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Abstract— This paper presents a solution to quadrotor cargo
transportation, more precisely when cargo is suspended as
a sling load. The challenge lies in payload position control
and swing attenuation, which we approach by dividing the
model into subsystems: attitude quadrotor in free flight, and
translational and attitude load dynamics. We propose a solution
based on reactive control, in the sense that we utilize a reactive
force that reacts to the error position and the oscillation
in the load. Asymptotic stability of the system’s closed-loop
equilibrium is proved using Lyapunov theory. Additionally, a
three-dimensional path planning algorithm is proposed based
on cubic splines, which give us a natural path between initial
and final desired points. Moreover, we convert the path plan-
ning problem into trajectory tracking with a spline’s correct
parametrization. Control and path planning performance are
demonstrated with numerical simulations in three different
scenarios.

I. INTRODUCTION
The modern world experiences a growing use of robots

to perform specific tasks. Unmanned aerial vehicles (UAV)
in particular have seen a significant technology advance
wherewith it is possible to find many applications, e.g.,
monitoring and inspection, aerial photography, and package
delivery.
The UAV applications era is now with us; thus, it is essential
to propose simple solutions to daily activities. Transporting
cargo is one of the most versatile tasks that a UAV can
manage. A common approach is to carry such cargo as a
suspended sling load connected to a quadrotor with a cable.
Cargo transportation is not a new problem and has been
studied in earlier works. For example, [1] derives cable-
suspended load equations of motion for quadrotors using the
Lagrange method and presents control design specialized to
the planar case, tracking of either the quadrotor attitude, the
load attitude, or the position of the load. Another approach
is presented in [2], where the Euler-Lagrange formulation is
used to obtain the dynamic model of the system, integrating
the dynamics of quadrotor, cable, and payload. Two cases are
considered to develop two different control laws, dependent
or independent of the payload’s swing angle. In [3], the
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dynamic model is developed using Newton-Euler formula-
tion, which is further verified and compared to a model
based on the Lagrange approach. A nonlinear control strategy
based on the dynamic model is designed to control the
quadrotor’s position and attitude. A passivity-based approach
is employed in [4], based on a model developed using
the Euler-Lagrange formulation. Moreover, the paper devel-
ops an Interconnection and Damping Assignment-Passivity
Based Control (IDA-PBC) for a quadrotor UAV transporting
a cable-suspended payload.

In the previous references, the complete dynamic system
is considered to develop the mathematical models, and it
can be observed that the rotational quadrotor movement is
independent of the load dynamics when the load is connected
to the quadrotor’s center of gravity. This fact is exploited
in other works. For example, in [5], the load is modelled
as a pendulum with a rigid link, and the interconnected
system is modelled by Kane’s method [6]. A nonlinear
controller is derived using the backstepping technique, which
ensures trajectory tracking of the UAV regardless of the
pendulum motion. Another example to model the entire
dynamic system as two connected subsystems is showed
in [7]. The subsystems are the suspended load dynamics
and the free-flight quadrotor attitude. A trajectory tracking
controller for the load position is then designed based on
existing Lyapunov-based trajectory tracking. The authors in
[8] present a nonlinear controller synthesis to deal with a
quadrotor’s trajectory tracking problem with a suspended
load constrained to flight on a plane. The control design
is a saturated controller for the vertical dynamics, and a
backstepping controller is derived in order to synthesize the
resulting closed-loop dynamics.

The problem of controlling a quadrotor with a suspended
load may be roughly divided into two categories: either
make sure that the quadrotor follows it’s desired trajectory
without influence of the load (i.e. controlling the quadrotor),
or ensure that the load follows a desired trajectory by
quadrotor actuation (i.e. controlling the load). The main
idea of this work is to focus on the latter, ensuring cargo
transportation between constant positions. Thus we aim for
a powerful control strategy that also is simple to implement,
where a suitable approach is reactive control. Reactive-based
control has been used to control quadrotors previously; for
instance, [9] presents a reaction-based control where the
attitude subsystem reacts to errors in the translational motion.
The strength in this methodology lies in no requirement
of generating the desired attitude or angular velocity. Also,
in [10], a second-order sliding mode attitude controller is
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derived which exponentially stabilizes the attitude at hover,
and a PD controller for translational error is used to inject
angular accelerations into the rotational dynamics. In this
paper, we follow the ideas developed in [9], which computes
the total necessary force to move and reduce the load’s
oscillations without controlling the swing angles but inject
damping in the angular swinging velocity. More precisely,
swing attenuation is performed in the plane projections (xzn

and yzn) of the swing angles, setting a non-restrictive control
over the swing angles.

