ [0, x0], P > 1 implies that x
P
∈ [0, x0] also, we can deduce that

1− x

P
> exp

(
−C x

P

)
=⇒

(
1− x

P

)P
> exp(−Cx)

as required.

Proposition 18. If lim infP→∞ P · α(P ) = 0 and

lim sup
P→∞

log
(

1
P ·α(P )

)
logP

=∞

along any subsequence such that P · α(P )→ 0, then it holds that

sup
P>2

tP (α)

(logP )γ
<∞

Proof. By Lemma 17, along any subsequence of P such that P · α(P ) → 0, we can
eventually bound

(1− α)P =

(
1− Pα

P

)P
> exp(−CPα)

for some constant C > 1. Then, for sufficiently large P ,

1− (1− α)P 6 1− exp(−CPα) 6 CPα.
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Write ρ(P ) = log
(

1
P ·α(P )

)
/ logP ; one can then write

tP (α)

(logP )γ
6 C exp(−Pρ(P )) ·

(
log 2 + (1 + ρ(P )) · logP

logP

)γ
= C exp(−Pρ(P )) ·

(
log 2

logP
+ (1 + ρ(P ))

)γ
6 C exp(−2ρ(P )) · (1 + (1 + ρ(P )))γ .

Now, it is straightforward to show that

sup
ρ>0

[exp(−2ρ) · (2 + ρ)γ] 6 sup
ρ+2>0

[exp(−2ρ) · (2 + ρ)γ]

= exp(4) sup
µ>0

[µγ exp(−2µ)]

= exp(4)

(
γ

2 exp(1)

)γ
<∞

from which we obtain the desired result.

Theorem 19. There exists a positive constant C(γ) <∞ such that for P > 1, the optimal
efficiency sP (α∗P ) is bounded from above as

sP (α∗P ) 6 C(γ) · (logP )γ .

Proof. Propositions 14, 15, 16 and 18 establish this to be true for all possible behaviours
of acceptance sequences, so in particular, it is true for the optimal sequence α(P ) = α∗P .
The result follows.

Proposition 20. By taking α(P ) = c
P
, one can achieve an efficiency of order (logP )γ.

Proof. For small α, sP (α) and tP (α) are asymptotically equivalent. Scaling α(P ) = c
P
,

one has that
(
log 2

α

)γ
=
(
logP + log 2

c

)γ ∼ (logP )γ. Furthermore,
(
1− c

P

)P → exp(−c)
as P →∞. Hence, tP (α(P )) ∼ (1− exp(−c)) · (logP )γ , which is of the desired order.
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