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Abstract Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned

rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipula-

tion of SRURSs nowadays and promote relative research in the future. In the past decade, aerial

manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a

literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and chal-

lenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs

are introduced. Then, related papers are organized into two topical categories: mechanical structure

design, and modeling and control. Following this, research groups involved in SRURS research and

their major achievements are summarized and classified in the form of tables. The research groups

are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented

to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,

trends, and challenges are described from three aspects. Conclusions of the paper are presented,

and the future of SRURSs is discussed to enable further research interests.
� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of small-scale rotorcraft robotic systems (SRURSs) is
increasing rapidly in both scientific1 and commercial fields. We
typically define small-scale as being lighter than 25 kg or smal-
ler than 10 m in any dimension;2 rotorcraft refers primarily to

helicopter and multirotor in this paper. In commercial fields,
SRURSs are typically used for photography, agriculture, dis-
aster monitoring, environmental surveillance, nuclear disaster

response,3 and electric power inspection. The United Business
Media (UBM)4 has indicated an approximate 40% increase in
unmanned aerial vehicles (UAVs) during 2017–2018, similar to

2016–2017. It has been reported that approximately 587,000
UAVs were sold in 2015. In scientific fields, SRURSs are
widely used for unknown environment modeling,5 data acqui-
sition,6 and manipulation.7 Compared to commercial

SRURSs, scientific researchers interested in manipulation are
more concerned with interaction with the environment. The
physical interaction with the surrounding environment pre-
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sents a greater challenge to researchers, the most significant
problem being the coupling between aerial platforms and
manipulating devices. Aerial manipulation is creatively used

in construction,8 drawer operation,9 object transporting,10,11

valve turning,12 tool operation,13 ultrasonic testing,14

unknown environment sensing,15 bulb screwing,16 bridge

inspection,17 wall climbing,18,19 aerial writing,20 perching and
charging, anti-UAV combatting, delivering, and object
assembling.

Searching for keywords in the Web of Science Core Collec-
tion,21 it is observed that research related to UAVs and aerial
manipulation has increased rapidly since 2011 as indicated in
Fig. 1. Performing a second search using specific keywords

such as quadrotor and grasping indicates that from 2008 to
September 2017, only 145 papers related to aerial manipula-
tion were retrieved out of 8373 papers as displayed in Fig. 2.

However, there have been workshops at the top conference
on robotics, namely the IEEE International Conference on
Robotics and Automation (ICRA), every year from 2014 to

2017.22–25 It is clear that the potential of aerial manipulation
is high, and it remains both a frontier and valuable research
direction.

With the development of aerial robot platforms, the
demand for aerial robots is no longer confined to observe
the environment in a passive manner. Aerial robots offer the
abilities of rapid maneuvering and dexterous manipulation

under complex working conditions and dangerous environ-
Fig. 1 Publication search results in the Web of Science Core

Collection.

Fig. 2 Article comparison
mental conditions. Aerial manipulation can be summarized
into two problems: flying and manipulating. Further, it typi-
cally consists of two types, floating base-like multirotor and

actuator-like manipulator. SRURSs manipulating devices
can be divided into four categories: gripper, multi-degree of
freedom (DOF) rigid-body aerial manipulator, aircraft with

a suspended load attached through a cable or tether, and
others such as airframes or anthropomorphic fingers. Manipu-
lation methods can be divided into four categories: grasp,

interact, hang, and manipulate.
Universities and research institutions in the United States

are typically sponsored by the National Aeronautics and Space
Administration (NASA),26 Defense Advanced Research Pro-

jects Agency (DARPA),27 National Science Foundation
(NSF),28 Office of Naval research (ONR),29 and other organi-
zations. Universities and research institutions in Europe are

commonly sponsored by projects from Horizon 202030 and
the 7th Framework Programme (7FP)31 such as AIRobot,32

ARCAS,33 SHERPA,34 and Aeroworks.35 Other universities

and research institutions are largely sponsored by foundations
in their own countries such as the National Natural Science
Foundation of China (NSFC)36 and the National Research

Foundation of Korea (NRF).37 Because of the different
requirements of sponsors and different development ideas of
research institutions and universities, they typically proceed
in a diverse directions.

Moreover, the development of UAVs has been further
encouraged by UAV competitions. The MBZIRC 201738 com-
petition was successfully held in March 2017. Challenge 3

required a team of UAVs to collaborate to detect, locate,
track, pick up, and place down a set of static and moving
objects. The organizers offered five million dollars in prizes

and sponsorships. The upcoming MBZIRC 2019 Challenge 1
is based on UAV dynamic aerial tracking and interventions
in 3D. It will require a team of UAVs to autonomously locate,

track, and interact with a set of objects moving in space.
The first challenge of SRURSs when prototypes are devel-

oped is the mechanical structure design, which is both signifi-
between two searches.



Fig. 3 Example of SRURSs with a gripper from Yale University

(picture from Ref. 52).
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cant and interesting. Researchers globally have proposed many
different ideas (see Section 2) including LEGO toys,39 avian-
inspired designs,40 compliant designs,15 anthropomorphic

designs,41 fault-tolerant designs,42 Delta mechanisms,14 paral-
lel mechanisms,43 redundant designs,44 tool designs of collab-
orative work,45 KUKA manipulators,46 vacuum pump self-

sealing suctions,47 and SHERPA grippers.48 The primary con-
sideration is the mechanical configuration design, because the
movement of a manipulating device critically influences a

UAV. A superior mechanical structure can reduce the com-
plexity of the controller and coupling between the UAV and
the manipulating device, hence improving the capability of
SRURSs.

