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ABSTRACT 
 
 
 
This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live 
communication medium through the internet to host a virtual communication environment for use in Passivity-Based 
Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust 
communication between input-to-state stability is designed as a control strategy that passively compensates for position 
errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or 
other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral 
teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is 
crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated 
by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation 
will occur but also the communication parameters that define the virtual topography that the data will travel through. 
This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay 
based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not 
only for the communication system but also the delay is required for the design of the passivity-based model reference 
robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and 
bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. 
Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled 
period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the 
robustness of the controller. Following delay analysis a geographical and topological overview of the communication is 
also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-
trip consistency. To accommodate the communication channel for the controller the input and output data from both 
nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program 
within the C language. The program will construct a multithreaded client-server relationship in which the control data is 
transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol 
security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of 
the session using negotiation of cryptographic keys during each session.  
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CHAPTER 1 INTRODUCTION 
 

Due to topical progressions within the field of controls and with increase in communication innovations there exists a 
rise in demand for providing a robust network control to bring stability to a system via Internet networks [1]. In the 
modern world of network controls measuring peripherals such as sensors, actuators, controllers, and processes (also 
known as agents within this context) are no longer circumscribed to be directly connected by physical means nor do they 
need to be within the vicinity of one another. A networked control system (NCS) or distributed control system (DCS) 
refers to a control system usually of a manufacturing system, process or any kind of dynamic system, in which the 
controller elements are not central in location (like the brain) but are distributed throughout the system with each 
component sub-system controlled by one or more controllers. The entire system of controllers is interconnected via 
various communication mediums such as local networks using wired Ethernet, wireless networks, and even wide area 
networks (WAN) in which the internet is consisted of.  It is due to these advantages that DCSs are engaging within 
various applications of remote medical operations, underwater exploration, and military covert intelligence gathering 
mobile machines, and autonomous aerial and ground vehicles [2]. In fact one of the main applications of using control 
systems combined with teleoperation is for the control of unmanned aerial vehicles (UAV) which are autonomously 
controlled to carry out specific military tasks. 

Granted DCS technology has considerably improved [3], one of the main challenges of guaranteeing their safe 
operations is to overcome communication challenges of maintaining a live connection and to ensure stability and 
robustness of the controller given a range of input tolerances [4]. One of the main factors that complicate the NCS 
technology in particular are time delays accumulated and developed due to large separation distances between agents, 
overhead within transmission protocols (discussed in Chapter 5 Network Architecture), congested communication 
networks and often times delay due to signal transmission between the controller and the actuator or plant. It is very 
important to analyze the delay within every step and find an integral time delay that represents the overall system and 
take it into consideration within the overall design, otherwise as a consequence the system will exhibit poor performance 
and in worse cases instability [5]. As a result in order to facilitate a control system especially one that is Passivity-Based 
Model Reference Robust Control over a networked connection, it is vital to first analyze the encompassing virtual 
topology for feasibility (discussed in Chapter 3 Site survey). 

  



2 
 

1.1 CONTROL OF TIME DELAY SYSTEMS 
 
In order to understand the main control loop which facilitates the existence of delays within the controller a simple 
model of networked control system with delays will be visited as described in Figure 1.1  [6]. 

 

FIGURE 1.1 NETWORKED CONTROL SYSTEM WITH DELAYS 

The primary objective in the control of most dynamic systems is to assume that the evolution of the states are not 
dependent on their previous state or simply information from their past. Although this assumption is suitable for many 
engineering processes, there exist a wide range of control systems for which the effects of delays cannot be ignored. As 
an example, let us consider the two interconnected linear systems depicted in Figure 1.1, where Gi(s) and Ti ≥ 0 
represent the Laplace transfer functions and the associated delays for the first (i = 1) and second (i = 2) system, 
respectively [6]. The total transfer function from the input R(s) to the output Y1(s) can be computed as 

 
 

𝐺(𝑠) =
𝑌1(𝑠)
𝑅(𝑠)

=
𝐺1(𝑠)𝑒−𝑇1𝑠

1 + 𝐺1(𝑠)𝐺1(𝑠)𝑒−(𝑇1+𝑇1)𝑠 (1.1)  

 
From the above equation and denominator, the dependence of the stable and unstable poles on the round-trip delay 
value becomes evident. More importantly, we have that for a positive round trip delay, i.e., 𝑇1 + 𝑇2 > 0, the closed-loop 
system has an infinite number of poles. Therefore, conventional control linear analysis is not sufficient to fully 

comprehend the behavior of (1.1). In order to show explicitly the effect of delays on stability, let 𝐺1(𝑠) = 𝑘 1
𝑠
  and 

