120 research outputs found

    Injective hierarchical free-form deformations using THB-splines

    Get PDF
    The free-form deformation (FFD) method deforms geometry in n-dimensional space by employing an n-variate function to deform (parts of) the ambient space. The original method pioneered by Sederberg and Parry in 1986 uses trivariate tensor-product Bernstein polynomials in R3 and is controlled as a BĂ©zier volume. We propose an extension based on truncated hierarchical B-splines (THB-splines). This offers hierarchical and local refinability, an efficient implementation due to reduced supports of THB-splines, and intuitive control point hiding during FFD interaction. Additionally, we address the issue of fold-overs by efficiently checking the injectivity of the hierarchical deformation in real-time

    Comparison of Image Registration Based Measures of Regional Lung Ventilation from Dynamic Spiral CT with Xe-CT

    Full text link
    Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this article, we propose a new regional measure of lung mechanics --- the specific air volume change by corrected Jacobian. Methods: 4DCT and Xe-CT data sets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration-based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). Results: After registration, the mean registration error is on the order of 1 mm. For cubical ROIs in cubes with size 20 mm Ă—\times 20 mm Ă—\times 20 mm, the SAJ and SACJ measures show significantly higher correlation (linear regression, average r2=0.75r^2=0.75 and r2=0.82r^2=0.82) with the Xe-CT based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-dorsal vertical direction with size of 150 mm Ă—\times 8 mm Ă—\times 40 mm, the SAJ, SACJ, and SAI all show high correlation (linear regression, average r2=0.88r^2=0.88, r2=0.92r^2=0.92 and r2=0.87r^2=0.87) with the Xe-CT based sV without significant differences when comparing between the three methods. Conclusion: Given a deformation field by an image registration algorithm, significant differences between the SAJ, SACJ, and SAI measures were found at a regional level compared to the Xe-CT sV in four sheep that were studied

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Spline parameterization method for 2D and 3D geometries based on T-mesh optimization

    Get PDF
    [EN]We present a method to obtain high quality spline parameterization of 2D and 3D geometries for their use in isogeometric analysis. As input data, the proposed method demands a boundary representation of the domain, and it constructs automatically a spline transformation between the physical and parametric domains. Parameterization of the interior of the object is obtained by deforming isomorphically an adapted parametric T-mesh onto the physical domain by applying a T-mesh untangling and smoothing procedure, which is the key of the method. Mesh optimization is based on the mean ratio shape quality measure. The spline representation of the geometry is calculated by imposing interpolation conditions using the data provided by one-to-one correspondence between the meshes of the parametric and physical domains. We give a detailed description of the proposed technique and show some examples. Also, we present some examples of the application of isogeometric analysis in geometries parameterized with our method.Secretaría de Estado de Universidades e Investigación del Ministerio de Economía y Competitividad del Gobierno de España y fondos FEDER; Programa de FPU 12/00202 del Ministerio de Educación, Cultura y Deporte; Programa de FPI propio de la Universidad de Las Palmas de Gran Canari

    Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis

    Get PDF
    International audienceIn isogeometric analysis framework, computational domain is exactly described using the same representation as that employed in the CAD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear and easy-to-check sufficient condition for injectivity of trivariate B-spline parameterization is proposed. By an example of 3D thermal conduction problem, we show that different parameterization of computational domain has different impact on the simulation result and efficiency in isogeometric analysis. For problems with exact solutions, we propose a shape optimization method to obtain optimal parameterization of computational domain. The proposed injective condition is used to check the injectivity of initial trivariate B-spline parameterization constructed by discrete Coons volume method, which is the generalization of discrete Coons patch method. Several examples and comparisons are presented to show the effectiveness of the proposed method. Compared with the initial parameterization during refinement, the optimal parameterization can achieve the same accuracy but with less degrees of freedom

    Robust Algorithms for Registration of 3D Images of Human Brain

    Get PDF
    This thesis is concerned with the process of automatically aligning 3D medical images of human brain. It concentrates on rigid-body matching of Positron Emission Tomography images (PET) and Magnetic Resonance images (MR) within one patient and on non-linear matching of PET images of different patients. In recent years, mutual information has proved to be an excellent criterion for automatic registration of intra-individual images from different modalities. We propose and evaluate a method that combines a multi-resolution optimization of mutual information with an efficient segmentation of background voxels and a modified principal axes algorithm. We show that an acceleration factor of 6-7 can be achieved without loss of accuracy and that the method significantly reduces the rate of unsuccessful registrations. Emphasis was also laid on creation of an automatic registration system that could be used routinely in clinical environment. Non-linear registration tries to reduce the inter-individual variability of shape and structure between two brain images by deforming one image so that homologous regions in both images get aligned. It is an important step of many procedures in medical image processing and analysis. We present a novel algorithm for an automatic non-linear registration of PET images based on hierarchical volume subdivisions and local affine optimizations. It produces a C2-continuous deformation function and guarantees that the deformation is one-to-one. Performance of the algorithm was evaluated on more than 600 clinical PET images

    Splines Parameterization of Planar Domains by Physics-Informed Neural Networks

    Get PDF
    The generation of structured grids on bounded domains is a crucial issue in the development of numerical models for solving differential problems. In particular, the representation of the given computational domain through a regular parameterization allows us to define a univalent mapping, which can be computed as the solution of an elliptic problem, equipped with suitable Dirichlet boundary conditions. In recent years, Physics-Informed Neural Networks (PINNs) have been proved to be a powerful tool to compute the solution of Partial Differential Equations (PDEs) replacing standard numerical models, based on Finite Element Methods and Finite Differences, with deep neural networks; PINNs can be used for predicting the values on simulation grids of different resolutions without the need to be retrained. In this work, we exploit the PINN model in order to solve the PDE associated to the differential problem of the parameterization on both convex and non-convex planar domains, for which the describing PDE is known. The final continuous model is then provided by applying a Hermite type quasi-interpolation operator, which can guarantee the desired smoothness of the sought parameterization. Finally, some numerical examples are presented, which show that the PINNs-based approach is robust. Indeed, the produced mapping does not exhibit folding or self-intersection at the interior of the domain and, also, for highly non convex shapes, despite few faulty points near the boundaries, has better shape-measures, e.g., lower values of the Winslow functional

    Discrete tensor product BGG sequences: splines and finite elements

    Full text link
    In this paper, we provide a systematic discretization of the Bernstein-Gelfand-Gelfand (BGG) diagrams and complexes over cubical meshes of arbitrary dimension via the use of tensor-product structures of one-dimensional piecewise-polynomial spaces, such as spline and finite element spaces. We demonstrate the construction of the Hessian, the elasticity, and the divdiv complexes as examples for our construction

    Smooth representation of thin shells and volume structures for isogeometric analysis

    Get PDF
    The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation
    • …
    corecore