The major challenges in aerial manipulation are modeling
and control. There are two approaches to address modeling
and control problems. The first independent approach divides

a system into two independent parts and considers the model-
ing methods of each part respectively. This approach considers
the motion and dynamics of manipulating devices as external

disturbances of UAVs; hence, it is easier to implement than
an alternative. The second is an overall approach. It considers
the complete system as an overall system, addressing chal-

lenges that the center of mass (COM) is changing constantly
and the internal dynamics are coupled. The details of these
two methods are introduced in Section 3.

To the authors’ knowledge, this is the first time that a sum-

marized review of aerial manipulation has been prepared. To
provide an overview of the progress of aerial manipulation,
achievements from researchers located globally are introduced

in detail in Sections 2 and 3.
This paper is composed of six sections. The mechanical

structure design of manipulating devices is introduced in Sec-

tion 2, because the structure is the basis of control. Modeling
and control methods are presented and compared in Section 3.
In Section 4, works of principal universities and research insti-

tutions are presented in a tabular form. In Section 5, trends
under multiple conditions and main aerial manipulation
research challenges facing researchers are summarized. Finally,
Section 6 provides conclusions and thoughts regarding the

future of aerial manipulation.

2. Mechanical structure design

As mentioned above, manipulating devices can be divided into
four types: gripper, manipulator, cable, and others. They are
different from each other mechanically and regarding model-

ing and control, based on suitability for different application
scenarios. The following subsections introduce these manipu-
lating devices in detail.

2.1. Gripper

As displayed in Fig. 3, a single-DOF gripper is the most widely

used manipulating device. It is attached directly on or under
the airframe of a UAV. This kind of manipulating device
has three advantages: (i) easy to build, (ii) convenient modeling
and control, and (iii) relatively inexpensive.

To reduce costs, a low-cost, custom-built quadrotor was
presented,39,49 which used a LEGO50 gripper to reduce the
time of prototype development. It gripped a stuffed toy, weigh-

ing 150 g, 50 cm below the quadrotor using the gripper. Sev-
eral grippers including impactive and ingressive grippers have
been designed to grasp a number of different items including
a beam and a flat piece of wood.51 Impactive grippers demand
that the freedom of the object to be grasped is adapted to the

grippers; ingressive grippers are divided into actively engaging
and passively engaging. A quadrotors team achieved a con-
struction task using the gripper mentioned above as demon-

strated.8 A group of on-board vacuum suction cups was
utilized to grasp a series of objects such as a battery and a hair
brush,47 including items on inclined surfaces. A mechanical

coupling was used to reduce the complexity of the grasping
mechanism on an adaptive underactuation gripper for a heli-
copter.42 Furthermore, a gripper mounted on a helicopter
and a quadrotor are compared; results indicated that the

quadrotor could fulfill the condition of the gripper mounted
above the airframe.52 A ‘‘screwing bulb” experiment was per-
formed by a multirotor with a gripper mounted above the air-

frame,16 and an onboard FPGA was used to address the
camera information.53,54 An avian-inspired passive mechanism
for a quadrotor and helicopter perching was presented;40,55 the

gripper consisted of three fingers imitating a songbird. Every
knuckle was designed independently different from the others
on the same finger so that the finger’s stiffness was most suit-

able for perching and grasping; however, the UAV on which
the gripper was mounted did not actually move. A dynamic
surface grasping technique was proposed for micro-UAV land-
ing and perching; gecko-inspired directional adhesives were

used to absorb the collision energy and provide secure perch-
ing. A dynamic model that predicts attachment conditions
was presented.56–58 A switch between climbing and perching

modes was proposed, and the task of crawling on the wall
was realized. A climbing mechanism was designed to allow a
robot to recover from a climbing failure.19,59

As stated above, a gripper has the following disadvantages
owing to its mechanical structure: (i) limited workspace and (ii)
limited grasping ability of mass and volume.

2.2. Manipulator

A manipulator consists mainly of two parts: one or more
multi-DOF arms attached to a UAV’s airframe and grippers

with different kinds of sensors as illustrated in Fig. 4. Typi-
cally, arms and grippers are driven by servomotors. A manip-
ulator significantly expands the workspace compared to a

gripper, and can utilize the redundancy of the manipulator
to compensate for the position error of a UAV’s motion. It
is a better choice for complex tasks.



