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Abstract: The generation of structured grids on bounded domains is a crucial issue in the development
of numerical models for solving differential problems. In particular, the representation of the given
computational domain through a regular parameterization allows us to define a univalent mapping,
which can be computed as the solution of an elliptic problem, equipped with suitable Dirichlet boundary
conditions. In recent years, Physics-Informed Neural Networks (PINNs) have been proved to be a
powerful tool to compute the solution of Partial Differential Equations (PDEs) replacing standard
numerical models, based on Finite Element Methods and Finite Differences, with deep neural networks;
PINNs can be used for predicting the values on simulation grids of different resolutions without the
need to be retrained. In this work, we exploit the PINN model in order to solve the PDE associated
to the differential problem of the parameterization on both convex and non-convex planar domains,
for which the describing PDE is known. The final continuous model is then provided by applying a
Hermite type quasi-interpolation operator, which can guarantee the desired smoothness of the sought
parameterization. Finally, some numerical examples are presented, which show that the PINNs-based
approach is robust. Indeed, the produced mapping does not exhibit folding or self-intersection at the
interior of the domain and, also, for highly non convex shapes, despite few faulty points near the
boundaries, has better shape-measures, e.g., lower values of the Winslow functional.

Keywords: physics-informed neural networks; planar domains; quasi-interpolation; spline
parameterization

MSC: 65D07; 65D17; 65N50

1. Introduction

Computer-Aided Design (CAD) systems only provide the boundary representation
of the given computational domain, but in order to perform numerical simulation, a
representation of the interior is often necessary. While many techniques based on the use
of triangulations, see, e.g., [1,2], are available for unstructured grids, the generation of
structured grids via analysis-suitable parameterizations is still challenging, especially when
the considered domains are not convex. The main requirement is to obtain a bijective,
and, hence, a folding-free, mappingM defined on the reference domain Ω̂ = [0, 1]2 which
provides a description of the considered computational domain Ω,

M : Ω̂→ Ω

∀(t1, t2) ∈ Ω̂, ∃(x, y) ∈ Ω :M(t1, t2) = (x(t1, t2), y(t1, t2)). (1)

The image of a uniform, Cartesian grid in Ω̂ under the mappingM is a curvilinear,
boundary conforming grid in the physical domain Ω, with a uniform topological structure,
i.e., same number of vertices, cells, neighboring cells, and so on. When the final goal is to
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perform numerical simulation on Ω, by using the pull-back of the mappingM, the consid-
ered differential problem can be efficiently carried out on the parametric domain Ω̂, see,
e.g., [3,4]. Hence, the invertibility requirement imposed onM becomes fundamental.

From the computational point of view, the cheapest techniques to constructM rely on
transfinite interpolation, such as the Coons patches [5] and the spring model [6]. Unfortu-
nately, such techniques fail to produce a folding-freeM when the assayed domain Ω has a
complex shape or is not convex. Therefore, other more advanced methods, based on the use
of specific functionals that control the quality of the obtained parameterization [7–9], are
adopted, together with the use of conformal and harmonic mappings which intrinsically
ensure a high-quality result, see, e.g., [10–12]. In the present paper, an approach based on
the so-called Elliptic Grid Generation (EGG) methods is proposed. Indeed, EGG methods
are particularly suitable for the current setting as only a description of the boundary of
Ω is required. The mappingM is constructed as the solution of a system of elliptic PDEs
defined on Ω̂ subject to Dirichlet boundary conditions, i.e.,M(∂Ω̂) = ∂Ω. Moreover, the
bijectivity ofM is guaranteed as long as the numerical accuracy is good enough and the
produced curvilinear grid in Ω is smooth, which results in small truncation errors when
domain methods are employed to perform numerical simulation on the considered Ω.
We refer to [13–15] and references therein for a comprehensive review of EGG techniques
and their recent applications. When the shape of Ω is rather challenging or not convex,
a segmentation in subdomains, called patches, with easier shape is usually advised and
the description of Ω is thus obtained as an atlas whose charts are the individual bijective
parameterizations for each patch. The main challenges of such approach consist in the
identification of a suitable segmentation technique [16–19] and in the smooth transition
between the patches [20,21].