𝐺2(𝑠) = 1 where k is a control parameter. Then, the characteristic equation of (1.1) is given by 

 𝑠 + 𝑘𝑒−(𝑇1+𝑇1)𝑠 = 0 (1.2)  
 
For no delay, we may easily check that the closed-loop system is stable for any 𝑘 > 0. However, once there is a positive 
delay in the control loop; one can always find a positive value of k for which the system will become unstable. Indeed, 
the system is unstable for any round-trip delay satisfying [7] the following inequality: 

 𝑇1 + 𝑇2 >  
𝜋

2𝑘
 (1.3)  

 
Thus it is crucial to consider delays within the system especially those accumulated by network roundtrip delays due to 
the teleoperative system discussed within this paper to ensure stability. Furthermore the inverse case is also possible and 
needs to be noted that unstable or marginally stable systems might be stabilized by delay output feedback [6] [8] or in the 
solution discussed in Chapter 5 Network Architecture by using a buffer to compensate for the variation within the 
network delay such that the overall delay can be stabilized by using a play-back buffer [9]. 
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1.2 INTERNET: AN INTRODUCTION 
 
The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite 
(TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, 
academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, 
wireless and optical networking technologies. The Internet carries a vast range of information resources and services, 
such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support 
electronic mail.1 

Most traditional communications media including telephone, music, film, and television are reshaped or redefined by the 
Internet, giving birth to new services such as Voice over Internet Protocol (VoIP). Newspapers, books and other print 
publishing materials are adapting to Web site technology, or are reshaped into blogging and web feeds. The Internet has 
enabled or accelerated new forms of human interactions through instant messaging, Internet forums, and social 
networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-
business and financial services on the Internet affect supply chains across entire industries. 

The origins of the Internet reach back to research of the 1960s, commissioned by the United States government in 
collaboration with private commercial interests to build robust, fault-tolerant, and distributed computer networks. The 
funding of a new U.S. backbone by the National Science Foundation in the 1980s, as well as private funding for other 
commercial backbones, led to worldwide participation in the development of new networking technologies, and the 
merger of many networks. The commercialization of what was by the 1990s an international network resulted in its 
popularization and incorporation into virtually every aspect of modern human life. As of 2009, an estimated quarter of 
Earth's population used the services of the Internet. 

The Internet has no centralized governance in either technological implementation or policies for access and usage; each 
constituent network sets its own standards. Only the overreaching definitions of the two principal name spaces in the 
Internet, the Internet Protocol address space and the Domain Name System, are directed by a maintainer organization, 
the Internet Corporation for Assigned Names and Numbers (ICANN). The technical underpinning and standardization 
of the core protocols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a non-profit 
organization of loosely affiliated international participants that anyone may associate with by contributing technical 
expertise. 

1.3 PROTOCOLS 
 
The complex communication infrastructure of the Internet consists of its hardware components and a system of 
software layers that control various aspects of the architecture. While the hardware can often be used to support other 
software systems, it is the design and the rigorous standardization process of the software architecture that characterizes 
the Internet and provides the foundation for its scalability and success. The responsibility for the architectural design of 
the Internet software systems has been delegated to the Internet Engineering Task Force (IETF). [10] The IETF 
conducts standard-setting work groups; open to any individual, about the various aspects of Internet architecture. 
Resulting discussions and final standards are published in a series of publications; each called a Request for Comments 
(RFC), freely available on the IETF web site. The principal methods of networking that enable the Internet are 
contained in specially designated RFCs that constitute the Internet Standards. Other less rigorous documents are simply 
informative, experimental, or historical, or document the best current practices (BCP) when implementing Internet 
technologies. 

