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Abstract

This thesis addresses the problem of manipulation planning for forceful human-robot col-
laboration. Particularly, the focus is on the scenario where a human applies a sequence
of changing external forces through forceful operations (e.g. cutting a circular piece off a
board) on an object that is grasped by a cooperative robot. We present a range of planners
that 1) enable the robot to stabilize and position the object under the human applied forces
by exploiting supports from both the object-robot and object-environment contacts; 2) im-
prove task efficiency by minimizing the need of configuration and grasp changes required
by the changing external forces; 3) improve human comfort during the forceful interaction
by optimizing the defined comfort criteria.

We first focus on the instance of using only robotic grasps, where the robot is supposed to
grasp/regrasp the object multiple times to keep it stable under the changing external forces.
We introduce a planner that can generate an efficient manipulation plan by intelligently de-
ciding when the robot should change its grasp on the object as the human applies the forces,
and choosing subsequent grasps such that they minimize the number of regrasps required
in the long-term. The planner searches for such an efficient plan by first finding a minimal
sequence of grasp configurations that are able to keep the object stable under the changing
forces, and then generating connecting trajectories to switch between the planned config-
urations, i.e. planning regrasps. We perform the search for such a grasp (configuration)
sequence by sampling stable configurations for the external forces, building an operation
graph using these stable configurations and then searching the operation graph to minimize
the number of regrasps. We solve the problem of bimanual regrasp planning under the as-
sumption of no support surface, enabling the robot to regrasp an object in the air by finding
intermediate configurations at which both the bimanual and unimanual grasps can hold the
object stable under gravity. We present a variety of experiments to show the performance
of our planner, particularly in minimizing the number of regrasps for forceful manipulation
tasks and planning stable regrasps.

We then explore the problem of using both the object-environment contacts and object-
robot contacts, which enlarges the set of stable configurations and thus boosts the robots
capability in stabilizing the object under external forces. We present a planner that can
intelligently exploit the environments and robots stabilization capabilities within a unified
planning framework to search for a minimal number of stable contact configurations. A
big computational bottleneck in this planner is due to the static stability analysis of a large



number of candidate configurations. We introduce a containment relation between different
contact configurations, to efficiently prune the stability checking process. We present a set
of real-robot and simulated experiments illustrating the effectiveness of the proposed frame-
work. We present a detailed analysis of the proposed containment relationship, particularly
in improving the planning efficiency.

We present a planning algorithm to further improve the cooperative robot behaviour con-
cerning human comfort during the forceful human-robot interaction. Particularly, we are
interested in empowering the robot with the capability of grasping and positioning the ob-
ject not only to ensure the object stability against the human applied forces, but also to
improve human experience and comfort during the interaction. We address human comfort
as the muscular activation level required to apply a desired external force, together with
the human spatial perception, i.e. the so-called peripersonal-space comfort during the in-
teraction. We propose to maximize both comfort metrics to optimize the robot and object
configuration such that the human can apply a forceful operation comfortably. We present a
set of human-robot drilling and cutting experiments which verify the efficiency of the pro-
posed metrics in improving the overall comfort and HRI experience, without compromising
the force stability.

In addition to the above planning work, we present a conic formulation to approximate
the distribution of a forceful operation in the wrench space with a polyhedral cone, which
enables the planner to efficiently assess the stability of a system configuration even in the
presence of force uncertainties that are inherent in the human applied forceful operations.
We also develop a graphical user interface, which human users can easily use to specify
various forceful tasks, i.e. sequences of forceful operations on selected objects, in an inter-
active manner. The user interface ties in human task specification, on-demand manipulation
planning and robot-assisted fabrication together. We present a set of human-robot experi-
ments using the interface demonstrating the feasibility of our system.

In short, in this thesis we present a series of planners for object manipulation under chang-
ing external forces. We show the object contacts with the robot and the environment enable
the robot to manipulate an object under external forces, while making the most of the object
contacts has the potential to eliminate redundant changes during manipulation, e.g. regrasp,
and thus improve task efficiency and smoothness. We also show the necessity of optimizing
human comfort in planning for forceful human-robot manipulation tasks. We believe the
work presented here can be a key component in a human-robot collaboration framework.
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Chapter 1

Introduction

1.1 Background

Manipulation planning has been a central topic in robotics for decades for automatically generating mo-
tion sequences allowing robots to manipulate movable objects through geometrical constraints. Even
though promising results have been obtained through extensive theoretical research and studies, robots
in this body of research frequently demonstrate unsatisfying performance in a large set of practical
applications, e.g. assembly. One dominant reason accounting for such failures is the presence of ex-
ternal forces applied onto the manipulated objects, particularly changing external forces, which can be
required in various real-world robotic applications, but usually ignored or oversimplified from manipula-
tion planning. An example chair assembly application is shown in Fig. 1.1, for which most studies focus
on planning robot behaviours to manipulate target objects satisfying geometrical constraints, such as the
relative poses among different chair sub-assemblies. The presence of changing external forces in such
robotic applications leads to a more constrained but more realistic version of the classical manipulation
planning problem.

Moreover, robots are nowadays playing a much more prominent role in human life than ever be-
fore. Even though many studies in human-robot interaction (HRI) have demonstrated the potential and
feasibility of robot systems in collaboration with humans, they are mostly about humans and robots
avoiding colliding each other while interacting in shared environments (Bauer et al., 2008; Mainprice &
Berenson, 2013; Park et al., 2016; Pérez-D’Arpino & Shah, 2015). The emergence of more functional
and skilled robots has greatly liberated humans from a variety of tedious and labouring work. How-
ever, there are still a large set of forceful tasks, e.g. cutting and assembling, requiring strong forceful
interactions among humans and robots. The intensive physical contacts in close proximity expect a
higher level of adaptability from the collaborative robots for, e.g. enhanced human comfort and safety.
Despite growing efforts that have been made to convert this vision into a reality, there is still a lack of
significant advances in robot grasping and manipulation planning, particularly for forceful human-robot
collaboration (fHRC).

1



1. INTRODUCTION

Figure 1.1: An example of forceful human-robot collaboration to fabricate a chair.

An Example of Forceful Human-Robot Collaboration: Consider the task illustrated in Fig. 1.1, where
a human and a robot collaboratively fabricate a chair. During the task, the human applies a long sequence
of forceful operations, e.g. cutting and drilling, which in essence produces a sequence of external oper-
ation forces changing position, direction and even magnitude onto the chair sub-assemblies.

Therefore, for such a forceful task, the robot is supposed to move the chair sub-assemblies not only
to position them at preferred configurations meeting geometrical constraints, e.g. avoiding obstacles,
but also to exploit deliberate object contacts, e.g. robot grasps and environmental contacts, to keep the
target object stable under the application of changing external forces. Moreover, the robot might also
need to move the objects to change their contacts multiple times due to the varying property of external
forces.

Further, a forceful operation in the context of fHRC ties a robot and a human together via power-
ful physical contacts. Therefore, robots supporting humans in such forceful applications are expected
not only to manipulate target objects to avoid humans, e.g. preventing potential injury upon contacts
with humans, but also to proactively adapt their behaviours to achieve enhanced human experience and
perception. Moreover, such forceful operation poses strong and lasting physical interactions between
humans and robots, and therefore require a planner to take a comprehensive consideration of, in partic-
ular the human’s physical limits in applying forceful operations, to plan collaborative robot behaviours
allowing, for example, reduced physical efforts from humans. For example, for the drilling operation in
Fig. 1.1-middle, if the robot holds the board at a higher position, the human would have to raise up his
hand to reach the board, and therefore would require greater physical efforts.

Motivated by the potential of such a system, in this thesis, we investigate methods to explicitly ad-
dress changing external forces in object grasping and manipulation for robots. We particularly focus on
the context of human-applied operation forces onto objects held by collaborative robots. We develop a
range of planners that enable robots to efficiently exploit robot and environmental contacts to manipu-
late objects under such changing-force constraints, while with due consideration of the human comfort
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and safety during collaboration. We aim at empowering robots with the capability of assisting humans
in performing elaborated and laborious forceful tasks in an efficient, stable and comfortable manner.

Such a framework leads to several key correlated questions addressed in this thesis:

Q1: Consider a collaborative forceful operation, e.g. cutting or drilling, how to model the operation
force, particularly with the presence of force uncertainties inherent in human-applied forceful
operations?

Q2: Consider a single forceful operation, can a pattern of object contacts with, e.g. the robot and/or
structures in the shared environment, keep the target object stable under the application of the
corresponding operation force?

Together with Q1, this question directly concerns manipulation stability under external distur-
bances, particularly in the presence of force uncertainties.

Q3: Consider a sequence of forceful operations forming a forceful task, how to choose appropriate
object contacts to keep the target object stable under the changing external operation forces, par-
ticularly with enhanced manipulation efficiency, i.e. reducing the need of changing object contacts
required throughout the task?

This question concerns robotic manipulation efficiency in sequential tasks, which also benefits
human experience by reducing frequent task interruptions required for changing object contacts.

Q4: In the context of fHRC, how to adapt the robot behaviours, such that the human can perform
collaborative forceful operations not only with guaranteed manipulation stability and efficiency,
but also with a high level of human comfort and safety?

This question mainly concerns the modelling of human comfort in fHRC.

Q5: To further boost the collaboration smoothness, how to inform the robot of a human-desired force-
ful task, i.e. a sequence of forceful operations before collaboration, and how to inform the human
of a manipulation plan during collaboration, e.g. when to apply a specific subsequence of opera-
tions and when to allow the robot to move the target object to change the object contacts?

This mainly concerns the automation of forceful robotic applications in the collaboration context,
which in essence requires a certain level of communication between the human and robot.

1.2 Our Approach

This thesis addresses the problem of manipulation planning for forceful human-robot collaboration.
Particularly, we focus on the context where a human applies a sequence of changing external forces
through forceful operations (e.g. cutting a circular piece off from a board) on an object that is held by a
collaborative robot.

As structured in Fig. 1.2, we devise a range of planners that: 1) address force uncertainties inherent
in the human-applied forceful operations (i.e. changing external forces), and efficiently check the force
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Manipulation Planning for Forceful Human-Robot Collaboration

Task Modelling
Chap. 4.1

An Graphical Interface
Chap. 4.3

Robot Contact
Chap. 5

Environmental Contact
Chap. 6

Human Comfort
Chap. 7

Stability Check
Chap. 4.2

Figure 1.2: Our work towards stable, efficient and comfortable fHRC.

stability of a candidate object contact configuration under a specific forceful operation; 2) enable the
robot to manipulate an object under changing external forces, i.e. to stabilize and position the target
object under the application of a sequence of forceful operations, by exploiting supports from both envi-
ronmental and robot contacts; 3) improve manipulation efficiency by minimizing the need of changing
object contacts required by the sequential forceful operations in the long term; 4) improve human com-

fort and safety in applying the forceful operations concerning the human’s physical efforts and spatial
perception while collaborating with the robot in close proximity.

1.2.1 Forceful Operations

Task Modelling: The primary step towards manipulation planning for fHRC is to model the collab-
orative forceful task, which consists of a sequence of forceful operations. In the context of fHRC
discussed in the thesis, a force operation is applied by a human with a specific tool/object, therefore
force deviations are inevitably inherent in the operation force. Such force uncertainties pose substantial
challenges for object manipulation due to the difficulties in finding robustly stable contact configurations
against the operation force.

We introduce a data-driven conic representation to strictly model the distribution of operation force
with the presence of deviations, and a conservative pyramid approximation of the conic distribution,
relying on which we greatly simplify the process of check stable contact configurations (which we refer
to as stability check) but with improved robustness (Chap. 4.1).

Stability Check: Task stability is an essential criterion for effective object manipulation, which requires
a planner to find appropriate object contacts capable of providing sufficient supporting wrenches to
stabilize the target object against external disturbances. We model the stability check of a candidate
contact configuration under a certain forceful operation as a linear programming (LP) problem in the
context of using only robot grasps for object manipulation, and as a constrained optimization problem
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in the context of using both robot and environmental contacts. These formulations are integrated into
our planners for a preliminary check to guarantee manipulation stability before planning (Chap. 4.2).

A Graphical User Interface: As an additional contribution, we develop a graphical interface for the
planning work, which acts as a communication channel between human users and collaborative robots.
In brief, a human user first employs the interface to specify and initiate a forceful task, i.e. a sequence of
forceful operations. The interface then takes the human customized task and produces a manipulation
plan with our proposed planners. According to the plan, the connecting robot uses the interface (together
with a head monitor in our experiment setting) to instruct and collaborate with the human to perform
the task (Chap. 4.3).

1.2.2 Manipulation Planning under Changing External Forces

We propose to exploit object contacts with both environment and robot for object grasping and manip-
ulation under changing external forces.

Robot Grasps: We start from the scenario of using only object contacts with robots, particularly robot
grasps, where a robot grasps and regrasps an object multiple times to keep it stable under changing
external forces. In this context, we introduce a planner capable of generating a efficient manipulation
plan by intelligently deciding when the robot should change its grasp on the object, i.e. regrasp, as the
human applies changing operation forces on the object, and choosing subsequent grasps such that they
minimize the number of regrasps required in the long-term. A regrasp means a task interruption, and
therefore the number of regrasps directly affects manipulation efficiency. Our planner searches for such
an efficient plan by first finding a minimal sequence of grasp configurations that are able to position and
keep the object stable under the changing external forces, i.e. minimizing regrasps, and then generating
connecting trajectories to switch between these planned grasp configurations, i.e. planning regrasps.
We perform the search for such a grasp sequence by first sampling a set of stable configurations for
each external force, building an operation graph using these stable configurations (which is similar to
the manipulation graph (Alami et al., 1990, 1994; Nielsen & Kavraki, 2000) widely used in general
manipulation planners), and then searching the operation graph to minimize the number of required
regrasps.

As an additional capability, our planner enables robots to regrasp objects in the air, by solving
the problem of bimanual regrasping under the assumption of no supporting surfaces for intermediate
placements. Briefly, this is achieved by finding intermediate configurations at which both bimanual
and unimanual grasps can hold a target object stable under external forces, e.g. gravity (Chap. 5), and
therefore allow the robot to release/regrasp the required griper from/on the object.

Environmental Contacts: We then explore a more general scenario, where the robot can use not only
grasp contacts, but also object contacts with structures in the shared environment, as well as the object
contacts with other robot bodies, for object manipulation under changing external forces. The exploita-
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tion of general object contacts, particularly the environmental contacts, dramatically enlarges the set of
candidate configurations stable against external disturbances. Even though it boosts the robot’s capa-
bility of stabilizing objects under external forces, exploiting environmental contacts could impair the
planning efficiency due to the explosion of available contact configurations and the computational char-
acteristic of stability check for environmental contacts.

We present a planner that exploits the environment’s and robot’s stabilization capabilities within a
unified planning framework, to search for an efficient manipulation plan, i.e. a minimal sequence of
contact configurations and connecting motion trajectories that are able to keep an object stable under
changing external forces. Further, we introduce a concept of containment relationship among different
contact configurations pruning the redundant stability checks involved in searching for the manipulation
plan, which guarantees enhanced planning efficiency in using environmental contacts (Chap. 6).

1.2.3 Human Comfort

We present a planning algorithm to further improve the collaborative robot behaviour concerning human
comfort and safety in fHRC. Particularly, we are interested in empowering robots with the capability
of grasping and positioning objects not only to ensure object stability against human-applied operation
forces, but also to improve human comfort and safety during forceful interaction. We propose to quan-
tify the human comfort in a collaborative forceful operation as the human’s muscular efforts required to
apply the end-effector operation force, together with the human’s spatial perception regarding the hu-
man’s so-called peripersonal space while in close proximity with the robot. The planner maximizes both
comfort metrics in configuring the robot to grasp and position the target object such that the human can
apply the forceful operation with enhanced comfort and safety perception, but without compromising
force stability (Chap. 7).

1.3 Publication Note

The majority of Chap. 4 was published in Chen et al. (2018b, 2019). The majority of Chap. 5 was
published in Chen et al. (2018b). The majority of Chap. 6 was published in Chen et al. (2019). The
majority of Chap. 7 was published in Chen et al. (2018a).
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Chapter 2

Literature Review

This work addresses manipulation planning for forceful human-robot collaboration. We are particularly
concerned about using environmental contacts and robots contacts, such as robot grasps, to keep ma-
nipulated objects stable under changing external forces concerning manipulation stability and efficiency,
which is mainly relevant to grasp analysis and cooperative manipulation, multi-step manipulation plan-

ning and regrasping. In addition, we are also concerned about the robot adaptability of improving human

comfort and safety in forceful collaborative tasks.

2.1 Grasp Analysis and Cooperative Manipulation

The literature of grasp analysis investigates the question of how stable a grasp is. General methods in
this body of research rely on two fundamental quality criteria force closure and form closure (Lakshim-
inarayana, 1978; Reuleaux, 1875) to answer whether a grasp is able to completely or partially constrain
motions of a manipulated object or to apply arbitrary contact wrenches on the object.

Briefly, under the assumption of rigid bodies, a form closure grasp relies on frictionless contacts to
restrain motions of the grasped object:

Gh = −he

h ≥ 0

}
∀he ∈ R6 (2.1)

where h is a vector of contact forces. he is an arbitrary external disturbance applied onto the target
object. G is a matrix mapping grasp forces/torques into a resultant wrench (i.e. grasp wrench) on the
object and usually termed as the grasp matrix (Borst et al., 2004; Ferrari & Canny, 1992; Mishra et al.,
1987).

Force closure is similar to form closure, but allows friction forces to help balance the external
wrench:

Gh = −he

h ∈ F

}
∀he ∈ R6 (2.2)
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where F is the composite friction cone defined by F = F1×, . . . ,×Fnc , and Fi is the friction cone
corresponding to the i-th contact point defined by, for example, the Coulomb’s friction cone. nc is
the number of contact points. Eq. 2.2 can be interpreted physically that the robot hand can squeeze
arbitrarily tightly to compensate for large external wrenches that are resistible by the corresponding
frictional forces.

The primary difference between form closure and force closure grasps lies in the existence of contact

friction, which in accordance allows fewer contacts to achieve force closure than form closure. For
example, as proved in (Lakshiminarayana, 1978), a form closure grasp of a 3D object with six degrees
of freedom requires at least seven different contacts (Mishra et al., 1987), while to force close a grasp, at
best, only three non-collinear distributed contacts are sufficient for hard fingers and two for soft fingers.
In this regard, a form closure grasp is also force closure: if under form closure, the object is completely
restrained from motions relative to the robot hand regardless of external disturbances. That is, the grasp
contacts can keep the object in equilibrium under any external wrench, which is the exact force closure
requirement.

Two important variables are frequently mentioned in grasp analysis in regard to the above closure
properties: grasp matrix (denoted as G in Eq. 2.1 and Eq. 2.2) and hand Jacobian (usually denoted as
J) in the context of multi-fingered robot hand. In this thesis, we use parallel plate grippers for object
grasping and manipulation. Therefore, we mainly focus on the former in our discussion and address the
Jacobian matrix J later in the discussion of cooperative manipulation. The grasp matrix G maps the
contact forces from robot hands to a resultant grasp wrench acting on the target object, and therefore
usually acts as a handy tool for closure test and grasp classification (Bicchi, 1995; Murray, 2017). For
example, for the form closure of a grasp of a 3D object, i.e. in order to meet Eq. 2.1, the rank of G must
be six (the full row rank condition).

The grasp wrench space (GWS), i.e. the set of all external wrenches that can be resisted by a
grasp, has also been widely used as a task-independent metric to measure the general quality of a grasp
configuration (Borst et al., 1999, 2004; Ferrari & Canny, 1992; Mishra et al., 1987). For example,
Ferrari & Canny (1992) proposed to approximate the GWS with the convex hull over the Minkowski
sum of the friction cones. Kirkpatrick et al. (1992) used the largest wrench sphere centred at the origin
that just fits within the GWS as a task-independent quality measure.

The task-oriented grasping literature explores the problem of grasping an object for a specific
task (Bekiroglu et al., 2011; El-Khoury et al., 2015; Han et al., 2000; Nikandrova & Kyrki, 2015;
Trinkle, 1992). An important problem in this body of work is to model the task-oriented external
wrench expected on the target object during a task. For example, Li & Sastry (1988) introduced the
Task Wrench Space (TWS), i.e. a set of external wrenches to be resisted for a specific task, as a metric
to measure how good a grasp is under the task-relevant external wrenches. The TWS was modelled as a
six-dimensional task ellipsoid that just fits in the GWS. The issue with this approach is how to compute
the task-oriented ellipsoid, which is complicated as stated by the authors. In addition to the task-based
stability constraint, Dang & Allen (2012, 2014) proposed an example-based planning framework to
generate so-called semantic grasps that are functionally suitable for specific object manipulation tasks.
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The proposed planner treated the semantic constraints embedded into object geometry, tactile contacts
and hand kinematics, e.g. relative hand orientation, as an additional planning criterion in searching for
stable grasps. Specifically, the planner relies on a semantic accordance map to obtain the ideal hand ap-
proach direction, and predefined example grasps to obtain the ideal hand kinematics and tactile contact
formation. In (Bohg et al., 2012), the authors presented a grasping pipeline by integrating individual
functional modules performing scene exploration through gaze shifts, segmentation, object categoriza-
tion and task-based grasp selection. The pipeline allows the robot to transfer task-specific grasp knowl-
edge between objects of the same category. Other work in this area mainly focuses on producing more
efficient and robust quality metrics for task-oriented grasp synthesis (Borst et al., 2004; Haschke et al.,
2005; Lin & Sun, 2016), which mainly concerns generating grasps of certain task-oriented properties.

Furthermore, for the case of unknown task specification, a widely accepted method is to model the
unknown TWS as a unit sphere in the wrench space, under the assumption that external disturbances
can happen uniformly along any direction in the wrench space. A more physically interpretable model
is the Object Wrench Space (OWS) introduced by Pollard (1994), which treats the unknown TWS as a
normalized distribution of disturbance forces acting anywhere on the geometric surface of the object.
Huebner et al. (2009) proposed a grasping strategy for objects with known geometry, based on an offline
box-based grasp generation technique on 3D shape representations (Geidenstam et al., 2009). Borst
et al. (2004) integrated the idea of the task ellipsoid (Li & Sastry, 1988) with OWS, approximating it
with a smallest 6D enclosing ellipsoid, which was referred to as the OWS approximation ellipsoid. The
ellipsoid approximation was then scaled to just fit in the GWS, so as to find the largest scaling factor as
a quantitative measure of grasp quality.

Grasp analysis also concerns the properties of object contacts, particularly contact modelling (Salis-
bury & Roth, 1983), which plays a fundamental role in object grasping and manipulation. Three contact
types of greatest interest in grasp analysis are commonly applied as frictionless point contact, hard-

finger contact and soft-finger contact (Salisbury & Roth, 1983; Siciliano & Khatib, 2016). In this thesis,
we adopt the model of hard finger in grasp analysis, while at each contact point, the contact force is
constrained by a Coulomb’s friction cone.

In general, given an external wrench, a set of contact points, and contact-models (i.e., the corre-
sponding friction models, which provide constraints on the directions and magnitudes of the contact
wrenches that can be applied at the contacts), the question of whether the set of contacts would be able
to balance a known external wrench, which is usually referred to as the force feasibility problem, can be
formulated as a linear matrix inequality problem (Han et al., 2000), which can be further simplified as a
linear programming (LP) problem by approximating quadratic friction cones with polyhedral cones.

Cooperative Manipulation: The grasp analysis literature focuses on the stability of a grasp under ex-
ternal disturbances, while our work is also related to cooperative manipulation, which addresses the
problem of multiple manipulators cooperatively manipulating a common object. Cooperative manipu-
lation, particularly of large and heavy objects, requires multiple agents to coordinate to hold an object
such that a closed kinematic chain is formed with enhanced capacity of object manipulating and task
precision (Alford & Belyeu, 1984; Zheng & Luh, 1989). This body of research can be traced back to
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the early work by Fujii & Kurono (1975); Nakano (1974); Takase (1974), which addressed the control
of multiple coordinated manipulators. Later on, extensive research efforts have been devoted onto im-
portant topics in cooperative manipulation such as kinematics, dynamics (McClamroch, 1986; Unseren,
1991; Walker et al., 1989), control (Chen & Luh, 1994; Yoshikawa & Zheng, 1993), load distribution

and sharing (Lee et al., 2005; Zheng & Luh, 1989).