Fig. 4 Examples of SRURSs with a manipulator.
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A typical robotic arm of a manipulator is a series-connected
structure. Different-DOF arms have been developed for differ-
ent applications. An avian-inspired 1-DOF arm was applied

under a quadrotor to achieve bird-like grasping.60,61 A simple
2-DOF arm was used to grasp a bottle in an indoor environ-
ment adopting VICON62 markers,63 which could manipulate

an object in front of a UAV. Another 2-DOF arm was utilized
for picking up and delivering an object, also under a VICON
environment, in a dependent and cooperative manner.10,64,65

Faced with the challenge of turning a valve for the DARPA
Robotics Challenge (DRC), a dual 2-DOF arm was applied
to a quadrotor;12,66 the workspace of a UAV-manipulator sys-
tem was beneath the UAV, and a target was located by visual

servoing. With the assistance of a dual 2-DOF arm, a UAV
achieved wall-climbing in a walking mode with a mechanical
structure, but only in simulations.18,67,68 Drawer and cylindri-

cal objects under and in front of a multirotor were manipu-
lated with a 3-DOF robotic arm using VICON and vision to
locate a UAV and a target.9,69,70 Another 3-DOF arm was

used to accomplish a bridge detection task by contacting from
the underside;17 the arm was mounted on a UAV according to
the property of the task. Aimed at improving the dexterity of a

robot arm and compliance of joints, a lightweight compliant 3-
DOF robotic arm was designed;15,41 the mechanism of the
Fig. 5 Example of SRURSs with a cable from University of

New Mexico (picture from Ref. 94).

Table 1 Comparison between different manipulating devices.

Manipulating device Cost Difficulty

Gripper Low Low

Manipulator High High

Cable and tether Low Suitable

Other N/A High
elbow joint was based on an extension spring to realize colli-
sion detection, obstacle detection, and quality estimation of
captured objects. Later, the mechanism of the elbow joint

was improved by a simple transmission mechanism consisting
of a pair of compression springs and a flange bearing.15 A dual
3-DOF arm flying test was performed.71 A novel mechanism

considering the counterweight between a moving battery and
a 6-DOF robotic arm was presented; 72 a flying and manipulat-
ing experiment was performed.73,74 A 7-DOF robotic arm was

installed on an octocopter to perform outdoor grasping exper-
iments.75,76 A fully actuated 7-DOF KUKA redundant indus-
trial robotic arm was used for grasping objects utilizing its
redundancy on a helicopter.46,77,78 A 9-DOF hyper-

redundant has been designed for aerial manipulation;44 how-
ever, flying experiments have not yet been performed. Further,
parallel manipulators have been applied on UAVs.43

A manipulator’s disadvantages can be concluded as fol-
lows: (i) complex mechatronics system, (ii) heavy weight; (iii)
difficult to control, and (iv) severe coupling interference with

a UAV.

2.3. Cable and others

As displayed in Fig. 5, a cable or tether attached to a UAV is
widely used in transporting;79–82 however, only few of its
mechanisms have been considered. Multi-aerial robotic manip-
ulation experiments with cables or tethers were presented.83,84

Researchers consider more the problem of how a slung-load’s
motion changes a system’s COM and regard this as a control
problem. For example, a reinforcement learning approach

was adopted.85 It will be introduced in detail in Section 3.
Many other manipulating devices have been presented by

researchers globally. A novel mechanical design of a UAV’s

manipulating device was presented to interact with the envi-
ronment and perform ultrasonic nondestructive experi-
ments;14,86–88 the mechanism consists of a 3-DOF Delta, a

Cardan gimbal, and an end-effector. Anthropomorphic grasp
was discussed to reduce the effects of gravity and inertia during
a grasping process.89 A novel aerial manipulation system was
proposed to perform a tool operation task; the system was

developed with multiple quadrotors connected to a tool
through spherical joints.90 A transporting express by a com-
mercial company using a multirotor airframe was tested.91 A

flexible mechanism composed of active joints and passive lin-
ear joints was designed, which converts kinetic energy into
potential energy; the energy is stored in a directional locking

mechanism to reduce the impact of a UAV towards a wall.92,93

From the above, a cable or tether is most suitable when
attention is paid to the control problem while manipulating.
A gripper is easier to implement than a manipulator from

the mechanical aspect. Further, a manipulator is rather
Available range Stability Application trend

Low High Decrease

High Middle Rapidly increase

Middle Middle Slowly decrease

High Middle Increase
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difficult compared to other manipulating devices. Manipulat-
ing devices are compared in Table 1.

3. Modeling and control

In early works, because the masses of manipulating devices
(mainly grippers) and targets were relatively smaller than those

of UAVs, researchers ignored the changes of the COM and
inertia during a manipulating period; a flying controller was
applied directly on the new aerial manipulation system. This

could seem as one kind of ‘‘overall approach” in this paper.
However, this is a simple and inexact modeling approach. It
is called a simplified approach.

The independent approach separates a UAV and manipu-
lating devices apart, and then builds models and controllers
separately. As a result, the coupling between the UAV and

manipulating devices is regarded as an interference problem.
This overall approach considers the coupling problem as an

internal problem; it is extremely accurate and strict. The sys-
tem model should be integral from the start of kinematics

and dynamics modeling.

3.1. Independent approach

The independent approach utilizes the existing control algo-
rithms of a UAV and manipulating devices, and modifies them
to adapt the dynamics of a combined system. Hence, it reduces

the time required for research. Moreover, the dynamics model
of a system is not as complex as that of the overall approach;
the interaction force is considered as external interference. This
approach simplifies the modeling and control process.