The Internet Standards describe a framework known as the Internet Protocol Suite. This is a model architecture that 
divides methods into a layered system of protocols (RFC 1122, RFC 1123). The layers correspond to the environment or 
                                                           
1 Historical representation provided by living Internet and internet RFCs (originally invented by Steve Crocker). 
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scope in which their services operate. At the top is the Application Layer, the space for the application-specific 
networking methods used in software applications, e.g., a web browser program. Below this top layer, the Transport 
Layer connects applications on different hosts via the network (e.g., client–server model) with appropriate data exchange 
methods. Underlying these layers are the core networking technologies, consisting of two layers. The Internet Layer 
enables computers to identify and locate each other via Internet Protocol (IP) addresses, and allows them to connect to 
one-another via intermediate (transit) networks. Lastly, at the bottom of the architecture, is a software layer, the Link 
Layer, that provides connectivity between hosts on the same local network link, such as a local area network (LAN) or a 
dial-up connection. The model, also known as TCP/IP, is designed to be independent of the underlying hardware which 
the model therefore does not concern itself with in any detail. Other models have been developed, such as the Open 
Systems Interconnection (OSI) model, but they are not compatible in the details of description, nor implementation, but 
many similarities exist and the TCP/IP protocols are usually included in the discussion of OSI networking. 

The most prominent component of the Internet model is the Internet Protocol (IP) which provides addressing systems 
(IP addresses) for computers on the Internet. IP enables internetworking and essentially establishes the Internet itself. IP 
Version 4 (IPv4) is the initial version used on the first generation of the today's Internet and is still in dominant use. It 
was designed to address up to ~4.3 billion (109) Internet hosts. However, the explosive growth of the Internet has led to 
IPv4 address exhaustion which is estimated to enter its final stage in approximately 2011. [11] A new protocol version, 
IPv6, was developed in the mid-1990s which provides vastly larger addressing capabilities and more efficient routing of 
Internet traffic. IPv6 is currently in commercial deployment phase around the world and Internet address registries 
(RIRs) have begun to urge all resource managers to plan rapid adoption and conversion. [12] 

IPv6 is not interoperable with IPv4. It essentially establishes a "parallel" version of the Internet not directly accessible 
with IPv4 software. This means software upgrades or translator facilities are necessary for every networking device that 
needs to communicate on the IPv6 Internet. Most modern computer operating systems are already converted to operate 
with both versions of the Internet Protocol. Network infrastructures, however, are still lagging in this development. 
Aside from the complex physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-
lateral commercial contracts (e.g., peering agreements), and by technical specifications or protocols that describe how to 
exchange data over the network. Indeed, the Internet is defined by its interconnections and routing policies. 
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1.4 UNDERSTANDING NETWORK TOPOLOGY AND DISTRIBUTION 
 

  

FIGURE 1.2 MAP OF MULTICAST INTERNET IN AUGUST 1996 (PRODUCED BY ELAN AMIR, UNIVERSITY OF CALIFORNIA 
AT BERKELEY) 

 
To further build on the notion of understanding delay built up within networks, various network backbones will be 
visited to understand the building blocks of how routing occurs and how path optimization is at work with every packet 
travelled across the two nodes in which teleoperation will occur. One of the main methods of communications 
supporting domestic internet pipelines are based on optical fiber channels across United States [13] grounded by the 
synchronous optical networking (SONET) and synchronous digital hierarchy (SDH). When packets travel from one 
node to another they are almost never directly transferred across and pass through multiple Intranet service nodes to 
reach their destination. These nodes (mostly based on fiber optic networks) induce propagation delays due to hardware 
switches aiding network transmission and often cause delays by themselves aside from network congestion which also 
contributes to increase the roundtrip delay of packets. Furthermore certain networks aren’t based on fiber optic 
networks and rather a slower less budget demanding technologies which often also are one of the leading cause of 
transmission delays, however these networks depending on topology, location, and congestion within that area can 
sometimes be avoided. A sample map of the multicast Internet backbone (MBone) topology in August 1996 is displayed 
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in Figure 1.2. This map shows just how complex the network toplogy was back in 1996 and another picture is provided 
in  Figure 1.3 showing modern toplogy, a comparison can be made as to how fast and drastic the expansion is. 

 

 

FIGURE 1.3 CURRENT INTERNET TOPOLOGY (CONNECTIONS OF ALL THE SUB-NETWORKS IN THE WORLD) CREDIT: 
BILL CHESWICK, LUMETA CORP 

The Internet automatically chooses the average of best route path to take that leads utilizing a path with the least amount 
of concurrent congestion such that the delay is minimized, however the path can never be predicted due to the 
spontaneous initiation of devices that begin transmitting packets; thus the network congestion can never be predicted 
and is always modeled as a random variable. This randomness causes the packets to be sent from different nodes 
depending on their current congestion and causes variations within round trip delays thus causing instabilities within the 
overall design of the controller. Several solutions are discussed within this paper to address this issue aside from 
pragmatic tactics to create a real-time transmission (discussed in Chapter 6 Pragmatic Design). Some methods include 
utilizing play-back buffer briefly discussed earlier and more in detail in Chapter 4 Controller Applications. 