In the last two decades, machine learning and deep learning techniques have started to
play an active role in the setting up of new methods for the numerical solution of PDEs [22–24].
In particular, Physics-Informed Neural Networks (PINNs) [25–27] have emerged as an
intuitive and efficient deep learning framework to solve PDEs, carrying on the training
of a neural network by minimizing the loss functional which incorporates the PDE itself,
informing the neural network about the physical problem to be solved.

In the proposed method, the final parameterization is obtained by means of quasi-
interpolation; a local approach to construct approximants to given functions or data with
full approximation order. Spline quasi-interpolants (QI) are usually defined as linear
combination of locally supported basis functions forming a convex partition of unity.
The coefficients of such a linear combination, called functionals, can be defined in different
ways by taking into account the function evaluations, its derivative information or its
integral values, see for example [28–31]. In the present paper we rely on the QI-Hermite
technique introduced in [32], which is a differential type QI used together with PINNs
to produce a single-patch parameterization methodology. In particular, a suitable PINNs
architecture and loss function will be presented to fit within the EGG methods framework.
Finally, the use of the QI operator will allow us to produce a robust output regardless from
the input shape of Ω without requiring a preliminary segmentation of the computational
domain. The main contribution of this work consists of introducing a novel algorithm to
compute a single patch planar domain parameterizations. In particular:

• The discrete description of the computational domain is achieved by using PINNs.
• The continuous representation of the computational domain is then obtained by using

a suitable QI operator which provides a spline parameterization, i.e., a continuous
description, of the desired smoothness.

The paper is organized as follows. Section 2 summarizes the main concepts about
quasi-interpolation and PINNs; Section 3 is devoted to the pipeline description of our
method; then numerical examples are presented in Section 4 in order to analyze the quality
of the proposed method and in Section 5 a suitable post-processing step is described in order
to handle more challenging benchmarks. Finally, Section 6 draws some conclusive remarks.
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2. Preliminaries

Let us summarize the main concepts of the adopted QI scheme together with the
basics ideas of the PINNs model.

In the following, the spline Hermite QI introduced in [32] is considered. In particular,
its version based on the derivative approximation presented in [33] will be employed.
For the univariate case, let Sp,T be the space of splines with degree p and associated
extended knot vector T defined in the reference domain [0, 1]; T = {t0 ≤ · · · ≤ tp−1 ≤
tp < · · · < tm+1 ≤ · · · ≤ tm+p+1} , with tp = 0 and tm+1 = 1. A spline s ∈ Sp,T can be
represented by using the standard B-spline basis Bj,p, j = 0, . . . , m, defined on T:

s(·) =
m

∑
j=0

µjBj,p(·).

The unknown coefficient vector µ := (µ0, . . . , µm)T can be computed by solving
local linear systems of dimension 2p × 2p. The derivatives are approximated by using
a symmetric finite difference scheme and, hence, the entries of the vector µ are a linear
combination of the function to be approximated.

The tensor product formulation of the scheme can be easily derived; a spline s in the
space Sp1,T1 × Sp2,T2 , can be written as,

s(t1, t2) =
m1

∑
i=0

m2

∑
j=0

µi,jBi,p1(t1)Bj,p2(t2).

Setting t := (t1, t2), p := (p1, p2) and I := {(i, j), i = 0, . . . , m1, j = 0, . . . , m2}, s can
be expressed compactly as,

s(t) = ∑
i∈I

µiBI,p(t), (2)

with BI,p(t) := Bi,p1(t1)Bi,p1(t2) tensor product B-spline basis. The approximation order of
the scheme is maximal if the approximation order of the derivatives is bigger than p− 1.
For more technical details we refer to [34].

PINNs are a class of learning algorithms used to solve problems involving PDEs [25,27].
An L-layers neural network (typically, a feedforward neural network) N L(x) : Rdin →
Rdout is an architecture consisting of N` neurons at the `-th layer with N0 = din and
NL = dout. Let W` ∈ RN`×N`−1 and b` ∈ RN` be, respectively, the matrix of weights and
the vector of bias at the layer `. The net N L then can be generally described with the
following scheme:

N 0(x) = x ∈ Rdin input layer

N `(x) = σ
(

W`N `−1(x) + b`
)
∈ RN` ` = 1, . . . , L− 1 hidden layers

N L(x) = WLN L−1(x) + bL ∈ Rdout output layer,

with σ a non linear activation function. The constructed net is trained to compute the
(approximate) solution of the involved PDE, and the training phase is carried out by mini-
mizing a suitable loss functional which takes into account the given boundary conditions
along with the so-called residual term. For a theoretical investigation of the convergence
properties and stability analysis related to PINNs, see, e.g., [35,36].