A quadrotor model and a suspended load model were
developed independently; a technique based on dynamic
programming (DP) and an adaptive controller compensat-

ing for the change in the COM caused by load movement
were proposed to ensure swing-free trajectory tracking.79,95

To overcome the DP algorithm’s shortcomings of demand-

ing accurate modeling and trajectory planning in advance,
reinforcement learning algorithms such as AVI and LSPI
were presented to generate trajectories with minimal resid-

ual oscillations for rotorcraft transporting suspended
loads.85,96

The joint position’s motion range was determined by ana-
lyzing the stability change of a UAV originated from a manip-

ulator’s movement.97

The model of an outer loop controller for helicopters and
load was replaced by a simplified model based on intercon-

nected mass points. For the first time, an experiment with three
helicopters with suspended load transporting was performed in
2007.83,84

The redundancy of a 7-DOF manipulator was used to
reduce the change of a system’s COM when the manipulator
was moving. To address the coupling between the airframe

and the manipulator, yaw was introduced into kinematic plan-
ning of the manipulator. A flying test by combing impedance
control with visual servoing control on a helicopter with a 7-
DOF KUKA manipulator was performed.46,77,78

The contact model was divided into three parts, i.e., a
quadrotor, a manipulator, and an environment, which were
then combined by the contact point relationship. The attitude

and position of the system were tuned by an impedance con-
troller designed according to the passive characteristics of
the system.86 To solve the unstable problem of inner-loop
dynamics caused by a former impedance controller, a modified

impedance controller combines virtual quality with the exter-
nal force dynamic model of a system. The mode of a manipu-
lator was divided into a free-flight mode and a contact mode; a

hybrid control method was used to switch between the two
modes.87,88,98 An LQR-optimized approach was proposed to
replace the traditional PID control and to adapt the condition

that forces acting consistently on the wall are similar to the
UAV’s weight; however, the algorithm requires the contact
point be static.92,93

A controller based on momentum estimation considering

external forces was proposed; the gain of the estimator was
chosen according to the closed-loop impedance behavior with
a proper hierarchical structure.99 The multilayer structure of

the controller based on PID was presented.72

A variable parameter integral backstepping (VPIB) algo-
rithm replaces PID control for compensating the motion of a

manipulator. This controller guarantees asymptotic stability
and has robustness to some uncertainties. Experimental results
demonstrated that the VPIB controller was superior to the

PID on a prototype.17,100

The Lagrange dynamics of a system were completely decou-
pled into two separate parts, the COM dynamics in E(3) and
the internal dynamics between the quadrotor and the manipu-

lator. Further, a backstepping-like controller was presented to
track the trajectory of the end-effector.101

The trajectory linearization control (TLC) for a quadrotor

and the inverse kinematics for manipulators were combined to
achieve wall-climbing; the interaction between the main body
and manipulators was reduced by an optimal planning

strategy.18,68

3.2. Overall approach

The overall approach is divided into two parts in this paper as
described in the following subsections, the simplified and over-
all approaches. The simplified approach directly applies the
traditional control algorithm of a UAV to SRURSs, which

is simple and easy to implement, but inaccurate. It is regarded
as the early version of the overall approach. The overall
approach considers SRURSs as a whole, yet complex.

3.2.1. Simplified approach

The estimates of the mass and offset COM of a system in the
PID controller for a quadrotor with a gripper were pre-

sented.51 A construction task was accomplished using the
wavefront raster algorithm by the quadrotors team.8 Avian-
inspired perching and grasping based on vision in a GPS-

denied, VICON-denied environment were achieved.102,103

The contact between a helicopter and an environment is
equivalent to a 6-DOF spring, and a PID controller was used

for the helicopter grasping with a gripper.104,105 The stabilities
of helicopter grasping and quadrotor grasping were compared.
Results indicated that the quadrotor was more sensitive to
changes in the COM caused by the load; however, it can be

applied to situations where the load must be placed above
the COM of the airframe.52,106

A low-cost, home-built quadrotor grasping with a gripper

was presented. A nested PID was used to overcome precise
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positioning, object sensing and manipulating, and stabilization
caused by object interaction.39,49

3.2.2. Overall approach

For the first time, a complete dynamic model was developed
for a UAV with a manipulator system. A modified Cartesian
impedance control exploiting redundancy was presented to

overcome the challenges of interference and aerodynamic
modeling.107 All the system dynamics of the coupled UAV
and manipulator were considered for the first time. The low-

level layer was based on the backstepping-control theory,
and the top layer was a visual servoing feedback controller
based on an external image.108 The controller was improved

to adapt multi-cooperation SRURSs.109 A hybrid control sys-
tem combing visual servoing control with hierarchical task
control was applied for aerial manipulation.110–112

A hybrid model was introduced to describe a quadrotor
with cable-suspended load. Through the differentially flat the-
ory, a nominal trajectory with different constraints was
planned, so that the large-area dynamic motion of the quadro-

tor under the condition of swing load was possible. Then,
tracking of the quadrotor’s attitude, the load’s attitude, and
the position in the three-dimensional space was realized by

geometric control.81,113

A lifting load process was divided into three parts, i.e.,
setup, pull, and raise, using the related theory of hybrid sys-

tems and utilizing a discrete state to determine the key way-
point that must be passed through.95,114,115 A smooth
trajectory was generated using the minimum snap theory,116

and an adaptive controller was designed by combining geomet-
ric control with the least-squares estimation theory.