In a practice known as static routing (or non-adaptive routing), small networks may use manually configured routing 
tables. Larger networks have complex topologies that can change rapidly, making the manual construction of routing 
tables unfeasible. Nevertheless, most of the public switched telephone network (PSTN) uses pre-computed routing 
tables, with fallback routes if the most direct route becomes blocked. Adaptive routing, or dynamic routing, attempts to 
solve this problem by constructing routing tables automatically, based on information carried by routing protocols, and 
allowing the network to act nearly autonomously in avoiding network failures and blockages. 
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Examples of adaptive-routing algorithms are the Routing Information Protocol (RIP) and the Open-Shortest-Path-First 
protocol (OSPF). Adaptive routing dominates the Internet. However, the configuration of the routing protocols often 
requires a skilled touch; networking technology has not developed to the point of the complete automation of routing. 

Distance vector algorithms use the Bellman-Ford2 algorithm. This approach assigns a number, the cost, to each of the 
links between each node in the network. Nodes will send information from point A to point B via the path that results 
in the lowest total cost (i.e. the sum of the costs of the links between the nodes used). 

The algorithm operates in a very simple manner. When a node first starts, it only knows of its immediate neighbours, 
and the direct cost involved in reaching them. (This information, the list of destinations, the total cost to each, and the 
next hop to send data to get there, makes up the routing table, or distance table.) Each node, on a regular basis, sends to 
each neighbour its own current idea of the total cost to get to all the destinations it knows of. The neighbouring node(s) 
examine this information, and compare it to what they already 'know'; anything which represents an improvement on 
what they already have, they insert in their own routing table(s). Over time, all the nodes in the network will discover the 
best next hop for all destinations, and the best total cost. 

When one of the nodes involved goes down, those nodes which used it as their next hop for certain destinations discard 
those entries, and create new routing-table information. They then pass this information to all adjacent nodes, which 
then repeat the process. Eventually all the nodes in the network receive the updated information, and will then discover 
new paths to all the destinations which they can still "reach." This is the main reason in variation of round trip delays at 
every instant. 

 

  

                                                           
2 The Bellman–Ford algorithm computes single-source shortest paths in a weighted digraph. For graphs with only non-
negative edge weights, the faster Dijkstra's algorithm also solves the problem. Thus, Bellman–Ford is used primarily for 
graphs with negative edge weights. The algorithm is named after its developers, Richard Bellman and Lester Ford, Jr. 
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1.5 NETWORKED BILATERAL TELEOPERATION 
 

 
FIGURE 1.4 TELEOPERATION CONFIGURATION 

 
 

Teleoperation indicates operation of a machine at a distance. It is similar in meaning to the phrase "remote control" but 
is usually encountered in research, academic and technical environments. It is most commonly associated with robotics 
and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a 
person from a distance. Teleoperation is also standard term in use both in research and technical communities and is by 
far the most standard term for referring to operation at a distance. This is opposed to "telepresence" which is a less 
standard term and might refer to a whole range of existence or interaction that include a remote connotation. In most 
cases a teleoperation system includes many processes that begin with local sensing for the human operator to interface 
from the human movements using a joystick or sensing device. Following sensing and locally tracking the motion of the 
human operator the data is collected by a device and encapsulated and transmitted via some connection medium across 
to the remote data collector which translates the data into a robot movement as real-time as possible, thus mimicking the 
human movements in a remote location via some remote robot. This sort of behavior can also be bilateral as seen in 
Figure 1.4. In other words feedback from the robot can also be transmitted back to the local human operator for better 
sense and feel. In both cases the local operator’s control input is captured by a robot namely master robot while the 
remote robot local is referred to as slave robot. There exist various configurations of such master-slave hierarchy, one of 
which is the single master, multiple slave configurations which allow a single human operator to control multiple 
machines simultaneously.  

