180,224 research outputs found

    Cob Property Analysis

    Get PDF
    The goal of this project was to research the material properties of the green building material COB in order to better understand how to apply COB in real world applications. The research portion included soil analysis, compression, modulus of rupture and elasticity tests, hydrometer analysis, and atterberg limits tests. Additionally, through a partnership with the professionals of the COB Research Institute team and another COB-centric senior design group, this team was able to produce the first full-scale wall tests for COB. Four 7-foot walls were constructed and in-plane lateral cyclic loading was applied to create the effects of a COB structure under lateral loading. The results of the full-scale tests are in the process of being incorporated in the entry for COB into the California Residential Code, with a recommendation given for the reinforcing design that performed the best, through allowable load and deflection calculations. Finally, the team used a sample footprint for a simple house to develop structural house components for a COB structure that could benefit COB application in the real world. The simulated application of COB is helping the COB Research Institute formulate their submittal and ultimately provide a jumping off point for further research of this nature. The ultimate goal was to spread awareness of sustainable building practices and make them more accessible to the general public

    WeighstEd

    Get PDF
    The purpose of this design thesis is to outline and describe the design project; WeighstEd. WeighstEd, is a data collection, storage, and analysis system for food waste to help Santa Clara University’s Sustainability Center reach a quantifiable food waste reduction goal of 10% by 2020 by using data to make informed cafeteria changes. The report will outline the entire engineering design process from ideation to manufacture including analysis techniques and benchmark testing. This report will serve as a written documentation of three mechanical engineers Senior Design Project completed at Santa Clara University. WeighstEd will be implemented at on campus events and in the university cafeteria beginning in the 2019-2020 school year

    Solar Splash Senior Design Project

    Get PDF
    Indiana University Purdue University IndianapolisThe Solar Splash senior project is the first attempt at creating an entirely solar propelled watercraft. The initial project intent was to design and create a supplement meets the specifications and compete in the competition. With this in mind, a budget approach was taken in order to be able to fund the task at hand. As the project progressed toward the end of the low-level design phase it was evident that the competition would not occur. At the midpoint of the project, the goals and objectives had changed entirely. The new focus was targeted at proving the operation of the systems involved in the watercraft. Having been faced with a new series of objectives and an entirely new scope, the project began to appear doable. The primary focus of the project at this point entirely relied on simulation data and data analysis. The idea was not reinventing the wheel but rather verifying that the wheel rolled. Using the designed propulsion, solar and sensors systems, with the help of a combination of software programs, the idea of a budget solution can be seen. The software used tell the story of the boat that would have been created had the project continued down the original proposed path. As systems were tested and analyzed, they were also adjusted and improved upon. The analysis process consumed a lot of time but acted as a highlighter for all the flaws that the system suffered from. This document introduces the design concepts and schematics of the Solar Splash senior design project. Within are detailed drawings and diagrams for the electrical systems devised for the construction operation of the watercraft. This report is a means of displaying the layout of the final product and how all systems tie together. The report will contain detailed information on not only hardware aspects but also software and how those will bridge together. The report is meant to be in layman’s terms and should be easily interpreted at all levels. The bulk of the information found in the report will be found in the testing sections where analysis of a theoretical boat is done. The motor design, solar design, and fluid dynamic analysis of the boat hull and propeller can be found in their respective section. The innerworkings, testing processes and thoughts behind each decision can also be found in these sections. The document begins with a table of contents identifying each main and subcategory of information. The next page is the document identification, revision history, and lesser known definitions. Following that is the introduction and scope. Specification requirements for the ‘general requirements’, ‘electrical requirements’ and ‘mechanical requirements’ are found on the following page. A system flowchart can be found in the high-level Design along with the design decision matrices for each system. The design portion then begins starting with the System-wide design changes and decisions. The hardware and software designs and schematics follow and cover the proposed schematics and drawings for the system. Cost breakdowns for each individual system are also found in the low-level section. Testing methodologies, results and an explanation of the testing software can be found after the low-level design. A summation of all these testing results is found near the tail of the document. Conclusions, recommendations, and appendixes can be found as the last three sections, respectively.Electrical Engineering Technolog

    The Impact of Stealthy Attacks on Smart Grid Performance: Tradeoffs and Implications