This thesis directly concerns the kinematics and statics of a two-manipulator system, which has been
studied by Bonitz & Hsia (1994); Uchiyama & Dauchez (1988, 1992); Walker et al. (1991). Particu-
larly, we focus on checking the load distribution at the grasp points and arm joints of two manipulators
holding a common object under a certain external disturbance. In this regard, Uchiyama & Dauchez
(1988, 1992) proposed the symmetric formulation modelling the kinematic and static relationships be-
tween the external wrench applied onto the object and their counterparts distributed over the cooperative
manipulators, particularly at the grasp points:

Wh = he (2.3)

where W = (W1,W2) is the grasp matrix describing the grasp geometry (which is denoted as G in

previous section), and h =
(
hT

1 ,h
T
2

)T
is the vector of grasp wrench acting at the grasp points of end-

effectors. Therefore, based on Eq. 2.3, to exert a resultant wrench on the target object, one can solve a
set of linear equations to find the force/torque efforts required at the grasp points.

It is also worth mentioning that cooperative manipulation can also learn from multi-fingered grasp-
ing, which shares a conceptually similar pattern of multiple coordinated structures grasping and ma-
nipulating a common object but differs in relying on contact points for object manipulation compared
with the grasp points used by cooperative manipulation. In particular, an important and interesting
work by Chiacchio et al. (1996) proposed to integrate both cooperative manipulation and multi-fingered
grasping together into a formulation for direct kinematics of a two-manipulator system. Encompassed
by the formulation, non-tight grasps, particularly the rolling and sliding motion of grasp contacts on
the object, are modelled as virtual prismatic and rotational joints in line with the number of degrees
of freedom, and then added to the direct kinematics equations as virtual joint variables. The preferred
manipulator/finger joints trajectories are then derived from the object motion with numerical inverse
kinematics algorithms. Similarly, in this thesis, we model grasp contacts as a group of virtual prismatic
and rotational joints and check their force/torque limits in stability analysis.

Another inspiring work from Hunawar & Uchiyama (1997); Munawar & Uchiyama (1999) ad-
dressed the robust holding of an object in the presence of end-effector slippage on the object. The
proposed work focuses on the contact slip problem specifically, presenting a geometrical strategy based
on the coordination of multiple manipulators/fingers to detect the occurrence of end-effector lip and
compensation of its effects without employment of additional sensors but the information of finger-tip
position only.

We build on the formulations of grasp stability in Eq. 2.2 and cooperative manipulation in Eq. 2.3
to propose our grasp stability check (Sec. 4.2), which also integrates force/torque limits at both grasp
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contacts and joints of cooperative manipulators.

2.2 Multi-Step Manipulation Planning and Regrasping

Manipulation planning addresses the motion planning problem to manipulate moveable objects among
obstacles. In a typical multi-step manipulation planning problem, the target object is either transported
by a robot or lies at some stable placement, while the robot grasps and regrasps the object multiple times
through geometrical obstacles.

The need for regrasping objects was recognized even in the earliest manipulation systems (Lozano-
Pérez et al., 1987; Tournassoud et al., 1987). The work by Lozano-Pérez et al. (1987) introduced a robot
system capable of manipulating objects in an unstructured and cluttered environment. The integrated
grasping module can choose grasps on the object that are both stable and accessible by the robot, and
plan regrasping motions for illegal grasps due to the presence of geometrical obstacles in the cluttered
environment. Tournassoud et al. (1987) explicitly defined the regrasping problem as constructing a
sequence of ungrasping and grasping operations to connect an initial grasp and a final grasp. The
proposed planner employed a table surface to place the object at intermediate positions for regrasping.
Following the idea of using stable placements as intermediate configurations for regrasping, a large
number of planners in this line of research have been put forward towards more efficient and adaptive
regrasping, which we will review later in this section.

Later, Siméon et al. (2004) presented a sampling-based planner solving the manipulation problem
with an alternating sequence of transfer and transit sub-paths. Specifically, robot motions of holding
the target object at a fixed grasp are called ”transfer paths”, and robot motions are called ”transit paths”
while the object stays at a stable placement. Based on a so-called reduction property (Alami et al.,
1994), the proposed planner builds a manipulation graph (Alami et al., 1990, 1994; Nielsen & Kavraki,
2000), i.e. a probabilistic roadmap, to capture connectivities of the foliated manifolds in the composite
configuration space, and then searches the graph for feasible paths once receiving manipulation queries.

The graphical formulation of manipulation planning problem, i.e. the manipulation graph, has been
widely utilized later and further developed in various contexts (Chang et al., 2010; Dogar & Srinivasa,
2011; Geraerts & Overmars, 2006; Lozano-Pérez & Kaelbling, 2014). For example, Harada et al. (2012,
2014) built a similar graphical representation accounting for the special topology of the manipulation

space for dual-arm manipulation, which is structured into four foliated manifolds. The proposed planner
decides if both hands are used simultaneously or not according to the context, whereas the objective
is to minimize the number of regrasping. Herein, we also explicitly address the problem of regrasp

minimization as an objective in manipulation planning, which we will discuss later in Chap. 5.

More recently, planners have been proposed for the manipulation problem in the context of multiple
manipulators for assembly-like tasks (Dogar et al., 2019; Sierla et al., 2018; Wan & Harada, 2016;
Wan et al., 2018). The work by Dogar et al. (2019) addressed the problem of finding multi-robot
configurations to grasp assembly parts for a sequence of collaborative assembly operations. The problem
was formulated as a constraint satisfaction problem (CSP), with the so-called collision constraints within
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an operation and transfer constraints between operations. The proposed planner can quickly find a first-

feasible solution by first dividing the CSP into independent smaller problems under the assumption of
feasible regrasps, and then use local search techniques to improve this solution by removing a gradually
increasing number of regrasps from it. In addition to improved planning efficiency, the divide strategy
also enables real-time planning as a trade-off of more regrasps required in the plan.

Most existing work on manipulation planning focuses on dealing with geometrical constraints, and
generates collision-free robot motions to manipulate movable objects. Our planner goes beyond geo-
metrical constraints, taking into account the sequential-force constraint, which can be required in a large
variety of sequential manipulation tasks, such as assembly. In our task, for example, a robot is required
not only to move a target object to expected pose(s) under geometrical constraints, but also to keep the
object stable under changing external forces.

There are some recent works explicitly addressing force constraints in multi-step manipulation tasks.
Lipton et al. (2017, 2018) presented a system for multi-robot assisted carpentry. The system controls a
team of mobile robots to fabricate human-customised parts with standard carpentry tools, e.g. a saw, and
assumes two specialized powerful stands to stabilize lumber against fabricating forces. In another recent
work by Moriyama et al. (2019), a sampling-based assembly planner was proposed to generate stable
assembly poses under the gravitational constraint. Our work differs in the existence of changing external
forces applied on the target object manipulated by a multi-arm robot. Inspired by our work (Chen et al.,
2018b), Holladay et al. (2019) studied a different planning problem in the context of robots using hand
tools. The authors developed a system allowing robots to reason about force and motion constraints
in order to complete complex tool-using tasks like wielding a screwdriver. From the perspective of
control, Lin et al. (2018) proposed a model-based control framework for multi-arm manipulation of a
rigid object subject to external disturbances.

Our problem can also be interpreted as an instance of multi-modal manipulation planning (Bretl,
2006; Hauser & Latombe, 2010; Lee et al., 2015), where each modality corresponds to a bimanual or
unimanual grasp. In developing planners, we follow a similar strategy of first identifying intersections
among different modalities/manifolds, and then planning motion trajectories to connect these intersec-
tions (Chap. 5).

Regrasping: As stated previously, this work is related to regrasp planning, particularly the case of
dual-arm or multi-arm regrasping. Regrasp planning involves finding a connected path over a sequence
of sub-manifolds in the composite configuration space. Roughly, the basic flow of regrasp planning
follows the pattern of first building a graphical representation of the foliated configuration space, e.g. the
manipulation graph (Alami et al., 1990, 1994; Nielsen & Kavraki, 2000), and then searching the graph
for available regrasp sequences. Early studies (Rohrdanz & Wahl, 1997; Stoeter et al., 1999) employed a
grasp-placement table to generate a sequence of pick-and-place operations for regrasping. More recent
studies propose other graph-based representations, such as the regrasp graph (Wan & Harada, 2016,
2017) as an offline hierarchical graph of feasible grasps and their corresponding stable placements, and
certificate (Lertkultanon & Pham, 2018), which was defined as a set of transfer paths that spans all the
placement classes.
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Most existing algorithms on regrasp planning rely on stable placements on extra supports as inter-
mediate configurations for regrasping, such as support surfaces (Chavan-Dafie & Rodriguez, 2018; Wan
& Harada, 2016, 2017) and other complex structures (Cao et al., 2016; Ma et al., 2018). For example,
rather than flat surfaces, Cao et al. (2016) proposed to use a vertical pin on the working surface as a
support for pick-and-place regrasp. Experiment results on reorientation and assembly tasks verified that
using support pins can benefit regrasping.

Different from the existing regrasping work mentioned above, our work particularly focuses on a
different scenario where the robot can not place an object down on an extra support surface, but only
use its manipulators to cooperatively regrasp the object under external forces, e.g. gravity (Chap. 5).

Manipulation with Environmental Constraints: The idea of exploiting environmental constraints
or contacts can be traced back to the influential work by Erdmann & Mason (1988); Lozano-Perez
et al. (1984); Mason (1985), where the task mechanics were utilized to eliminate object uncertainty and
to improve robustness in performing sensor-less manipulation. The evidence of complex interaction
between multi-step object manipulation and a shared environment can also be found in the earliest
approaches (Lozano-Pérez et al., 1987; Tournassoud et al., 1987) for automatic generation of robot
motion sequences to manipulate movable objects in a cluttered environment. This line of research,
however, usually simply addresses the environment as a constraint, in particular as obstacles to avoid,
concerning generating collision-free robot motions allowing manipulating objects through structures in
the shared environment.

Instead, many recent advances in robotics focus on exploiting deliberate interactions with the shared
environment to achieve increased robustness and enhanced capabilities of robotic systems, particularly
for object grasping (Babin & Gosselin, 2018; Eppner et al., 2015) and manipulation (Chavan-Dafie &
Rodriguez, 2018; Jorda et al., 2019; Lee et al., 2015). For example, rather than regarding a cutter in a
manipulation task as a constraint to avoid, Dogar & Srinivasa (2011) presented a planning framework
that enables robots to actively intact with and rearrange the clutter around the target objects in manip-
ulation tasks, using a library of actions inspired by human strategies, such as push-grasping (Dogar &
Srinivasa, 2010). Eppner et al. (Eppner & Brock, 2015; Eppner et al., 2015) proposed to increase ro-
bustness in robotic grasping through the deliberate exploitation of environmental contacts. The proposed
planner produced a grasp of an object by generating a sequence of environmental constraint exploita-

tions, i.e. consecutive motions constrained by features in the environment. Promising results can be
seen in the paper demonstrating the effectiveness and generality of the planner in a set of real-robot
experiments with a variety of environments. A multi-step planning problem similar to our work was
studied by Bretl (2006), which produces contact modes for a spider robot climbing a wall subject to
equilibrium constraints. The paper presented a multi-step planning framework of first searching in the
intersections of manifolds for a candidate sequence of hand and foot placements and searching in these
manifolds to refine the obtained sequence into a feasible, continuous trajectory by finding paths between
subsequent transitions. Particularly, the former search (generating a candidate sequence of hand and foot
placements) guides the latter (generating continuous motions to reach them) by restraining the search
into a limited number of manifolds. In this thesis, we exploit a similar hierarchical planning framework,
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but focus on the problem where there are changing external forces applied onto the manipulated objects.

Regrasp planning in the context of using object placements on additional support structures can
also be interpreted as an instance of using environmental constraints (Cao et al., 2016; Chavan-Dafie
& Rodriguez, 2018; Ma et al., 2018; Wan & Harada, 2017; Wan et al., 2015). An interesting work by
Chavan-Dafie & Rodriguez (2018) presents a fixtureless fixturing strategy for regrasping, which is based
on the idea that to regrasp an object in a gripper, a robot can push the object against an external contact
in the environment such that the external contact keeps the object stationary while the fingers slide
over the object. Another recent work by Ma et al. (2018) proposed a planner for regrasp planning using
stable object placements supported by complex structures, which have a high variety of contact elements
providing not only flat surface supports but also point supports, line supports, and a combination of them.
The proposed planner relies on a dynamic simulator to compute immediate object stable placements on
such given supporting structures.

The main body of this research can be explained by a simple insight: rather than a constraint,
the environment can be an opportunity if used properly. In this work, we draw inspirations from this
insight, using object-environment contacts as additional supports to robot contacts in manipulating and
stabilizing objects under changing external forces (Chap. 6).

2.3 Human Comfort in fHRC

Thanks to the prominent advances achieved in areas like mechatronics, control, learning and plan-
ning, physical human-robot collaboration (pHRC) has become a central topic in robotics since the last
decades, leading towards a rapid rise of more skilled and specialized robots venturing into human life,
such as the Baxter robot from Rethink Robotics (which we have been using mostly in this thesis), Atlas
from Boston Dynamics and the humanoid robot ARMAR from KIT (Asfour et al., 2013, 2018).

pHRC has been interpreted in the literature from various perspectives. The major body of these
research in human-robot shared manipulation focuses on controlling. In particular, these works usually
assume the manipulated objects to be already stably grasped, solving for necessary stiffness of robot
manipulator joints with external disturbances applied onto the objects (Abi-Farraj et al., 2017; Rozo
et al., 2016). The early work by Kosuge & Kazamura (1997) presented and compared several control
methods, like damping control and impedance control, for the motion generation problem of a robot
supporting and moving an object in cooperation with a human under the effect of external disturbances
such as friction force. In another work (Kosuge et al., 1998), the authors proposed a controller for
a multiple-robot system assisting humans in flexible object handling. The robot system played two
roles of supporting and deforming a flexible object by adjusting internal forces onto the object, so that
the human could easily handle the object by only applying intentional forces. Most control schemes
in this line of research fall into some form of impedance and the related admittance control (Hogan,
1985a,b). For example, in Ikeura et al. (2002); Rahman et al. (2002), human characteristics, particularly
the impedance characteristics of the human arm, were explicitly investigated and employed into the
controlling of a robot cooperating with a human in collaborative tasks like object lifting. Kosuge et al.
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(2000) applied a similar method but with fixed virtual impedance to control the horizontal movement of
a mobile robot in response to human-applied intentional forces on a cooperatively carried load.

The planning work in this line of research mostly focuses on handover (Cakmak et al., 2011;
Peternel et al., 2017; Sisbot & Alami, 2012; Strabala et al., 2013b), object carrying (Rozo et al., 2016;
Solanes et al., 2018), or other joint actions where robots are expected to avoid colliding humans in a
shared workspace (Luo et al., 2018; Maeda et al., 2017).

Handover: Handover resembles our collaborative forceful tasks discussed in this thesis, in requiring a
robot to position an object at acceptable, and in particular comfortable configurations for a human and to
adapt its behaviours, e.g. to avoid harming the human, to move the object to reach the preferred object
configurations. In Sisbot & Alami (2012), the authors prosed a three-stage manipulation planner to
select such object transfer configurations (so-called object transfer point (OTP)), object path and robot
motions for robot-human handovers, by optimizing devised quality metrics (as cost functions) as safety,
visibility and accessibility in line with the humans kinematics, vision field and arm comfort. Parastegari
et al. (2017) drew an ergonomic model by learning from human-human handovers to characterize human
preferred handover configurations and as a bonus to generate human-like legible reaching motions for
robots.

This line of planning work mostly takes some form of kinematic optimization on task-oriented cri-
teria like smoothness, visibility and legibility (Aleotti et al., 2012; Cakmak et al., 2011; Mainprice et al.,
2010; Parastegari et al., 2017; Strabala et al., 2013a) in handovers. However, the physical contacts in
a handover are usually momentary and trivial, without strong interactions among the robot and human,
therefore most relevant work focuses on geometric preferences, like legibility. Our forceful tasks differ
in the existence of intensive and persistent forceful interactions among the robot, object and human,
particularly in the context that the human applies strong forceful operations in close proximity of the
robot, thus planning for fHRC has different priorities, e.g. the human’s muscular stress and safety.

Carrying: Similar to handovers, collaborative transport, lifting or carrying, particularly of bulky, heavy
or deformable objects, is a common joint action in the community of pHRC research. A collaborative
carrying task connects a human and a robot together via a common manipulated object but for a longer
duration. Most existing planning work in this line focuses on the problem of load sharing among robot
and human partners. In Lawitzky et al. (2010), the authors introduced three effort sharing policies for
human-robot cooperation from a system-theoretic analysis of geometric and dynamic task properties.
The effort sharing policies were parametrized with respect to the degree of assistance and therefore the
physical load can be dynamically shared depending on the task state and the assistance degree. These
policies were embedded into a two-level hierarchical architecture for motion planning and control in
joint manipulation under environmental constraints. In a recent work (Muthusamy et al., 2018; Tariq
et al., 2018), the authors highlighted the importance of relative locations of grasps in collaborative ma-
nipulation load sharing. This work proposed a grasp analysis approach for collaborative manipulation
of unknown objects that allows optimal load sharing by minimizing exerted grasp wrenches in a task-
oriented manner. This body of research, in particular the problem of load sharing, is similar to our
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problem of finding appropriate grasps and load distributions over robot manipulators to keep manipu-
lated objects stable under external disturbances.

Other joint actions: There is also some other planning work on collaborative manipulation, which
mainly focuses on the handling of collisions between robots and humans in joint actions to limit possible
human injury due to physical contacts (De Luca et al., 2006; Suita et al., 1995; Yamada et al., 1997).
In Mainprice & Berenson (2013), the authors proposed a framework allowing a human and a robot
to perform simultaneous manipulation tasks safely in close proximity based on the early prediction of
human motion. The prediction was modelled as the human workspace occupancy by computing the
swept volume of learned human motion trajectories, with robot trajectories minimizing a penetration

cost in the human workspace occupancy returned by motion planning. In devising our planners capable
of dealing with spatial proximity, we address the human workspace occupancy in a collaborative forceful
interaction by minimizing the robot’s penetration in the human’s peripersonal space (Chap. 7).

Human Safety: Human safety is another relevant concern in planning comfortable fHRC and a central
topic in pHRC due to the potential human injury and threats originating from physical contacts and
spatial proximity. Human comfort and safety have been well explored in planning, for example, for
object handover and transport (Parastegari et al., 2017; Sisbot & Alami, 2012; Solanes et al., 2018).
With regard to forceful collaborative applications, Mansfeld et al. (2018) extended the safety analysis
to general HRI and proposed a new concept for global safety assessment in practical HRC applications,
namely safety map. In (Shingarey et al., 2019), the authors integrated velocity and torque control into
one joint-level control mode and proposed a so-called torque-based velocity controller (TBVC). By
taking merits from both sides, the TBVC could provide the ease-of-use of joint-level velocity control
for trajectory tracking combined with the safe interaction characteristics of compliant torque control
when in contact with humans and environment.

In addition to human safety, some other physical or psychological human natures demonstrated in
collaborative manipulation tasks have also been explored to address human comfort in pHRC, such as
fatigue and ergonomics (Busch et al., 2018). In a recent work by Peternel et al. (2016), the authors
proposed to adapt and modulate the robot’s physical behaviour and assistance degree in human-robot
co-manipulation as a function of the human motor fatigue, which was estimated using an online model
based on observed muscle activity measured by the electromyography (EMG). In an extension work of
this thesis, we also collected EMG data to verify our proposed muscular comfort metric. Another recent
work (Peternel et al., 2017) proposed to address human ergonomics, particularly the overloading joint

torques, i.e. the torque induced into human joints by an external load, in human-robot co-manipulation
through an online optimisation process for comfortable and ergonomic human body poses in forceful
interactions and handover. Despite the fact that joint torques were taken into account through an offline
identification technique, this work still lacks proper knowledge on muscle activity—as well as safety
perception and the robot grasp stability.

Human Intention and Preferences: Planning for human-friendly robot motion and collaborative be-
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haviours can also benefit from understanding human intention and preference (Huber et al., 2008; Li &
Ge, 2013; Prez-D’Arpino & Shah, 2015; Sakita et al., 2004; Welke et al., 2013). In Duchaine & Gos-
selin (2007), the authors presented a method enhancing the transparency of human-robot movements
based on an online variable impedance control, which used force differentiation as a prediction of hu-
man intention. This work also reported that compared with typical position control, velocity control fits
better in the controlling of a human-friendly robot. Thobbi et al. (2011) proposed a control framework
that enables a robot to switch its role autonomously and dynamically between leading and following
during a cooperative manipulation task. The framework governs robot behaviours with reactive and
proactive controllers each giving the robot follower and leader characteristics respectively. This work
was built on the idea that the robot’s role in a human-robot collaborative task can be determined by its
confidence in predictions of the humans intentions. In another study, Cakmak et al. (2011) exploited
human preferences in selecting preferable robot-human handover configurations. Direct human pref-
erences were collected by human subjects evaluating different handover configurations simulated for a
HERB robot, which the author compared against planned configurations using a kinematic model of the
human. It was stated that learned configurations were preferred, while planned configurations provided
better object reachability.

Despite the advances and contributions aforementioned, pHRC still lacks effective metrics for eval-
uating and ensuring the human comfort in planning for forceful human-robot co-manipulation, particu-
larly in terms of the human’s physical efforts and the comfort perception with close proximity to robots
in forceful interactions. In this thesis, we explicitly consider the human’s physical efforts in applying
forceful operations, and propose a muscular comfort metric to quantify the human’s muscular efforts
based on the observation of muscle activations. Learning from the concept of peripersonal space, we
introduce a distance-based comfort metric to evaluate the human spatial comfort in applying forceful
operations in the context of human-robot collaborative manipulation. By integrating both metrics in
a constrained (i.e. grasp stability) optimization process, our planner can instruct a robot to grasp and
position an object for a human-applied forceful operation at configurations which are not only stable
against the operation force, but also comfortable for the human operator (Chap. 7).
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Chapter 3

Terminology, Notations and Problem
Fundamentals

This chapter presents general terminology, notations and problem fundamentals, particularly of the
forceful tasks and human-robot collaborative system. Throughout this work, we assume rigid bodies
and quasi-static movements.

3.1 Forceful Operations and Tasks

As illustrated in Fig. 3.1, we refer to a complete forceful interaction as a forceful task, and each forceful
task comprises a continuous and/or discrete sequence of forceful operations.

For example, the circular cutting task in Fig. 3.1 consists of a continuous sequence of cutting opera-
tions tangential to a desired circle pattern on a rectangular board. Similarly, another example illustrated
in Fig. 3.2, the chair fabricating task on a raw wooden board (Fig. 3.2(a)), involves a discrete subse-
quence of drilling operations for eight holes on the board (Fig. 3.2(b)), a continuous subsequence of
cutting operations for four table legs (Fig. 3.2(c)), and a discrete subsequence of four inserting opera-
tions (Fig. 3.2(d)) for four fixture pegs and four table legs. In the context of fHRC, human operators

f1f10

f5

Figure 3.1: A circular cutting task consisting of a continuous sequence of cutting operations.
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(a) A wooden board (b) Drilling 8 holes (c) Cutting 4 legs (d) Inserting 4 pegs

Figure 3.2: A chair fabricating task involving a sequence of drilling, cutting and inserting operations.

apply such forceful operations, e.g. cutting and drilling, on target objects, while robots hold the objects
for humans. Later in Chap. 4, we present a graphical user interface, which human users can easily use
to specify such forceful tasks, i.e. sequences of forceful operations on selected objects, in an interactive
manner.