3. The Method

The aim of the proposed EGG-based method consists in computing a parameterization
M of a given planar domain Ω by solving the following system,{

−∆M = 0 in Ω
M = gi on Γi, i = 1, . . . , 4,

(3)
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where the boundary of the domain ∂Ω =
⋃4

i=1 Γi can be described as the non-overlapping
union of four boundary curves and the Dirichlet boundary conditions are given by the
functions gi : [0, 1]→ Γi i = 1, . . . , 4 invertible parameterizations of the boundary curves,
according to the scheme exemplified in Figure 1.

Figure 1. Scheme of the applied Dirichlet boundary conditions.

A netN L consisting of L = 6 layers with din = dout = 2 and for ` = 1, . . . , L− 2, N` = 100
neurons is constructed. Then, the provided output is an approximate solution M̂θ(t) of
problem (3) which depends on a set of parameters θ = {W`, b`}0≤`≤L. The following
functional is minimized,

L(T , θ) = LΓ(TΓ, θ) + wL̊(T̊ , θ), (4)

where TΓ collects uniformly sampled parameters ti corresponding to points located on the
four boundary curves, while T̊ is a set of uniformly sampled points inside Ω̂. More precisely,
the loss functional in (4) consists of the terms,

LΓ(TΓ, θ) :=
1
|TΓ| ∑

t1,t2∈TΓ

(
(M̂θ(t1, 0)− g1(t1))

2 + (M̂θ(1, t2)− g2(t2))
2+

(M̂θ(t1, 1)− g3(t1))
2 + (M̂θ(0, t2)− g4(t2))

2
)

,

L̊(T̊ , θ) :=
1
|T̊ | ∑

t∈T̊
(−∆M̂θ(t))2,

where the first term LΓ(TΓ, θ) corresponds to the mean squared error between the predicted
location of the boundary points and the assigned points given by the boundary conditions,
while the second term L̊(T̊ , θ) is called residual term and relates directly to the differential
problem (this explains why the neural network is called physics informed). Its computation is
carried on by means of automatic differentiation, a procedure to compute derivatives with re-
spect to sample batches based on backpropagation technique [37], nowadays implemented
in most of Deep Learning packages, such as Tensorflow [38], PyTorch [39], and Jax [40].
The parameter w in (4) is determined via thresholding on the proximity of the interior
points to the boundaries; w = 0 if dist(M̂θ(t), ∂Ω) < 10−4, otherwise w = 1. Training is
performed on an Intel(R) Core(TM) i7-9800X processor running at 3.80 GHz using 31 GB
of RAM along with a GeForce GTX 1080 Ti GPU unit by using the Tensorflow package.
The training phase firstly is carried on for 5000 epochs with the Adam optimizer [41] with
learning rate λ = 0.001, and afterwards for 10,000 epochs with the L-BFGS-B algorithm [42],
following the method originally proposed in [25] to have (empirical) convergence guaran-
tees. The weights are initialized under the Xavier initialization method [43]. The adopted
non-linear activation function for each layer is the hyperbolic tangent tanh. Given dif-
ferent initial W0, b0, it is observed that PINNs may converge to different solutions, see,
e.g., [44,45]. Hence, our experiments are performed 10 times, changing the initial random
seed and producing 10 approximate solutions. Since there is no guarantee of a unique
solution, as a non-convex optimization problem is solved by minimizing (4), the selected
M̂θ which is retained corresponds to the solution achieving the smallest residual term.
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The PINNs code outputs the predicted evaluation of M̂θ at points (ti, tj) inside Ω̂. At this
stage, a quasi-interpolant splines is constructed by adopting Formula (2).

The generation pipeline, outlined in Algorithm 1, can be summarized as follows:

• The boundary ∂Ω is split into 4 pieces Γi, for i = 1, . . . , 4, by performing for example
knot-insertion.