After the control strategy is defined, it is necessary to
develop a path planning approach to execute the task safely,
of which several algorithms are available in the literature.
For example, [11] presents a survey of two-dimensional
geometric path planning algorithms for a fixed-wing. In [12]
path-following using Line-of-Sight (LOS) guidance in 2D
is thoroughly analyzed and solved in the ideal case of no
disturbances. It also shows how 3D path-following can be di-
vided into horizontal and vertical planes, effectively reducing
the 3D path following problem into two 2D path-following
problems. Approaches to the specific path planning of cargo
transportation can be found in [13], where an input shaped
trajectory generation is proposed as an effective way to
minimize post-flight swinging for rest-to-rest maneuvers by
allowing some swinging motions during flight. A controller
is developed to track these shaped trajectories and permit the
associated payload swinging while also rejecting unwanted
swinging disturbances. The path planner and controller are
implemented in simulation. The authors in [14] present a
trajectory planning method based on predictive control, and
the cost function considering load swing angle and distance
between obstacle and UAV is designed to generate an optimal
trajectory. Simulations show that the proposed methods can
minimize the swing angle and avoid obstacles at the level of
the desired trajectory.

The central problem in this paper is to move the cargo
from point A to point B, and thus, a path built by point
interpolation can be used. Spline interpolation gives us a
powerful tool to solve this task. Some previous works exploit
spline’s capability; for instance, in [15] the authors develop
a three-dimensional guidance strategy for fixed-wing UAVs
using quaternions. The guidance algorithm based on Hermite
splines is applied to a simple kinematic model for a fixed-
wing UAV with a simple kinematic controller. This work’s
contribution on path planning is a three-dimensional strategy
based on cubic splines that interpolates a set of points chosen
in strategic form. This makes up a significant difference
with previous works in the sense that the selected path is
parameterized to build the desired trajectory, converting the
path planning problem into trajectory tracking one.

This paper is organized as follows: The mathematical
model of the payload and translational motion of the quadro-
tor is developed in Section II, while Section III develops the
control law as well as a stability analysis using Lyapunov
theory. The path planning strategy is described in Section IV,
while Section V presents three numerically simulated scenar-
ios to demonstrate control and path planning performance.

Finally, conclusions are given in Section VI.

II. DYNAMIC MODEL

A. Notation and coordinate reference frames

Throughout this paper, scalar values are denoted in normal
face, vectors in boldface, while matrices are written in capital
boldface letters. The time derivative is denoted as ẋ = dx

dt ,
such that ẍ = d2x

dt . The Euclidean norm is denoted by ‖ · ‖
and | · | denotes the absolute value. Vectors are decomposed
in different reference frames denoted by superscripts, where
Fn denotes the inertial frame, while Fb denotes the body
frame, as shown in Figure 1.

B. Dynamic model of a rigid body with a suspended load

We consider a rigid body with a suspended load, as shown
in Figure 1, with a total of eight degrees of freedom. We
assume that the cable is connected to the gravity center
of the quadrotor, such that the load does not affect the
body rotational dynamics, similar to the approach in [4], [1].
Thus, the whole system can be divided into subsystems: 1)
rotational quadrotor dynamics (3DOF) and 2) translational
and rotational motion of the load (5DOF). We develop our
model based on the Euler-Lagrange method, where we first
consider the following assumptions:

• The cable is rigid with a negligible mass.
• The payload is considered as a mass point.
• The aerodynamic effects are neglected.