Transparency often plays a key role in such master-slave relationships; it allows the system to feel more real-time with 
minimized delay and high accuracy among the two nodes. This is generally attained by transmitting remote slave 
information (e.g., position, velocity, and force) to the master robot in what is called a bilateral connection. Achieving 
transparency (commonly measured in terms of motion coordination, impedance matching, and force reflection) and 
stability of bilateral teleoperation systems has proved to be difficult and more than often, a conflicting task due to time 
delays in the control loop [14]. As a result of attempting to create transparency one of the main factors include time 
delays which arise from the distance between the master and slave robots and the network factors involved (congestion, 
speed, link quality etc.) Regardless of size of time delay which in the case of typical domestic internet range anywhere 
between 100ms ~ 500ms, time delays degrade performance and are always a negative factor that can often bring 
instability to a system. 
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1. CHAPTER 2 MODEL REFERENCE ROBUST CONTROL 

2.1 REFERENCE MODEL 
 
Due to diverse natural factors (e.g., propagation and transport phenomena) and implementation requirements (e.g., 
discretization and networking), time delays often appear in control systems. For instance, control of chemical processes, 
such as chemical reactors [15] and heat exchangers [16], typically experience time delays in the control loop as the result 
of mass transport and heat transfer phenomena. Similarly, data transmission in analog and digital communication-based 
NCSs inherently suffer from positive propagation delays due to the time it takes for the transmitted signal to travel from 
one end-point to another. In these scenarios, the presence of time delays in the control loop can degrade the 
performance of the control process and even lead to instability. Therefore, it is of great significance to formulate control 
algorithms conformed to time delay models. Following the research line of [17] [18] [19] [20], we now present the design 
of a model reference robust control (MRRC) framework that combines the use of the wave-based scattering 
transformation [21] to guarantee asymptotic stability of nonlinear dissipative Lagrangian systems1 with dynamic 
uncertainties and arbitrary large input and state measurement constant delays. The proposed control law assumes that 
the unforced (i.e., zero input control) system is exponentially stable or, equivalently, output strictly passive in order to 
establish delay-independent stability of the controlled system. The design of the controller is comprised of two parts: a 
linear reference model and a scattering transformation block. The first is designed according to a desired input-to-output 
property that the delayed system must mimic, while the latter is used to stabilize the delayed coupling between the plant 
and the controller. In addition, the outputs of the scattering transformation are passively modified to enable explicit full 
state tracking between controller (i.e., reference model) and plant independently of dissimilar and unknown initial 
conditions as well as losses in the transmission lines, a recurring problem with scattering transformation based of 
motion. 

We design, for simplicity, an asymptotically stable linear reference model as 

 
 

𝑞̈𝑚(𝑡) = 𝐴𝑚𝑞̇𝑚(𝑡) +  𝑢𝑚(𝑡) + 𝑟𝑚(𝑡) 
(2.1)  

 
 

𝑦𝑚(𝑡) = q̇𝑚(𝑡) (2.2)  

Where qm(𝑡), q̇𝑚(𝑡) ∈ ℜ𝑛  are the state vectors, 𝑦𝑚(𝑡) ∈ ℜ𝑛 is the output vector, 𝑢𝑚(𝑡) ∈ ℜ𝑛  is the control input, 
𝐴𝑚(𝑡) ∈ ℜ𝑛×𝑛 is a symmetric Hurwitz matrix. The reference signal 𝑟𝑚(𝑡) ∈ ℜ𝑛 is given by 
 
 𝑟𝑚(𝑡) =  𝐾𝑑�𝑞𝑑 −  𝑞𝑚(𝑡)� (2.3)  
 
Where 𝐾𝑑(𝑡) ∈ ℜ𝑛×𝑛 is a positive-definite constant matrix and 𝑞𝑑(𝑡) ∈ ℜ𝑛 is the desired state constant vector.  

2.2 SCATTERING TRANSFORMATION 
 
If the reference model and the time delay nonlinear system are to be directly coupled through their delayed outputs 
𝑞𝑚(𝑡 − 𝑇2) and 𝑞(𝑡 − 𝑇1) and/or 𝑞̇𝑚(𝑡 − 𝑇2) and 𝑞̇(𝑡 − 𝑇1), it can be shown that the communication channel may act 
as a non-passive coupling element (i.e., may generate energy), potentially leading the system to instability [21]. In order to 
passify the communication channel and avoid instability, we propose the use of the wave-based scattering 
transformation. The wave variables 𝑤𝑚(𝑡) and 𝑣(𝑡), and the new control inputs 𝑢𝑚(𝑡) =  −𝜏𝑚(𝑡) and 𝑢(𝑡) = 𝜏(𝑡) 
are then computed as 

 𝜏𝑚(𝑡) = 𝑏𝑒̇𝑚(𝑡) + 𝐾𝑚𝑒𝑚(𝑡) (2.4)  
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𝑤𝑚(𝑡) = �2

𝑏
𝜏𝑚(𝑡) −  𝑣𝑚(𝑡) (2.5)  

