130 research outputs found

    Multi-rotor with suspended load: System Dynamics and Control Toolbox

    Get PDF
    There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H∞\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    Continuum Deformation of a Multiple Quadcopter Payload Delivery Team without Inter-Agent Communication

    Full text link
    This paper proposes continuum deformation as a strategy for controlling the collective motion of a multiple quadcopter system (MQS) carrying a common payload. Continuum deformation allows expansion and contraction of inter-agent distances in a 2D motion plane to follow desired motions of three team leaders. The remaining quadcopter followers establish the desired continuum deformation only by knowing leaders positions at desired sample time waypoints without the need for inter-agent communication over the intermediate intervals. Each quadcopter applies a linear-quadratic-Gaussian (LQG) controller to track the desired trajectory given by the continuum deformation in the presence of disturbance and measurement noise. Results of simulated cooperative aerial payload transport in the presence of uncertainty illustrate the application of continuum deformation for coordinated transport through a narrow channel

    Analysis of UAV multicopter of air photography in New Yogyakarta International Airports

    Get PDF
    The higher the quality of the drone, the longer the drone will fly and the better the quality of the drone's photography. Survey of research location in Glagah Indah Beach, preparation of drone at ground, we plan the height of flying drones, then testing drone at ground, we measure camera calibration, and then result capture in the air and images in the air. Vehicle specifications are as follows: Frame: F450; Flight Controller: DJI Naza M-Lite; Propeller: 1045 Prop; motorbike: brushless sunnsky 980 kVa; ESC: Skywalker 40 Ampere 3s; Battery: Ace 3s Gens 5000mAH; Remote: Turnigy 9XR with Frsky Tanseiver; and camera: Xiaomi Yi 4k International edition.This drone type multicopter can penetrate the high of 100 meters to 200 meters and can air for 30 minutes, can take an area of up to 1 km while payload drones multicopter is 2.8 kg.This multicopter drone has a 12 megapixel sensor; maximum flight time of 15 minutes; speed of 20 m/s, maximum take-up speed of 6 m/s, maximum landing speed of 4m/s, temperature range when operating drone 0o to 40oC and maximum image size of 4000x3000

    Enhanced Rescue Lift Capability

    Get PDF
    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms

    Machine learning techniques to estimate the dynamics of a slung load multirotor UAV system

    Get PDF
    This thesis addresses the question of designing robust and flexible controllers to enable autonomous operation of a multirotor UAV with an attached slung load for general cargo transport. This is achieved by following an experimental approach; real flight data from a slung load multirotor coupled system is used as experience, allowing for a computer software to estimate the pose of the slung in order to propose a swing-free controller that will dampen the oscillations of the slung load when the multirotor is following a desired flight trajectory. The thesis presents the reader with a methodology describing the development path from vehicle design and modelling over slung load state estimators to controller synthesis. Attaching a load via a cable to the underside of the aircraft alters the mass distribution of the combined "airborne entity" in a highly dynamic fashion. The load will be subject to inertial, gravitational and unsteady aerodynamic forces which are transmitted to the aircraft via the cable, providing another source of external force to the multirotor platform and thus altering the flight dynamic response characteristics of the vehicle. Similarly the load relies on the forces transmitted by the multirotor to alter its state, which is much more difficult to control. The principle research hypothesis of this thesis is that the dynamics of the coupled system can be identified by applying Machine Learning techniques. One of the major contributions of this thesis is the estimator that uses real flight data to train an unstructured black-box algorithm that can output the position vector of the load using the vehicle pose and pilot pseudo-controls as input. Experimental results show very accurate position estimation of the load using the machine learning estimator when comparing it with a motion tracking system (~2% offset). Another contribution lies in the avionics solution created for data collection, algorithm execution and control of multirotor UAVs, experimental results show successful autonomous flight with a range of algorithms and applications. Finally, to enable flight capabilities of a multirotor with slung load, a control system is developed that dampens the oscillations of the load; the controller uses a feedback approach to simultaneously prevent exciting swing and to actively dampen swing in the slung load. The methods and algorithms developed in this thesis are validated by flight testing

    Suspended Load Path Tracking Control Strategy Using a Tilt-Rotor UAV

    Get PDF

    Path planning and reactive based control for a quadrotor with a suspended load

    Get PDF
    This paper presents a solution to quadrotor cargo transportation, more precisely when cargo is suspended as a sling load. The challenge lies in payload position control and swing attenuation, which we approach by dividing the model into subsystems: attitude quadrotor in free flight, and translational and attitude load dynamics. We propose a solution based on reactive control, in the sense that we utilize a reactive force that reacts to the error position and the oscillation in the load. Asymptotic stability of the system's closed-loop equilibrium is proved using Lyapunov theory. Additionally, a three-dimensional path planning algorithm is proposed based on cubic splines, which give us a natural path between initial and final desired points. Moreover, we convert the path planning problem into trajectory tracking with a spline's correct parametrization. Control and path planning performance are demonstrated with numerical simulations in three different scenarios
    • …
    corecore