• Each Γi is then parametrized as a Bspline curve gi : [0, 1]→ Γi.
• PINNs are trained to minimize the loss functional in Equation (4) over a set of bound-

ary points and over the Laplace equation.
• The trained network M̂θ represents an approximation of the sought parameterization

mapM.
• Uniformly spaced grid points are generated in Ω̂ and mapped by M̂θ to Ω.
• A continuous spline approximation of M̂θ is obtained by using a Hermite Quasi-

Interpolation operator (QI).

Algorithm 1 Pseudo-code for the proposed algorithm
Data: Given δΩ
Result: Parameterization mappingM of Ω
begin

Split ∂Ω in 4 boundary curves Γi , i = 1, . . . , 4;
Parametrize each Γi with B-splines gi : [0, 1]→ Γi, i = 1 . . . , 4;
Set up PINNs architecture;
M̂θ ←−Minimize L(T , θ) in Equation (4);
Apply the chosen QI operator to M̂θ by using formula (2);
If needed, apply post-processing;

end

4. Numerical Examples

In this section, some numerical experiments are performed on specific planar shapes
which are typical benchmarks considered in assessing the quality of the produced parame-
terization, see, e.g., [7,15]. The experiments have been chosen with increasing complexity.
Firstly a fully symmetric and convex domain is assayed. Then, for the second example, Ω is
a non-convex and non-symmetric domain, but it can be obtained by a simple deformation
of Ω̂. The third benchmark is a slightly non-convex domain, while the fourth and fifth
examples consider highly non convex and non symmetric shapes. Moreover, some compar-
isons are shown with respect to two techniques suitable for 4-sided shaped domains which
only need a description of the boundary, Coons patches and the inpaint technique, which
is computing a harmonic mappingM as introduced in (1), such that{

−∆x = 0 in Ω
−∆y = 0 in Ω

with boundary conditions given as in Problem 3. This mapping is computed by approxi-
mating the discrete Laplace operator by finite difference formulas. John D’Errico (2023).
inpaint_nans (https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_
nans, accessed on 16 April 2023), MATLAB Central File Exchange. The evaluation of the
three techniques is performed by checking if the fundamental bijectivity requirement (’Bij’)
is satisfied, namely, the determinant of the mapping should always be different from zero
and never change sign. Then, the quality of the produced parameterization is also checked
by computing the following functional,

W :=
∫

Ω̂

‖ ∂M
∂t1
‖2 + ‖ ∂M

∂t2
‖2

detJ
dt1 dt2, (5)

with J denoting the Jacobian matrix of the mappingM.

https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans
https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans
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Expression (5) is known as the Winslow functional, see, e.g., [46] and in order to have
a parameterization which is as conformal as possible, i.e., it should be almost a composition
of a scaling and a rotation matrix, the best value for W should be 2. Note that, in the specific
settings, having a good value for W is an additional property but it is not a necessity, as no
additional constraints are imposed to guarantee the minimal achievable W.

4.1. Circle

As first example, a unit circle is considered. The boundary is sampled with 30 points on
every Γi, i = 1, . . . , 4 and the final residual term value is L̊(T̊ , θ) = 4.37× 10−5. The results
with the three approaches are shown in Figure 2, where from top to bottom, on the left
column, the distribution of the physical points inside Ω is shown and on the right column,
the parametric lines of the computed parameterizations are plotted, for Coons, Inpaint, and
Pinns methods, respectively.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Circular domain. (a) Points generated via Coons; (b) Linear parameterization with Coons)
(c) Points generated via inpaint; (d) Linear parameterization with inpaint; (e) Points with PINNs; and
(f) PINNs-QI parameterization.
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We remark that in this case the resulting parameterization is singular for all the meth-
ods at the image of the four corners of Ω̂ and the considered shape is not particularly
challenging, but this example is interesting for symmetry reasons and for visually appreci-
ating how the three methods generate points inside the physical domain Ω. Table 1 collects
the evaluation results for this example. All the methods provide a bijective mapping, and,
as expected, the values for W are very close to the theoretical optimum.

Table 1. Circle-shaped domain evaluation.

