24 research outputs found

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case

    SDN-based VANET routing: A comprehensive survey on architectures, protocols, analysis, and future challenges

    Get PDF
    As the automotive and telecommunication industries advance, more vehicles are becoming connected, leading to the realization of intelligent transportation systems (ITS). Vehicular ad-hoc network (VANET) supports various ITS services, including safety, convenience, and infotainment services for drivers and passengers. Generally, such services are realized through data sharing among vehicles and nearby infrastructures or vehicles over multi-hop data routing mechanisms. Vehicular data routing faces many challenges caused by vehicle dynamicity, intermittent connectivity, and diverse application requirements. Consequently, the software-defined networking (SDN) paradigm offers unique features such as programmability and flexibility to enhance vehicular network performance and management and meet the quality of services (QoS) requirements of various VANET services. Recently, VANET routing protocols have been improved using the multilevel knowledge and an up-to-date global view of traffic conditions offered by SDN technology. The primary objective of this study is to furnish comprehensive information regarding the current SDN-based VANET routing protocols, encompassing intricate details of their underlying mechanisms, forwarding algorithms, and architectural considerations. Each protocol will be thoroughly examined individually, elucidating its strengths, weaknesses, and proposed enhancements. Also, the software-defined vehicular network (SDVN) architectures are presented according to their operation modes and controlling degree. Then, the potential of SDN-based VANET is explored from the aspect of routing and the design requirements of routing protocols in SDVNs. SDVN routing algorithms are uniquely classified according to various criteria. In addition, a complete comparative analysis will be achieved to analyze the protocols regarding performance, optimization, and simulation results. Finally, the challenges and upcoming research directions for developing such protocols are widely stated here. By presenting such insights, this paper provides a comprehensive overview and inspires researchers to enhance existing protocols and explore novel solutions, thereby paving the way for innovation in this field

    Random Linear Network Coding over Software Defined Networks

    Get PDF

    Application-layer multicast algorithms for bounded delay transmissions

    Get PDF
    This work shows the design and study of a family of algorithms that solves the multicast routing problem. In this problem, a given node called root has to send information to a certain group of receiving nodes. Although the algorithm can be applied at any level of the protocol stack, this paper studies its performance in the application level. This family of algorithms provides optimal routing tables between nodes belonging to the same multicast group, in such a way that the total transmission time is minimum. The algorithms take benefit from the delay time in the transmission of a message between one peer and another to forward the data to a third peer. Beginnig with a first algorithm, defined to send only one packet, some other algorithms has been described under certain conditions to send more than a packet with the maximum possible cadence and without congestion problems. With this purpose, we have restricted the number of times that the root may send a packet and also the maximum cadence time for the rest of the nodes. Moreover, we have applied mechanisms to guarantee full connectivity. With the aim of evaluating the performance of the different algorithms, we have calculated theoretically a set of bounds for transmission delays. Moreover, we present a serie of simulations over a virtual network that models an IP network. Over that first network, we have defined a second network of user nodes, which has been created at application level (so we can call it overlay network). We have applied the algorithms over the overlay networks, obtaining delay times, cadence times, number of nodes with congestion problems, and routing trees. Finally, we compare the results to check the best algorithm in any case. As expected, the fastest algorithms can usually have important congestion issues (more than a 50% of affected nodes). Moreover, the algorithm defined to avoid congestion has at most 50% bigger delay than the fastest algorithms, and hence we finally advice its application in multicast transmissions

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Routing Strategies for Capacity Enhancement in Multi-hop Wireless Ad Hoc Networks

    Get PDF
    This thesis examines a Distributed Interference Impact Probing (DIIP) strategy for Wireless Ad hoc Networks (WANETs), using a novel cross-layer Minimum Impact Routing (MIR) protocol. Perfonnance is judged in tenns of interference reduction ratio, efficiency, and system and user capacity, which are calculated based on the measurement of Disturbed Nodes (DN). A large number of routing algorithms have been proposed with distinctive features aimed to overcome WANET's fundamental challenges, such as routing over a dynamic topology, scheduling broadcast signals using dynamic Media Access Control (MAC), and constraints on network scalability. However, the scalability problem ofWANET cannot simply adapt the frequency reuse mechanism designed for traditional stationary cellular networks due to the relay burden, and there is no single comprehensive algorithm proposed for it. DIIP enhances system and user capacity using a cross layer routing algorithm, MIR, using feedback from DIIP to balance transmit power in order to control hop length, which consequently changes the number of relays along the path. This maximizes the number of simultaneous transmitting nodes, and minimizes the interference impact, i.e. measured in tenns of 'disturbed nodes'. The perfonnance of MIR is examined compared with simple shortest-path routing. A WANET simulation model is configured to simulate both routing algorithms under multiple scenarios. The analysis has shown that once the transmitting range of a node changes, the total number of disturbed nodes along a path changes accordingly, hence the system and user capacity varies with interference impact variation. By carefully selecting a suitable link length, the neighbouring node density can be adjusted to reduce the total number of DN, and thereby allowing a higher spatial reuse ratio. In this case the system capacity can increase significantly as the number of nodes increases. In contrast, if the link length is chosen regardless ofthe negative impact of interference, capacity decreases. In addition, MIR diverts traffic from congested areas, such as the central part of a network or bottleneck points
    corecore