Mathematically, as illustrated in Fig. 3.3, we define a forceful operation F as a generalized operation
force1 (wrench) tf w.r.t. a tool frame Σt, which is applied at a pose op w.r.t. the target object. Hereafter
we omit the superscripts in above denotations for the sake of simplicity. Then, a forceful operation can
be denoted as:

F : (f , p) (3.1)

Accordingly, a forceful task comprising a sequence of forceful operations, can be denoted as:

{Fi}mi=1 = {(f i, pi)}
m
i=1 (3.2)

where m indicates the number of involved forceful operations in the task. For example, as illustrated
in Fig. 3.1, we address the circular cutting task as a sequence of 20 continuous cutting operations via
discretization.

Note that during the course of a forceful operation F, the target object is positioned by a robot at a
pose po ∈ SE(3) w.r.t. a robot/world frame2 Σr. The object pose po can be pre-specified empirically or
by optimizing certain quality metrics, such as human preferences in the context of HRC. Specifically, in
this thesis, we assume the object pose(s) during a forceful task to be pre-specified in Chap. 5, focusing
on using grasp contacts to stabilize objects. In Chap. 6, object contacts with the shared environment are
exploited for stable object manipulation, therefore the constraint on object pose is released to allow the
exploration of various environmental contacts. In the context of fHRC discussed in Chap. 7, we propose
to optimize the object pose in a collaborative forceful operation such that the human comfort and safety

1Ideally, a forceful operation F would simply impose a single deterministic operation force f onto a target object. However, in
actual applications, such a human-applied forceful operation F would inevitably deviate from the expected force direction to some
extent. Later in Sec. 4.1, we take such force uncertainties into consideration and model the operation force f as a distribution of
deviated forces that can possibly happen in actual applications.

2Without loss of generality, we assume the robot frame Σr coincides with the world frame.
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Figure 3.3: Definitions in a forceful human-robot collaborative operation.

can be maximized.

3.2 Human, Robot, Environment and Object Contacts

We assume the robot has two manipulators, and each manipulator is equipped with a parallel plate
gripper3. Let Cl, Cr be the configuration space of the left and right arm respectively, and Co ⊆ SE(3) be
the configuration space of the object. The composite configuration space C of the system can be then
defined as the Cartesian product of the three aforementioned spaces C = Cl × Cr × Co. Each composite
configuration q ∈ C can be denoted as q = (ql, qr, po), where ql ∈ Cl, qr ∈ Cr, and po ∈ Co.

We define a robot grasp g, or more generally, grasp contact, using the relative pose(s) of gripper(s)
on the target object. A bimanual grasp (contact) (gl, gr) specifies poses of both left and right grippers,
while the unimanual grasps (gl), (gr) specify poses of only left and right gripper respectively.

Note that there is redundancy in this definition. Specifically, a system configuration q = (ql, qr, po)

can be mapped to its corresponding grasp g via forward kinematics. In this regard, the composite
configuration space C can be regarded as a collection of lower-dimensional grasp manifolds, in which
each manifold corresponds to a particular robot grasp on the object. We denote the manifold in C
corresponding to the grasp g asM(g).

Environmental and Robot Contact: Geometrically, a system configuration q specifies environmental

contact ce and/or robot contact cr, including the grasp contact g, onto the surface of the target object,
which the environment and robot rely on to provide reactive forces capable of stabilizing the object
against gravity and forceful operations. In this thesis, we assume the robot can provide such object
contacts by pressing or grasping with its grippers, while the environment includes rigid structures that
allow the object to be in contact with. We aim to explore more general and diverse contact patterns of
environmental and robot contacts in future work.

3This is for clarity of explanation and because the robot we use in our experiments has two arms. However, our formulation is
general and can be easily extended to systems with more manipulators.
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Table 3.1: Nomenclature.

tf , f An operation force w.r.t. the tool frame Σt
opf, pf An operation pose w.r.t. the object frame Σo
rpo, po An object pose w.r.t. the robot/world frame Σr

F A forceful operation
{Fi}mi=1 A forceful task
m The number of involved forceful operations in a task
C The composite system configuration space
q A composite system configuration
g A robot grasp (grasp contact) on the target object
M(g) The grasp manifold corresponding to grasp g
ce Environmental contact on the target object
cr Robot contact on the target object
qh The human arm configuration
ph The human body pose w.r.t. the robot frame Σr

Human: As illustrated in Fig. 3.3, during a collaborative forceful operation, a human applies an external
force with a specific tool (e.g. cutter and drill) onto an object held by a robot. In accordance, the
geometry and kinematics of the human and robot are tightly coupled through the tool-object system. In
this thesis we assume a fixed grasp configuration for the human to hold the tool in applying a forceful
operation, and thus a fixed kinematic transformation between the human hand and tool.

We assume a human frame attached at the human shoulder Σh. We denote the human arm configu-
ration4 as qh. We use ph ∈ SE(3) to denote the human body pose w.r.t. the robot frame. These notations
will be used later in Chap. 7 in planning for human comfort and safety in fHRC.

In this thesis, we assume the geometrical models of the robot, object and environment are given
to the planner. Other physical parameters, e.g. the object mass, the centre of gravity and the friction
coefficients associated with contacts, are also specified and fed to the planners. All notations mentioned
above are list in Table. 3.1.

4In this work we use qh to refer to human arm configuration. However, the optimization problem for human comfort (Chap. 7)
we define in this thesis is general to the whole body configuration.
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Chapter 4

Modelling, Stability Check and
Specification of Forceful Operations

This section presents our work on modelling human-robot collaborative forceful operations under the
presence of force deviations, and explains in detail how we check the system’s static stability while
at a candidate configuration q under the application of a forceful operation F, which is referred to as
the stability check problem throughout this thesis. Additionally, we present a graphical user interface,
which human users can rely on to specify desired forceful tasks, i.e. sequences of forceful operations
on selected objects, interactively.

4.1 Modelling of a Forceful Operation

The primary step towards manipulation planning under changing external forces, i.e. a sequence of
collaborative forceful operations, is to model the force distribution of each involved forceful operation.
Previously in Chap. 3, we conceptually define a forceful operation F as an operation force f to be
applied at a pose p on the target object. In line with the definition, herein we study the distribution of
the operation force f in the wrench space systematically.

We first present an idealized operation model representing the expected distribution of the operation
force f , and then introduce a conic operation model, which takes into account the force uncertainties
inherent in human-applied operations, strictly representing the probabilistic/predictive distribution of
the operation force f in the presence of deviations with a generalized spherical force (wrench) cone.

Further, we propose to approximate the spherical cone with a circumscribed multi-edged pyramid,
i.e. a limited number of primitive forces, which dramatically reduces the computational complexity on
account of robust stability check.
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Figure 4.1: A forceful operation F ideally generates a deterministic operation force f on a target object
along/about an expected operation axis (depicted as the blue axes).

4.1.1 Idealized Operation Model

As illustrated in Fig. 4.1, a collaborative forceful operation F, such as cutting (Fig. 4.1(a)) and drilling
(Fig. 4.1(c)), qualitatively can be stated as moving a tool, e.g. the cutter in Fig. 4.1(a) or the peg in
Fig. 4.1(d), along/about an operation axis (depicted as blue axes in Fig. 4.1), which is specified together
by the expected operation pose p and the object pose po, to interact with a target object. Accordingly,
the operation F generates and transmits an operation force f along/about the operation axis onto the
object.

In this sense, if the forceful operation F is applied as expected, i.e. the operation F generates a
deterministic force f on the target object along/about the expected operation axis on the object, we can
simply model f as a single generalized force. For example, ideally, a puncturing operation (Fig. 4.1(b))
applies a pure intruding force along an expected puncturing direction perpendicular to the object surface.
Similarly, a drilling operation (Fig. 4.1(c)) applies an element of pure drilling force along an expected
drilling axis perpendicular to the object surface, together with an element of pure torque about the axis.

Herein, we refer to this simplified formulation as the idealized operation model. The model assumes
the operation F to be exactly applied along/about its expected operation axis on the target object with a
deterministic operation force f , namely a single point in the wrench space, which can be parametrized
by the maximum operation force (fz and/or τz).
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(a) Deviation of a drilling operation. (b) Deviation of a cutting operation.

Figure 4.2: The operation force f may deviate from the expected operation axis to some extent.

4.1.2 Conic Operation Model

Clearly, the idealized model is only applicable to cases where forceful operations can be precisely ap-
plied as expected. However, in practice, such a collaborative forceful operation in its actual applications
would inevitably deviate to some extent from the expected operation axis. For example, as illustrated
in Fig. 4.2(a), for a drilling operation, rather than along the expected drilling axis, the actual applied
drilling force may possibly deviate towards any direction within a certain range. Fig. 4.2(b) shows a
similar observation of a cutting operation.

The existence of such uncertainties, as a result, pose a challenge, particularly for robust stability

check. To be more specific, for a forceful operation F, since the operation force can inevitably deviate,
even if a candidate configuration q can keep the object stable under the expected operation force f ,
there is no guarantee that the configuration q can also keep the object stable under all other deviated
forces, which is critical for the robustness of stability check. That is, with the existence of operation
deviations, in addition to the expected force f , a robustly stable configuration is also required to be
stable against any possible deviated force, e.g. the forces within the illustrated cone in Fig. 4.2(a) for
the drilling operation.

We formulate a conic model to address such operation deviations in modelling the forceful operation
F. Specifically, consider a forceful operation F, we assign a tool frame Σt at the tool-tip as shown in
Fig. 4.3, with its +z axis aligned with the operation axis. The force deviation can then be modelled
equally as the deviation of the operation axis. Geometrically, the operation force f can be applied
towards any direction within a range, which is a spherical cone centred with the expected operation axis
as illustrated in Fig. 4.3 with the grey cone. In this regard, the distribution of the operation force f can
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Figure 4.3: The spherical cone models the force deviation strictly, while the polyhedral cone conserva-
tively approximates the spherical cone with a limited number of primitive forces.

then be modelled as a generalized spherical cone in the wrench space, which we refer to as the spherical

cone model hereafter.

The spherical cone model strictly constrains the force distribution of a forceful operation F in the
presence of force deviations. However, to ensure the robustness of stability check and thus the effec-
tiveness of manipulation planning under the operation F, this model requires a planner to fully consider
all possible forces within the spherical cone. That is, to guarantee the force stability of a candidate con-
figuration q under the operation F, all possible forces within its corresponding spherical cone must be
separately checked to be resistible by the configuration q, which is extremely computationally expensive
due to the cone continuity.

To reduce the computational complexity for robust stability check, we propose to relax the geo-
metric constraint defined by the spherical cone, and conservatively approximate it with a nF-edged
circumscribed polyhedral cone, which is illustrated as the outer pyramid in Fig. 4.3. We call this model
as the polyhedral cone model. As illustrated, the polyhedral cone represents the force distribution of the
operation F in a loose manner, but bounds all possible deviated forces in the spherical cone conserva-
tively. This is advantageous in the sense of producing no false positives while the cost we pay may be
false negatives.

More importantly, by exploiting convex analysis, any force within the polyhedral cone can be de-
noted as a convex linear combination of its edges, for example, the four grey arrowed lines in Fig. 4.3.
We call these edges as primitive forces hereafter. That is, any deviated force within the polyhedral cone,
and therefore all forces within the spherical cone, can be represented by a limited number of determinis-
tic primitive forces. This property would simplify the stability check using the conic model dramatically,
since checking only a limited number of primitive forces is sufficient to guarantee force stability under
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all possible forces within the polyhedral cone and therefore within the spherical cone. This is the exact
requirement for robust stability check, and can be easily proved by convex analysis.

The number nF can be chosen empirically. Note that, a larger nF would make the polyhedral cone
closer to the spherical cone. However, this may require more time for stability check, since for a forceful
operation F and a candidate configuration q, in the worst case, stability check involves checking all nF

primitive forces. A smaller nF, in contrast, would make the polyhedral cone more conservative by
containing additional forces outside the spherical cone. This might lead to the loss of feasible solutions,
since the polyhedral cone imposes a relatively stronger constraint by covering additional forces into
stability check. In this sense, the choice of nF is more or less a trade-off between planning efficiency
and the loss of feasible solutions due to conservative approximation.

In the next section, we discuss the stability check using both the idealized model and the conic
model.

4.2 Stability Check of a forceful Operation

Consider a forceful operation F, the stability check refers to checking whether a candidate configuration
q is able to provide sufficient wrenches, particularly through object contacts with both the robot and
environment, to keep the target object stable under the application of operation force f .

Specifically, we focus on two manipulation scenarios discussed later in Chap. 5 and 6 respectively,
which differ in the contact patterns that the system relies on for object manipulation under changing
external forces:

1. Object manipulation with robot grasps: A scenario in line with the planning work in Chap. 5 where
the robot can only exploit grasp contacts to keep the object stable under forceful operations;

2. Object manipulation with environmental contacts: A scenario in line with the planning work in
Chap. 6 where the robot can use object contacts with both the environment and robot, including
robot grasps, to stabilize the object under forceful operations.

4.2.1 Stability Check with Robot Grasps

In the case of manipulating objects with only robot grasps, given a forceful operation F and a candidate
system configuration q (and its corresponding grasp g on the object), the focus of stability check is on
whether:

– The robot manipulators are able to provide sufficient stiffness to keep itself and the target object
stable against the operation F. This requires the planner to check whether the required torques
distributed at the manipulator joints exceed their corresponding joint torque limits.

– The robot grippers are able to provide sufficient wrenches at the grip points to stabilize the object
in hands, which requires the external wrench induced by the operation force f on the object is
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inside the grasp wrench space (Mishra et al., 1987) of the grasp g, namely the set of all external
wrenches the robot grasp g can resist.

In this context, we discuss the stability check using both the idealized operation model and the conic
operation model respectively.

Stability Check Using Idealized Model:

As aforementioned, the idealized model addresses a forceful operation F as a deterministic force f to
be applied at a pose p on the target object. In this context, consider a generalized force f g,i acting at the
grip point of the i-th robot manipulator, by invoking the principle of virtual work (Takase, 1974), the
required efforts τi at the manipulator joints can be derived as

τi = JT
i f g,i (4.1)

where J i is the geometric Jacobian matrix of the i-th manipulator at configuration q.

Furthermore, the symmetric formulation proposed by Uchiyama & Dauchez (1988, 1992), general-
ized this relationship (Eq. 4.1) to multiple manipulators of cooperative manipulation, representing the
kinematic and static relationships between the external force f applied at the common manipulated
object and its counterparts τ acting at the manipulator joints (which we review in Sec. 2.1).

The symmetric formulation, however, leaves the force/torque f g at grip points unconstrained. Specif-
ically, for the case of parallel-plate gripper we use in this work, as illustrated in Fig. 4.4-Right, we ap-
proximate the grasp wrench space of a grip with an axis-aligned wrench box in the wrench space. We use
the maximum resistible forces/torques along/about the three principal axes (XYZ) at each grip point as
its grip limits f+

i , f−i , where f+
i =
[
P+
x ,P

+
y ,P

+
z ,R

+
x ,R

+
y ,R

+
z

]T
i

and f−i =
[
P−x ,P

−
y ,P

−
z ,R

−
x ,R

−
y ,R

−
z

]T
i

are the vectors of estimated limits at the i-th grip point, in the + direction and − direction respectively.
P+/−
x/y/z and R+/−

x/y/z are the maximum resistible forces and torques respectively.

Imposing the additional constraints onto the above formulations, we model the stability check as
finding a distribution of manipulator torques τ and grasp wrenches f g that satisfies:{

JTf g = τ

Gf g = −R(p)f

τ− ≤ τ ≤ τ+, f− ≤ f g ≤ f
+

(4.2)

where

– J=diag(J1, . . . ,Jn) is the composite Jacobian matrix at configuration q;

– f g=
[
fT

g,1,f
T
g,2, . . . ,f

T
g,n

]T
and fT

g,i is the generalized force acting at the i-th robot gripper;

– τ=
[
τT

1 , τ
T
2 , . . . , τ

T
n

]T
and τi is the vector of joint torques at i-th manipulator;
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Figure 4.4: Left: We are interested in checking whether a composite configuration q (along with its
corresponding grasp g) is stable against a forceful operation F. Right: We approximate the grasp
wrench space of a grasp g with an axis-aligned box in the six-dimensional wrench space.

– G = [G1,G2, . . . ,Gn] (usually termed as the grasp matrix (Borst et al., 2004; Ferrari & Canny,
1992; Mishra et al., 1987)) is a (6× 6n) matrix mapping the forces/torques acting at grips to a
resultant wrench onto the object w.r.t. the robot frame;

– τ+/− are the force/torque limits of all manipulator joints;

– f+/− denotes the estimate of the force/torque limits at grip points (i.e. our estimate of the grasp
wrench space).

– R(p) transforms the external wrench from the tool frame to the robot frame.

Eq. 4.2 models the stability check problem as a linear programming problem, and thus can be solved,
e.g. using the Simplex method, to see if there exists any feasible solution of the torques τ at the
manipulator joints and grasp wrenches f g at the grip points meeting Eq. 4.2. If this process fails, we
consider the configuration q (and its corresponding grasp g) unstable against the operation F.

Stability Check Using Conic Model

As aforementioned, using the conic model, theoretically, all possible forces within the spherical cone
should be separately checked for robust stability check. However, we can use a limited number of primi-
tive forces to conservatively approximate the spherical cone and therefore simplify this computationally
expensive procedure.

Therefore, given a configuration q and a forceful operation F, the stability check using the conic
model involves checking the force stability of the configuration q under nF primitive forces, while each
of the nF checks follows the same form of Eq. 4.2.

That is, the planner needs to perform at most nF basic stability checks defined by Eq. 4.2 for a
forceful operation F and a configuration q. If all nF stability checks succeed, we then regard q as a
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Contact cr
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Figure 4.5: The environmental and robot contacts specify a group of contact region(s) on the object.

stable configuration for the operation F, while if any of the nF stability checks fails, the planer can stop
and regard q as unstable without further checking.

4.2.2 Stability Check with Environmental Contacts

In the case of manipulating objects using object contacts with both robot grippers and rigid structures in
the shared environment, we focus on checking whether the system can maintain the contacts under the
application of a forceful operation F, i.e. whether these object contacts can provide sufficient wrenches
to stabilize the object under the operation force f . Generally, in the context of using environmental
contacts for object manipulation, the environmental contact plays the major role in resisting external
forces, while the robot contact provides mobility to the manipulated object, which can also be observed
in real forceful applications by humans and our real robot experiments. Thus, we ignore the torque
limits on the manipulator joints in this context and mainly focus on constraints on maintaining the
object contacts under external disturbances.

We discuss the stability check using both the idealized operation model and the conic operation
model in this context below.

Stability Check Using Idealized Model

As illustrated in Fig 4.5, under the assumption of rigid bodies, both environmental and robot contacts
specify a group of contact region(s) on the target object, denoted as ce and cr respectively, which can
be further represented as a set of contact points. At each such contact point, the contact force f c that
can be applied onto the object is constrained within a friction cone f c ∈ FC(n, µ) characterized by a
contact normal n and a friction coefficient µ.

In this context, given a forceful operation F, and a candidate configuration q which generates a
set of total np point contacts (including uniformly discretized surfaces of both environmental contacts
and robot contacts) on the object, stability check requires finding a distribution of contact forces h =

[fT
c,1, f

T
c,2, ..., f

T
c,np

]T, such that:
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1. The resultant wrench provided by h is able to keep the object stable, i.e. in static equilibrium,
under the operation force f ;

2. The vector of contact forces h lies within the composite friction cone H = FC1 × ...× FCnp .

Therefore, similar to Lee et al. (2015); Murooka et al. (2017); Wang & Pelinescu (2003), we formu-
late the problem of stability check with environmental contacts as a constrained optimization problem,
in particular using quadratic programming:

min
h∈H

hTh (4.3a)

s.t. Gh + hmg +R(p)f = 0 (4.3b)

h ∈ H (4.3c)

where G = [G1, ...,Gnp ] is a (6×6np) grasp matrix mapping the contact wrenches to a resultant wrench
onto the object. hmg is the wrench by the object gravity. R(p) transforms the external wrench by f
from the tool frame to the robot frame.

Given a candidate configuration q and a forceful operation F, if the planner can find a solution of
contact forces h satisfying the constraints in Eq. 4.3, we say that the configuration q can be stable against
the operation F. Otherwise, we say that the configuration q cannot be stable against the operation F.
The stability constraints (Eq. 4.3(b)-(c)) guarantee that there exists a distribution of contact forces h that
can keep the object stable under the operation F, while optimizing the objective 4.3(a) ensures h to be
close to the actual distribution of the contact forces (Wang & Pelinescu, 2003).

Stability Check Using Conic Model

Likewise, in the case of stability check using the conic model, the operation force f represents a con-
tinuous spherical cone and can be approximated with a number of nF primitive forces. Thus, using the
conic model, stability check with environmental contacts concerns checking the force stability of the
contact configuration q under all the nF primitive forces, based on the optimization problem defined in
Eq. 4.3.

Specifically, if all the nF stability checks based on Eq. 4.3 succeed, we regard the candidate config-
uration q as a feasible solution for the operation F. Otherwise, any failed check among the nF stability
checks terminates the checking process with a failure.

4.3 A Graphical Interface: Specification of Forceful Operations

In this section, we present a graphical user interface to close the loop of robot-assisted forceful manip-
ulation:

� Using the interface, the human users can easily specify forceful tasks, i.e. sequences of forceful
operations on selected objects;
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� The robot and our planners assist the humans in performing the customized tasks by manipulating
the selected objects stable for humans and providing operation instructions;

� The expert developers pre-specify available forceful operations using experimental data.

The interface is designed as three components: 1) As part of interface specification, expert develop-
ers input the geometry of available objects, tools and accordingly applicable forceful operations into the
interface. For example, the expert developers can collect experimental data to specify available forceful
operations. In the following section, we show how this was achieved for forceful operations involved
in this work. 2) Human users specify desired forceful tasks using the tools and objects provided by the
interface. The forceful tasks will be sent to the planner as inputs to generate effective and efficient plans
for object manipulation. 3) The robot manipulates the target object for the human users in performing
collaborative forceful tasks.

Fig. 4.6 illustrates the overall workflow of the robot-assisted fabrication with the user interface using
the circular cutting task. First, a human user specifies an expected forceful task by choosing a tool(s)
(e.g. a cutter or a drill) to draw on a selected object. For example in Fig. 4.6, the human first selects a
cutter and a rectangular board, and then draws a circle on the board to specify the circular cutting task
(Fig. 4.6-Task Specification). Once receiving confirmation, the interface triggers a planning process
(with our planners acting as the underlying planners) to generate efficient manipulation plans which
will be discussed in following sections (Fig. 4.6-Manipulation Planning).

After planning, the interface controls the robot to assist the human in performing the specified force-
ful operations, as well as providing operation instructions to the human according to the manipulation
plan (Fig. 4.6-Fabricating). During fabrication, the robot assistant manipulates the target object to the
planned configurations in sequence and stabilizes it under the application of forceful operations.

At each planned configuration, the interface instructs the human user to apply a subsequence of

resistible forceful operations checked by our planners, by visually displaying the subsequence in both
the interface and the robot head monitor (Fig. 4.6-Operations to Be Applied). After completing the
instructed operations, the human presses a Regrasp button provided by the interface to command the
robot to the next planned configuration(s) (Fig. 4.6-Regrasp). The regrasp button is how the human
notifies the system that the subsequence of forceful operations are applied. In this manner, the interface
connects the robot assistant and the human user to perform forceful tasks interactively.

Besides, the interface allows expert developers to pre-specify available target objects, tools and
accordingly forceful operations that can be applied under a current workshop setting, using experimental
data or expert knowledge. We will discuss how we capture the distributions of forceful operations
involved in this thesis using experimental data in the next section.