 
𝑞̇𝑚𝑑(𝑡) =

1
𝑏

(𝜏𝑚(𝑡) −  √2𝑏𝑣𝑚(𝑡) (2.6)  

 
𝑞𝑚𝑑(𝑡) =  � 𝑞̇𝑚𝑑(𝜃)𝑑𝜃

𝑡

0
 (2.7)  

 
 

𝑒𝑚(𝑡) = 𝑞𝑚(𝑡) − 𝑞𝑚𝑑(𝑡) (2.8)  

For the reference model and  
 
 
 

𝜏(𝑡) = √2𝑏𝑤(𝑡) (2.9)  

 
 

𝑣(𝑡) = 𝑤(𝑡) −  √2𝑏𝑞̇(𝑡) (2.10)  

for the nonlinear system; where the wave impedance 𝑏 is a positive constant, 𝐾𝑚 is a symmetric positive definite matrix, 
and 

 
 

𝑣𝑚(𝑡) = 𝑣(𝑡 − 𝑇1) (2.11)  

 
 

𝑤(𝑡) = 𝑤𝑚(𝑡 − 𝑇2) (2.12)  

The implementation of the scattering transformation and the reference model is schematized in Figure 2.1. The 
importance of the scattering transformation lies on the passivation of the communication channel independently of any 
arbitrary large constant round-trip delays. To demonstrate this statement, let us verify that the communication channel 
is, in fact, passified. Manipulating (2.4)-(2.12) we can easily show that 

 
 
 𝑞̇𝑚𝑑𝑇 𝜏𝑚 −  𝑞̇𝑇(𝜏 − 𝑏𝑞̇) =

1
2

(𝑤𝑚𝑇𝑤𝑚 − 𝑤𝑇𝑤 + 𝑣𝑇𝑣 − 𝑣𝑚𝑇 𝑣𝑚) (2.13)  

 
Then, integrating (2.13) with respect to time yields. 
 
 
 � �𝑞̇𝑚𝑑𝑇 𝜏𝑚 −  𝑞̇𝑇(𝜏 − 𝑏𝑞̇)�𝑑𝜃 =

1
2
� 𝑤𝑚𝑇𝑤𝑚𝑑𝜃 +

1
2
� 𝑣𝑇𝑣𝑑𝜃 ≥ 0
𝑡

𝑡−𝑇1

𝑡

𝑡−𝑇2

𝑡

0
 (2.14)  

 

FIGURE 2.1 MRRC FRAMEWORK 
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which confirms the passivity claim for a small and constant delay3. The lower bound in (2.14) implies that the energy is 
temporary stored in the transmission lines and therefore, the communication channel is passified independently of the 
size of 𝑇1and 𝑇2so long as they are relatively small and constant4. 

 

2.3 STABILITY ANALYSIS AND STATE CONVERGENCE 
 
The equations of motions of an n-DOF (Degree of freedom) Lagrangiang system are given by 

 
 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ = 𝑢 −

𝜕ℱ(𝑞̇)
𝜕𝑞̇

 (2.15)  

 
Where gravitational effects have been either neglected or cancelled through constant control (i.e. gravitational forces are 
constant). Where M is the inertia matrix C is the Coriolis matrix while the control input 𝑢 is assumed to be a delayed 
state feedback function depending on 𝑞(𝑡 − 𝑇1 − 𝑇2)  and 𝑞̇(𝑡 − 𝑇1 − 𝑇2) , where 𝑇1 ≥ 0  and 𝑇2 ≥ 0  correspond to the 
measurement and plant-to-controller communication delay and the controller-to-plant communication delay, respectively. Having 
established the control framework and the passivation of the communication channel, we now proceed to claim 
asymptotic stability of (2.15) and state convergence independently of arbitrary large input and state measurement delays. 
The following theorem represents one of the main results of this chapter. 

Theorem: Consider the time delay nonlinear system (2.15) coupled to the reference model (2.1) via the scattering 
transformation (2.4) to (2.12) and let 𝑏 < 𝑝. Then, for all initial conditions we have the following results [6] 

i. All signals 𝑞𝑚(𝑡),𝑞(𝑡), 𝑒𝑚(𝑡), 𝑞̇𝑚(𝑡), 𝑞̇(𝑡), 𝑒̇𝑚(𝑡), 𝑞̈𝑚(𝑡),  and 𝑞̈(𝑡)  are bounded ∀𝑡 ≥ 0 and the velocities 
𝑞̇𝑚(𝑡), 𝑞̇(𝑡), 𝑒̇𝑚(𝑡) converge to zero. 
 

ii. The error signals 𝑒𝑚(𝑡) and 𝑞𝑚(𝑡) − 𝑞𝑑 converge asymptotically to zero. 
 