A system is regarded as a hybrid system that is divided into
four phases including flight, arm deployment, adaption, and

manipulation phases, and different adaptive algorithms are
applied to the different phases to ensure stability. A valve-
turning task was achieved by visual servoing control and gain

scheduling. A Lyapunov-based model reference adaptive con-
trol (MRAC) method was introduced to address the changes
of the COM and inertia, as well as the external disturbance

during the manipulation.66,117 The coupling between environ-
ment and SRURSs was divided into three categories including
momentary coupling, loose coupling, and strong coupling.118

Addressing the requirement that different tasks require dif-

ferent impedance values, a controller structure that can change
the impedance and adjust the contact force was proposed. Fur-
ther, a free-flight controller was proposed to reduce the depen-

dencies on position restrictions and lightweight
manipulators.119,120

A rigid multi-body system was modeled on the Lie group,

and optical trajectory control for aerial manipulation was
proposed.63,121,122

A modified VPIB algorithm considers full dynamic effects

and variation of the mass distribution when a manipulator
moves and adopts impendence control. The DGPS and cam-
Table 2 Comparison of different modeling and control methods.

Modeling and control method Difficulty A

Simplified approach Low L

Independent approach Suitable S

Overall approach High H
eras were used to replace VICON. Further, the closed-loop
inverse kinematics (CLIK) was used on a SRURS
manipulator.75,76

A behavioral controller based on null space-based behav-
ioral (NSB) was utilized to integrate the motion between a
manipulator and a quadrotor.73 Another three-layer structure

controller was proposed, and a manipulator was controlled by
an impedance controller.74

A system model from free-flight to contacting on the wall

was proposed, and a hybrid-MPC controller to control UAV
docking and sliding on the wall was presented. Online data
processing for state estimation and manipulating was
addressed.123,124 An aerial writing task was performed based

on the hybrid-MPC controller proposed above.125,126

An adaptive sliding controller based on a traditional
Lagrange modeling method was proposed.10 An augmented

adaptive sliding controller based on a closed-chain robot
dynamics was presented for cooperative transportation of mul-
tiple SRURSs.64 Online estimation of objects based on an aug-

mented adaptive sliding controller was proposed.65 An image-
based visual servo (IBVS) for SRURSs was presented to fulfill
an indoor manipulation task.69,70 Parametric dynamic move-

ment primitives (PDMPs) and rapidly exploring randomized
trees star (RRT*) were combined to address the multi-
SRURS cooperation problem in an obstacle environment.127

An disturbance-observer-derived external force estimation

was proposed to estimate the swing angle of a multirotor-
suspended load.82

A visual servo control was presented for a multirotor; this

processes data online with an onboard FPGA.16,53,54

A cable was modeled as an arbitrary number of different
links using spherical joints, and a geometric nonlinear con-

troller was used to control the position of the quadrotor with
a suspended cable load. Then the model and control methods
were applied to arbitrary numbers of quadrotors to achieve

manipulation with cables.128,129

A coordinate-free dynamics model of a system was used to
design a geometric controller to track the position and attitude
of a cable-suspended load. An elastic spring model including

stiffness and damping was developed to compare with the
non-elastic model. Virtually global exponential tracking was
achieved.130,131

A hybrid model of a system was established by dividing the
flight-walking locomotion into three modes including flight
mode, double-leg support phase, and single-leg support phase.

A globally valid and continuous controller was designed
directly on the Lie group for quadrotor manipulating with sus-
pended load.67,80,132,133

In conclusion, the independent approach is not sufficiently

accurate; however, it outperforms the simplified approach. The
overall approach is most accurate, however, also most difficult.
Increasingly more researchers are abandoning the simplified

approach because its low accuracy can cause instability of
SRURSs. The approaches are compared in Table 2.
ccuracy Feasibility Trend

ow High Rapidly decrease

uitable High Slowly increase

igh Suitable Rapidly increase



Table 3 Research groups involved in research of SRURSs.