We realized the limitation of the communication and coordination through the interface: compared
with other channels, like natural language, the interface may affect the fluidness of collaboration. In
future work, we aim to improve the system by automatic perception of human operations. In addition,
we aim to explore other communication manners, e.g. implicit communication (Gildert et al., 2018;
Giuliani et al., 2018; Hazbar, 2019; Knepper, 2016; Knepper et al., 2017; Kulkarni et al., 2019; Wortham
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Figure 4.6: The workflow of human-robot collaboration in performing forceful tasks with the graphical
user interface.

& Theodorou, 2017) and channels, e.g. vision-based communication, to future improve the overall
collaboration performance.

4.4 Experiments and Results

In this section, we collected experimental data to capture distributions of the forceful operations involved
in our experiments and studied the effect of conic model in stability check and manipulation planning
in comparison with the idealized model.

4.4.1 Modelling Forceful Operations with Experimental Data

We tested our proposed planners on a variety of collaborative forceful operations. Herein we show three
of them, including cutting, puncturing and drilling on rigid foam boards as illustrated in Fig. 4.1(a)-
4.1(c). We collected experimental data to capture their distributions in the wrench space.

As discussed in Sec. 4.1, according to the idealized operation model:

– A cutting operation applies a pure cutting force along an expected cutting axis;

– A puncturing operation applies a pure intruding force along an expected puncturing axis;

– A drilling operation applies a torque about an expected drilling axis plus a force along the axis.

Therefore, the idealized model requires identifying the maximum operation forces, extracting values of
parameters fz and τz from experimental data.

While using the conic model, we need to further determine their deviation ranges in the wrench
space, i.e. extracting values of parameters fx, fy and τx, τy . To do this, we applied each category of
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(a) Distrib. of a cutting operation.
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(b) Distrib. of a drilling operation.
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(c) Distrib. of a puncturing operation.

Figure 4.7: We collected experimental data from 30 trials to model the distribution of a forceful oper-
ation in the wrench space. The red polyhedral cones are the extracted models over 30 trials. The force
plots on the right and the red dots inside the cones are the force data over one experimental trial.

operations 30 times separately, collecting data using a six-dimensional force/torque sensor (FT150 from
Robotiq) as shown in Fig. 4.7.

During each trial (30 for each category), we recorded the force and torque values at different time
steps at the rate reported by the sensor. This means, for each trial, we collected between 400-500 data
points. For each category of forceful operations, we computed the polyhedral cone as discussed in
Sec. 4.1 which contains the force distributions over all time steps over the 30 trials.

Specifically, for the cutting operations, we tested that fz = 45N, fx = 4N and fy = 6N . For
the drilling operations, fz = 19N, fx = 6N and fy = 6N . Note that the torque element generated
by the drill bit rotation was much smaller than the ones generated by drilling forces, thus we simply
neglect it and assume τx = τy = τz = 0Nm. For the puncturing operations, fz = 16N, fx = 2N

and fy = 2N . Fig. 4.7 shows the distributions of these three operations in one experiment trial. The
red polyhedral cone in each figure is the extracted conic model over 30 trials.

4.4.2 Effect of Conic Model in Stability Check

To test the effect of the conic model in stability check, for each category of operations above, we tested
20 forceful operations evenly distributed on the object surface.

For each forceful operation, we first generated 50 stable configurations (i.e. 50 different complete
robot configurations grasping the object stably against the idealized operation force) while using the
idealized model. That is, these 50 configurations were checked to be stable against the operation using
the idealized operation model.

We then checked the stability of these configurations again (50 × 20 for the 20 operations, giving
a total of 1000 additional stability checks for each category) but using the conic model, to see if they
could still remain stable if operation deviations were considered.

The results showed that, on average, there were 39 among the 50 configurations remaining feasible
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using the conic model for the cutting operations, 41 configurations remaining feasible for the drilling
operations and 49 configurations remaining feasible for puncturing operations. This is reasonable, since
the drilling forces and the cutting forces deviate more dramatically compared with the puncturing forces.

We are also concerned about the extra checking time required by the conic model. As discussed in
Sec. 4.2, each stability check involves a linear programming problem based on Eq. 4.2 or a constrained
optimization problem based on Eq. 4.3. Thus, in comparison with the idealized model, the conic model
requires the planner to solve at most (nF−1) more linear programmings or constrained optimizations,
for each combination of a forceful operation and a candidate contact configuration, which may result
in extra checking time cost. However, for example, for the case of object manipulation using robot
grippers, we will show later in Table 5.2 that the time for generating the stable grasp sequences, which
includes the total time of checking the force stability over all forceful operations and candidate configu-
rations, is negligible in the overall planning. Similar time efficiency can also be observed in the case of
manipulation using environmental contacts in Table. 6.2 and 6.3.

In this context, we can sum up that using the conic model can greatly benefit the robustness of stabil-
ity check, but without imposing significant computational load. In the experiments shown in following
chapters, we used the conic model for stability check and set the number of primitive forces nF = 4 in
modelling forceful operations. In the following chapters, we will systematically discuss our planning
work to achieve efficient, smooth and human-friendly collaborative forceful manipulation.
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Chapter 5

Manipulation Planning under
Changing External Forces—Robot
Grasps

This chapter presents our work on manipulation planning to generate collaborative robot behaviours,
particularly using robot grasps, to keep an object stable under changing external forces. We aim at
empowering robots with the capability of manipulating objects not only under geometric constraints, but
also under the application of changing externals forces while explicitly considering both task stability

and efficiency in object manipulation.

Take the cutting task in Fig. 5.1 for example , where a human is cutting a circular piece out from a
rectangular board, while with the assistance of a robot system. Before the task, the human informs the
robot system of the operation type (cutting) and the desired cutting pattern (a circle) with the interface
previously introduced in Sec. 4.3. During the cutting task, the human applies external cutting forces
on the board which change position, direction, and even magnitude along the circular path. To assist
the human to perform the task, the robot changes its grasp on the object multiple times (Fig. 5.1(a)-
5.1(d)) to position the object at desired pose(s) for cuttings and keep it stable against the changing
cutting forces. In this context, we propose a planner that enables the robot to manipulate objects under
changing external forces like this.

Specifically, there are two key problems our planner solves:

First, our planner produces efficient manipulation plans by minimizing the number of times the
robot needs to change its grasp on the object, namely regrasp. For example in Fig. 5.1, the robot uses
three different grasp configurations to stabilize the object and accordingly changes its grippers’ position
on the object only two times (counting each gripper move separately) throughout the whole task. This is
also a capability demonstrated by humans in sequential manipulation tasks: we regrasp when we need
to, but we are also able to choose grasps which are useful for long durations during a task.
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(a) Grasp configuration 1 (b) Intermediate configuration for regrasping

(c) Grasp configuration 2 (d) Grasp configuration 3

Figure 5.1: The human is cutting a circular piece out of a board which is held by a dual-arm robot.

This capability poses two closely related challenges to the planner: grasp planning and regrasp

minimization. Specifically, the planner must decide not only how to grasp the object, but also when to
regrasp the object during the course of forceful interaction, such that the object can be always stable
under the changing external forces. A good choice of robot grasp on the object may enable the robot
to stabilize the object against multiple sequential external forces, and thus reduce the need of regrasp-
ing throughout the interaction. A bad grasp, however, would lead to frequent regrasps and thus task
interruptions. Even worse, an inappropriate grasp may not be able to stabilize the object against certain
external forces, thus bringing about failures and even risks during task execution. For example, the
object may slip through the gripper fingers under a cutting operation (Fig. 5.2(a)) due to insufficient
frictional forces between the grippers and object. Similarly, a drilling operation may exert excessive
torque deforming the grippers and object due to a bad choice of grasp (Fig. 5.2(b)).

Second, our planner plans each regrasp. A regrasp requires the robot to release its grippers off the
object and then to grasp the object at different positions. However, when the robot releases a gripper,
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(a) The object slides between fingers due to insufficient fric-
tional forces.

(b) The object bends due to excessive torque.

Figure 5.2: Task failures during cutting (a) and drilling (b).

the object may become unstable due to the existence of external forces. Even if we assume the human
in Fig. 5.1(a) stops applying cutting forces during regrasps, the object may still become unstable due
to gravity. For example, to regrasp the object from the grasp configuration in Fig. 5.1(a) to the one in
Fig. 5.1(c), if the robot directly releases its right gripper as shown in the small figure at the right bottom
of Fig. 5.1(b), a heavy object may slip within the remaining gripper. Alternatively, the robot may move
the object to an intermediate pose first before releasing one of its grippers, such that the remaining
gripper(s) can still hold the object stable until the robot completes the regrasp. Fig. 5.1(b) shows such
an intermediate pose, where the object can be stable even when the right robot gripper releases from it.

We build the planner on the following key contributions:

– A graph-based formulation of the problem of manipulation planning under changing external
forces, which is referred to as the operation graph hereafter and accordingly a planning algorithm
which can simultaneously (i) decide on a sequence of grasp configurations to position and stabilize
the object, and (ii) minimize the need of regrasping during manipulation (Sec. 5.2.1).

– An algorithm to plan stable regrasps in the air using multiple cooperative manipulators. Different
from most existing work in regrasp planning, which we reviewed in Sec. 2.2), we focus on the
context of bimanual regrasping without placing an object on extra supports. This is achieved by
further evaluating the object stability under gravity while going through a sequence of intermedi-
ate unimanual and bimanual grasps (Sec. 5.2.2-5.2.4).

– A variety of simulated and real human-robot experiments to verify the performance of our pro-
posed planner in terms of minimizing the number of regrasps and planning stable regrasps (Sec. 5.3).
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A circular cutting task {Fi}20i=1 Initial configuration q0 q1 stable against F1 to F8 q2 stable against F9 to F12 q3 stable against F13 to F20

Outputs:Inputs:

f1

f10

t1 t2

Figure 5.3: A manipulation planning problem to keep an object stable under changing external forces.

5.1 Manipulation Planning under Changing External Forces

Fig. 5.3 illustrates the manipulation planning problem to keep an object stable under changing external
forces using the circular cutting task. In this chapter, we particularly focus on the context of using only
robot grasps to achieve this manipulation goal.

Broadly, consider a forceful manipulation task, the robot is supposed to position and stabilize a
target object under the application of a sequence of forceful operations. Accordingly, it requires the
planner to find an appropriate system configuration, which generates a set of robot and/or environmental
contacts on the object, for each involved forceful operation, such that the system stability can be always
maintained by the object contacts under the changing operation forces.

In this context, given a single forceful operation F, the planner can find such a stable grasp configu-
ration q for the operation by first searching for a kinematically valid configuration q and then checking
if the corresponding object contacts can provide sufficient supporting wrenches keeping the object sta-
ble under the external operation force f , which we discuss previously in Sec. 4.2 as stability check.
Note that, in this chapter, the object contacts involve only robot grasps, while in the context of using
the environment discussed in the next chapter, the object contacts can be environmental and/or robot
contacts on the target object.

Then, given a sequence of forceful operations {Fi}mi=1, i.e. a complete forceful task, the planner can
simply find one feasible configuration qi for each operation Fi ∈ {Fi}mi=1 and accordingly, impose a
need for changing the system configuration, e.g. regrasp in the context of using grasp contacts, between
every two sequential operations. Such a straightforward strategy, however, would require the planner
to use a large sequence of different system configurations and therefore configuration transfers during
object manipulation. Herein, we refer to such a configuration transfer as a configuration change.

Alternatively, to avoid frequent task interruptions due to required configuration changes, the robot
can make the utmost of one configuration q, using it against a larger sequence of forceful operations,
which in turn would reduce the number of configuration changes required in the long term. This, config-
uration change minimization, imposes an additional but practically necessary requirement to achieve
efficient and smooth manipulation, particularly in the context of fHRC. The need of reducing task in-
terruptions, e.g. regrasps, has been recognized as an important demand by many existing studies in
various contexts (Dobson & Bekris, 2015; Dogar et al., 2019; Harada et al., 2014; Saut et al., 2010).
Note that, in addition to the number of regrasps, some other quality metrics may play signifiant roles
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in object manipulation, especially in the context of fHRC. For example, human comfort is one of the
critical criteria in collaborative forceful operations. In this thesis, we explicitly address the configu-
ration change minimization as a main objective, building a graph-based planning framework to find a
sequence of grasp/contact configurations minimizing the configuration changes while satisfying the sta-
bility constraint under changing external forces, while in this chapter, we interpret configuration change
minimization as regrasp minimization.

5.1.1 Problem Definition

Here we define the problem mathematically. We say a system configuration q is stable against a se-
quence of k forceful operations {Fi}ki=1 if, at q, the corresponding object contacts can provide sufficient
wrenches to keep the object stable under any forceful operation in {Fi}ki=1. Further, we say that a se-
quence of system configurations

{
qj
}n
j=1

is stable against a sequence of forceful operations {Fi}mi=1,
if the configurations in

{
qj
}n
j=1

cover all forceful operations in {Fi}mi=1 in order, i.e. if q1 is stable
against {F1,F2, ...,Fk}, q2 is stable against {Fk+1,Fk+2, ...,Fp}, and so on, until qn is stable against
{Fq+1,Fq+2, ...,Fm}, where 1 ≤ k < p ≤ ... ≤ q < m.

For example, the three grasp configurations {q1, q2, q3} shown in Fig. 5.3 are stable against the
20 circular cutting operations (q1 is stable against F1 to F8. q2 is stable against F9 to F12. q3 is
stable against F13 to F20). Note that different configurations correspond to different grasps. In this
sense, regrasp minimization can be achieved by finding a minimal sequence of configurations, denoted
as
{
qj
}n
j=1

, stable against the required task {Fi}mi=1.

In addition to minimizing the number of regrasps, the robot also needs to move the object to go
through the planned configurations in

{
qj
}n
j=1

successively, using collision-free and stable trajectories
{tj}nj=1. Specifically, each trajectory tj ∈ {tj}nj=1 moves the system from qj−1 to qj (q0 is the initial
system configuration), which corresponds to a constrained motion planning or regrasping task. The two
arrowed lines in in Fig. 5.3 illustrate such regrasping trajectories.

In this context, we define a manipulation query as a forceful task consisting of a sequence of forceful
operations {Fi}mi=1 to be applied on the object, together with a starting system configuration q0. Then,
the problem can be stated as:

Definition 1 (Manipulation Planning to Keep an Object Stable under Changing External Forces).
Given the description of the system and a manipulation query ({Fi}mi=1 , q0), find a minimal sequence of
system configurations

{
qj
}n
j=1

and connecting trajectories {tj}nj=1 to position and stabilize the object
under the the application of forceful operations in {Fi}mi=1 in order.

Note that in this chapter finding a minimal sequence of system configurations
{

qj
}n
j=1

will minimize
the number of regrasps required in the solution, which is in line with the general objective, configura-
tion change minimization. Later in Chap. 6, we will discuss the planning context with environmental
contacts, but still under the same problem definition.
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Figure 5.4: Overview of the approach.

5.1.2 Approach Overview

This section outlines our planning approach to solve a manipulation query in the context of minimizing
regrasps, in Fig. 5.4 with four layers using the circular cutting task, and explain how these layers fit
together. We present the details of each layer in Sec. 5.2.

Stable Configurations: Given a manipulation query ({Fi}mi=1 , q0), the planner first identifies a se-
quence of configurations

{
qj
}n
j=1

stable against the task, while minimizing the number of regrasps
required to position and stabilize the object. In Fig. 5.4, the three configurations {q1, q2, q3} shown in
the top layer is such an example candidate configuration sequence.

The configurations generated by this layer are discrete over the configuration space. The lower layers
of the planner try to generate a sequence of collision-free and stable trajectories {tj}nj=1 to connect
every two subsequent configurations in

{
qj
}n
j=1

starting from q0, which corresponds to a sequence of
constrained regrasping tasks.

Connectivity of Grasps: Given any two subsequent configurations qs, qt ∈
{

qj
}n
j=1

generated in the
previous layer (e.g. q1 and q2 in Fig. 5.4), the planner identifies a sequence of intermediate grasps
{gi}

ng
i=1, which moves the robot grippers from the grasp gs in qs to the grasp gt in qt (denoted as g1 and

gng
respectively in the sequence {gi}

ng
i=1).

The grasp sequence acts as an abstract plan to guide the subsequent search. The second layer in
Fig. 5.4 shows such an example grasp sequence {gs, g

′, gt}. It connects the grasps in configurations
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q1 and q2 of the previous layer. Note that there might be other feasible grasp sequences, which go
through different intermediate gripper contacts as shown in Fig. 5.6.

Sampling Stable Intersections of Grasp Manifolds: Given any two neighbouring grasps gi, gi+1 ∈
{gi}

ng
i=1 generated in the previous layer, the planner identifies a set of candidate configurations by sam-

pling within the intersection of their grasp manifoldsM(gi)
⋂
M(gi+1) (illustrated as the blue points

in Fig. 5.4). These samples are checked for stability against gravity such that at each configuration in the
set, the transition from gi to gi+1 can be performed stably. The second configuration in the third layer
is such an example, at which both the unimanual and the bimanual grasps can hold the object stable
under gravity.

Connectivity of Manifold Intersections: After obtaining a sequence of stable configurations in the
intersections of the sequence of grasp manifolds, the fourth layer performs collision-free and stability-
constrained motion planning within these manifolds, namely generating {tj}nj=1 to connect these con-
figurations (illustrated as red solid lines in Fig. 5.4).

Overall, the layered structure enables the planner to minimize the number of regrasps at the top
layer. Besides, it enables the upper layers to provide significant search guidance to lower layers, and
leaves the time-consuming motion planning to the final layer. If lower layers of the planner fail to find
a plan, the system goes back to higher layers to generate new and different high-level plans.

5.2 Planning Approach

This section presents details of our planning approach in generating an efficient manipulation plan
(
{

qj
}n
j=1

, {tj}nj=1) to position and stabilize an object under a sequence of forceful operations {Fi}mi=1.

5.2.1 Stable Configurations

The planner starts by generating a minimal sequence of configurations
{

qj
}n
j=1

that are stable against
the forceful operations {Fi}mi=1.

Given a forceful operation F, theoretically, there exists a set of configurations in the configuration
space C, i.e. a stable region, in which all configurations are stable against the operation F. For example,
in Fig. 5.5(a), we show two subsequent drilling operations (F1 and F2) of the table assembly task in
Fig. 3.2, while the red and green regions in the configuration space C illustrate such stable regions for F1

and F2 respectively. In this sense, finding a sequence of system configurations stable against {Fi}mi=1

can be regarded as finding a sequence of configurations to visit all stable regions for the operations in
{Fi}mi=1 in order.

Furthermore, there might be intersections between these stable regions. Within each such intersec-
tion, any configuration would be stable against the corresponding multiple operations. For example,
the configuration qb in Fig. 5.5(a) is stable against both F1 and F2, since qb is inside the intersection
of stable regions for F1 and F2. Relying on this property, we use these intersections to minimize the
number of regrasps.
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Figure 5.5: We build an operation graph to search for a minimal sequence of configurations
{

qj
}n
j=1

stable against {Fi}mi=1.

Specifically, to create a minimal sequence of configurations
{

qj
}n
j=1

, our planner first samples a
set of candidate configurations in C. To sample configurations that are likely to be stable against a
variety of operations, i.e. configurations in the intersections, the planner starts by sampling grasps
uniformly on the object. Then, using such a sampled grasp g and the desired object pose po, the planner
solves the inverse-kinematics problem, which may output multiple solutions, and randomly picks one
configuration q.

For such a sampled configuration q, the planner identifies the operations in {Fi}mi=1 that the configu-
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ration q is stable against (Details of stability check is explained in Sec. 4.2). We then build an operation
graph Go using these stable configurations as shown in Fig. 5.5(b). The operation graph is an acyclic
directed weighted graph. Specifically, in the operation graph, each column corresponds to a forceful
operation. That is, the nodes in the ith column are the sampled configurations that are stable against
the operation Fi. Further, we define a link between every two nodes in the neighbouring columns, and
associate the link with a weight using the number of gripper moves required from one configuration to
the other. For example, the weight for the link between the node qb in the first column and the node qb

in the second column is zero, since these two nodes correspond to the same configuration and thus no
regrasp is required. Similarly, if two configurations differ only by one gripper location on the object,
the weight for their link is set as one (e.g. qb and qc). Otherwise, the weight would be two. Note that
one can come up with other weighting schemes, e.g. one that takes the overall motion trajectories into
account to switch grasps.

At this point, our problem in this layer is formulated as a graph search problem. Given a manip-
ulation query, the expected output is a path that starts from one node in the leftmost column for the
operation F1 and ends with a node in the rightmost column for the operation Fm.

By searching the entire operation graph Go, e.g. using Dijkstra’s algorithm, the planner can generate
a candidate sequence

{
qj
}n
j=1

with the least number of gripper moves based on the current set of
samples. Hereafter, we call this planner the min-regrasp planner.

We provide the pseudo-code for this layer of the planner in Alg. 1 in the procedure PlanStableSequence.
In line 1, the planner constructs the operation graph Go as described above. In line 2, the planner searches
the graph Go (e.g. using Dijkstra’s algorithm) for a candidate sequence

{
qj
}n
j=1

. Then the planner it-
erates over every subsequent pair of configurations in

{
qj
}n
j=1

(line 4), attempting to plan a regrasp
between them, which is explained below. If the regrasp planning fails between any two configurations
(line 6), the planner removes the failing link from the graph in Fig. 5.5(b) (line 7), and then re-searches
the graph to generate a new candidate sequence

{
qj
}n
j=1

(line 8).

Note that, building the whole graph Go requires knowing the whole task {Fi}mi=1 in advance. How-
ever, there may be cases for which the forceful operations are revealed progressively, e.g. one by one.
In such cases, the operation graph Go can be constructed as the next operation(s) is specified, and then
be searched greedily. We call this version the greedy planner.

In addition, it is notable the operation graph is transferable. Specifically, the transferability can be
achieved by the similarity among forceful tasks, which share similar forceful operations in terms of
both operation order and operation feature. For example, an operation graph for assembling a stool can
be directly extended for assembling a chair, as both tasks involve inserting four legs. Obviously, the
similarity can also be defined for forceful tasks of different task scales, e.g. assembling a large chair
versus a small chair. We aim to explore the diverse interpretations of task similarity in future work.

5.2.2 Connectivity of Grasps

Hereafter, we explain how our planner generates collision-free and stable trajectories {tj}nj=1 to move
the target object to go through the planned configurations

{
qj
}n
j=1

.
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g1 g2g′

Figure 5.6: A grasp graph Gg. Each node in the grasp graph represents a bimanual or a unimanual grasp.

Given any two subsequent configurations, qs, qt ∈
{

qj
}n
j=1

generated above, rather than directly
searching in the high-dimensional combined configuration space C, the planner first plans in the grasp
level. Specifically, the planner starts by identifying a sequence of intermediate grasps {gi}

ng
i=1 on the

object, which moves the system from the grasp gs to the grasp gt (gs and gt are denoted as g1 and
gng

in {gi}
ng
i=1 respectively). Here, gs is the grasp at the configuration qs, and gt is the grasp at the

configuration qt. For example, consider q1 and q2 in the top layer of Fig. 5.4, the robot must go through
a number of intermediate grasps (g′) to switch from the grasp gs to the grasp gt on the object.

In the case of the dual-arm system used in this chapter, these intermediate grasps are either bimanual
or unimanual. We represent the connectivity of these grasps as a grasp graph Gg as illustrated in Fig. 5.6.
Each node in the graph Gg represents a grasp on the object. A bimanual and a unimanual grasp are
connected if the unimanual grasp is contained by the bimanual grasp. For example, we say a bimanual
grasp (gl, gr) contains a unimanual grasp (gl), since they share a common left gripper placement on
the object. Building such a grasp graph requires the generation of feasible grasps on the object, which
can be prespecified or can be generated using a grasp planner, e.g. Miller & Allen (2004).