Proof: Consider the following Lyapunov candidate function 

 
 

𝑉(𝑡) = 𝑉(𝑞𝑚(𝑡), 𝑒𝑚(𝑡), 𝑞̇𝑚(𝑡), 𝑞̇(𝑡) )

=
1
2
𝑞̇𝑇𝑀(𝑞)𝑞̇ +

1
2

(𝑞𝑑 − 𝑞𝑚)𝑇𝐾𝑑(𝑞𝑑 − 𝑞𝑚) +
1
2
𝑞̇𝑚𝑇 𝑞̇𝑚 +

1
2
𝑒𝑚𝑇 𝐾𝑚𝑒𝑚

+ � �𝑞̇𝑚𝑑𝑇 − 𝑞̇𝑇(𝜏 − 𝑏𝑞̇)�𝑑𝜃
𝑡

0
 

(2.16)  

 

Its time derivative is given by 

 
 

𝑉̇ = −𝜌𝑞̇𝑇𝑞̇ + 𝑞̇𝑚𝑇 𝐴𝑚𝑞̇𝑚 + 𝑏𝑞̇𝑇𝑞̇ + 𝑒̇𝑚𝑇 𝐾𝑚𝑒𝑚 −  𝑞̇𝑚𝑇 (𝑏𝑒̇𝑚 + 𝐾𝑚𝑒𝑚) + 𝑞̇𝑚𝑑𝑇 (𝑏𝑒̇𝑚 + 𝑘𝑚𝑒𝑚  (2.17)  

Since 𝑏 < 𝜌 and 𝐴𝑚is Hurwitz, we have that  

                                                           
3 From experiments it can be approximate deduced that a round-trip delay of ~500ms is the threshold until the control 
systems starts showing reduced performance  
4 The definition of the scattering transformation proposed here differs from its typical implementation [21] in the sense 
that the current states of the time delay nonlinear plant are assumed to be inaccessible to the local plant, and therefore, 
cannot be used when computing the transformation variables. Consequently, all scattering transformation variables are 
computed at the same location in the network (see Figure 2.1 MRRC Framework), as opposed to their conventional 
bisected (or mirror) implementation 
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𝑉̇ ≤  −(𝜌 − 𝑏)�|𝑞̇|�2 −  𝜇�|𝑞̇𝑚|�2 − 𝑏�|𝑒̇𝑚|�2 ≤ 0 (2.18)  

 

Where 𝜇 > 0 is the smallest eigenvalues of −𝐴𝑚. Therefore, the overall system is stable in the sense of Lyapunov. 

 

2.4 DESIGN SPECIFICATIONS 

In regards to the mathematical deductions stated above the controller’s stability and performance is very much 
dependent on the input network delay analysis. The controller can withstand input delays however there must be an 
upper bound to the delay no more than 500ms and a particular delay that does not fluctuate and is as constant as 
possible. Following this design specification the network delay within the system can affect the controller performance 
since the delay is never constant and may be higher than the accepted controller stability threshold. Equation (2.10) 
defines this delay used for the controller. 
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3. CHAPTER 3 SITE SURVEY 

3.1 GEOGRAPHICAL LOCATIONS 
The time delay between two nodes is naturally higher when the distance among the two nodes is increased. The medium 
used to currently carry information among two nodes depends on the distance separating the two nodes. Often times 
when two nodes are very close perhaps within one room the network carrying the workstations (nodes) will most likely 
be an Ethernet setup within a small proximity and the network is known as LAN (Local Area Network). Once 
expanding beyond LAN and trying to establish a connection between two workstations the data packet travels via 
various nodes to reach its destinations. These nodes are often hosted by ISP’s (Internet Service Providers) and serve a 
connection point purpose within the internet topology. 

In the site survey which was performed for the setup of the controller the two ends of the nodes were the same 
locations in which the client and server programs (discussed in Chapter 5 Network Architecture) resided. 
Geographically one was located at the University of Illinois in Urbana-Champaign, Illinois, the other at Boeing in 
Bellevue, Washington. 5 

 

FIGURE 3.1 CONNECTION DISTANCE 

 

From the Figure 3.1 it can be seen that although technically the straight route cannot be traversed on land there exists a 
state route which traverses city to city via various types of roads. This is very similar to the path the packets will be 
travelling. The nodes visited by each packet resembled the cities and are in fact located within cities connected via 
various mediums of connection (Fiber optic, wireless, coaxial etc.) The two nodes taken into account are separated by 
2’091miles and will be put through rigorous tests to analyze the connection at hand. 

