274 research outputs found

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Fall Prediction and Controlled Fall for Humanoid Robots

    Get PDF
    Humanoids which resemble humans in their body structure and degrees of freedom are anticipated to work like them within infrastructures and environments constructed for humans. In such scenarios, even humans who have exceptional manipulation, balancing, and locomotion skills are vulnerable to fall, humanoids being their approximate imitators are no exception to this. Furthermore, their high center of gravity position in relation to their small support polygon makes them more prone to fall, unlike other robots such as quadrupeds. The consequences of these falls are so devastating that it can instantly annihilate both the robot and its surroundings. This has become one of the major stumbling blocks which humanoids have to overcome to operate in real environments. As a result, in this thesis, we have strived to address the imminent fall over of humanoids by developing different control techniques. The fall over problem as such can be divided into three subissues: fall prediction, controlled fall, and its recovery. In the presented work, the first two issues have been addressed, and they are presented in three parts. First, we define what is fall over for humanoids, different sources for it to happen, the effect fall over has both on the robot and to its surroundings, and how to deal with them. Following which, we give a brief introduction to the overall system which includes both the hardware and software components which have been used throughout the work for varied purposes. Second, the first sub-issue is addressed by proposing a generic method to predict the falling over of humanoid robots in a reliable, robust, and agile manner across various terrains, and also amidst arbitrary disturbances. The aforementioned characteristics are strived to attain by proposing a prediction principle inspired by the human balance sensory systems. Accordingly, the fusion of multiple sensors such as inertial measurement unit and gyroscope (IMU), foot pressure sensor (FPS), joint encoders, and stereo vision sensor, which are equivalent to the human\u2019s vestibular, proprioception, and vision systems are considered. We first define a set of feature-based fall indicator variables (FIVs) from the different sensors, and the thresholds for those FIVs are extracted analytically for four major disturbance scenarios. Further, an online threshold interpolation technique and an impulse adaptive counter limit are proposed to manage more generic disturbances. For the generalized prediction process, both the instantaneous and cumulative sum of each FIVs are normalized, and a suitable value is set as the critical limit to predict the fall over. To determine the best combination and the usefulness of multiple sensors, the prediction performance is evaluated on four different types of terrains, in three unique combinations: first, each feature individually with their respective FIVs; second, an intuitive performance based (PF); and finally, Kalman filter based (KF) techniques, which involve the usage of multiple features. For PF and KF techniques, prediction performance evaluations are carried out with and without adding noise. Overall, it is reported that KF performs better than PF and individual sensor features under different conditions. Also, the method\u2019s ability to predict fall overs during the robot\u2019s simple dynamic motion is also tested and verified through simulations. Experimental verification of the proposed prediction method on flat and uneven terrains was carried out with the WALK-MAN humanoid robot. Finally, in reference to the second sub-issue, i.e., the controlled fall, we propose two novel fall control techniques based on energy concepts, which can be applied online to mitigate the impact forces incurred during the falling over of humanoids. Both the techniques are inspired by the break-fall motions, in particular, Ukemi motion practiced by martial arts people. The first technique reduces the total energy using a nonlinear control tool, called energy shaping (ES) and further distributes the reduced energy over multiple contacts by means of energy distribution polygons (EDP). We also include an effective orientation control to safeguard the end-effectors in the event of ground impacts. The performance of the proposed method is numerically evaluated by dynamic simulations under the sudden falling over scenario of the humanoid robot for both lateral and sagittal falls. The effectiveness of the proposed ES and EDP concepts are verified by diverse comparative simulations regarding total energy, distribution, and impact forces. Following the first technique, we proposed another controller to generate an online rolling over motion based on the hypothesis that multi-contact motions can reduce the impact forces even further. To generate efficient rolling motion, critical parameters are defined by the insights drawn from a study on rolling, which are contact positions and attack angles. In addition, energy-injection velocity is proposed as an auxiliary rolling parameter to ensure sequential multiple contacts in rolling. An online rolling controller is synthesized to compute the optimal values of the rolling parameters. The first two parameters are to construct a polyhedron, by selecting suitable contacts around the humanoid\u2019s body. This polyhedron distributes the energy gradually across multiple contacts, thus called energy distribution polyhedron. The last parameter is to inject some additional energy into the system during the fall, to overcome energy drought and tip over successive contacts. The proposed controller, incorporated with energy injection, minimization, and distribution techniques result in a rolling like motion and significantly reduces the impact forces, and it is verified in numerical experiments with a segmented planar robot and a full humanoid model

    Predictive Whole-Body Control of Humanoid Robot Locomotion

    Get PDF
    Humanoid robots are machines built with an anthropomorphic shape. Despite decades of research into the subject, it is still challenging to tackle the robot locomotion problem from an algorithmic point of view. For example, these machines cannot achieve a constant forward body movement without exploiting contacts with the environment. The reactive forces resulting from the contacts are subject to strong limitations, complicating the design of control laws. As a consequence, the generation of humanoid motions requires to exploit fully the mathematical model of the robot in contact with the environment or to resort to approximations of it. This thesis investigates predictive and optimal control techniques for tackling humanoid robot motion tasks. They generate control input values from the system model and objectives, often transposed as cost function to minimize. In particular, this thesis tackles several aspects of the humanoid robot locomotion problem in a crescendo of complexity. First, we consider the single step push recovery problem. Namely, we aim at maintaining the upright posture with a single step after a strong external disturbance. Second, we generate and stabilize walking motions. In addition, we adopt predictive techniques to perform more dynamic motions, like large step-ups. The above-mentioned applications make use of different simplifications or assumptions to facilitate the tractability of the corresponding motion tasks. Moreover, they consider first the foot placements and only afterward how to maintain balance. We attempt to remove all these simplifications. We model the robot in contact with the environment explicitly, comparing different methods. In addition, we are able to obtain whole-body walking trajectories automatically by only specifying the desired motion velocity and a moving reference on the ground. We exploit the contacts with the walking surface to achieve these objectives while maintaining the robot balanced. Experiments are performed on real and simulated humanoid robots, like the Atlas and the iCub humanoid robots