Method Bij W min(det J) max(det J)

Coons yes 2.1640 0.3150 4.7044
Inpaint yes 2.1598 0.4141 3.7948
PINNs yes 2.1639 0.3125 4.3160

4.2. Wedge-Shape

The second example shows a wedge-shaped domain, and the results are presented
in Figure 3. In this case, 60 points per boundary curve are sampled and the final accepted
mapping for the proposed approach has L̊(T̊ , θ) = 3.59× 10−6. All the three considered
approaches perform well, as also indicated in Table 2.

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)
Figure 3. Wedge-shaped domain. (a) Points generated via Coons; (b) Linear parameterization with
Coons; (c) Points generated via inpaint; (d) Linear parameterization with inpaint; (e) Points with
PINNs; and (f) PINNs-QI parameterization.

Table 2. Wedge-shaped domain evaluation.

Method Bij W min(det J) max(det J)

Coons yes 2.0834 0.9927 1.9635
Inpaint yes 2.0812 0.6329 2.0284
PINNs yes 2.0819 0.9928 1.8355

4.3. Quarter-Annulus-Shaped Domain

The next example is a quarter-annulus-shaped domain, with boundary curves gi ex-
pressed as B-splines with knot vectors (KV) Ξ1 = [0 0 0 1 1 1] and Ξ2 = [0 0 0 0 0.5 1 1 1 1]
and control points ci = (cx, cy)i as given in Table 3, for i = 1, . . . , 4.

Table 3. Descriptors for the quarter-annulus shaped boundary curves.

Curve KV cx cy

g1 Ξ1 (−4, −2.5, −1)T (0, 0, 0)T

g2 Ξ2 (−1, −1, −0.7, −0.4, 0)T (0, 0.4, 0.7, 1, 1)T

g3 Ξ1 (0, 0, 0)T (4, 2.5, 1)T

g4 Ξ2 (−4, −4, −4, −2, 0)T (0, 2, 4, 4, 4)T

In Figure 4, we see the results obtained by the three methods with using linear splines
interpolation for the Coons and Inpaint case, while using a quadratic quasi-interpolant
spline for the PINNs method (L̊(T̊ , θ) = 2.81× 10−5). Regarding the evaluation of this
domain, the linear mapping Jacobian matrix results very ill conditioned, moreover, since g2
and g4 are cubic B-spline curves, it seems more pertinent to construct a cubic parameter-
ization where the used knots for the boundary curves are a refinement of the vectors Ξ1
and Ξ2. Therefore, Table 4 shows the results obtained by adopting the same QI operator
of bi-degree 3 on the given sample points provided by the three methods. The obtained
mapping is bijective in all the three cases and the value for the Winslow functional is almost
optimal as well.
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(a) (b)

(c) (d)

(e) (f)
Figure 4. Quarter-annulus domain. (a) Points generated via Coons; (b) Linear parameterization with
Coons; (c) Points generated via inpaint; (d) Linear parameterization with inpaint; (e) Points generated
with PINNs; and (f) PINNs-QI parameterization.

Table 4. Quarter circle-shaped domain evaluation.

Method Bij W min(det J) max(det J)

Coons yes 2.4242 5.0519 31.7624
Inpaint yes 2.1631 2.1631 2.5388
PINNs yes 2.2287 3.3262 31.1962

4.4. Hourglass-Shaped Domain

The next example is an hourglass-shaped domain with boundary curves given by
cubic B-splines defined on the knot vector Ξ = [0 0 0 0 0.5 1 1 1 1]> for i = 1, . . . , 4 and with
corresponding control points reported in Table 5.
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Table 5. Control points for the hourglass shaped domain.