Fig. 1. Rigid body with a cable-suspended payload

Further, we proceed by defining the generalized coordi-
nates as gc =

[
pn
q r
]>

, where pn
q = [xq yq zq]

> is the
position of the rigid body with respect to the inertial frame,
and r is the unit vector aligned with the cable connecting
the quadrotor to the load. Notice that the vector r has the
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non-holomonic constraint ‖r‖ = 1, which can be put in the
form

fδ (q1, ..., qn; q̇1, ..., q̇n) = 0 (1)

where the index δ = 1, 2, ..., i indicate the number of
constraint equations. We need to include the constraint in
the Lagrange equations of motion and use the Lagrange
multipliers method to eliminate the extra virtual degree
of freedom [16]. The kinematic and potential energy of
quadrotor and load are

Tq =
1

2
mqV

n
q
>Vn

q Vq = mqge3
>pn

q

Tl =
1

2
mlV

n
l
>Vn

l Vl = mlgle3
>pn

l

where Vn
q is the quadrotor velocity, Vn

l is the linear velocity
of the load, e3 = [0, 0, 1]

>, g is the gravity acceleration, l
is the cable length, mq is the quadrotor mass and ml is the
load mass. It is important to note that we are not considering
the quadrotor attitude, because the load is attached in the
quadrotor’s gravity center. Further, we can write the load
position and velocity as

pn
l = pn

q + lr

Vn
l = Vn

q + lṙ . (2)

Thus, the Lagrangian in terms of the quadrotor movement
can be written as

L =
1

2
(mq +ml) Vn

q
>Vn

q + lmlV
n
q
>ṙ +

1

2
l2mlṙ

>ṙ

− (m+ml) ge3
>pn

q −mlgle3
>r .

(3)
Applying the Euler-Lagrange methodology, we obtain

mV̇n
q + lmlr̈ +mge3 = fn

r×
(
lmlV̇

n
q + l2mlr̈ + lmlge3

)
= r× (lfn + Qk)

(4)
which represent the rotational and translational dynamics of
the payload, where fn is the external force in inertial frame,
m = mq +ml is the total mass and Qk is a function due to
the constraint presented by [16], i.e.

Qk =

i∑
δ=1

{
λδ

[
∂fδ
∂qk
− d

dt

(
∂fδ
∂q̇k

)]
− dλδ

dt

∂fδ
∂q̇k

}
.

Now, rewriting the constraint in the form of (1) we have
r2
1 + r2

2 + r2
3 − 1 = 0, therefore Qk = 2λr, where λ is the

Lagrange multiplier. There is only one multiplier because the
system has one constraint.

The control objective is cargo transportation, so it is
essential to minimize the oscillations and control the cargo
position; hence, it is convenient to represent the translational
and rotational dynamic model in terms of the load position,
velocity, and acceleration. Using the identities in (2), substi-
tuted into (4), we obtain

(mq +ml) V̇n
l − lmq r̈ + g (mq +ml) e3 = fn

r×
(
lmqV̇

n
l − l2mq r̈ + lgmqe3 − lfn− 2λr

)
= 0

(5)

which we may combine to establish the relation

−r×
(
l2mq r̈ + lfn

)
= 0 .

On the other hand, the first equation of (5) can be simplified
using

d

dt
(ṙ · ṙ) = 0

r× (r× r̈) = r (rr̈)− r̈ (rr) = − (ṙṙ) r− r̈

r̈ = − (ṙṙ) r− r× (r× r̈)

and finally, defining ω̇ = r × r̈, we obtain the dynamics
equations

(mq +ml)
(
V̇n

l + ge3

)
= [rfn − lmq (ṙ · ṙ)] r

l mq ω̇ = −r× fn .
(6)

Moreover, from circular motion, the kinematic is defined by

ṙ = ω × r . (7)

C. Attitude Quadrotor Model

We assume that the load is connected in the quadrotor
center of gravity, so it does not influence the quadrotor
attitude movement. Following [17], we apply quaternions to
parametrize attitude, with kinematics and dynamics given by

q̇n,b =
1

2
Ωn

n,b ⊗ qn,b =
1

2
qn,b ⊗Ωb

n,b

Ω̇b
n,b =

(
Jb
)−1 (

τb −Ωb
n,b ×

(
JbΩb

n,b

)) (8)

where qn,b = [q0, q1, q2, q3]> is the unit quaternion that
rotates from Fn to Fb, Ωb

n,b is the angular body velocity
represented in Fb, Jb = diag {Jx, Jy, Jz} is the quadrotor
inertia matrix, and τb is the quadrotor torques produced by
the rotors.