Name of group and institution Manipulated

type

Aerial manipulation

platform

Data

processing

Implementation

approach

Modeling

approach

Control method

University of Pennsylvania

GRASP

Lab8,51,60,61,81,102,103,113,116,134–138

Multi gripper

cooperation,

slung-load,

1-DOF arm

AscTech Offline Indoor flight

experiment,

outdoor flight

experiment

Overall

modeling

PID,

visual servoing

Department of Mechanical

Engineering, University of

Utah40,55

Gripper Gaui 330X

QuadFlyer

Not

involved

Indoor

experiment

Not involved Not involved

Department of Electrical

Engineering, University of

California39,49

Gripper Home-built

quadrotor

Offline Indoor flight

experiment

Overall

modeling

Nested PID

MARHES Lab, University of

New Mexico79,85,95,96,114,115,139
Slung-load AscTec

Hummingbird

Offline Indoor flight

experiment

Independent

modeling

Geometric

adaptive

Department of Mechanical

Engineering and Materials

Science, Yale University42,52,104–

106

Gripper T-Rex600 helicopter Offline Outdoor flight

experiment

Overall

modeling

PID

Drexel Autonomous Systems

Lab, Drexel

University43,44,66,97,140

2-DOF dual-

arm,

4-DOF dual-

arm

3DRobotics Offline Indoor flight

experiment

Independent

modeling,

overall

modeling

Adaptive PID,

visual servoing

Department of Mechanical

Engineering, Johns Hopkins

University63,121,122

2-DOF arm 3DRobotics Offline Indoor flight

experiment

Overall

modeling

Feedback

linearization+

PID

RAMS Laboratory, University of

Maryland47
Multi gripper AscTech Offline Indoor flight

experiment

Overall

modeling

PID

Biomimetics & Dexterous

Manipulation Laboratory,

Stanford University19,56–59

Multi gripper AscTech Not

involved

Indoor flight

experiment,

outdoor flight

experiment

Not involved Not involved

Mechanical and

AerospaceEngineering, The

George Washington

University128,129,141

Slung-load Custom-built

quadrotor

Offline Indoor flight

experiment

Overall

modeling

Geometric

Control

Mechanical Engineering,

Carnegie Mellon University130,131
Slung-load Not involved Not

involved

Simulation Overall

modeling

Geometric

Control

Real-Time Systems and Robotics,

Technical University of Berlin83,84
Slung-load,

multi-

cooperation

Custom-built

quadrotor named

TUB-H

Online Outdoor flight

experiment

Independent

modeling

Model-based

control

DLR - German Aerospace

Center46,77,78
7-DOF arm SWISS UAV Online Outdoor flight

experiment

Independent

modeling

PID/Impedance

control,

visual servoing

Laboratory for Robotics and

Intelligent Control Systems

University of Zagreb12,117,118

2-DOF dual-

arm

3DRobotics Offline Indoor flight

experiment

Overall

modeling

Gain scheduling

+MRAC,

visual servoing

CTIT Institute, Robotics and

Mechatronics group, University

of Twente14,86–88,92,93,98,119,120,142

Interaction

with

manipulator

AsTec Pelican Offline Indoor flight

experiment

Independent

modeling,

overall

modeling

Impedance

control + PID

Autonomous Systems Lab, Swiss

Federal Institute of Technology

Zurich20,123–126,143–145

Interaction

with

airframe

Custom-built

quadrotor named

ACX, UPAT-TTR,

ASLquad

Offline,

online

Indoor flight

experiment

Overall

modeling

Hybrid MPC

PRISMA Lab, University of

Naples Federico II72,89,99,107–

112,146,147

3-DOF arm,

6-DOF arm

AsTec Pelican Offline Simulation,

indoor flight

experiment

Independent

modeling,

overall

modeling

Cartesian

impedance,

integral

backstepping +

image-based

visual-servo

Robotics, Vision and Control

Group, University of

Seville15,17,41,71,75,100

3-DOF arm,

7-DOF arm

Custom-built

QARM1, ASUME,

AMIS

Offline Indoor

experiment,

outdoor flight

experiment

Independent

modeling,

overall

modeling

Variable

Parameter

Integral

Backstepping
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Table 3 (continued)

Name of group and institution Manipulated

type

Aerial manipulation

platform

Data

processing

Implementation

approach

Modeling

approach

Control method

University of Cassino and

Southern Lazio73,74
6-DOF arm AsTec Pelican Offline Indoor flight

experiment

Overall

modeling

Behavioral

control,

hierarchical

control

Intelligent Control Systems Lab,

Seoul National

University6,9,10,64,65,69,127,148

2-DOF arm,

3-DOF arm,

Slung-load,

Multi-

cooperation

Smart Xcopter,

DJI F550,Ascending

Technologies

Firefly

Online Indoor flight

experiment

Overall

modeling

Visual servoing,

adaptive sliding

mode control

Interactive & Networked

Robotics Lab, Seoul National

University13,45,90,101,149,150

Multi

cooperation

AscTec

Hummingbirds

Offline Indoor flight

experiment

Independent

modeling

Backstepping-

like control

Department of Robotics,

Ritsumeikan University16,53,54
Gripper DJI F550 Online Indoor flight

experiment

Overall

modeling

Visual servoing

Space Robot Laboratory,

Beihang

University18,67,68,80,132,133,151–154

2-DOF dual-

arm

Custom-built

quadrotor named

MMAR

Offline Simulation,

outdoor flight

experiment

Independent

modeling,

overall

modeling

TLC+

computed-torque

method
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4. Research groups involved in SRURSs’ research and major

achievements

Numerous research groups have displayed interest in the field

of aerial manipulation. Table 3 presents many of the research
groups involved in the research and development of aerial
manipulation of SRURSs. The majority of these have been

introduced in Sections 2 and 3. The list is not exhaustive and
excludes military and industrial research groups.

The achievements of these universities and research institu-

tions are listed in Table 4.
From this table, we can observe that research institutions

and universities in America are more interested in grippers
and cables or tethers, which is a result of their simplicity in

implementation, convenient modeling and control, and low
cost. Conversely, research institutions and universities in Eur-
ope are more interested in manipulators because of the

demands of Horizon 2020 and 7FP. The attentions of other
research institutions and universities do not express systematic
characteristics.

5. Trends and challenges

With the development of aerial manipulation, many types of

problems appear when experiments and simulations are per-
formed. To solve these problems, researchers globally present
new, exciting ideas. With the ongoing development of research,

numerous trends have been formed in many fashions. How-
ever, there remain many challenges on how to achieve aerial
manipulation. Some of these have been addressed whereas
others remain open. These are presented in Fig. 6.

Before undertaking any new research, it is important to
build a ground test platform for UAV flying and manipulating.
A grasp multiple micro-UAV (MUAV) testbed was intro-

duced, and aerial manipulation was studied on MUAVs with
grippers utilizing the testbed.135 A 6-DOF miniature gantry
crane imitating the flight of a UAV with two manipulators

was presented.97 A low-cost, simplified quadrotor test bench
for 6-DOF flight was proposed. These test platforms can
reduce a research period significantly.151

For manipulating devices and DOF choices, researchers are

increasingly drawn to two extreme cases. One is the simplest
case of a gripper, especially for an MUAV, which faces the
challenge of limited manipulating space. The other is a manip-

ulator for the accuracy of manipulation. The challenges they
must address are complex modeling and control of SRURSs,
and severe interference from a manipulator to a UAV. Both

of these cases meet the challenge of how to realize fault-
tolerant grasping under the error condition of an end-effector.