Then, the planner searches the grasp graph Gg to get a sequence of intermediate grasps {gi}
ng
i=1,

which connects the grasps gs and gt (denoted as g1 and gng
in the sequence) with a sequence of alter-

nating bimanual and unimanual grasps. Fig. 5.6 highlights in red the shortest grasp sequence. Note that
there might be other longer grasp sequences to connect the grasps gs and gt as well.

The grasp sequence {gi}
ng
i=1 acts as an abstract plan to guide the search in the lower layers of the

planner, constraining the motion planning into a concrete and limited sequence of grasp manifolds. In
Alg. 1, the procedure PlanRegrasp outlines this process. On lines 1-2, the planner builds the grasp graph
Gg and searches it to obtain a sequence of grasps {gi}

ng
i=1 as described above.

The planner then tries to plan the motion from qs to qt through the planned grasps in {gi}
ng
i=1 (line 3).

If the lower layers of the planner return with a failure to connect any two grasps gi and gi+1 in {gi}
ng
i=1

(line 4), then the planner removes the link between these grasps (line 7), and perform the search again
to generate a new sequence of grasps (line 8). If the connection is successful, the planner returns the
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re-grasp motion trajectory t (line 10).

5.2.3 Sampling Stable Intersections of Grasp Manifolds

A grasp sequence {gi}
ng
i=1 provides necessary but not sufficient conditions of connectivity of the cor-

responding grasp manifolds. To check this connectivity, given any two subsequent grasps gi, gi+1 ∈
{gi}

ng
i=1, we need to identify configurations at which both grasps gi, gi+1 are kinematically feasible

and stable against external forces (e.g. gravity). Particularly in our task, the transition from a bimanual
grasp to a unimanual grasp may fail, as the object might be unstable against the gravity and thus slide
between the remaining gripper. Fig. 5.1(b) shows one such configuration in the bottom right corner, and
another configuration, at which the same transition is stable due to an appropriate choice of the system
configuration.

In this sense, our planner searches for stable configurations at the intersection of manifoldsM(gi)

andM(gi+1) by random sampling. Specifically, in Alg. 1, the procedure SampleIntersection samples a
set of k such configurations. To generate one such configuration, the planner first samples an object pose
in the reachable space of the robot (line 4). Then, it solves the inverse-kinematics for the bimanual grasp
at the sampled object pose to get a fully-assigned configuration q (line 5). The planner checks (line 6)
whether both grasps gi and gi+1 are stable against gravity at q, using the stability check described in
Sec. 4.2. The stable configuration q is then returned as a candidate point connection in the final solution
path (line 7).

5.2.4 Connectivity of Sequence of Manifold Intersections

In this layer, given two configurations qs and qt, and stable configurations sampled at the intersections of
a sequence of manifolds (i.e. the grasp manifolds of the grasp sequence {gi}

ng
i=1), the planner attempts

to generate a collision-free and stable trajectory t that connects qs to qt through these manifolds.

In Alg. 1, the procedure Connect implements this process as depth-first-search. Given a current
configuration qs and a sequence of grasps {gi}

ng
i=1 (where g1 is the grasp in qs), the planner samples

the intersection of the first two grasp manifolds in the sequence for a set of stable configurations S (line
7). Then it tries to plan a motion from qs to a sampled configuration q ∈ S (line 9). Note that this
is a motion plan within a single manifold and thus can be solved by existing closed-chain or single-
arm motion planners. However, the object motion must be also stable against gravity, for which the
constrained motion planners (Berenson et al., 2011; Jaillet & Porta, 2013) can be used. If the motion
planning is successful, the trajectory is returned along with a recursive call to the depth-first-search.
Lines 1-6 handle the simple case where qs and qt are already in the same manifold.

5.3 Experiments and Results

This section presents a variety of experiments to verify the performance of our proposed planners.
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Algorithm 1 Manipulation Planning under Changing Forces
PlanStableSequence

(
{Fi}mi=1 , q0

)
:

1: Go ← Sample stable configurations in C and build an operation graph as shown in Fig. 5.5(b)
2:

{
qj

}n

j=1
← GraphSearch(Go)

3:
{

qj

}n

j=0
← Insert q0 to the beginning of

{
qj

}n

j=1

4: for each subsequent qj and qj+1 in
{
qj

}n

j=0
do

5: tj+1 ← PlanRegrasp(qj , qj+1)
6: if PlanRegrasp failed then
7: Go ← Remove failing edge from graph Go

8: Go to line 2
9: end if

10: end for
11: return (

{
qj

}n

j=1
,{tj}nj=1)

PlanRegrasp (qs, qt):
1: Gg ← Sample grasps and build graph in Fig. 5.6
2: {gi}

ng
i=1 ← GraphSearch(Gg, qs, qt)

3: t← Connect(qs, {gi}
ng
i=1, qt)

4: if Connect failed or t is None then
5: if maximum number of attempts reached then
6: return failure
7: end if
8: Gg ← Remove failing edge from graph Gg

9: Go to line 2
10: else
11: return t
12: end if

Connect
(
qs, {gi}

ng
i=1, qt

)
:

1: if ng = 1 then
2: t← MotionPlan(qs, qt) using grasp gng

3: if MotionPlan successful then
4: return t
5: else
6: return failure
7: end if
8: end if
9: S ← SampleIntersection(g1, g2)

48



5.3 Experiments and Results

10: for each q in S do
11: t← MotionPlan(qs, q) using grasp g1

12: if MotionPlan successful then
13: return t+ Connect(q, {gi}

ng
i=2, qt)

14: end if
15: end for
16: return failure

SampleIntersection (g, g′) :

1: One of g and g′ must be bimanual. Assuming g.
2: S ← {}
3: while S contains less than k elements do
4: x← Sample pose for object
5: q ← Solve IK with object at x and grippers at g
6: if q is stable against gravity with both g and g′ then
7: Add q to S
8: end if
9: end while

10: return S

Experimental Setting:

We applied our planners to the Baxter Robot from Rethink Robotics for real robot experiments. Baxter
has two 7-DOF manipulators, each equipped with a parallel plate gripper. We tested the planners in an
OpenRAVE environment (Diankov & Kuffner, 2008) for simulated experiments.

For Alg. 1, we used the NetworkX (Hagberg et al., 2008) for graph construction and search, and
BiRRT (Kuffner Jr & LaValle, 2000) for motion planning. In our implementation of Alg. 1, we set
the maximum number of planning attempts to be 3 for the procedure PlanRegrasp and the number of
samples to be 20 for the procedure SampleIntersection.

We measured the grip force/torque limits (as explained previously in Sec. 4.2) of the Baxter grippers
on foam boards. Specifically, along each principal axis, we applied an incremental amount of forces and
torques on the foam board gripped by a Baxter gripper, to find the point when the object started to slide
between the parallel gripper plates or when the object tilted more than 5o due to finger structure defor-
mation. In this way, we tested the limits as f+

g,i = [13N, 40N, 100N, 0.5Nm, 0.1Nm, 0.15Nm]

and f−g,i = [−13N,−40N,−13N,−0.5Nm,−0.1Nm,−0.15Nm]1.

We implemented the planners on three types of forceful operations, cutting, puncturing and drilling
on rigid foam boards. We discuss how we model the operation force of these forceful operations,
particularly with the existence of force deviations previously in Sec. 4.1 and in accordance formulate
the stability check in Sec. 4.2. We present a series of experiments and analysis in Sec. 4.4 to capture the
force distributions of these forceful operations, with extracted operation models used in this chapter.

1Along the +z direction, the object can rest against the gripper palm, therefore the planner adopted a large force limit (100N )
for P+

z during the stability check.
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Table 5.1: Numbers of regrasps (with standard deviations in parentheses) of three planners on three
categories of tasks.

Random-
Puncturing

V-
Puncturing

Drilling&
Cutting

Random 19.7(0.7) 52.9(10.1) 5.8(2.1)
Greedy 8.2(2.1) 5.3(1.9) 3.1(0.8)

Min-regrasp 5.4(1.3) 1.6(0.6) 2.0(0.5)

Experiments Overview:
We conducted two categories of experimental studies, including:

– Simulated Experiments: We tested our planners on a variety of forceful tasks to verify their per-
formance in minimizing the number of regrasps, planning stable regrasps and time efficiency
(Sec. 5.3.1);

– Real Experiments: We did a set of real human-robot experiments to further study the feasibility of
our planners in the real implementations. We used a graphical user interface presented previously
in Sec. 4.3 for task specification in these experiments (Sec. 5.3.2).

5.3.1 Analysis of Planning Performance in Simulated Experiments

In simulated experiments, we created three categories of forceful tasks:

– Random-Puncturing: Each task contains 10 puncturing operations randomly distributed on the
surface of a foam board. An example is shown in Fig. 5.7;

– V-Puncturing: Each task consists of 40 puncturing operations along two random line segments
meeting at a common point. An example is shown in Fig. 5.8 and 5.9;

– Drilling&Cutting: Each task involves four drilling operations and a subsequence of cutting oper-
ations as shown in Fig. 5.12.

We generated 100 random forceful tasks for each category above.

Analysis of Number of Regrasps:
First, we compared the performance of our planners, min-regrasp and greedy, with a random planner in
reducing the number of regrasps. The random planner acts as a baseline approach. For the first forceful
operation, the random planner performs sampling in the configuration space until it finds the first stable
configuration against the operation. Then, for any subsequent operations, it first checks whether the
current configuration is still stable. If not, it falls back to random sampling.

Table 5.1 shows the average number of regrasps generated by the three planners over 100 random
forceful tasks. For the random-puncturing tasks, the random planner generates almost a new grasp and
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Figure 5.7: A grasp sequence by the min-regrasp planner for a random-puncturing task. The dark points
indicate the puncturing operations applied during the current grasp. The arrows indicate regrap actions.

Figure 5.8: A grasp sequence by the greedy planner for a V-puncturing task. The dark points indicate
the puncturing operations applied during the current grasp. The arrows indicate regrap actions.

thus one bimanual regrasp for every forceful operation (maximum 20 regrasps for 10 operations). The
min-regrasp dramatically reduces the number of regrasps (5.4 regrasps on average for 10 operations,
an example solution is shown in Fig. 5.7). The greedy planner also performs well in terms of reducing
regrasps (8.2 regrasps on average).

Similarly, for the V-puncturing tasks, the random planner generates plans with a large number of
regrasps (52.9 regrasps for the 40 operations of a V-puncturing task on average), while the min-regrasp
planner just needs 1.6 regrasps on average (an example solution is shown in Fig. 5.9). The greedy
planner shows a much better performance compared with the random planner, but still worse than the
min-regrasp planner. For example, as shown in Fig. 5.8, one solution generated by the greedy plan-
ner requires the grippers to climb along the edges of the board up and down frequently to follow the
movement of the puncturing operations, while the min-regrasp planner comes up with a plan of just two
regrasps in Fig. 5.9. Similar results can also be found for the drilling&cutting tasks.

We also counted the number of samples the random planner needed before it found a stable grasp.
On average, the random planner needed 41.1 samples for each forceful operation above, showing that
planning is necessary, since random grasps have little chance of being feasible.

Our planners are generalized to common objects, not limited to grasping only rectangular objects. To
demonstrate this, we tested the min-regrasp planner with a sequence of 40 circular puncturing operations
applied on a round board. A plan with three grasps (two regrasps) is shown in Fig. 5.10.

Analysis of Planning Stable Regrasps:

We also tested the performance of our planner on light and heavy objects respectively. For light objects,
the robot can perform regrasps by directly releasing and re-placing its grippers, whereas the robot might
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Figure 5.9: A plan by the min-regrasp planner for a V-puncturing task which contains two regrasps.

Figure 5.10: A grasp sequence by the min-regrasp planner for 40 circular puncturing operations on a
round board.

(a) Start configuration (b) Intermediate configuration (c) Release (d) Regrasp

(e) Release (f) Regrasp (g) Target configuration
Figure 5.11: Regrasping a heavy object: The robot moves the heavy object to some intermediate poses
before regrasping.
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(a) q1-Drilling 1&2 (b) q2-Drilling 3

(c) q2-Drilling 4 (d) q2-Cuttings

Figure 5.12: Human-robot collaboration - A grasp sequence by the min-regrasp planner for the
Drilling&Cutting task.

need to move a heavy object to certain intermediate poses before regrasping. Similarly, we ran the
planner on the 100 forceful tasks as discussed above.

Fig. 5.11 shows an example regrasp sequence to regrasp a heavy object. For a light object, the robot
can stably grasp and move the object using just a single gripper at most reachable configurations. Thus,
mostly, the robot can directly release off to regrasp the object, without the need of reorienting it to
intermediate configurations. However, for a heavy object, as discussed previously, the object may slip
down between gripper fingers if the robot directly releases one gripper. That is, the robot needs to move
it to intermediate configurations at which one single gripper is still enough to keep the object stable. In
Fig. 5.11, the robot first transfers the object to configurations in Fig. 5.11(b) and 5.11(d) before releasing
one gripper. After releasing, most object weight will be resisted by the forces arising from gripper finger
structure as shown in Fig. 5.11(c) and 5.11(e), which are much larger than the frictional forces between
the object and finger surfaces.
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Table 5.2: Planning time for both heavy and light objects. Times are in seconds. Standard deviations
are in parentheses.

Random-Puncturing V-Puncturing Drilling&Cutting

StabSeq SampInt Connect StabSeq SampInt Connect StabSeq SampInt Connect

heavy 1.8(0.1) 12.6(0.9) 299.1(40.3) 5.1(0.5) 3.3(0.3) 77.2(11.5) 0.7(0.1) 3.5(0.2) 94.1(16.2)
light 1.6(0.2) \ 107.5(10.1) 4.9(0.6) \ 29.8(5.6) 0.8(0.1) \ 47.5(7.8)

(a) Task Specification (b) q1-Horizon. cutting (c) q1-Vertical cutting

Figure 5.13: Human-robot collaboration - A cross cutting task.

(a) Task Specification (b) q1- Upper holes (c) q2-Lower holes

Figure 5.14: Human-robot collaboration - A V-puncturing task.

Analysis of Planning Time:

Table 5.2 shows the average planning time each layer of the planner takes, including time for generating
stable sequences (StabSeq for short in Table 5.2), time for generating and searching the grasp graph
combined with sampling intersections (SampInt, for short) and motion planning (Connect, for short). As
the table shows, most time is spent on motion planning, while the time for planning stable configuration
sequences and sampling intersections is negligible. Planning for the heavy objects takes much longer
time since finding stable regrasp configurations and motion trajectories is more difficult.
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(a) Task Specification (b) q1-Cutting top side (c) q2-Cutting bottom side

(d) q3-Cutting left side (e) q3-Cutting right side

Figure 5.15: Human-robot collaboration - A square cutting task.

Computational Complexity:
Suppose a forceful task consisting of a sequence of M forceful operations and a set of N sampled
configurations. According to the definition of operation graph, the number of stability checks required
to build an operation graph for the forceful task is bounded by O(MN). Furthermore, the number of
different configurations involved in a manipulation plan from searching the operation graph is bounded
by O(M). Suppose the robot has two manipulators, then the number of general motion plannings
required to execute a manipulation plan is bounded by O(2M).

5.3.2 Analysis of Planning Performance in Real Human-Robot Experiments

We did a variety of real robot experiments to further verify the feasibility of our system, with a recorded
video which can be seen from the link https://youtu.be/X6eTlqSKiKk.

Fig. 5.1, 5.9 and 5.12 show the real human-robot implementations of the forceful tasks discussed
above. Fig. 5.16 shows a solution generated by the min-regrasp planner for the table assembly task in
Fig. 3.2, which consists of a large sequence of drilling, cutting and inserting operations. As shown, the
solution involves only three different grasp configurations.

We also performed 10 human-robot experiments using a graphical user interface introduced in
Sec. 4.3. Before these experiments, the 10 human participants were fully explained the usage of the
interface and the robot system. Then they specified and performed their customized forceful tasks with
the assistance of the interface as explained in Sec. 4.3. During the experiments, we regarded an in-
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(a) q1-Drilling four holes (b) q1-Cutting four legs (c) q2-Drilling holes for front legs

(d) q2-Inserting front legs (e) q3-Drilling holes for back legs (f) q3-Inserting back legs

Figure 5.16: A solution by the min-regrasp planner for the table assembly task in Fig. 3.2.

teraction as failure if the interaction had any unexpected interruption, e.g. unstable operations due to
inappropriate grasp. Fig. 5.13-5.15 show three of these experiments. Among the ten experiments, nine
interactions succeeded with a small number of regrasps changing from 1 to 4. One interaction failed
due to a collision between the robot gripper and the object during regrasping, which can be seen from
time 13:18 to 13:24 in the linked video. This is mainly because of the uncertainty in the robot system
and can be improved by the automatic perception of the object and system motion.

We also collected the interaction time of each part during interactions. Over the 10 experiments, on
average, the Task Specification took 39.5(3.5) s (standard deviation is in parentheses). The Manipulation
Planning took 44.5(9.3) s and the Fabrication took 191.3(44.5) s.

Limitations:

Our experiments show that the planning time for forceful tasks can still take tens of seconds, while
the time efficiency of our planners is limited mostly by the speed of the low-level constrained motion
planners. This leaves room for improvement in future work to either speed up these individual motion
plans, or to reduce the number of such motion plan queries, i.e. the number of regrasps.

We also realized the limitation of regrasp minimization: even though minimizing the number of
regrasps can minimize the task interruptions and human waits in the context of HRC, optimizing only
this metric is not sufficient to achieve effective object manipulation under changing external forces. For
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example, human factors, e.g. comfort and preference, should also be considered into planning.
In the next chapter, we continue to discuss the problem of planning collaborative robot behaviours,

but focus on the exploitation of environmental contacts, together with more general robot contacts, in
object manipulation under changing external force.
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Chapter 6

Manipulation Planning under
Changing External
Forces—Environmental Contacts

0In this chapter, we still focus on addressing manipulation planning problem to keep an object stable
under changing external forces. Particularly, in addition to grasp contacts which have been studied
in Chap. 5, we aim at enabling robots to exploit deliberate object contacts with rigid structures in the
shared environment and other robot contacts, to further boost their capacity of manipulating objects
under changing external forces.

Take the example in Fig. 6.1, where a human and a robot collaborate to assemble a chair. Throughout
the chair assembly task, the human applies changing external forces on the chair sub-assemblies via a
sequence of drilling and (peg/leg) inserting operations. The robot is supposed to assist the human by
moving and keeping the chair assemblies stable as these forceful operations are applied onto them.

The robot itself lacks the capacity of holding the chair sub-assemblies stable against the varying and
strong sequential operation forces. However, the shared environment, particularly the various structures
in the environment, provide robots with the chance of performing such forceful tasks, despite its innate
incompetence in dealing with large external forces. Specifically, as shown in the Fig. 6.1, by resting
the chair sub-assemblies on the table surface to exploit supports from deliberate object contacts with
the environment (e.g. the table surface in Fig. 6.1) and the robot (e.g. robot grasps or gripper pressing
as shown in Fig. 6.1(b)), the robot succeeds in stabilizing the chair sub-assemblies under the human-
applied changing external forces.

This suggests that rather than a constraint, the environment can be an opportunity, particularly for
object grasping and manipulation under external disturbances. Motivated by such potential of using
environmental contacts in object manipulation, we present a planner that exploits the stabilization capa-
bilities of both environment and robot within a unified planning framework. The planner allows robots
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(a) Initial configuration (b) Drilling four holes (c) Inserting four legs

(d) Driling four holes (e) Inserting chair back (f) Task complete

Figure 6.1: The robot holds chair sub-assemblies stable under a sequence of forceful operations, by
exploiting deliberate object contacts with both the environment (e.g. a table surface) and robot (e.g.
pressing or grasping).

to use deliberate environmental and robot contacts to keep objects stable under changing external forces,
while with explicit consideration of manipulation stability and efficiency. Specifically, the planner ad-
dresses three major challenges:

First, the planner identifies appropriate object contacts with the environment and/or robot, relying on
which the object and robot can stay stable under forceful operations. This requires the planner to choose
where to move and position the object w.r.t. the environment and robot, particularly among a large
number of available contact configurations. For example, in the configuration shown in Fig. 6.1(b), the
object-table contact and the object-robot contact (the gripper presses on the object) together can stabilize
the chair-top under the shown drilling operation. However, if the gripper is removed from the object,
the chair-top would possibly flip over and even slip down from the table due to an imbalanced torque
incurred by the operation force.

Second, to improve manipulation efficiency, the planner reasons over a large number of available
contact configurations to produce an optimal solution requiring a minimal number of contact adjust-
ments, i.e. configuration changes, and therefore less robot motion during the object manipulation. For
example, in the configuration shown in Fig. 6.1(b) and 6.1(c), the chair-top is stable under the first four
drilling and four following leg-inserting operations. Then at the configuration shown in Fig. 6.1(d), the
object is stable under the following four drilling and four peg-inserting operations. Therefore, in total,
there are only two different contact configurations involved in the displayed solution and only one con-
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figuration change. Finding such an efficient manipulation plan requires the planner to decide on when

to change the object contact with the environment and/or robot as forceful operations are applied onto
the object.

Finally, for each change in the object contacts, the planner needs to decide on how to move the object
to implement the configuration change, e.g. from the one in Fig. 6.1(c) to the one in Fig. 6.1(d).

To address the above challenges, the planner starts with searching for a sequence of contact configu-
rations, i.e. robot configuration and object pose w.r.t. the environment, which can keep the object stable
under the sequential external forces. The planner minimizes the number of different configurations in
the sequence, such that the robot can move the object as minimally as possible throughout the task.
Then, the planner generates continuous motion trajectories to connect these planned configurations. We
describe details of this hierarchical planning approach in Sec. 6.2.

Note that a key source of computational cost in the planning process comes from the stability check
and the explosion of available contact configurations: to find a minimal sequence of contact configura-
tions to keep an object stable under changing external forces, the planner explores from a large set of
candidate configurations which act as representatives of the augmented high-dimensional configuration
space. What is more, each such candidate configuration needs to be separately checked for stability
against all involved external forces. Given the frictional constraints at contact points, such a stability
check takes the form of constrained optimization, a computationally expensive procedure.

In this regard, as another contribution, we propose a novel strategy to efficiently perform stability
checks of a large number of configurations. We introduce a concept of containment relationship among
different contact configurations based on their capabilities of resisting external wrenches, which the
planner can use to quickly compare the stabilization capabilities among different configurations and
accordingly cut off redundant stability checks involved for the set of candidate configurations. We
provide details of the containment-based stability check in Sec. 6.3.

6.1 Problem Formulation

This section briefly outlines the manipulation planning problem under changing external forces but
using environmental contacts, i.e. another interpretation of Def. 1 in the context of using environmental
contacts for object manipulation under changing external forces.

We use a wave cutting task consisting of 20 cutting operations as shown in Fig. 6.2(a) to illustrate
the problem. For such a forceful task {Fi}mi=1, as stated in Def. 1, the planner generates a sequence of
system configurations

{
qj
}n
j=1

and motion trajectories {tj}nj=1 to keep the object stable under changing
operation forces as shown in Fig. 6.2(b). Each configuration in

{
qj
}n
j=1

corresponds to a combination
of environmental and robot contacts providing resisting wrenches onto the object against a subsequence
of forceful operations in {Fi}mi=1.

Further, as previously referred to as configuration change minimization in Chap. 5, the planner
minimizes the need of changing object contacts in the solution for the sake of manipulation efficiency.
For example, as shown in Fig. 6.2(b), the planner uses only three contact configurations to keep a board
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F1

F2

F5

F7

F14

F20

A wave cutting task: {Fi}20i=1

Environmental contact ce

Robot contact cr

Initial system configuration q0

f1

p1

(a) Inputs: A wave cutting task {Fi}20i=1 and the initial system configuration q0.

q2 q3

t1 t2 t3

Cutting F1 to F7 Cutting F8 to F14 Cutting F15 to F20

q1

(b) Outputs: A sequence of system configurations
{
qj

}3

j=1
and motion trajectories {tj}3j=1.

Figure 6.2: The planner exploits deliberate environmental contacts to keep an object stable under chang-
ing external forces.

stable under 20 wave cutting operations.