III. REACTIVE CONTROL

In this paper, the main objective is to transport cargo
and reduce the oscillations in the load, and it is possible
to work first with the equations in (6), which represent
translational and attitude load dynamics. Hence, we divide
the control law into tasks: 1) Compute a force that drives the
translational load error to zero, reduces the load oscillations,
and guarantee asymptotically stability. 2) With the total force
described in the first task, control the quadrotor movement
with a control law similar to [9].
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A. Reactive Force

Rewriting with the second equation of (6), we obtain

ω̇ = r× r̈ =

 ω̇x
ω̇y
ω̇z

 = − 1

l mq
(r× fn)

as the angular acceleration of the swing angles projected in
the different planes xzn, yzn, and xyn, cf. Figure 2. With
this in mind, we can establish a control law for the planes
xzn and yzn. For our purpose, the xyn plane does not need
to be controlled since this action is redundant of the other
planes. The new control problem is then as in Figure 3.

Fig. 2. Swing load projections in the planes

Fig. 3. Swing load plane xzn

We define the load errors as

xe = x− xd; ẋe = V nlx − ẋd; ẍe = V̇ nlx − ẍd
ze = z − zd; że = V nlz − żd; z̈e = V̇ nlz − z̈d

and consider fn =
[
fnx , f

n
y , f

n
z

]>
= qn,b ⊗ [0 0 0 T ]

> ⊗
q∗n,b, where T is the thrust produced by the quadrotor. We
can expand the first equation of (6) as

V̇n
l =

1

m

[
r1f

n
x + r2f

n
y + r3f

n
z − lmq (ṙ · ṙ)

]
r− ge3 .

Now, considering the force in the plane xzn solely, we have

V̇n
lxz

=
1

m

(
r1f

n
x + r3f

n
z − lm‖ṙ‖2

) [ r1

r3

]
−
[

0
g

]
.

Further, we define control forces fnx and fnz as

fnx = m (kωωy + kpxxe + kdx ẋe + r1g + ẍd)

+ r1lmq‖ṙ‖2

fnz = m (kpzze + kdz że + g + z̈d) + r3lmq‖ṙ‖2
(9)

with kpx , kdx , kpz , kdz , kω as controller gains. Notice that
the kωωy is the damping term to minimize the oscillations,
in this case the oscillations around yn axis. Hence, we obtain

˙̃V
n

lxz
=

[
r2
1 (kωω + kpxxe + kdx ẋe) + r1

(
r2
1 + r3

)
g

r2
3 (kpzze + kdz że) +

(
r2
1r3 + r2

3 − 1
)
g

]
+

[
r1r3 (kpzze + kdz że)

r1r3 (kωω + kpxxe + kdx ẋe)

]
+

[ (
r2
1 − 1

)
ẍd + r1r3z̈d(

r2
3 − 1

)
z̈d + r1r3ẍd

]
ω̇y = mt (r1 (kpzze + kdz że) + r1 (1 + r3) g)

− mtr3 (kωω + kpxxe + kdx ẋe)

+ mt (r3ẍd + r1z̈d)

with mt =
m

mql
. More compactly, we write

˙̃X = AX̃ + g1

(
X̃
)

+ g2

(
X̃
)

+ Gd + g3

(
Ẍd

)
where

X̃ =


xe
ẋe
ze
że
ωy

 ; Gd =


0

r1

(
r2
1 + r3

)
g

0(
r2
1r3 + r2

3 − 1
)
g

mtr1 (1 + r3) g



g1

(
X̃
)

=


0

r1r3 (kpzze + kdz że) + r2
1kωωy

0
r1 (kωωy + kpxxe + kdx ẋe)
mtr1 (kpzze + kdz że)



g2

(
X̃
)

=


0

−r2
3 (kωωy + kpxxe + kdx że)

0
0
0



g3

(
Ẍd

)
=


0(

r2
1 − 1

)
ẍd + r1r3z̈d
0(

r2
3 − 1

)
z̈d + r1r3ẍd

mt (r3ẍd + r1z̈d)