    Optimization of Humanoid's Motions under Multiple Constraints in Vehicle-Handling Task

    Get PDF
    In this dissertation, an approach on whole body motion optimization is presented for humanoid vehicle-handling task. To achieve this goal, the author built a reinforcement-learning-agent based trajectory-optimization framework. The framework planned and optimized a guideline input trajectory with respect to various kinematic and dynamic constraints. A path planner module designed an initial suboptimal motion. Reinforcement learning was then implemented to optimize the trajectories with respect to time-varying constraints at the body and joint level. The cost functions in the body level calculated a robot's static balancing ability, collisions and validity of the end-effector movement. Quasi-static balancing and collisions were computed from kinematic models of the robot and the vehicle. Various costs such as joint angle and velocity limits were computed in the joint level. Energy consumption such as torque limit obedience was also checked at the joint level. Such physical limits of each joint ensured both spatial and temporal smoothness of the generated trajectories. Keeping overall structure of the framework, cost functions and learning algorithm were selected adaptively based on the requirements of given tasks. After the optimization process, experimental tests of the presented approach are demonstrated through simulations using a virtual robot model. Verification-and-validation process then confirmed the efficacy of the optimized trajectory approach using the robot's real physical platform. For both test and verification process, different types of robot and vehicle were used to prove potentials for extension of the trajectory-optimization framework.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Human-Inspired Balancing and Recovery Stepping for Humanoid Robots

    Get PDF
    Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Manipulation Planning for Forceful Human-Robot-Collaboration

    Get PDF
    This thesis addresses the problem of manipulation planning for forceful human-robot collaboration. Particularly, the focus is on the scenario where a human applies a sequence of changing external forces through forceful operations (e.g. cutting a circular piece off a board) on an object that is grasped by a cooperative robot. We present a range of planners that 1) enable the robot to stabilize and position the object under the human applied forces by exploiting supports from both the object-robot and object-environment contacts; 2) improve task efficiency by minimizing the need of configuration and grasp changes required by the changing external forces; 3) improve human comfort during the forceful interaction by optimizing the defined comfort criteria. We first focus on the instance of using only robotic grasps, where the robot is supposed to grasp/regrasp the object multiple times to keep it stable under the changing external forces. We introduce a planner that can generate an efficient manipulation plan by intelligently deciding when the robot should change its grasp on the object as the human applies the forces, and choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. The planner searches for such an efficient plan by first finding a minimal sequence of grasp configurations that are able to keep the object stable under the changing forces, and then generating connecting trajectories to switch between the planned configurations, i.e. planning regrasps. We perform the search for such a grasp (configuration) sequence by sampling stable configurations for the external forces, building an operation graph using these stable configurations and then searching the operation graph to minimize the number of regrasps. We solve the problem of bimanual regrasp planning under the assumption of no support surface, enabling the robot to regrasp an object in the air by finding intermediate configurations at which both the bimanual and unimanual grasps can hold the object stable under gravity. We present a variety of experiments to show the performance of our planner, particularly in minimizing the number of regrasps for forceful manipulation tasks and planning stable regrasps. We then explore the problem of using both the object-environment contacts and object-robot contacts, which enlarges the set of stable configurations and thus boosts the robot’s capability in stabilizing the object under external forces. We present a planner that can intelligently exploit the environment’s and robot’s stabilization capabilities within a unified planning framework to search for a minimal number of stable contact configurations. A big computational bottleneck in this planner is due to the static stability analysis of a large number of candidate configurations. We introduce a containment relation between different contact configurations, to efficiently prune the stability checking process. We present a set of real-robot and simulated experiments illustrating the effectiveness of the proposed framework. We present a detailed analysis of the proposed containment relationship, particularly in improving the planning efficiency. We present a planning algorithm to further improve the cooperative robot behaviour concerning human comfort during the forceful human-robot interaction. Particularly, we are interested in empowering the robot with the capability of grasping and positioning the object not only to ensure the object stability against the human applied forces, but also to improve human experience and comfort during the interaction. We address human comfort as the muscular activation level required to apply a desired external force, together with the human spatial perception, i.e. the so-called peripersonal-space comfort during the interaction. We propose to maximize both comfort metrics to optimize the robot and object configuration such that the human can apply a forceful operation comfortably. We present a set of human-robot drilling and cutting experiments which verify the efficiency of the proposed metrics in improving the overall comfort and HRI experience, without compromising the force stability. In addition to the above planning work, we present a conic formulation to approximate the distribution of a forceful operation in the wrench space with a polyhedral cone, which enables the planner to efficiently assess the stability of a system configuration even in the presence of force uncertainties that are inherent in the human applied forceful operations. We also develop a graphical user interface, which human users can easily use to specify various forceful tasks, i.e. sequences of forceful operations on selected objects, in an interactive manner. The user interface ties in human task specification, on-demand manipulation planning and robot-assisted fabrication together. We present a set of human-robot experiments using the interface demonstrating the feasibility of our system. In short, in this thesis we present a series of planners for object manipulation under changing external forces. We show the object contacts with the robot and the environment enable the robot to manipulate an object under external forces, while making the most of the object contacts has the potential to eliminate redundant changes during manipulation, e.g. regrasp, and thus improve task efficiency and smoothness. We also show the necessity of optimizing human comfort in planning for forceful human-robot manipulation tasks. We believe the work presented here can be a key component in a human-robot collaboration framework
    • …
    corecore