6.2 Planning Approach

This section explains in detail the overall planning procedure.

6.2.1 Manipulation Planning Using Operation Graph

Similarly to our previous work in Chap. 5, formally, the planner takes a hierarchical planning framework.
At the high-level it builds an operation graph over a sequence of forceful operations {Fi}mi=1 and a set
of candidate contact configurations Qc. Then, the planner searches along the operation graph for a
minimal sequence of configurations

{
qj
}n
j=1

that are stable against the forceful operations {Fi}mi=1.
Then, the planner generates robot motion trajectories {tj}nj=1 to connect these configurations. We
provide pseudo-code of the planner in Alg. 2.

Operation Graph: Our planner starts by building an operation graph, using a set of checked-stable
comfiguration from among a set of sampled condidate configurations Qs. The set Qs acts as a rep-
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F1 F2 Fm−1 Fm

2

0

0

2

1

2

An Operation Graph Using Environmental Contacts

Add new robot contact

Change environmental contact

qa

qb

qa

1

2

qb

qc

qc

Figure 6.3: We build an operation graph to search for efficient manipulation solutions with a minimal
number of configuration changes. We adopt a more fine-grained weighting scheme: from the node qa

to the node qb, the object contact with the environment changes. The robot contact changes by adding
one more gripper on the object (The other is held constantly). Thus we weight the link from qa to qb in
the operation graph as 2.

resentative of the augmented configuration space, and can be prespecified, e.g. using existing contact
generators (Debus et al., 2004; Lefebvre, 2003).

Similarly, as illustrated in Fig. 6.3, the operation graph a directed acyclic weighted graph. In an
operation graph, the ith column of the graph corresponds to the forceful operation Fi ∈ {Fi}mi=1, while
the nodes in the ith column represent a subset of configurations in Qc, which are checked stable against
Fi (We discuss how this stability check is performed previously in Sec. 4.2).

Weighting Links in the Operation Graph: We further define a link between every two nodes in
neighbouring columns of the graph and weight the link with a weighting scheme related to the number
of configuration changes.

As illustrated in Fig 6.3, rather than weighting the link of two different configurations (e.g. from
qa to qb) as one, here we adopt a more fine-grained weighting scheme, computing the weight as the
number of total changes in the environmental and robot contacts. For example, in Fig. 6.3, from the
node qa in the first column to the node qb in the second column, we say the number of configuration
changes is two, including one robot contact change (one extra gripper is added onto the object) and
one environmental contact change (the contact region changes). Thus, we weight the link with two.
However, the weight between the node qc in the first column and the node qc in the second column is
zero, since they represent the same sample configuration.

Searching the Operation Graph: At this point, using the operation graph, finding a minimal sequence
of system configurations

{
qj
}n
j=1

stable against {Fi}mi=1 is reformulated as a graph search problem.
The expected output is a path that starts from one node in the leftmost column for the operation F1

and ends with a node in the rightmost column for the operation Fm, with a smallest total weight. By
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searching the graph, e.g. using Dijkstra’s algorithm, the planner can easily find an optimal solution, i.e.
an efficient manipulation plan with a minimal number of configuration changes. In Fig. 6.3, the red path
illustrates such a solution.

The procedure PlanStableSequence in Alg. 2 provides pseudo-code of the planning process using an
operation graph. The procedure BuildOperationGraph builds the operation graph (line 2) as described
above. The procedure GraphSearch (line 3) searches the operation graph to generate a candidate con-
figuration sequence

{
qj
}n
j=1

. Then for every two subsequent pair of the configurations in the sequence
(line 5 - 9), the procedure PlanConfigChange attempts to plan motions using general motion planners,
e.g. RRT-based planners, to implement the configuration changes.

6.2.2 Finding Stable Configurations for an Operation

As described above, building an operation graph requires the planner to check and find a subset of stable
configurations for each forceful operation in {Fi}mi=1, from a set of sampled candidate configurations
Qs. This is achieved by FindStableConfigs in Alg. 1 (line 3 in BuildOperationGraph).

The planner starts from sampling a set of candidate configurationsQc, which acts as a representative
to the high-dimensional composite configuration space (line 1 in PlanStableSequence). The set Qc in-
cludes a large number of candidate configurations corresponding to a variety of object-environment and
object-robot contacts. Given the environment model, the problem of environmental contact generation
has been extensively studied in the literature based on geometric computation (Lefebvre, 2003; Xiao &
Ji, 2001), learning (Debus et al., 2004) and kinematics simulators (Ma et al., 2018; Pan et al., 2012).
Likewise, robot contacts can be computed via general grasp planners, e.g. Miller and Allen (Miller &
Allen, 2000). Such techniques lie outside the scope of this work. Our planner is, in fact, agnostic to the
contact generation strategy and thus can use any existing method in the literature for this step. In this
work, we assume the existence of such a representative contact configuration set Qc. Later in Sec. 6.4,
we explain how we generated such a set for the experiments involved in this work.

Note that, to find efficient manipulation plans that minimize configuration changes, the planner
needs a large set of candidate configurations Qs, which, however, makes the procedure FindStableCon-
figs and as a result the procedure BuildOperationGraph computationally expensive. This is because,
given an operation F, the procedure requires the planner to perform a separate stability check for each
sampled configuration q ∈ Qc, while the stability check itself of a single configuration is already a
computationally expensive process (as explained in Sec. 4.2). Therefore, after presenting a naive ap-
proach in Sec. 6.3.1, we present, in Sec. 6.3.2, a containment-based strategy to implement the procedure
FindStableConfigs efficiently.

6.3 Containment-Based Stability Checks

This section introduces a containment relationship, which we use to present an efficient strategy to find
all configurations inQc that are stable against a forceful operation F, i.e. the procedure FindStableCon-
figs in Alg. 2.
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Algorithm 2 Manipulation Planning Using Operation Graph
PlanStableSequence

(
{Fi}mi=1 , q0

)
:

1: Qc ← Generate a set of candidate system configurations
2: GO ← BuildOperationGraph

(
{Fi}mi=1 ,Qc

)
3:

{
qj

}n

j=1
← GraphSearch (GO)

4:
{
qj

}n

j=0
← Add q0 to the beginning of

{
qj

}n

j=1

5: for each subsequent qj and qj+1 in
{
qj

}n

j=0
do

6: tj+1 ← PlanConfigChange(qj , qj+1)
7: if PlanConfigChange failed then
8: Remove failing edge from graph GO

9: Go to line 3
10: end if
11: end for
12: return (

{
qj

}n

j=1
, {tj}nj=1)

BuildOperationGraph
(
{Fi}mi=1 ,Qc

)
:

1: GO ← ∅
2: for each forceful operation Fi in {Fi}mi=1 do
3: S ← FindStableConfigs(Fi,Qc)
4: if i = 1 then
5: Add S into GO as the first column
6: else
7: for each configuration q′ in previous column of GO do
8: for each configuration q′′ in S do
9: w←ComputeWeight (q′, q′′)

10: Create a link from q′ to q′′ with a weight w
11: end for
12: end for
13: end if
14: end for
15: return GO

6.3.1 Naive Stability Check of Qs

As previously mentioned, given a forceful operation F and a candidate configuration q, stability check
means checking if the configuration q is stable against the forceful operation F, while the procedure
FindStableConfigs involves performing stability checks for all configurations in Qc.

In this context, for the procedure FindStableConfigs, the planner can simply perform a stability
check for each candidate configuration q, and return a set of stable ones in Qc against the forceful
operation F. We call this implementation the Naive Stability Check and provide the pseudo-code of this
implementation in Alg. 3.

Nonetheless, as aforementioned, due to the large size of the set Qs and the property of stability
check, Alg. 3 can be computationally expensive, which would degrade the planning efficiency of Alg. 2.
To address this issue, we propose an efficient strategy in the next section.
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Algorithm 3 Naive Stability Check
FindStableConfigs(F,Qc):
1: S = ∅
2: for each configuration q inQc do
3: Solve the constrained optimization problem in Eq. 4.3
4: if Eq. 4.3 has a solution then
5: Add q to S
6: end if
7: end for
8: return S

6.3.2 Containment-Based Stability Check of Qs

Rather than performing excessive stability checks by directly solving optimization problems over all
sample configurations in Qc, we propose a containment-based strategy to implement FindStableCon-
figs efficiently. The algorithm relies on the containment relationship among different configurations to
quickly eliminate redundant stability checks. We present pseudo-code of this implementation in Alg. 4.

Containment Relationship: We define the containment among different system configurations over
their capability of resisting external forces, i.e. contact wrench space (Borst et al., 2004; Hertkorn et al.,
2012). A system configuration q describes the geometric relationships among the object, the robot and
the environment, while the contact region(s) corresponding to the configuration indicates its capability
of resisting external forces. For example in Fig. 6.41, since the environmental contact region cbe contains
cae and the robot contact cbr contains car , any forceful operation resistible by the configuration qa is also
resistible by the configuration qb. That is, qb contains qa in terms of the capacity of resisting external
wrenches. In this context, we define the containment relationship (described with ⊆) as:

Definition 2 (Containment Relationship). Let qa and qb be two system configurations, we say qb

contains qa (qa ⊆ qb), iff

– cae ⊆ cbe and

– car ⊆ cbr

where cae , cbe are the environmental contact regions corresponding to the configuration qa and qb, and
car and cbr are the corresponding robot contacts.

Note that the containment among the environmental contact regions holds only for the same surface
contacts, as the friction coefficients may be different for different materials. The containment relation-
ship can be further constrained and defined in more subtle degree, e.g. by comparing environmental
contacts and robot contacts in an integrated manner, which, as a trade-off, would result in high compu-
tational complexity.

Containment Graph: We then build a directed acyclic containment graph T over all sampled configu-
rations in Qc to represent their containments (line 2 in Alg. 4). Specifically, as illustrated in Fig. 6.4(c),

1 Fig. 6.4 is illustrated in 2D for clarity of presentation. In our implementation, contact regions and containment are defined
in 3D.
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(c) Containment Graph(a) Environmental Contacts (b) Robot Contacts

Griper

Environmental contact

Figure 6.4: We build a containment graph over all system configurations in Qc to represent their con-
tainments. The red segments illustrate environmental contacts with the object.

each node in the graph represents a contact configuration q ∈ Qc. For every pair of nodes, if there exists
a containment relationship between them as defined in Def. 2, they are connected with a directed link.
For example, the node qa in Fig. 6.4(c) is contained and thus becomes a successor to the other three
nodes.

Stability Check Using Containment Graph: Based on the characteristics of the containment graph,
we introduce two properties to simplify the procedure FindStableConfigs.

Property 1 (Activating Property). Given a forceful operation F and a containment graph T , if a node
q is stable against F, then all its predecessors in T are stable against the operation F.

The property can be easily proved via Def. 2. We call this property the ‘activating’ property, as
based on this property, if a configuration q is checked to be stable against a forceful operation F, all
its predecessor configurations can be directly ‘activated’ to be feasible without solving an optimization
problem in Eq. 4.3 (line 6-9 in Alg. 4). For example, if qa in Fig. 6.4(c) is stable against an operation
F, then all other nodes in the graph can be directly regarded as stable configurations against F.

Property 2 (Blocking Property). Given a forceful operation F and a containment graph T , if a node q
is not stable against F, then all its successors in T are not stable against the operation F.

Similarly, this property can also be easily proved via Def. 2. We call this property the ‘blocking’
property, as based on it, if a configuration q is checked to be not stable against a forceful operation F,
all its successor configurations can be directly ‘blocked’ (line 10-12 in Alg. 4). For example, if qb in
Fig. 6.4 is not stable against an operation F, then all other nodes in the graph can be directly regarded
as infeasible.

By utilizing the activating and blocking properties, the algorithm does not need to solve a con-
strained optimization problem for each configuration in Qc separately, thus reducing the computational
complexity of procedure FindStableConfigs greatly. We proposed experiments to verify the effective-
ness of using the containment graph in the overall planning in Sec. 6.4.2.
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Algorithm 4 Containment-Based Stability Check
FindStableConfigs(F,Qc):
1: S ← ∅
2: T ← build a containment graph as Fig. 6.4
3: while T is not empty do
4: q ← randomly pick a configuration in T
5: Solve the constrained optimization problem in Eq. 4.3
6: if Eq. 4.3 has a solution then
7: S ← Add q and its predecessors in T to S
8: T ← Remove q and its predecessors from T
9: go to line 3

10: else
11: T ← Remove q and its successors from T
12: go to line 3
13: end if
14: end while
15: return S

6.4 Experiments and Results

This section presents a variety of simulated and real robot experiments, using a Baxter robot in both
cases, to validate and quantitatively assess the performance of our proposed planning approach.

Experimental Setting:

The planning approach was implemented in OpenRAVE (Diankov & Kuffner, 2008) with the flexible
collision library (FCL) (Pan et al., 2012) for collision checking and contact detection. We used the
Scipy.optimize library for the optimization based stability check (Eq. 4.3), the NetworkX (Hagberg
et al., 2008) for graph construction and search, and the BiRRT (Kuffner Jr & LaValle, 2000) for motion
planning in the procedure PlanConfigChange of Alg. 2.

We implemented the planner on three types of forceful operations, drilling, cutting and inserting on
foam boards. We captured experimental data via a force/torque sensor (FT150 from Robotiq) to model
the distributions of these forceful operations as discussed in Sec. 4.4.

Generating a Set of Candidate Configurations Qs:

We sampled three sets of candidate system configurations (line 1 of the procedure PlanStableSequence
in Alg. 2) and fed them to the planner.

To obtain such sets with higher sample diversity, we evenly discretized and generated a set of contact
regions ce on the object surface with a fixed step size for environmental contacts, and discretized the
object surface as a set of contact points cr for robot contacts. A combination (ce, cr) of such an environ-
mental and robot contact regions defines a contact profile a system configuration q may have. Then, to
map the contact regions (ce, cr) into a fully-assigned system configuration q, we evenly discretized the
structure surfaces in the environment into a set of placement positions. At each position, we checked
whether there exists a kinematically valid configuration q meeting the contact profile (ce, cr).

In this manner, we sampled three sets of candidate configurations with different set size (|Qs| =

144, 560, 1172) for the following experimental studies.
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Table 6.1: Numbers of configuration changes for each task by the baseline and proposed planner with
three sample sets of different sizes.

Method Set Size |Qs|
# of Configuration Changes

Task 1 Task 2 Task 3 Task 4

Baseline 144 23 19 20 27

Proposed
144 4 10 7 9
560 3 4 3 3

1172 3 1 1 2

6.4.1 Analysis of Minimizing Configuration Changes

First, we assessed the performance of our planner in minimizing the number of configuration changes
(consequently, task interruptions) along four different forceful tasks in comparison with a baseline plan-
ner.

– Task 1: A rectangular cutting task consisting of 20 continuous cuttings as shown in Fig. 6.5 to
cut a rectangular piece off from a board. The environment has a flat surface in front of the robot;

– Task 2: A stool fabricating task involving cutting four legs (discretized as twenty cutting opera-
tions), drilling four holes and inserting four legs in sequence (28 forceful operations in total) as
shown in Fig. 6.6. The environment has an L-shaped structure in front of the robot;

– Task 3: A chair assembly task consisting of four hole-drillings, four peg-insertings, four leg-
insertings, four hole-drillings and four peg-insertings in sequence (20 forceful operations in total)
as shown in Fig. 6.1. The environment has only a flat surface in front of the robot;

– Task 4: A wave cutting task discretized into 20 cuttings as shown in Fig. 6.2. The environment
has a t-shaped supporting structure in front of the robot.

To the best of our knowledge, there exists no planner in the literature directly capable of solving
such complex tasks. Existing strategies would, in the best scenario, need to plan each forceful operation
individually, neglecting the sequential property that defines a task. We define such a scenario as the
baseline planner. For each operation in a task, the baseline planner iterates over the available candidate
configurations in Qs until it finds the first stable one.

Table 6.1 summarizes the results of configuration changes by the baseline planner and our proposed
planner. As shown in the table, compared with the baseline planner, our planner reduces the number of
configuration changes dramatically. Specifically, with |Qs| = 144, for Task 1 (the rectangular cutting
task), the baseline planner finds a solution with 23 configuration changes and therefore generates a new
configuration for almost every involved operation (20 operations in total). Our planner generates a more
efficient solution (Fig. 6.5-Top, Solution A), which involves only four different system configurations
and four configuration changes in total. Similarly, Fig. 6.6 shows a solution generated by our planner
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Solution A

q1 q2 q3 q4

Solution B

q1 q2 q3 q4

Figure 6.5: Two manipulation plans for a rectangular cutting task (Task 1) consisting of 20 forces. Top:
Solution A contains 4 configuration changes, with a robot regrasp (from left arm in q2 to right arm in
q3). Bottom: Solution B contains 3 configuration changes.

for Task 2, which involves only one configuration change. Fig. 6.1 and 6.2 show an efficient solution
for Task 3 and 4 respectively.

It is also notable that as we increase the number of sampled configurations in Qs, i.e. the set size
|Qs|, the planner may come up with better solutions, that is, manipulation plans with a further reduced
number of configuration changes, as shown in Table 6.1 for all tasks. To better illustrate the difference,
take for instance Fig. 6.5-Bottom which shows a different solution for Task 1 generated by our planner
but with |Qs| = 1172. As shown, when the set size |Qs| increased, the planner came up with a more
efficient solution: in Solution A (real robot experiments), the planner requires a regrasping (from right
arm in q2 to left arm in q3) whereas in Solution B (from the simulator)2 the robot is capable to perform
the task only with the right hand.

6.4.2 Analysis of Planning Efficiency

We further verified the performance of our planner in terms of time efficiency. More specifically, we
compared our planner (Alg. 2) using the naive stability check in Alg. 3 (Plan-N, for brevity) with the

2Note both scenarios were implemented in simulation and in the real robot, but they are presented separately in Fig. 6.5 to aid
the discussion.
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q1 q2

Four leg-cuttings Four hole-drillings Four leg-insertings

q2

Figure 6.6: A manipulation plan for a stool fabricating task (Task 2) consisting of 20 forces. The solution
contains 1 configuration change (environmental contact from q1 to q2).

Table 6.2: Average time (s) for building the operation graph and the overall planning time in parentheses
for each task over 50 runs.

|Qs|
Task 1 Task 2 Task 3 Task 4

Plan-N Plan-Cont Plan-N Plan-Cont Plan-N Plan-Cont Plan-N Plan-Cont

144 198.5(223.1) 20.1(37.7) 280.1(335.0) 31.0(81.9) 211.8 (246.8) 22.9(56.7) 201.3(256.1) 22.2(74.6)
560 773.2(792.0) 69.7(86.6) 1100.6(1121.1) 77.8(96.0) 821.5(837.5) 72.4(87.9) 799.1(820.0) 70.8(91.3)

1172 1551.2(1570.1) 98.3(115.4) 2087.8(2092.5) 135.8(138.2) 1611.7(1615.4) 112.0(115.8) 1605.4(1616.7) 109.9(120.0)

(same) planner but using the containment-based strategy in Alg. 4 (Plan-Cont, for brevity)3. Note that
the two planners differ in the strategy of implementing the procedure FindStableConfigs in Alg. 2, i.e.
building the operation graph which is the most computationally complex procedure in Alg. 2, as it
involves perform stability checks over all forceful operations and candidate configurations.

Taking the same four tasks as previous, Table 6.2 summarizes the average time for building the
operation graph over 50 runs for each task, with the total planning time listed in parentheses. As shown,
the containment-based strategy (bold in Table 6.2) increases the planning efficiency significantly for
about ten-fold compared to a more straightforward, but naive approach. For example, for Task 2 with
|Qs| = 1172, it takes about 2087.8 s for the Plan-N to build the operation graph compared to 135.8 s by
the containment-based planner (an improvement of about 15×). Similar analysis can also be made for
the other three tasks and configuration sets.

Table 6.2 also highlights the time cost of building the operation graph in the total planning time
(in parentheses). As shown in the Table, with lower values of |Qs|, i.e. smaller configuration sets, the
planner would generate solutions with more configuration changes, and therefore more motion plan-
ning iterations would be required. This results in a larger difference between the time for building the
operation graph and the total planning time.

It is also important to mention that the containment-based planner requires extra construction of the
containment graph as described in Sec. 6.3.2. Nonetheless, this is a low computational complexity task

3 In Sec. 6.4.1, the proposed planner refers to Plan-Cont, but both strategies could have been used as they return the same plans
and configuration changes.
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Table 6.3: Average time (s) for building the containment graph.

|Qs| Task 1 Task 2 Task 3 Task 4

124 0.04 0.06 0.04 0.07
560 0.26 0.40 0.31 0.59
1172 0.97 1.25 1.05 1.52

as illustrated in Table 6.3, which shows the average time for building the containment graph over 50
runs for each task. As shown, the time for building the containment graph increases proportionally to
|Qs|, but it still represents less than 1% of the building time required for the operation graph in Table 6.2
and thus negligible in the overall planning. For example, for Task 2 with |Qs| = 1172, it took only 1.05s
for the planner to build the containment graph, but 135.8 s to build the operation graph and 138.2 s for
total planning.

Based on the above analysis, we can conclude that compared with performing naive stability checks
(Eq. 4.3) for all operations and sampled configurations, building the containment graph can greatly
improve planning efficiency.

Limitations:
One limitation of this work is the specification of the candidate contact configuration set Qc. In

this chapter, we mainly focus on the robot kinematic and geometric-collision constraints in generating
such a configuration set. However, this might result in object configurations which are not acceptable
to humans in the context of fHRC due to, e.g. object visibility and reachability. Regarding to this
issue, human preferences can be integrated into the specification as a preliminarily filter of inappropriate
contact configurations. In addition, from the perspective of planning efficiency, a separate process can
be created to maintain and update a set of high-quality candidate contact configurations based on human
preferences.

Till now, we have discussed the manipulation planning problem using both environmental and robot
contacts to keep objects stable under changing external forces, concerning task stability and efficiency
explicitly in planning cooperative robot behaviours. In the next chapter, we move our focus to the human
partner, further improving robot behaviours for enhanced human comfort in fHRC.
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Chapter 7

Planning for Comfortable Forceful
Human-Robot Collaboration

This chapter presents our work on planning for human comfort in fHRC. In addition to task stability and
efficiency addressed in previous chapters, we aim at further improving robot behaviours by explicitly
taking human comfort in performing collaborative forceful operations into account, generating robot and
object configurations that maximizes the human’s muscular comfort and peripersonal-space comfort.

We particularly focus on the context where a robot manipulates an object in close proximity to a
human, who applies a collaborative forceful operation, such as drilling and cutting, on the object. An
instance is shown in Fig. 7.1, where a human is drilling on a wooden board held by a robot assistant at
different configurations.

Theoretically, there may be infinite ways for the robot to grasp and position the board and accord-
ingly for the human to apply the desired forceful operation. Among these candidate configurations,
however, a large proportion would pose the human at configurations which are uncomfortable (e.g. the
one in Fig. 7.1(b)) and even unsafe (e.g. the one in Fig. 7.1(a)) for the human to apply the operation.

Human comfort and safety in a collaborative forceful operation highly depends on where the human
body is positioned relative to the object and robot and how the active human arm is configured in ap-
plying the required operation force, and therefore, where and how the robot configures its manipulators
to grasp and position the target object for the human during the operation. In this sense, to achieve a
high level of human comfort in performing a collaborative forceful operation, it is critical for the robot
to find appropriate configurations to grasp and position the object which are not only stable against the
operation force, but also comfortable for the human.

In this chapter, we propose a planner to empower robots with this capability, which explicitly con-
cerns both human comfort and force stability so as to achieve an enhanced fHRC experience with
improved performance from both sides. To quantify human comfort during forceful interaction, we
formulate two quality metrics:

First, we formualte a muscular comfort metric based on the human’s muscular features, kinematics
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(a) Too close to the robot (b) High muscular effort

(c) Unstable grasp (d) Comfortable and stable

Figure 7.1: Human-robot collaboratively drilling on a board.

and the involved forces. This metric quantifies the human’s muscular efforts in performing an operation
force at a specific arm configuration. For example, it predicts a higher muscular comfort value for the
human configuration in Fig. 7.1(a) and Fig. 7.1(d), but a lower muscular comfort value for the human
configuration in Fig. 7.1(b), for a same collaborative drilling operation. The muscular comfort focuses
on the physical sensation of the human body in applying an operation force at a certain configuration. It
predicts and proactively instructs the human to configurations which require less physical joint-torque
efforts to perform a forceful operation.