A =

 0 1 0 0 0
kpx kdx 0 0 0
0 0 0 1 0
0 0 r23kpz r23kdx 0

−mtr3kpx −mtr3kdx 0 0 −mtr3kω

 .
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B. Lyapunov Stability

Before we proceed with the stability analysis, we assume
that the r unit vector is bounded with r1, r2 ∈ (−1, 1) and
r3 ∈ (0,−1], hence, we reasonably assume that the load
will always be maintained below the quadrotor. Define a
Lyapunov function candidate as

V
(
X̃
)

= X̃>PX̃

where P is a positive definite symmetric matrix. Moreover,
if A is Hurwitz there exists

−Q = PA + A>P

with Q positive definite and symmetric. The demonstration
of A being Hurwitz is developed in the appendix. The time
derivative of V

(
X̃
)

is then

V̇
(
X̃
)

= −X̃>QX̃ + 2X̃>P
[
g1

(
X̃
)

+ g2

(
X̃
)]

+ 2X̃>P
[
Gd + g3

(
Ẍd

)]
.

(10)
The first term on the right-hand side is negative definite,
while the other terms are sign indefinite. Furthermore, due
to the bounds in r all products between the components of r

in g1

(
X̃
)

and g2

(
X̃
)

can be upper bounded by one, i.e.
r2
1

r1

r1 r3

r2
3

 ≤ 1

thus

g1

(
X̃
)
≤

∣∣∣∣∣∣∣∣∣∣


0

kpzze + kdz że + kωωy
0

kωωy + kpxxe + kdx ẋe
mt (kpzze + kdz że)


∣∣∣∣∣∣∣∣∣∣

g2

(
X̃
)
≤

∣∣∣∣∣∣∣∣∣∣


0

− (kωωy + kpxxe + kdx ẋe)
0
0
0


∣∣∣∣∣∣∣∣∣∣
.

Defining g
(
X̃
)

= g1

(
X̃
)

+ g2

(
X̃
)

, which satisfies

‖g
(
X̃
)
‖

‖X̃‖
→ c as ‖X̃‖ → 0

and therefore, there exists γ > 0 such that

‖g
(
X̃
)
‖ < γ‖X̃‖ ≤ γ‖X̃‖2 .

Consequently, the second term of (10) can be bounded as

2X̃>Pg
(
X̃
)
≤ 2 γ ‖P‖ ‖X̃‖2 .

Additionally, it is straight forward to show that the third term
of (10) can be bounded as

2X̃>PGd ≤ 2κ g
√

2 +m2
t ‖P‖‖X̃‖2

where κ > 0 satisfies r1

(
r2
1 + r3

)
r2
1r3 + r2

3 − 1
r1 (1 + r3)

 < κ .

The last term of (10) can be bounded as

2X̃>Pg3

(
Ẍd

)
≤ 2

√
2 +m2

t ‖P‖‖X̃‖2 h(t)

with h(t) = | ẍd | + | z̈d |. Therefore, V̇
(
X̃
)

satisfies

V̇
(
X̃
)
≤ − [λmin (Q)− 2 (Γ + km h(t)) ‖P‖] ‖X̃‖2 (11)

where Γ = κ g km+γ and km =
√

2 +m2
t . Hence, selecting

h(t) <
1

km

(
λmin (Q)

2 ‖P‖
− Γ

)
ensures that V̇

(
X̃
)

is negative definite. Thus, all the condi-
tions of Theorem 4.10 in [18] are satisfied for −1 ≤ r1 ≤ 1,
−1 ≤ r2 ≤ 1 and −1 ≤ r3 ≤ 0, and we conclude that the
origin of the closed loop system is asymptotically stable.

C. Controlling the yzn plane

The control law for the yzn plane can be obtain in the
same way as for xzn control. Thus, the reactive force fny
can be proposed as

fny = m
(
kωωx + kpxye + kdy ẏe + r2g

)
+ r2lmq‖ṙ‖2

(12)
where ye = y − yd is the position error in the yn axis,
and fnz as in (9). Since fny has the same structure as fnx ,
the stability proof follows along the same lines as above,
to conclude that the origin of the closed loop system in the
plane yzn is asymptotically stable.