Curve cx cy

g1 (1.5, 3.5, 5.6, 8, 10)T (1.5, 2, 2.7, 2, 1.8)T

g2 (10, 7, 6, 7, 10)T (1.8, 4, 7, 10, 13)T

g3 (1.2, 3.5, 5.6, 8, 10)T (13, 12, 11.7, 12.5, 13)T

g4 (1.5, 4, 5, 4, 1.2)T (1.5, 4, 7, 10, 13)T

In Figure 5, the hourglass-shaped domain is parametrized by using the three dif-
ferent techniques. On the first row the linear parameterization generated via Coons
patches is shown. This parameterization although bijective, as highlighted in the zoomed
frame, Figure 5b, and by the fact that its determinant is always strictly positive, presents
highly distorted quadrilaterals in the center. On the second row, the parameterization
produced by the Inpainting results to be singular, see Figure 5d. At the right boundary,
the mapping fails to satisfy the prescribed boundary conditions. Finally, on the last row of
Figure 5, the parameterization obtained with the proposed approach is shown. In this case,
L̊(T̊ , θ) = 1.20× 10−4. In particular, since at the right boundary the produced quadrilater-
als look slightly distorted, and the obtained mapping is no longer orientation-preserving,
i.e., its determinant is changing sign, in order to improve the quality, a post-processing step,
fully described in the next section, is added to the pipeline of the method.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Hourglass-shaped domain. (a) Points generated via Coons; (b) Linear parameterization
with Coons and zoom in; (c) Points generated via inpaint; (d) Linear parameterization with inpaint
and zoom in (e) Points generated via PINNs; and (f) PINNs-QI parameterization and zoom in.
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Furthermore, in this case, since the boundary curves are cubic B-splines, in order to
exactly reproduce ∂Ω, a bicubic QI spline is constructed on the given sample points for
all the three methods. Table 6 reports the results. Moreover, in order to make clearer the
behavior of the mapping, a surface plot of the determinant of the Jacobian matrix is also
shown for all the three methods in Figure 6. Note that the high values for the max(detJ)
should not cause too much concern, as they occur only at the corners of the domain, where
the influence of such strong features reflects in high curvature of the produced mapping.

(a) (b) (c)
Figure 6. Determinant of the Jacobian matrix for the bicubic parameterization. (a) Method: Coons-QI;
(b) Method: Inpaint-QI; and (c) Method: PINNs-QI.

Table 6. Hourglass-shaped domain evaluation.

Method Bij W min(det J) max(det J)

Coons yes 6.7636 0.4713 161.3302
Inpaint no 8.2491 −15.7232 161.3302
PINNs no 2.1853 −1.1140 151.6974

PINNs-Post yes 4.0696 4.7709 339.1136

4.5. Butterfly-Shaped Domain

The last example is a more challenging planar domain resembling a butterfly. This
domain presents very sharp features which makes it a hard shape to parametrize especially
near the four corners. The parameterization of the four boundary curves is realized with
cubic B-spline functions with knot vectors, Ξ1 = [0 0 0 0 0.2 0.5 0.8 1 1 1 1] and
Ξ2 = [0 0 0 0 0.5 1 1 1 1] and control points, as reported in Table 7.

Table 7. Control points for the butterfly-shaped domain.

Curve KV cx cy

g1 Ξ1 (4, 5, 8, 9.2, 11, 14, 16)T (1, 5, 5, 7, 5, 5, 1)T

g2 Ξ2 (16, 16, 13, 13, 17)T (15, 7, 11, 15)T

g3 Ξ1 (1, 5, 7, 9, 11, 14, 17)T (15, 13, 14.5, 12, 14, 13, 15)T

g4 Ξ2 (4, 3, 6, 6, 1)T (1, 5, 7, 11, 15)T

The results obtained with the three methods are shown in Figure 7. None of the
methods provides a bijective mapping due to some folding in the center for the Coons
patches method and near the south boundary curve for the Inpaint technique. About
PINNs (L̊(T̊ , θ) = 0.01627) the main issues occur near the left-side boundary curve as
the accuracy of the constructed net seems to become poorer near this side of the domain.
Otherwise, everywhere else, inside Ω, the produced mapping results perfectly injective.
As in the hourglass-shaped domain, to have an exact boundary representation, a cubic QI
spline is constructed for all the three methods. Due to the presence of self-intersections
though, in some cases, the results for the Winslow functional are equal to ∞, see Table 8.
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(a) (b)

(c) (d)

(e) (f)
Figure 7. Butterfly-shaped domain. (a) Points generated via Coons; (b) Linear parameterization with
Coons and zoom-in; (c) Points generated via inpaint; (d) Linear parameterization with inpaint and
zoom-in; (e) Points generated with PINNs; and (f) PINNs-QI parameterization and zoom-in.

Table 8. Butterfly-shaped domain evaluation.