Nonetheless, through our initial experiments, we discovered that optimizing only muscular comfort
is not sufficient to guarantee human comfort. For example, while the human in Fig. 7.1(a) may have
better muscular comfort in comparison with Fig. 7.1(b), he is dangerously close to the robot and is
even obstructed by the robot limbs. Human behaviours vary according to their assessments of robot
counterparts while collaborating for forceful operations in close proximity, in particular the level of
trust and safety perception (Lasota & Shah, 2015; Lasota et al., 2014). Furthermore, the human and
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robot may need to move before, during and after the forceful operation. Therefore, having enough
space between them is important. In this regard, to improve human awareness and safety perception,
we exploit a concept of the human’s peripersonal-space comfort, which will increase the overall spatial
distances between body parts of the human and robot. The idea is to allow humans to move and act
within their peripersonal space1 minimizing the perceived risk of robot intervention. Fig. 7.1(d) shows
a configuration optimizing both the human’s muscular and peripersonal-space comforts: the human is
drilling at a physically comfortable pose, with the distance to the robot being large enough to reduce
spatial discomfort.

In our previous work introduced in Chap. 5 and 6, from the robot perspective, we mainly focus
on searching for efficient and robust plans for object manipulation under changing external force. In
that body of research, we assumed the object pose to be prespecified (Chap. 5) or to be any feasible
one (Chap. 6) during collaborative forceful operations, and therefore robots can hold objects at any
kinematically accessible configuration under the constraint of force stability. This chapter we plan from
the human perspective, aiming at generating configurations for robots to position and grasp objects, to
guarantee both manipulation stability and human comfort in collaborative forceful operations. In this
sense, the work in this chapter can be regarded as a preliminary step towards stable, comfortable and
efficient fHRC.

To achieve this, the planner needs as inputs the collaborative forceful operation and the geometrical
models for the human, the robot and the target object. It maximizes a cost of human’s muscular comfort
and peripersonal-space comfort, which generates an optimal configuration for the robot to grasp and
position the target object for the human.

7.1 Optimization Overview

This section briefly outlines our optimization framework for improving human comfort in fHRC. Partic-
ularly, we are interested in optimizing a combined cost of the human’s muscular comfort and peripersonal-

space comfort, to search for an optimal configuration at which the robot can configure its manipulators
to grasp an object such that:

– The human can perform a collaborative forceful operation F with a high level of comfort;

– The object can remain stable while the human applies the operation force f onto it.

Given a forceful operation F, the planner optimizes a cost Comfort (qr, po, f , p) to search for a
robot configuration qr and an object pose po, such that the object can be stably grasped against the
operation force f and the human comfort during the operation can be maximized:

1Peripersonal space is the space immediately surrounding our body, or the sector of space that closely surrounds a certain body
part, in which multi-sensory and sensorimotor integration is enhanced (Bartolo et al., 2014; Rizzolatti et al., 1981).
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qr
∗, po

∗ = arg max
qr,po

Comfort (qr, po, f , p)

s.t. Is stable (qr, po, f , p)

(7.1)

The function Is stable (qr, po, f , p) checks via static equilibrium whether the robot at the config-
uration qr is able to keep the object stable under the operation force f with the corresponding grasp g,
which has been discussed in detail as stability check in Sec. 4.2.

Eq. 7.1 attempts to maximize a cost of Comfort, which we use to quantity the overall human comfort
in performing a forceful operation. Herein we model the cost Comfort with two components: the
human’s muscular comfort and peripersonal-space comfort. We assume the existence of corresponding
cost functions which quantify both comfort values. Specifically,

– Muscular (qh, f , p, ph, po) returns a scalar value quantifying the human’s muscular comfort in
performing a forceful operation (f , p) at a configuration qh (which is defined by the human body
pose ph and object pose po due to the geometric and kinematic coupling). We explain how we
formulate this cost in Sec. 7.2.

– Peripersonal (qh, ph, qr) returns a scalar value quantifying the human’s peripersonal-space com-
fort at a configuration qh, a body pose ph and a robot configuration qr. We present how we
formulate this cost in Sec. 7.3.

Note that both comfort metrics take the human configuration qh and body pose ph as inputs, which
are undetermined until the human applies the specific forceful operation. Theoretically, given a forceful
operation (f , p), an object pose po and a robot configuration qr to hold the object, the human can choose
any accessible arm configuration and body pose (qh, ph). This raises the question that how the human
will perform a forceful operation F, i.e. which arm configuration qh and body pose ph the human will
choose for (f , p), which we need to answer for solving the optimization problem in Eq. 7.1.

Given an object pose po and a robot configuration qr to hold the object for a forceful operation
(f , p), we denote the set of all feasible human choices, i.e. the arm configuration qh and body pose ph,
as

Qh (qr, po, f , p)

By feasible, here we mean that the arm configuration qh and the body pose ph satisfy the stability and
kinematic constraints. In other words, Qh includes all the human poses and configurations the human
can choose from to successfully perform the forceful operation (f , p), if the robot grasps the object at
a configuration (qr, po).

Then, the cost Comfort can be formulated with different options:

Option One is to take the average comfort value of all feasible human choices. Assuming Qh is a
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discretized set,

Comfort (qr, po, f , p) =
∑
{wM

qh,ph∈Qh

Muscular (qh, ph, f , p, po)+wPPeripersonal (qh, ph, qr)}/|Qh|

(7.2)

where wM and wP are the weighting coefficients for muscular and peripersonal-space comfort respec-
tively. |Qh| indicates the size of the set Qh

2.

Option Two is to assume the human will choose the most comfortable arm configuration qh and
body pose ph from the feasible set Qh,

Comfort (qr, oT, of , o
t T) = max{wM

qh,ph∈Qh

Muscular (qh, ph, f , p, po) +wPPeripersonal (qh, ph, qr)}

(7.3)

In the rest of this chapter we assume the human choice is optimal and therefore adopt the second
option. We solve the optimization problem defined by Eq. 7.1 and 7.3. The problem can alternatively
also be solved for Eq. 7.1 and 7.2. In Sec. 7.4, we present human subject studies to further investigate
and verify this assumption.

7.2 Muscular Comfort

This section3 introduces the metric of muscular comfort, using which we quantify the human’s muscular
effort required in applying a forceful operation (f , p) while at an arm configuration qh, i.e. the cost
function Muscular (qh, f , p, ph, po) in Eq. 7.3.

7.2.1 Human Arm Modelling

As shown in Fig. 7.2, like a robot manipulator, we model the kinematics and dynamics of a human limb
as a serial-link kinematic chain with 7 DOFs —Two spherical joints at the shoulder and wrist and one
revolute joint at the elbow4. The resemblance between the human arm and the robot manipulator enables
a direct mapping from the human arm joint configuration space to the task space where the operation
force is applied, that is, the human-arm forward kinematics

xh = FKM (qh) (7.4)

2Here we omit the arguments to Qh for clarity, but it is important to note that the set Qh is determined by the same arguments
as the cost function Comfort.

3The work in this section is led by Dr. Figueredo (L.Figueredo@leeds.ac.uk) from the School of Computing, Uni-
versity of Leeds, UK. Briefly, Dr. Figueredo proposed the formulation of muscular comfort, while Lipeng Chen did most of the
experiments and optimization work.

4An important limitation of this current formulation is that it only considers the human arm in measuring the human’s muscular
effort, ignoring the rest of the body. It is our intention to extend the formulation and our planner to the whole body in the future.
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Figure 7.2: Human-robot kinematic chain modeling: the human arm is modelled as a serial kinematic
chain with seven degrees of freedom (DOFs).

where xh denotes the pose of the human hand w.r.t. the robot frame. Then, the differential forward
kinematics of the human arm can be written as

ẋh = Jh(qh) (q̇h) (7.5)

where Jh(qh) is the geometric Jacobian of the human arm at the configuration qh.
Then, given a human applied operation force f h with respect to the robot frame, the corresponding

force/torque response τh distributed at the arm joints can be denoted as

Mh (qh) +Ch (qh, q̇h) +Gh (qh) = τh − JT
h (qh)f h (7.6)

where Mh, Ch, and Gh represent the inertia matrix, the vector of centrifugal and Coriolis forces, and
the vector of gravitational effects respectively.

Assuming quasi-static movements, the effects of higher order dynamics can be neglected and there-
fore the arm joint torques τh depend solely on the applied operation force f h and gravity effects Gh.

The gravitational effects result from contributions of the arm weight, the arm centre of mass, the
tool mass and its pose. Generally, the gravitational forces are well-defined in the inertial frame and
are independent of the arm configuration qh, whereas the corresponding gravitational torque closely
depends on the joint configuration qh. Given an arm configuration qh, we denote the corresponding
generalized gravitational effects as ρh(qh)5.

Then, given a forceful operation (f ,p) and a human arm configuration qh, the required forces/torques
τ h at the arm joints can then be computed as:

τ h = JT
h (r

tTf + ρh) (7.7)

where the matrix r
tT is a norm-preserving congruence transformation which converts the operation force

f from the tool frame to the inertia frame f h = r
tTf .

5We drop the argument qh in the rest of the section for clarity.
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7.2.2 Human Muscular Effort

This section presents our methodology of the measuring human’s muscular comfort in applying a force-
ful operation.

The existing studies in robotics usually quantitatively assess a configuration of a robotic manipulator,
particularity its manipulability (Yoshikawa, 1985), via the force manipulability ellipsoid (FME), which
is defined as the pre-image of the unit sphere in the joint space of the manipulator ‖τ‖2 = fTJJTf ≤
1. An alternative quality metric to the FME is the force polytopes (Chiacchio et al., 1997) which
replaces the FME L2-norm problem with an L∞-norm problem with n more constraints (n denotes
the size of τ ). Although not being as precise as the force polytopes, the FME is more commonly
used due to the reduced computational difficulties. Vahrenkamp & Asfour (2015) also proposed an
extended manipulability measure incorporating constraining factors, such as joint limits, obstacle or the
self-distance between manipulator and other parts of the robot.

Or, assume knowing the human joint limits τmax
h , if the human arm worked exactly like a robotic

manipulator, given a forceful operation (f ,p) and an arm configuration qh, intuitively, one planner
could compute the corresponding forces/torques τh required at the arm joints using Eq. 7.7, and then
evaluate the human’s muscular effort simply by measuring how close the required forces/torques τh are
to their corresponding joint limits τmax

h , i.e. the further they are from the limits, the more comfortable
the corresponding arm configuration is for the human to apply the operation force f .

Nevertheless, these assessments cannot properly measure the force generation capability at end-
effectors for biological systems, particularly for human arms, since no biological motor properties, such
as the nonlinear feature of torque limits τmax

h at the human arm joints, are considered in modelling. A
better modelling of how human arm muscles work is presented by Tanaka et al. (2014), based on which
we devise our metric of muscular comfort in quantifying human’s muscular effort. Compared with a
kinematic chain model, there are two key differences in this model. Specifically, different from the robot
manipulator, for a human arm,

– The torque limits τmax
h at the arm joints for a human depend on arm configuration qh, i.e. the

joint force/torque limits do not stay constant at different arm configurations as they do for a robot
manipulator;

– The torque limits τmax
h also depend on the arm motion direction q̇h, e.g. the torque limit of the

elbow should be modelled differently if it is flexing versus if it is extending.

This suggests that, for a human arm, rather than being fixed values at different configurations, the
joint torque limits τmax

h should be modelled and represented as a function of the arm configuration qh

and the arm moving direction q̇h (i.e. the derivative of the arm configuration) Π(qh, q̇h). The matrix Π

is a diagonal matrix
diag{τmax

1 (qh, q̇h), . . . , τmax
7 (qh, q̇h)}

where each diagonal element τmax
i (qh, q̇h) represents the torque limit of the i-th joint, a nonlinear func-

tion of the human arm configuration qh and its derivative q̇h. Experimental data to capture the values of
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the matrix Π(qh, q̇h) for different human arm configurations can be found in the excel work of Tanaka
et al. (2014) and the values therein are used throughout this work. Although being computed empiri-
cally, these values and proportions between joints and maximum torques follow a similar pattern across
human individuals, even for different body weights whereby results differ only in magnitude. More
details can be found in Tanaka et al. (2014).

As for the arm moving direction q̇h, herein we assume the human arm motion follows a Jacobian-
transpose controller q̇h = JTh (qh)ẋh while applying a specific operation force f h, where ẋh denotes the
motion direction of the human hand. In this work, we assume the human hand moves towards the same
direction as the operation force f h.

Using the joint torque limits Π(qh, q̇h) and the kinematic model in Eq. 7.7, given that muscle tension

is nearly proportional to the muscle activation levels, the joint torque distribution τh can be reformulated
as

τh = Π(qh, q̇h)αh (7.8)

where αh=[α1, . . . , α7]T is the vector of joint torque activation levels, while αi ∈ [0, 1] represents the
activation ratio of the i-th joint torque τi to its maximum torque τmax

i .

Accordingly, we devise the metric to evaluate human’s muscular comfort based on the norm of the
activation level vector ||αh||

Muscular (qh, f , p, ph, po) = 1/||αh||2 (7.9)

where
αh = Π−1(qh, q̇h)JT

h (r
tTf + ρh) (7.10)

7.3 Peripersonal-Space Comfort

In this section, we define the metric of peripersonal-space comfort, which we use to further improve
the human’s comfort experience while collaborating with a robot to perform a forceful operation, i.e.
the cost function Peripersonal (qh, ph, qr) in Eq. 7.3. The planner maximizes the human’s peripersonal-
space comfort so that the human and robot bodies are configured and positioned with a relatively com-
fortable distance during the forceful collaboration.

Similar to human to human interactions, in the context of fHRC, the human and robot have to stand
in close proximity to perform forceful operations together. In such cases, if the robot stands too close to
the human or even surrounds the human body as the one shown in Fig. 7.1(a), the robot would intrude
and occupy a large proportion of the human’s peripersonal space, which as a consequence would cause
a sense of discomfort, such as stress and anxiety, to the human. Furthermore, the inappropriate spatial
occupancy, in some cases may block the human’s view and affect the visibility of object held by the
robot. Besides, unlike most human-robot collaborations well studied in the literature (Cakmak et al.,
2011; Peternel et al., 2017; Rozo et al., 2016; Sisbot & Alami, 2012; Solanes et al., 2018; Strabala
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et al., 2013b), e.g. handovers and object carrying, in which the human and robot simply reach and hold
some object(s) momentarily, the forceful operations discussed in the context of fHRC require strong
and persistent forceful interactions among the human, robot and target object, which poses an additional
spatial requirements in configuring and positioning the robot and object. For example, a too-short
distance would inevitably pose a potential danger to the human, especially when the human is involved
in forceful operations.

To achieve a high level of spatial comfort and safety experience, particularly the peripersonal-space
comfort and safety, one would want the human and robot to get as far from each other as possible during
forceful interactions. Therefore, we formulate the cost of peripersonal-space comfort in the optimization
problem using the distance between the human and robot. Specifically, given a human arm configuration
qh and a body pose ph, we assume the existence of a set of points distributed on the human body and
represent the set as

Ph(qh,ph) =
{

p1
h , p

2
h , ..., p

nh
h

}
where pih ∈ R3 refers to a point on the human body. The distribution of model points on the human body
can be specified according to the operation property. For example, for the case of forceful operations
involved in this work, more points can be arranged on the human arms as they are relatively more close
to the robot. The number of points nh can be specified empirically. Specifically, a larger nh would lead
to a more fine-grained control of the spatial distance between the human and the robot, while a smaller
nh would make the optimization process more efficient.

Similarly, given a robot configuration qr, we represent the set of points on the robot body as

Pr(qr) =
{

p1
r , p

2
r , ..., p

nr
r

}
where pjr ∈ R3 refers to a point on the robot body. Similarly, the distribution of model points on the
robot body can be specified according to the operation property. The number of points nr can be chosen
empirically.

We use these two sets Ph and Pr to represent the body geometry of the human and robot respectively.
Then, we formulate the peripersonal-space comfort using the distances between points in this two set:

One option is to consider the minimum distance between the human and robot, and hypothesize the
cooperation would be as comfortable as the minimum distance allows:

Peripersonal (qh, ph, qr) = min
∀ph∈Ph,∀pr∈Pr

||ph − pr|| (7.11)

Then, the optimization process in Sec. 7.1 would maximize this minimum distance between the human
and robot. While this metric may work well for some types of HRI, e.g. handover, it does not work well
for the context of fHRC, since the minimum distance between the human and robot has a tight upper
bound in our tasks: The robot grippers and the human hand on the tool are naturally the closest points.
Thus, maximizing the minimum distance will mostly just maximize the distance between the human
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hand and robot grippers, completely ignoring any other part of the human and robot bodies.

To address this issue and to take all points into account, one can instead consider the average distance
over all points in the human body:

Peripersonal (qh, ph, qr) =
1

|Ph|
∑

ph∈Ph

min
∀pr∈Pr

||ph − pr|| (7.12)

While this metric takes all human body points into account, it brings about another problem: the larger
a distance is, the more it dominates the computation of Eq. 7.12. For example, if there exists a point
ph ∈ Ph on the human body that is far away from the robot but some other points are much closer to the
robot, then, these points would have less effect on Eq. 7.12 which as a result would provide misleading
results.

This suggests that we need a metric that takes all points on the human body into account, but also
give more weights to the points with smaller distances to the robot and less weight to the points with
larger distances to the robot. Therefore, we formulate the peripersonal-space comfort as

Peripersonal (qh, ph, qr) =
1

|Ph|
∑

ph∈Ph

w(ph) min
∀pr∈Pr

||ph − pr|| (7.13)

where w(ph) is the weight of the point ph defined as

w(ph) = 1−
min∀pr∈Pr ||ph − pr||∑

ph∈Ph
min∀pr∈Pr ||ph − pr||

(7.14)

It associates a small distance with a large weight, thus controlling all distances efficiently. Eq. 7.13 and
7.14 together define the metric of peripersonal-space comfort used in this work.

7.4 Experiments and Results

This section presents a series of experiments to assess the effectiveness of our proposed comfort metrics
in planning for comfortable fHRC.

Experimental Setting:

We implemented the comfort metrics in Python and used the SciPy library for the optimization process,
particularly we used the SLSQP method6 to solve the constrained optimization problem defined by
Eq. 7.1 and 7.3. We adopted the Baxter robot from Rethink Robotics and a human model in OpenRAVE
(Diankov & Kuffner, 2008) for the simulated experiments. We took a set of 64 points Ph distributed
over the human body and a set of 56 points Pr distributed over the Baxter robot for computing the
peripersonal-space comfort in Eq. 7.13 and 7.14. For the optimization process in Eq. 7.1, We weighted
the muscular and peripersonal-space comfort equally, yet it is still worth noting that different weighting
schemes may be chosen according to the task property and human preferences, e.g. expert knowledge.

6https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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(a) 16 cutting Operations (b) 9 drilling Operations

Figure 7.3: We tested our metrics on 16 cutting operations forming the circular cutting task and nine
drilling operations uniformly distributed on a foam board.

We tested the comfort metrics on two kinds of forceful operations, cutting and drilling. Particularly,
we focused on 16 discretized cutting operations on a foam board which form the circular cutting task
as shown in Fig. 7.3(a), and nine drilling operations which are uniformly distributed on the surface of a
foam board as shown in Fig. 7.3(b). For these operations, we used a 6D force/torque sensor to measure
the operation forces as previously discussed in Chap 4. For each category of forceful operations, we
assume an operation-based grasp configuration for the human to hold a specific tool as discussed in
Sec. 7.1.

Experimental Studies:
In this setting, we did a variety of experimental studies to verify the performance of our proposed
comfort metrics. Specifically, we focus on evaluating:

– The consistency and effectiveness of the muscular comfort metric in assessing the human’s muscle
effort in performing forceful operations;

– The effectiveness of the optimization framework using our proposed comfort metrics to cope with
both the muscular and peripersonal-space comforts in planning for comfortable fHRC;

– The actual human comfort perception in real human-robot interactions with regard to the predicted
optimal configurations from optimizing our proposed metrics.

7.4.1 Consistency and Effectiveness of Muscular Comfort

This section presents our experiments to verify the consistency and effectiveness of the muscular com-
fort metric. We compared the quality measure of a set candidate configurations for the 16 cutting
operations in Fig. 7.3(a), predicted by the muscular comfort metric, with their known muscular comfort
sensation, to check whether they are consistent with each other.
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(a) The arm configuration a© for a cutting operation. (b) The arm configuration b© for a cutting operation.

Figure 7.4: Two different arm configurations for a cutting operation with different muscular comfort.

Specifically, for the 16 cutting operations, we assumed a fixed transformation the human, robot and
object, i.e. the human could only move his arm to apply the cutting operations while the robot was
assumed to tightly hold the object at a fixed configuration. This assumption constrains motions on the
human arm, which is in line with our formulation of the muscular comfort.

The robot in this setting only played the role of stabilizing the object, since the muscular comfort
defined in Eq. 7.9 only concerns the human arm configuration and the external force.

We focused on checking two variation trends in the known human muscular comfort sensation in
these 16 cutting operations and its corresponding reflection in the measured muscular comfort value,
specifically,

– Throughout the sequence of cutting operations, the human applies continuous cutting forces along
the circular pattern (with a fixed grasp configuration) and thus changes his arm configuration con-
stantly. Different arm configurations correspond to different muscular comfort values. Therefore,
as the human applies the circular cutting forces, the corresponding muscular comfort predicted
by the proposed metric is expected to fluctuate constantly with the arm configurations, to reflect
the comfort variation of the real human comfort sensation. Particularly, the arm configurations
near the proximity of joint limits, especially at the wrist spherical joint, are known to be very
uncomfortable and have less force generation capabilities, which should also be reflected with
lower muscular comfort predictions in the fluctuation of measured muscular comfort.

– For a single cutting operation, there might be multiple feasible arm configurations due to the
IK redundancy (even ignoring freedoms of the human body). For example, Fig. 7.4 shows two
different arm configurations for the human to perform a same cutting operation. Therefore, the
human’s muscular comfort can even vary for one single forceful operation. For example, the
configuration in Fig. 7.4(a) is clearly much more comfortable than the one in Fig. 7.4(b), which
should be also seen in the change of measured muscular comfort.
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Figure 7.5: Muscular comfort values for different cutting points along a circle. The circled letters on the
graph correspond to the configurations in Fig. 7.4.

(a) config. a© (b) config. d© (c) config. e© (d) config. f©

Figure 7.6: Comfortable human configurations for the circular cutting task. Circled letters correspond
to configurations shown in Fig. 7.5.

For each of the 16 cutting operations, we generated a set of feasible IK solutions for the human arm
and computed their corresponding muscular comfort values. We present the results in Fig. 7.5, in which
the dark orange curve depicts the fluctuation of the measured muscular comfort values when the human
applied the cutting operations always at the most comfortable predicted configurations, whilst the light
orange line chart depicts the fluctuation of measured muscular comfort values when the human applied
the operations always at the worst (most uncomfortable) configurations. From the results, we can see:

The measured muscular comfort over the circular cutting task coincides with the actual known hu-
man comfort perception. Specifically, the top comfort curve in Fig. 7.5 indicates that in the best case,
consistent with the real human-comfort perception, the muscular comfort first increases to an optimum
till the operation f5 (the corresponding human configuration is shown in Fig. 7.4(a)), and then de-
creases till the operation f10, where the human arm nearly reaches its joint limits (see the configuration
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in Fig. 7.6(b)). From the operation f13, the muscular comfort decreases from a local peak value again
till the last operation f16 (see the configuration in Fig. 7.6(d)). Similar consistency between the muscu-
lar comfort measured by the muscular comfort metric and the actual human comfort perception is also
reflected in the below comfort curve for the worst case.