D. Quadrotor attitude control

The proposed reactive force can be adapted to any vehicle
with hover capability. For this work, we focus on a quadrotor.
Different approaches for attitude control can be found in the
literature, and most of them can be used with the reactive
force proposed. For instance, defining fn = [fnx fny fnz ]>,
the geometric approach in [19] can be constructed as

fn = Rd

 0
0
T


where T = ‖fn‖ is the thrust produced by the quadrotor’s
propellers, and Rd is the rotation matrix that rotate from
frame Fb to Fn. Thus, the problem is reduced to find Rd

that will be the reference for attitude control.
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In this work we follow the approach set up in [9], where
the attitude control for a quadrotor is proposed as

τb = −

 0
0
1

× (q∗n,b ⊗ fn ⊗ qn,b

)
− kΩ Ωb

n,b (13)

where kΩ is a control gain and q∗n,b is the unit quaternion
conjugate defined as q∗n,b = [q0, −q1, −q2, −q3]>. The term
q∗n,b⊗fn⊗qn,b represents the transformation of fn to body
axes fb. Additionally, it includes the cross product between
the zb axis and fb since the thrust in the quadrotor is always
aligned with the zb axis. The proposed reactive force fn is
injected into the attitude system as torques. This is achieved
by saturating the force fn with the saturation function

f̃n = α
(

1− ekf‖f
n‖
) fn√
‖fn‖2 + ∆2

(14)

where ∆ is a positive constant to avoid division by zero, α
represents the maximum torque the control vector can inject
into the attitude system and kf is a tuning parameter. Finally
fn needs to be mapped to the actual thrust vector of the
quadrotor. This can be done in several ways, but we use

T = ‖fn‖ (15)

which guarantees that the total thrust is always positive. The
stability proof is given in [9].

IV. PATH PLANNING (CUBIC SPLINES)
There are several methods to construct a cargo transporta-

tion path from an initial point XI to a final destination Xf .
These methods are basically an interpolation between the
required points. This work’s proposed method is based on
cubic splines, which has interesting and powerful properties
that give us a smooth continuous path.

A cubic spline is a piecewise polynomial function with
maximum degree 3 [20], which takes values from an interval
[xi, xi+1] and maps them to R, i.e.

S : [xi, xn]→ R

and it is composed of a piecewise polynomial function

S(x) =


s1(x) ∀ [x1, x2]
s2(x) ∀ [x2, x3]

...
sn−1(x) ∀ [xn−1, xn]

.

The cubic splines have the general form

si(x) = ai + bi (x−xi) + ci (x−xi)2
+ di (x−xi)3 (16)

and must satisfy the conditions

si (xi) = yi, i = 1, ..., n− 1

si (xi) = si−1 (xi)

ṡi (xi) = ṡi−1 (xi)

s̈i (xi) = s̈i−1 (xi)

s̈0 (xi) = s̈n−1 (xn) = 0 .

which guarantees a smooth and continuous transition be-
tween splines. The proposed procedure to construct a spline
that not lie in the planes xzn, yzn or xyn is described as
follows:
• Given the initial X0 = [x0 y0 z0]> and final Xn =

[xn yn zn]> cargo destination, construct the line that
join the two points.

• Define the line between X0 and Xn and the zn axis to
form a new plane pzn, in which we will construct the
desired path for the load.

• Express the coordinates x0, y0, xn, yn in terms of the
new plane pzn, such as

xp0 = ‖ [x0 y0]
> ‖

xpn = ‖ [xn yn]
> ‖

where [xp0 z0]
> ∈ pzn and [xpn zn]

> ∈ pzn.
• Provide at least one desired altitude, called the safety

altitude zs. It is required at least one but we can chose
several safety altitudes as we want zs = [z1 ... zn−1].

• Compute the pair [xs ys] for every point given in zs as

xi =
xn − x0

n− 1
+ xi−1

yi = (yn − y0)
xi − x0

xn − x0
+ y0

with i = 1, ..., n− 1.
• Project the pair [xs ys] to the pzn plane by

xpi = ‖ [xi yi]
> ‖ .