The development of hardware and visual algorithms has

been rapid in recent years. Aerial manipulation has a strong
and special requirement for the hardware of perception as fol-
lows. (1) Aerial manipulation with SRURSs demands higher
accuracy than a normal UAV. Not only must the UAV be

stable, but also the manipulating device and the UAV must
be extremely accurate. (2) Aerial manipulation with SRURSs
demands lighter payload. This is because the total load capac-

ity of an SRURS is limited, and manipulating devices and pay-
load further reduce the restricted payload. (3) Aerial
manipulation with SRURSs demands better sensors. It is

important to realize onboard perception and processing; how-
ever, the hardware and visual algorithms are limited mainly
because of the weight of the hardware and the processing
speed. It remains a challenge to achieve complete real-time

and accurate perception and processing with onboard sensors.
A VICON camera has a strong dependence on the environ-
ment, which limits the sizes of SRURSs; it also limits the appli-

cation scene to indoor locations. VICON is slowly being
replaced by visual cameras and DGPS. As processors advance,
on-board FPGA and PC104 will facilitate processing data

from offline to online. Omitting the data transmission segment
such as WIFI and XBEE155 increases the real-time perfor-
mance of a UAV. This means that aerial manipulation is mov-

ing a step further toward industrial applications and
intelligence. There remain three challenges to be resolved for
the perception, localization, and data processing problem,
which are fusion and filtering of multiple sensors, onboard



Table 4 Major achievements of research groups.

Name of group and

institution

Major achievements

University of Pennsylvania Constructed with quadrotor teams

GRASP Lab Developed avian-inspired perching and grasping based on vision in GPS-denied, VICON-denied environment

Department of Mechanical

Engineering, University of

Utah

Developed an avian-inspired passive mechanism for quadrotor perching where the perching remains stable

under minor disturbances on a variety of surfaces

Department of Electrical

Engineering, University of

California

Presented an implementation of autonomous indoor aerial gripping using a low-cost, custom-built quadrotor.

Overcame major challenges: precise positioning, sensing, and manipulation of an object, and realized

stabilization in the presence of a disturbance due to interaction with an object.

MARHES Lab, University

of New Mexico

Proposed a technique based on dynamic programming that ensures swing-free trajectory tracking

Relied on reinforcement learning algorithms such as AVI and LSPI to generate trajectories with minimal

residual oscillations for rotorcraft transporting suspended loads

Designed an adaptive controller combining geometric control and the least square estimation theory, and

completed an experiment of lifting objects

Department of Mechanical

Engineering and Materials

Science, Yale University

Solved the deviations and step disturbances generated due to payload variations and offsets under PID control

Allowed a UAV to grasp unknown loads within a given mass range

Drexel Autonomous Systems

Lab, Drexel University

Constructed a miniature 6-DOF gantry system to provide mobility and emulate a UAV in flight

Proposed a framework for valve turning using an aerial vehicle endowed with dual multi-DOF manipulators

under a visual servoing condition

Department of Mechanical

Engineering, Johns Hopkins

University

Modeled a rigid multi-body system on the Lie group and proposed an optical trajectory controller for aerial

manipulation

Completed indoor grasp in a NaturalPoint OptiTrack Motion Capture System environment

RAMS Laboratory,

University of Maryland

Presented a vacuum pump sucker used as a gripper where a number of suction cups are used to address a variety

of problems and different planes of grasping.

Biomimetics & Dexterous

Manipulation Laboratory,

Stanford University

Proposed a dynamic surface grasping technique for micro-UAV landing and perching, and presented a dynamic

model that predicts attachment conditions

Designed a climbing mechanism. Presented a switch between climbing and perching modes, and realized the task

of crawling on a wall. Furthermore, the robot could recover from a climbing failure

Mechanical and Aerospace

Engineering, The George

Washington University

Modeled a cable as an arbitrary number of different links by spherical joints

Presented a geometric nonlinear controller to control the position of a quadrotor

Simulated an arbitrary number of quadrotors to achieve manipulating with cables modeled above

Mechanical Engineering,

Carnegie Mellon University

Established a coordinate-free dynamics model of a system by establishing equations of motion directly on the

unit sphere and the special orthogonal group. Solved the cooperative transportation problem of multiple

quadrotors with a cable

Developed an elastic spring model including stiffness and damping. Proved that geometric control is applicable

to both elastic and non-elastic cables utilizing the singular perturbation theory

Real-Time Systems and

Robotics, Technical

University of Berlin

Performed the first test flights of three helicopters with suspended load

DLR – German Aerospace

Center

Developed a robot with a large helicopter with a real robotic arm

Laboratory for Robotics and

Intelligent Control Systems

University of Zagreb

Introduced gain scheduling and a Lyapunov-based model reference adaptive control method to address the

changes of the COM, inertia, and the external disturbance during manipulation of a robot

Divided the coupling between environment and SRURSs into three categories including momentary coupling,

loose coupling, and strong coupling

CTIT Institute, Robotics and

Mechatronics group,

University of Twente

Designed a 3-DOF Delta robotic manipulator together with a nondestructive testing end-effector, and

performed ultrasonic nondestructive testing experiments

Proposed a modified impedance control strategy, where a controller uses a virtual mass coupled to a robotic

system, which allows for stable interaction

Presented a versatile control architecture characterized by its capability of varying the apparent impedance of a

controlled aerial robot and an interaction force.