    Full text link
    The smart grid is envisioned to significantly enhance the efficiency of energy consumption, by utilizing two-way communication channels between consumers and operators. For example, operators can opportunistically leverage the delay tolerance of energy demands in order to balance the energy load over time, and hence, reduce the total operational cost. This opportunity, however, comes with security threats, as the grid becomes more vulnerable to cyber-attacks. In this paper, we study the impact of such malicious cyber-attacks on the energy efficiency of the grid in a simplified setup. More precisely, we consider a simple model where the energy demands of the smart grid consumers are intercepted and altered by an active attacker before they arrive at the operator, who is equipped with limited intrusion detection capabilities. We formulate the resulting optimization problems faced by the operator and the attacker and propose several scheduling and attack strategies for both parties. Interestingly, our results show that, as opposed to facilitating cost reduction in the smart grid, increasing the delay tolerance of the energy demands potentially allows the attacker to force increased costs on the system. This highlights the need for carefully constructed and robust intrusion detection mechanisms at the operator.Comment: Technical report - this work was accepted to IEEE Transactions on Control of Network Systems, 2016. arXiv admin note: substantial text overlap with arXiv:1209.176

    Autonomous resource-aware scheduling of large-scale media workflows

    Get PDF
    The media processing and distribution industry generally requires considerable resources to be able to execute the various tasks and workflows that constitute their business processes. The latter processes are often tied to critical constraints such as strict deadlines. A key issue herein is how to efficiently use the available computational, storage and network resources to be able to cope with the high work load. Optimizing resource usage is not only vital to scalability, but also to the level of QoS (e.g. responsiveness or prioritization) that can be provided. We designed an autonomous platform for scheduling and workflow-to-resource assignment, taking into account the different requirements and constraints. This paper presents the workflow scheduling algorithms, which consider the state and characteristics of the resources (computational, network and storage). The performance of these algorithms is presented in detail in the context of a European media processing and distribution use-case

    Cost effectiveness analysis of clinically driven versus routine laboratory monitoring of antiretroviral therapy in Uganda and Zimbabwe.

    Get PDF
    BACKGROUND: Despite funding constraints for treatment programmes in Africa, the costs and economic consequences of routine laboratory monitoring for efficacy and toxicity of antiretroviral therapy (ART) have rarely been evaluated. METHODS: Cost-effectiveness analysis was conducted in the DART trial (ISRCTN13968779). Adults in Uganda/Zimbabwe starting ART were randomised to clinically-driven monitoring (CDM) or laboratory and clinical monitoring (LCM); individual patient data on healthcare resource utilisation and outcomes were valued with primary economic costs and utilities. Total costs of first/second-line ART, routine 12-weekly CD4 and biochemistry/haematology tests, additional diagnostic investigations, clinic visits, concomitant medications and hospitalisations were considered from the public healthcare sector perspective. A Markov model was used to extrapolate costs and benefits 20 years beyond the trial. RESULTS: 3316 (1660LCM;1656CDM) symptomatic, immunosuppressed ART-naive adults (median (IQR) age 37 (32,42); CD4 86 (31,139) cells/mm(3)) were followed for median 4.9 years. LCM had a mean 0.112 year (41 days) survival benefit at an additional mean cost of 765[95765 [95%CI:685,845], translating into an adjusted incremental cost of 7386 [3277,dominated] per life-year gained and 7793[4442,39179]perquality−adjustedlifeyeargained.Routinetoxicitytestswereprominentcost−driversandhadnobenefit.With12−weeklyCD4monitoringfromyear2onART,low−costsecond−lineART,butwithouttoxicitymonitoring,CD4testcostsneedtofallbelow7793 [4442,39179] per quality-adjusted life year gained. Routine toxicity tests were prominent cost-drivers and had no benefit. With 12-weekly CD4 monitoring from year 2 on ART, low-cost second-line ART, but without toxicity monitoring, CD4 test costs need to fall below 3.78 to become cost-effective (<3xper-capita GDP, following WHO benchmarks). CD4 monitoring at current costs as undertaken in DART was not cost-effective in the long-term. CONCLUSIONS: There is no rationale for routine toxicity monitoring, which did not affect outcomes and was costly. Even though beneficial, there is little justification for routine 12-weekly CD4 monitoring of ART at current test costs in low-income African countries. CD4 monitoring, restricted to the second year on ART onwards, could be cost-effective with lower cost second-line therapy and development of a cheaper, ideally point-of-care, CD4 test
    • …
    corecore