• Compute the cubic spline that reaches the set of points{
[x0 z0] , [xpi zi] , ... ,

[
xpn−1 zn−1

]
, [xn zn]

}
.

• Parameterize the spline S(x) in terms of time t. The
parameterization can be solved in many different ways.
Two of the them are:

– When di = 0 in (16), we consider the parameteri-
zation

xpd = c t

zd = ai + bi (ct− xi) + ci (ct− xi)2
.

– When di 6= 0 in (16), we require a more complex
parameterization

ẋpd = f(t)

zd = ai + bi (f(t)− xi) + ci (f(t)− xi)2
.

• Depending on the parameterization, compute xd and yd
in terms of the inertial frame Fn with

xd =
xn

‖ [xn yn]
> ‖

c t

yd =
yn

‖ [xn yn]
> ‖

c t

or

ẋd =
xn

‖ [xn yn]
> ‖

f(t)

ẏd =
yn

‖ [xn yn]
> ‖

f(t)
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V. SIMULATIONS

In this section, we present three simulation scenarios
to show operational behaviour. First, we show how our
solution can eliminate oscillations in the load. Second, cargo
transportation from an initial position into different way-
points, and third, the path planning algorithm. The simulation
parameters are summarized in Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Value
mq 1 kg
ml 0.146 kg
l 0.65 m
Jx 0.04352 kg m2

Jy 0.04352 kg m2

Jz 0.07072 kg m2

A. Scenario 1: Oscillation avoidance

The first simulation shows the ability to eliminate os-
cillations in the load, so we take the initial conditions in
the most critical point when the load is just a little below
the quadrotor, that is when r3 ≈ 0. Therefore, the initial
conditions are

xd = 0; yd = 0; zd = 2

pn
l = [0, 0, 1]

>

ω = [0, 0.2, 0]
>

Vn
l = [0, 0, 0]

>

r =


sin (1.56) cos

(π
4

)
sin (1.56) sin

(π
4

)
− cos(1.56)


qn,b = [1, 0, 0, 0]>

Ωb
n,b = [0, 0, 0]> .

The gain parameters are chosen as kpx = −1.75, kdx =
−1.5, kpy = −1.75, kdy = −1.5 kpz = −4, kdz = −3,
kw = −2.

Fig. 4. Swing load position and velocity

Figure 4 shows how the load oscillation vanishes with the
reactive force injected into the suspended load. It is desired

that r1 and r2 be small for cargo transportation, thus, it can
be appreciated how r1 → 0 and r2 → 0 after four seconds.
It is important to remark that the control proposed in this
paper does not establish any control over the swing angles
or any restriction over unit vector r; this fact permits to adapt
a natural angular position in the load. Moreover, a damping
term is introduced to control the angular velocity in the load
oscillation, and we see in Figure 4 how the angular velocity
of the load movement vanishes.

Besides, while the quadrotor compensates for the load
oscillations, the load also moves to its desired position, as
shown in Figure 5. Quadrotor thrust and cable tension can
be observed in Figure 6. The cable tension was computed as
in [1], using the identities T = T r · r, where the quantity
T r is determined from mlV̇

n
lx

= Tr−ml g e3.
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Fig. 5. Load position error
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Fig. 6. Quadrotor thrust and cable tension

In Figure 7 the quadrotor handles the load oscillation
rotation about xb and yb axes, and after the load oscillation
vanishes the quadrotor maintain a hover flight such that
q0 = 1 and [q1, q2, q3] = 0.
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Fig. 7. Quadrotor attitude and angular velocities
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Moreover, Figure 7 shows the quadrotor angular velocities
to achieve the reactive forces directed by the control law. We
end the first simulation scenario with torques produced by
the quadrotor, shown in Figure 8. The values to set up the
saturation function in (14) are α = 3, kf = 1 and ∆ = 0.001.
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Fig. 8. Quadrotor’s torques

B. Scenario 2: Transporting cargo (waypoint)

For the second simulation scenario, a set of waypoints
will be assigned as desired points for the load. The initial
conditions are set in a suggested cargo transport situation as

xd = [0, 20, −1]
>

yd = [0, 10, 1]
>

zd = [3, 5, 10]
>

ω = [0, 0, 0]
>

pn
l = [0, 0, 1]