The measured muscular comfort over configurations for one single forceful operation also coincides
with the actual human comfort perception. For example, Fig. 7.4 shows two arm configurations for the
operation f5. Our experience is that configuration a© is much more comfortable than configuration b©,
which is exactly reflected by the measured muscular comfort values. Further, Fig. 7.5 shows that the
comfort range between the two comfort curves, i.e. the gap between the measured muscular comfort
values of the most and least comfortable configurations, increases till the operation f5, where the hu-
man applies a horizontal cutting operation and thus enjoys more flexibilities. The comfort range then
decreases to a single value at the operation f10 (see the configuration in Fig. 7.6(c)) where the human
arm reaches the joint limits, and decreases to none from the operation f11 to f12 due to the loss of
feasible IK solutions. In Fig. 7.5, we can also see the consistency at the point of circular closing from
the operation f16 to the operation f1.

In this context, we can summarize that the muscular comfort can effectively reflect the human’s ac-
tual muscular effort in performing forceful operations, and therefore optimizing the muscular comfort
in Eq. 7.1 and 7.9 is effective in improving human’s muscular comfort for fHRC. Besides, the circular
cutting example also suggests that it is critical to plan optimal robot and object configurations for com-
fortable fHRC. For example, for the circular cutting task, if the robot keeps rotating the object to the
optimal configuration in Fig. 7.4(a), the human can then perform all the cutting operations with a high
level of muscular comfort, e.g. at the configuration shown in Fig. 7.4(a).

7.4.2 Effectiveness of Comfort Optimization

Here we present experiments to evaluate the effectiveness of optimizing our proposed comfort metrics
in planning for comfortable fHRC.

We implemented and compared the comfort metrics with four different planners. Specifically,

– Comfort planner: The comfort planner refers to the optimization process defined in Eq. 7.1,
namely the planner which optimizes a weighted sum of both human’s muscular comfort and
peripersonal-space comfort to find the optimal object pose and robot configuration;

– Random planner: Given a forceful operation, the random planner randomly picks an object pose
within the reachable space of the robot. Then it searches for the first feasible robot configuration
satisfying the constraint of force stability to hold the object, and then chooses the optimal hu-
man arm configuration and body pose to perform the operation in terms of maximizing both the
muscular and peripersonal-space comforts. The random planner acts as the baseline;

– Muscular planner: The muscular planner takes only the muscular comfort as the cost in optimizing
the human comfort, i.e. we set wP = 0 in Eq. 7.3;
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Table 7.1: Average results of four planners on 16 cutting and 9 drilling operations. Normalized with re-
sults of the Random Planner. The larger a value is, the more comfortable its corresponding configuration
is.

Random Planner Comfort Planner Peripersonal Planner Muscular Planner

Musc. Comf. Perip. Comf. Musc. Comf. Perip. Comf. Musc. Comf. Perip. Comf. Musc. Comf. Perip. Comf.

Cutting 1 1 11.19 2.08 0.34 2.09 15.66 1.02
Drilling 1 1 19.24 2.55 5.78 2.51 22.45 0.94

– Peripersonal planner: Similarly, the peripersonal planner maximizes only the human’s peripersonal-
space comfort (i.e. wM = 0) in optimization.

We ran the above planners on the 25 forceful operations (16 cutting operations and 9 drilling oper-
ations). The average results are shown in Table 7.1. To improve readability, we used the results of the
random planner as the baseline and normalized results in the table with the baseline.

As shown in Table 7.1, for the 16 cutting operations, the peripersonal planner outperforms the other
three planners in maximizing the human’s peripersonal-space comfort with an average improvement of
2.09 times over the random planner, yet it still performs poorly in optimizing the human’s muscular com-
fort (0.34 times of the random planner on average). The muscular planner shows similar performance:
It performs well in improving human’s muscular comfort (15.66) but poorly for the peripersonal-space
comfort (1.02). In contrast, the comfort planner can optimize both comfort metrics together to the sim-
ilar levels as achieved by the peripersonal and muscular planners, which only optimize an individual
metric respectively. Similar results can also be found for the 9 drilling operations.

Fig. 7.7 and Fig. 7.8 show configurations found by the four planners for a cutting and a drilling
operation respectively. As shown, even though the muscular and peripersonal planners can effectively
optimize the corresponding comfort metrics individually, but still limited in improving both comforts
together. For example, the configuration generated by the muscular planner in Fig. 7.8(b) has a high
level of muscular comfort, but obviously its corresponding peripersonal-space comfort is low (as the
human has to stand close next to the robot).

Through the above comparisons, we can sum up that it is necessary and effective to optimize the
muscular and peripersonal-space comfort metrics in planning for comfortable fHRC. The results also
highlight that it is possible to cope with both muscular and peripersonal-space comforts together without
much compromise.

7.4.3 Human Experiments

We conducted a set of human-robot experiments to evaluate the actual human comfort perception during
fHRC with regard to the optimized configurations generated by optimizing our comfort metrics.

Specifically, a number of five human participants were recruited randomly without knowing the
research background. Before the experiments, the participants were briefed about the goal of the study
and the forceful tasks they were expected to perform with the robot during the experiments.
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(a) Random Planner (b) Muscular planner (c) Peripersonal planner (d) Comfort planner

Figure 7.7: Optimization results for a cutting operation. The comfort values are: (a) Musc. comfort:
8.34; Perip. comfort: 20.43. (b) Musc. comfort: 48.53; Perip. comfort: 23.38. (c) Musc. comfort: 3.98;
Perip. comfort: 44.23. (d) Musc. comfort: 47.10; Perip. comfort: 43.30.

(a) Random planner (b) Muscular planner (c) Perip. planner (d) Comfort planner

Figure 7.8: Optimization results for a drilling operation. The comfort values of the four planner are: (a)
Musc. comfort: 3.70; Perip. comfort: 20.21. (b) Musc. comfort: 42.33; Perip. comfort: 21.88. (c)
Musc. comfort: 4.72; Perip. comfort: 44.40. (d) Musc. comfort: 59.19; Perip. comfort: 44.75.

During the experiments, we activated the gravity compensation mode provided by the Baxter SDK,
which the human participants can use to easily configure the robot manipulators to any preferred reach-
able configurations by holding and moving the manipulator cuff. Using this feature, the human partic-
ipants were asked to engage in motion activities with the Baxter robot, so that they could familiarize
themselves with the robot before the collaborated study with the robot.

The experiments consist of three comparison groups. Each group involves a set of drilling and
cutting tasks on foam boards which were tightly held by the Baxter robot:

– User-Preference: For each experiment in the user-preference group, all participants were asked
to (i) move the robot arms using the gravity compensation mode to a configuration they felt
comfortable and safe according to their own preferences, and then (ii) drill through the centre of a
foam board held by the robot; then (iii) they were asked to do the same but for a cutting operation.

– Random: For each experiment in the random group, (i) we first moved the robot manipulators and
the object to configurations generated by the random planner (one for drilling and one for cutting
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(a) Random planner - Drilling (b) Random planner - Cutting

(c) Comfort based planner - Drilling (d) Comfort based planner - Cutting

Figure 7.9: We conducted a set of human-robot experiments to evaluate the actual human comfort
perception during forceful operations with regard the optimized configurations by the proposed comfort
metrics.

Figure 7.10: The participants’ perception of the peripersonal-space comfort (yellow dots) for drilling
(left) and cutting (right) with respect to the (a) user preferred configurations (black), (b) the random
configurations (red), and (c) the optimized configurations (blue).

respectively). Participants were then asked to (ii) drill and then (iii) cut the board.

– Optimized: For each experiment in the optimized group, (i) we first moved the Baxter arms
and the grasped object to the optimized configurations generated by the comfort planner (one
optimized configuration for drilling and one for cutting respectively). Participants were then
asked to (ii) drill and (iii) cut the board.
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Figure 7.11: The participants’ perception of the muscular comfort (yellow dots) for drilling (left) and
cutting (right) with respect to the (a) user preferred configurations (black), (b) the random configurations
(red), and (c) the optimized configurations (blue).

Fig. 7.9 shows some of these experiments. Throughout the user-preference and optimized experi-
ments, human participants were also instructed to follow the arm configurations and relative body poses
suggested by the planners, reducing their flexibility over the redundant configuration space. We then
asked them to use self-motion (mostly the redundancy over elbow) to see whether they could find bet-
ter postures to execute the tasks. This experiment analysis has been particularly devised to investigate
our hypothesis of choosing the most comfortable human posture among the redundant space stressed
in Eq. 7.3. Among the five participants, only one could find a better configuration for the drilling op-
eration, but only through exploiting the drilling task redundancy that the drill could rotate within the
drilling axis. None of the participants was able to find a better arm posture for the cutting operations.

After these experiments, for each interaction, the participants were asked to grade from 1 to 10
(higher better), their perception on the safety and peripersonal-space comfort, and their perception on the
muscular efforts required during the forceful interaction, i.e. their perception on the muscular comfort.
The scores are summarized in Fig. 7.10 for the peripersonal-space comfort and in Fig. 7.11 for the
muscular comfort. In each figure, the results of the drilling operations are shown in the left, while the
results for the cutting operations are shown in the right.

From both figures, it is easy to see the participants’ perceptions regarding the peripersonal-space
and muscular comfort agree with our expectations, particularly for the drilling operations. Cutting
operations were clearly not as easy as drilling and thus reflected in the figure with a bit lower grades,
even at the configurations chosen by the participants themselves. Significant difference between the
random planner and the comfort planner can be seen on the participants’ perception of the muscular
comfort for the drilling operations. This particular result also highlights the importance of explicitly
considering and planning for improving the human comfort during forceful operations, which is crucial
to foster real-world fHRC.

With regard to the peripersonal-space comfort, as shown in Fig. 7.10, while the participants showed
strong preferences for the configurations generated by the comfort planner compared with the ones gen-
erated by the random planner, the difference was not as significant. Especially, during these experiments
some participants expressed that they did not prefer to be very far away from the robot, possibly sug-
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gesting that, while the peripersonal distance must be maximized up to a certain degree, there may be a
specific distance after which it starts to negatively affect the human’s comfort perception.

Limitations:
One limitation of the proposed optimization process is the time it takes for iterative optimization. To

compute one configuration, the comfort planner took 9.4 seconds on average over the 25 operations (with
a standard deviation of 1.8), while most of this time was spent on computing IK solutions. These time
results indicate that faster schemes should be integrated if the robot is to perform fluent interaction with
a human during a continuous task. We aim to investigate more methods, e.g. based on a precomputed
IK dataset (Rodrı́guez et al., 2016; Sisbot & Alami, 2012; Vahrenkamp et al., 2009, 2013) to further
improve the time efficiency of the optimization process in the future.

We also realized one limitation of the human experiments is the number of involved human subjects.
In one extension work of this thesis, a larger number of human participants were recruited in the com-
parison experiments, where similar results were obtained. In addition, this work can also be improved
by adding more quantitative analysis, which we extended by collected EMG data to further verify the
metric of muscular comfort.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we addressed the problem of manipulation planning for forceful human-robot collabora-
tion. We presented a series of planners allowing stable, efficient and human-comfortable object grasping
and manipulation under changing external forces, particularly in a context of forceful human-robot col-
laboration.

The work in this thesis has given us a few inspirations and lessons:

– We believe that manipulation planning should go beyond geometric constraints, taking into ac-
count forceful constraints which are generally required for object grasping and manipulation.

Through a large variety of our initial experiments, we have shown that object manipulation can
easily fail due to the presence of external disturbances. In this thesis, we modelled these external
disturbances and presented a range of planners to systematically address them in object manip-
ulation. We explicitly made manipulation stability and efficiency as objectives in devising these
planners. We have shown that task stability can be guaranteed by choosing appropriate power-
ful object contacts, such as robot grasps. We have also demonstrated the significance of task
efficiency in object grasping and manipulation, and proposed to achieve this goal by reducing
need for changing contact configurations. However, as we have pointed out, this work can eas-
ily integrate some other interpretations of manipulation efficiency, e.g. overall robot motions, as
performance indices for manipulation planning.

– We showed that the shared environment can be an opportunity for object grasping and manipula-
tion under external forces.

In this work, we exploited deliberate object contacts with structures in the shared environment
as additional supports to robot grasps in forceful object manipulation. We assumed structures in
the environment were rigid and used their reactive wrenches to stabilize objects under external
disturbances. We have pointed out that this work is limited in the diversity of environmental and
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robot contacts we used. In future work, we hope to explore more diverse object contacts, e.g.
face-edge contact, for object manipulation under external forces.

– Our initial experiments showed that the human-applied operation forces would deviate to some
extent from the expected operation axes. We proposed to use a spherical conic model to deal
with such force uncertainties in modelling the external forces in forceful object manipulation,
particularly the collaborative operation forces.

We showed that, by conservatively approximating the spherical force cone with a circumscribed
pyramid, both robustness and efficiency can be guaranteed in checking the force stability of can-
didate object contacts.

– We showed the necessity of improving human comfort and safety in planning for forceful human-
robot manipulation tasks. We have demonstrated that manipulation planning can easily produce
robot behaviours that are uncomfortable and unsafe for humans. In particular for forceful collab-
orative tasks, we showed that human’s physical efforts and spatial perception can be critical in
enabling robots to collaborate forcefully in the human’s close proximity.

In this thesis, we have taken an analytical approach by optimizing the human’s muscular comfort
and peripersonal-space comfort. Promising results and strong consistencies have been proved in
a large range of comparison studies.

– We presented a graphical interface allowing controlled communication between humans and
robots in fHRC. We showed that the interface enables the automation of forceful human-robot
fabrications to a relatively satisfying degree.

We have pointed out the limitations of communication through the interface: compared with other
channels, like natural language, the interface may affect the fluidness of collaboration.

We believe empowering robots with the capability of assisting humans in performing forceful col-
laborative tasks will get them closer to be a part of human life, and our work presented in this thesis can
be a key component in a human-robot collaboration framework.

8.2 Future Work

In this section, we discuss the limitations of this work and present ideas on how it can be extended and
improved in our future work.

1. Integrated Manipulation Planning for fHRC

We believe manipulation planning for fHRC can be framed in a more integrated manner:

First, in this thesis, we built a planning framework for forceful human-robot co-manipulation, which
can be roughly divided into two parts: From Chap. 4 to 6, we focus on robot behaviours concerning
the stability and efficiency of robotic manipulation under changing external forces, while in Chap. 7,
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we mainly address human comfort and safety in collaborative forceful object grasping and manipula-
tion. Even though promising results have been achieved by each individual part and fully demonstrated
through a variety of experiments, there is still a lack of integration between these works.

In this regard, a potentially more powerful approach can integrate task stability, manipulation ef-
ficiency, human comfort and safety, and possibly some other task-oriented planning criteria into one
planner, which may be able to generate further adapted and balanced robot behaviours. Similar to
many existing studies on physical human-robot collaboration (Aleotti et al., 2012; Parastegari et al.,
2017; Sisbot & Alami, 2012), such a planner may take some form of constrained optimization.

Second, in the context of fHRC discussed in this thesis, we assumed the robot can move an object,
e.g. for regrasping, only after the human stops applying forceful operations on the grasped object. Such
an alternate-action scheme is applicable, but in some cases, may affect, e.g. human experience due to
the required waits during collaboration. Even through configuration change minimization can reduce
the need of such intentional waits, a more ideal collaboration scheme may allow the human and robot
to move simultaneously, with or without physical contacts. For example, the robot should be allowed
to move, e.g. reposition the target object, when the human changes his hand tool. Furthermore, in a
joint forceful task, the robot and human can move together to proactively adapt to each other’s motion
and intention. For example, as stated in Chap. 7, in the circular cutting task shown in Fig. 3.1, while
the human cuts the board, the robot can rotate the board to reduce human motion, as well as improving
human comfort.

Such a collaboration scheme would lead towards more adaptations from both the robot and human,
and therefore requires a more integrated control and planning framework for human-robot joint actions.
Regarding to this issue, there is a large body of research work reviewed in Chap. 2.3, which we can
learn from to develop our collaborative system, for example, based on impedance control (Kosuge &
Kazamura, 1997; Lin et al., 2018; Rahman et al., 2002).

Third, another immediate work which is not addressed in this work but important is to integrate hu-
man factors, e.g. human comfort, in choosing environmental contacts for collaborative object grasping
and manipulation under external forces. In Chap. 6, we discussed the exploitation of environmental con-
tacts for object stabilization, where we mainly focused on the robot kinematic and geometric-collision
constraints. However, this might result in object configurations which are not acceptable to humans
due to, e.g. object visibility and reachability. Regarding to this issue, human preferences can be inte-
grated into the selection as a preliminarily filter of inappropriate contact configurations. Furthermore, a
separate process can be created to maintain and update a set of high-quality candidate contact configu-
rations based on human preferences, and be fed into the planning process also for the sake of planning
efficiency.

Fourth, we employed the BiRRT (Kuffner Jr & LaValle, 2000) planner to generate robot motions

for object manipulation, which treated the human as collision for the robot to avoid. However, robot
motions should also proactively adapt to the human preferences, particularly in the presence of physical
contacts. In this thesis, we have explicitly addressed the problem of object grasping and positioning
concerning human comfort and safety. In regard to robot motions, a hierarchical planning framework
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can be developed of first generating preferable object paths and then robot motions in line with the
human preferences.

Fifth, in planning for comfortable fHRC, we assumed a fixed hand configuration for the human in
tool grasping and therefore a fixed kinematic transformation between the human hand and tool. Human
grasping plays an critical role in tool use and has been well explored in the literature (Cutkosky &
Howe, 1990; Dipietro et al., 2008; Feix et al., 2015; Santello et al., 1998; Schieber & Santello, 2004).
Furthermore, as stated previously in Chap. 7, our formulation of the muscular comfort is limited to arm
configuration. A more fine-grained formulation can integrate grasping into planning, where learning-
based methods, e.g. learning from demonstration (LfD) (Amor et al., 2013; Kim et al., 2019; Vogt et al.,
2016) can be explored, e.g. from motion and force data (Schmidts et al., 2011).

2. Implicit Communication for fHRC

In this thesis, we presented a graphical interface in Sec. 4.3 as a communication channel between hu-
mans and robots for forceful human-robot collaboration. Specifically, in a collaborative forceful task, a
human needs to inform a robot partner of a task, such that the underlying planners can generate appropri-
ate manipulation plans. Then the robot and human collaboratively perform the task in an interactive and
communicative manner, where the human needs instructions from the robot on executable operations
and the robot wait for the human commands of regrasp.

Even a high level of automation has been achieved via the interface, more effective methods are
expected to make this process, e.g. more user-friendly and efficient. In particular, a more helpful
communication system in the context of fHRC is required to convey not only task-specific information,
but also intentions, motions and even opinions of both parts, e.g. whether a collaboration is safe or
dangerous. Further, fHRC requires more powerful and easy-to-use communication channels, not only
verbal but also non-verbal, such as gestures and emotional feedback, to enhance system usability and
interpretability.

In this regard, implicit communication can be a potentially handy tool to achieve effective and adap-
tive communication for fHRC, which has been attracting increasing attention from the robotics commu-
nity for joint human-robot actions (Gildert et al., 2018; Giuliani et al., 2018; Hazbar, 2019; Knepper,
2016; Knepper et al., 2017; Kulkarni et al., 2019; Wortham & Theodorou, 2017).

Particularly, in the context of fHRC discussed in this thesis, the unique external forces applied by
human users can be an additional channel for human-robot communication. In comparison with general
channels like natural language and motion, forces can be more efficient and lightweight in conveying
human intentions thanks to the physical contacts between humans and robot in fHRC. In addition, such
a communication system would allow more adaptations between humans and robots. For example,
humans performing collaborative tasks, like dancing, can switch between or share the leader-follower
roles effortlessly even in the absence of direct communication, since humans are capable of developing
a mutual understanding only using haptic perceptions, which in essence are communicative forces.

Such a communication system leads towards a highly automated collaborative system. For example,
in this thesis, we assumed forceful tasks were revealed to robots completely or progressively in advance,
which might be not true or difficult in actual practice. Using the interface, this could be done as part of
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communication between humans and robots in the course of collaboration.

3. Other Work
Our experiments show that the planning time for forceful tasks in both Chap. 5 and 6 can still take
tens of seconds. Our quantitative assessment of these simulated experiments has shown that the time
efficiency of our planners is limited mostly by the speed of the low-level constrained motion planners,
which leaves room for improvement in future work to either speed up these individual motion plans, or
to reduce the number of such motion plan queries. Meanwhile, we have pointed out the limitation of our
approach in Chap. 7 in terms of time efficiency, which was mainly due to the required IK computation.
Regarding to this issue, a precomputed IK dataset with preferred grasping and manipulation qualities,
e.g. manipulability and reachability, can be created to speed up this process, which is also widely used
by existing studies (Przybylski et al., 2013; Rodrı́guez et al., 2016; Sisbot & Alami, 2012; Vahrenkamp
et al., 2009, 2011, 2013).

In terms of system integrity, in our experiment setting, robot regrasping may fail due to the uncer-
tainties of robot system, e.g. unexpected object slippage. In this regard, a perception system for object
and robot motion, e.g. a vision-based tracking system, can be integrated to improve the motion accuracy
for regrasping. Some other functional modules, e.g. force/torque sensation, can also be integrated into
the manipulation system to improve overall performance.

In addition to above ideas, we hope to explore more extension studies in future work to develop a
more skilled and competent robot system for forceful human-robot collaboration.
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LEE, G., LOZANO-PÉREZ, T. & KAELBLING, L.P. (2015). Hierarchical planning for multi-contact
non-prehensile manipulation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 264–271, IEEE. 12, 13, 31

LEE, S.H., LEE, J.H., YI, B.J., KIM, S.H. & KWAK, Y.K. (2005). Optimization and experimental
verification for the antagonistic stiffness in redundantly actuated mechanisms: a five-bar example.
Mechatronics, 15, 213–238. 10

LEFEBVRE, T. (2003). Contact modelling, parameter identification and task planning for autonomous
compliant motion using elementary contacts. PhD thesis, KU Leuven, Department of Mechanical

Engineering. 63, 64

LERTKULTANON, P. & PHAM, Q.C. (2018). A certified-complete bimanual manipulation planner.
IEEE Transactions on Automation Science and Engineering, 15, 1355–1368. 12

105



BIBLIOGRAPHY

LI, Y. & GE, S.S. (2013). Human–robot collaboration based on motion intention estimation.
IEEE/ASME Transactions on Mechatronics, 19, 1007–1014. 17

LI, Z. & SASTRY, S.S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE

Journal on Robotics and Automation, 4, 32–44. 8, 9

LIN, H.C., SMITH, J., BABARAHMATI, K.K., DEHIO, N. & MISTRY, M. (2018). A projected inverse
dynamics approach for multi-arm cartesian impedance control. In 2018 IEEE International Confer-

ence on Robotics and Automation (ICRA), 1–5, IEEE. 12, 95

LIN, Y. & SUN, Y. (2016). Task-oriented grasp planning based on disturbance distribution. In Robotics

Research, 577–592, Springer. 9

LIPTON, J.I., MANCHESTER, Z. & RUS, D. (2017). Planning cuts for mobile robots with bladed tools.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE. 12

LIPTON, J.I., SCHULZ, A., SPIELBERG, A., TRUEBA, L.H., MATUSIK, W. & RUS, D. (2018). Robot
assisted carpentry for mass customization. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), 1–8, IEEE. 12
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SIMÉON, T., LAUMOND, J.P., CORTÉS, J. & SAHBANI, A. (2004). Manipulation planning with prob-
abilistic roadmaps. The International Journal of Robotics Research, 23, 729–746. 11

SISBOT, E.A. & ALAMI, R. (2012). A human-aware manipulation planner. IEEE Transactions on

Robotics, 28, 1045–1057. 15, 16, 80, 91, 95, 97
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