Method Bij W min(detJ) max(det J)

Coons no ∞ −51.7043 1.0693× 103

Inpaint no ∞ −254.3629 1.0695× 103

PINNs no 2.9064 −114.9197 1.2973× 103

PINNs-Post yes 2.6513 0.045 4.3519× 103

For the PINNs-QI method, although the mapping is not bijective as well, this happens
in a very narrow stripe near the left boundary and, also thanks to the regularization
provided by the QI, the Winslow functional result is not spoiled. Furthermore, to give a
better idea where the mapping fails to be bijective, in Figure 8 the detJ, obtained with the
three methods, is plotted as a surface. As for the previous example, the high values for the
max(detJ) occur only at specific areas near the corners of the domain.



Mathematics 2023, 11, 2406 13 of 17

(a) (b) (c)
Figure 8. Determinant of the Jacobian matrix for the obtained parameterization. (a) Method: Coons;
(b) Method: Inpaint; and (c) Method: PINNs-QI.

5. Post-Processing Correction

In order to improve the obtained parameterization when it is not orientation-preserving
or when it is not bijective, we rely on the ability of the adopted QI to provide a correction in
the following sense. In particular, the hourglass-shaped domain and the butterfly-shaped
domain are the cases addressed here. For the first case, as is shown in the zoomed-in
frame of Figure 5f and in Figure 6c, the Jacobian of the produced mapping is changing sign
near the right-most side of Ω. Hence, the second to last list of physical points outputted
by the PINNs code is deleted and regarding the parameter domain, the corresponding
parameters are also deleted, producing therefore a non-uniform grid near the right edge.
The determinant of the Jacobian matrix of the new mapping ranges between 4.7709 and
339.1136, obviously the highest values occur at the right corners of the physical domain,
as the produced quadrilateral cells are bigger. Furthermore, the value for the Winslow
functional slightly increases to 4.0696, but this is not a significant price to pay to obtain an
orientation-preserving mapping. These results are reported in the last row of Table 6 and
the final parameterization with the determinant of its Jacobian matrix is shown in Figure 9.

(a) (b)
Figure 9. Correction output. (a) PINNS-QI parameterization after post-processing; and (b) Determi-
nant of J for the post-procecessed mapping.

Regarding the butterfly-shaped domain, the main issues occur on the left edge of
Ω, see Figures 8c and 10a and also at top edge. Therefore, the faulty physical points are
removed, as well as their corresponding parameters in Ω̂, and the obtained results can be
visually appreciated in Figures 10b and 11. The new values for detJ varies between 0.045
and 4.3519× 103 and the Winslow functional is 2.6513. These results are also reported in
the last row of Table 8.
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(a) (b)
Figure 10. Comparison before and after post-processing. (a) Zoom-in where there is no injectivity;
and (b) Zoom-in after the post-processing correction.

(a) (b)
Figure 11. Results after the post-processing correction. (a) PINNs-QI parameterization after post-
processing; and (b) Determinant of the Jacobian matrix after post-processing.

6. Conclusions

In the present paper we have shown how PINNs-driven methods can be profitably
used to construct a parameterization of a planar domain Ω by only knowing its boundary
representation. In more detail, once an internal set of physical points is obtained, quasi-
interpolation is applied to generate a suitable spline parameterization of the given domain.
Several planar shapes have been considered with increasing complexity and compared
to existing techniques, such as Coons patches and EGG-based methods, needing only the
description of the boundary of the computational domain; the obtained results show that
this approach is promising. In particular, from the conducted experiments is evident how
for symmetric and slightly non-convex domains, all the considered approaches perform
well by producing a bijective parameterization which also achieves an almost optimal value
for W in all the cases. Regarding more complex shapes, i.e., non-symmetric and highly
non-convex domains all the methods exhibit evident faults. Nevertheless, the PINNs-based
approach is more robust than the one based on Coons patches, as the produced interior
points never allow for folding or self-intersection of the mapping. Regarding the Inpaint
technique, being also an EGG method, and, hence, driven by a similar approach, the results
are more alike. The main difference in this case lies in the value for W; this is very similar
for less complex shapes and much worse for the Inpaint technique when highly non convex
domains are analyzed. Future work will be devoted to the study of more sophisticated loss
functionals for the considered purpose by trying to achieve bijective mappings that have
low distortions, see, e.g., [47,48] and to the extension to the non-planar case.
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