>

Vn
l = [0, 0, 0]

>

r = [0, 0,−1]
>

qn,b = [1, 0, 0, 0]>

Ωb
n,b = [0, 0, 0]>

while the gains and saturation parameters are the same as in
scenario 1. Figure 9 shows the quadrotor’s load movement,
showing how the load changes its position when the quadro-
tor starts moving. We notice that the quadrotor’s initial abrupt
movement entails an oscillation in the load, but the reactive
force absorbs the swing movement after some seconds.
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Fig. 9. Swing load attiude

The load position error converges to the origin, and the
performance can be modified by changing the gains to inject
more damping in the load to achieve a more soft approach

towards the waypoint, depending on task requirements. The
quadrotor thrust and cable tension can be observed in Figure
11.
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Fig. 10. Load position error
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Fig. 11. Quadrotor thrust and cable tension

The quadrotor attitude and angular velocities are presented
in Figure 12. We notice that after reaching a waypoint, the
quadrotor passes to hover flight.
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Fig. 12. Quadrotor attitude and angular velocities

C. Scenario 3: Transporting cargo (path planning)

In this scenario we test the path planning strategy based
on cubic splines. We select the initial and final points, as
well as one safety altitude such as

XI = [0, 0, 0]
>

Initial point

Xf = [15, −10, 3]
>

Final point

zs = 12 Safety altitude

and the resulting points in the plane of movement are

Xp = [0, 8.412, 18.027]>

Zp = [0, 12, 3] .
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The spline is further time-parameterized to define the desired
path as

zd = c (k t)2 + b k t

xd =
15√

152 + 102
k t

yd = − 10√
152 + 102

k t

with b = 2.528, c = −0.131 and k = 0.1. We assume that
the initial conditions are reasonably close to the initial point
and defined as

ω = [0, 0, 0]
>

pn
l = [0,−1,−2]

>

Vn
l = [0, 0, 0]

>

r = [0, 0,−1]
>

qn,b = [1, 0, 0, 0]>

Ωb
n,b = [0, 0, 0]> .

Figure 13 shows the swing load attitude that converges
towards zero. We notice a small jump at t = 180 due to the
transition between trajectory tracking and hover flight. Figure
14 shows the load position error that converges towards zero,
and hence the load follows the desired path.
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Fig. 13. Swing load attitude
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Fig. 14. Load position error

Finally, the movement of the load in inertial axes can be
visualized better in Figure 15, where after 180 seconds, the
load reach the final point and change to a hover flight.

VI. CONCLUSIONS

This paper has presented a solution to swing attenuation
and position control of a load suspended from a quadrotor
based on reactive control. With this approach, we derive
an easily implementable control algorithm, independent of
the generation of desired swing angles. Asymptotic stability
of the system’s closed-loop equilibrium is proved using

Fig. 15. Three-dimensional load path

Lyapunov theory. Also, a path planning strategy based on
cubic splines was developed for three-dimensional space.
The computed desired path is converted to a trajectory with
the correct parameterization, where the reactive force enables
trajectory tracking. Finally, we have demonstrated the control
law and path planning approach performance through three
simulated scenarios, including reducing load oscillations and
load transportation through different waypoints and trajectory
tracking of the spline. Our future work will be testing the
control approach in lab experiments.

APPENDIX

The matrix A of (10) needs to be Hurwitz for the Lya-
punov proof to hold. The eigenvalues of A are

eig (A) =


r2
3 kdz± | r3 |

√
k2
dz
r2
3 + 4 kpz

kdx ±
√
k2
dx

+ 4 kpx

| r3 | 2 kωmt

 .
From the first pair of eigenvalues kdz < 0 and

r2
3 | kdz |>| r3 |

√
k2
dz
r2
3 + 4 kpz

thus kpz < 0. The second pair of eigenvalues give us a
similar solution kpz < 0 and kdz < 0. Finally from the
last eigenvalue kω < 0. Therefore the Hurwitz condition is
satisfied with [kpx , kdx , kpz , kdz , kω] < 0.
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