Autonomous Systems Lab,

Swiss Federal Institute of

Technology Zurich

Proposed a real-time simulation suite for coaxial rotor UAVs with interacting environment tasks

Presented a hybrid-MPC controller to control UAV docking and sliding on walls

Addressed online data processing for state estimation and manipulating

PRISMA Lab, University of

Naples Federico II

Presented a Cartesian impedance control for UAVs equipped with a robotic arm, and exploited the redundancy

of the system to perform useful subtasks

Demonstrated, for the first time, the simultaneous control of a quadrotor and a manipulator it transports

considering the internal cross-dynamics.Proposed a new solution for the fast synthesis of anthropomorphic

grasps.

Robotics, Vision andControl

Group, University of Seville

Designed a light and flexible manipulator for detecting an unknown environment

Designed a controller that weakens the attitude vibration of four rotors, and improved the control accuracy of

the end of the manipulator

Completed an outdoor flight experiment of a 7-DOF manipulator operation on a UAV
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Table 4 (continued)

Name of group and

institution

Major achievements

University of Cassino and

Southern Lazio

Proposed a behavioral control based on the NSB paradigm to address the coordination between the arm and

vehicle motions

Proposed a controller including three levels, i.e., the outer loop is a trajectory generator and an impedance filter,

the middle loop is an inverse kinematic algorithm, and the inner loop is motion tracking

Intelligent Control Systems

Lab, Seoul National

University

Realized object capture, transportation, and placement under Vicon environment

Realized unknown object grasping and transporting through visual capture and online quality estimation

Presented a motion planning approach based on PDMPs for coordinating multiple aerial robots and their

manipulators quickly in an environment cluttered with obstacles.

Interactive & Networked

Robotics Lab, Seoul

National University

Proposed a method where the Lagrange dynamics of quadrotor-manipulator systems can be completely

decoupled

Proposed a hierarchical control framework for multiple cooperative quadrotor-manipulator systems that allows

them to endow a common grasped object with a user-specified desired behavior

Department of Robotics,

Ritsumeikan University

Described an FPGA-based on-board vision-based control system for autonomous orientation of an aerial robot

to assist aerial manipulation tasks such as unscrewing a light bulb

Space Robot Laboratory,

Beihang University

Presented a quadrotor test bench that can test and verify a 6-DOF flight controller

Designed an MMAR capable of flight and wall climbing based on a TLC controller

Addressed the problem of flying-walking locomotion with an MMAR, and employed a hybrid-modeling

framework to model the dynamics of the overall flying-walking locomotion maneuver.Investigated the

trajectory linearization control for the kinematics on S2 and SO(3). The control is globally valid and continuous

because it is designed directly on the Lie group

Fig. 6 Problems, trends, and challenges.
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vision algorithms and planning, and calculation speed together
with the real-time problem of online data processing.

Modeling and control approaches have been introduced in

detail in Section 3. Increasingly researchers are adopting the
overall approach for high accuracy. The independent approach
faces the challenge that the system model is not sufficiently

precise. Although the overall approach should solve the
dynamic decoupling problem, model and COM changes dur-
ing manipulating continue. Meanwhile, controllers for UAVs

and manipulating devices have been developed from early-
time PID to the present situation. Now adaptive sliding mode
control and backstepping control are used for UAVs, while
impedance control and visual servoing control are used for

manipulating devices. A controller should address the follow-
ing challenges: (i) variable mass, inertia, and model, (ii)
unknown features and model of a target, (iii) balanced perfor-

mance of flight and manipulation, attempting to achieve agile
flight with a heavy payload at the same time as providing accu-
rate and stable manipulation, and (iv) continuous position

control of the end-effector is difficult to achieve because an
underactuated multirotor cannot control the position and atti-
tude simultaneously.

6. Conclusions and future

This paper presented a literature review of small-scale rotor-

craft unmanned aerial robotic systems. The research state
was introduced. Works on aerial manipulation of SRURSs
were presented in three fashions. Mechanical structure design
included three parts: i) grippers, ii) manipulators, and iii)

cables and others. Modeling and control approaches were
divided into two parts, independent and overall approaches
including the simplified approach. Relative research groups

and major achievements were presented in figures and tables
for easy access. Problems, trends, and challenges were con-
cluded and presented.

The overall approach is the trend of modeling approach,
and increasingly more and more researchers are addressing
SRURSs with manipulators. It can be forecasted that research-

ers will continue research on SRURSs with manipulators using
the overall modeling approach in the future.

In fact, significant work remains to be undertaken in the
future. This includes aerial manipulation of moving objects,

anti-UAV combatting by aerial manipulation, and air-
ground mobile cooperative manipulation. Furthermore, only
a small number of industrial and commercial applications have

been presented. There remains a significant amount of future
research into aerial manipulation of small-scale rotorcraft
unmanned aerial robotic systems.
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