  

                                                           
5 IP addresses and ports conducted within this survey are deliberately masked as to not expose any details of Boeing and 
UIUC’s underlying network architecture 
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3.2 SITE SURVEY SERVER SETUP 
Following the setup discussed in previous the section two workstations were setup, one in University of Illinois – 
Coordinated Sciences Lab and the other in Boeing research building in Bellevue Washington. The server setup included 
a pair of dedicated Linux servers. To obtain connection analysis results the servers would begin rigorous testing on the 
network layout separating them to obtain information about connection bandwidth, round trip delay, delay consistency, 
bidirectional bandwidth test, and trace route. The entire results of the tests will then be taken into consideration for 
obtaining information regarding not only an upper bound on the round trip delay however the nature of the delay and its 
consistency. The latter information will be used to design the playback buffer (discussed in Chapter 4 Controller 
Applications).  

Both servers ran two separate Linux architectures, one utilized Gentoo Linux while the other was equipped with Ubuntu 
Linux architecture. Each workstation was loaded with both a client and a server program. The server hosts the session to 
transmit packaged data to measure connection information while the client transmits the data. The same procedure 
would be repeated however in the opposite direction. Once both results are obtained a brief overview of the network 
delay and bandwidth can be measured via various package sizes and parameters transmitted between the two nodes. 
Following the measurement the same process can be repeated with full duplex mode (multithreaded operation) to host 
the same exchange of data however simultaneously to obtain a bidirectional connection.  

The client server program utilized is a variation of iPerf. iPerf is an efficient program for measuring throughput, jitter 
and datagram loss. It has both client and server pieces, so it requires installation at both ends of the connection being 
measured. Three terminals can be laid out to view three activities at once, one for the client, one for the server, and one 
running tcpdump just to see all those packets zoom by. iPerf can be initiated by: 

sam@corvinus:~$ iperf -s 
sam@eos.cs.boeing:~$ iperf -c xena 

 
By default iperf uses TCP/UDP port . This is the result of a run without tcpdump running: 

------------------------------------------------------------ 
Server listening on TCP port  
TCP window size: 85.3 KByte (default) 
------------------------------------------------------------ 
[  4] local  port connected with  port  
[  4]  0.0-10.0 sec    112 MBytes  93.8 Mbits/sec 

 

While tcpdump is running: 

[  5]  0.0-10.0 sec  56.5 MBytes  47.3 Mbits/sec 
 

By default, iperf sends TCP packets over wires as fast as possible. A bi-directional test, which is the -d option, forces the 
system to run both ways 

sam@eos.cs.boeing:~$ iperf -c xena -d 
[  4]  0.0-10.0 sec    109 MBytes  91.3 Mbits/sec 
[  5]  0.0-10.0 sec  84.5 MBytes  70.8 Mbits/sec 
 

iPerf can also be used to test for full bandwidth test to measure jitter6 

sam@corvinus:~$ iperf -su 
sam@eos.cs.boeing:~$ iperf -c xena -u -b 100m 
 

                                                           
6 Jitter in technical terms is the deviation in or displacement of some aspect of the pulses in a high-frequency digital 
signal. As the name suggests, jitter can be thought of as shaky pulses. 



15 
 

[ ID] Interval       Transfer     Bandwidth       Jitter     Lost/Total     
Datagrams 
[  4]  0.0-10.0 sec    113 MBytes  95.0 Mbits/sec  0.008 ms  544/81389 (0.67%) 
[  4]  0.0-10.0 sec  1 datagrams received out-of-order 

 

The above represents a sample data communication between two very fast and close networks. The same tests will then 
be applied for the connection at hand and the results will be analyzed. 

Another tool used for analysis of site survey was Bwping. Bwping is a tool to measure bandwidth and response times 
between two hosts using Internet Control Message Protocol (ICMP) echo request/echo reply mechanism. It does not 
require any special software on the remote host. The only requirement is the ability to respond on ICMP echo request 
messages. Also to measure throughput of network for problem specification purposes the TCP receive window and 
RTT (Round trip time) for the path are required. Furthermore to measuring bandwidth the network throughput is also 
measured using TTCP (Test TCP) utility.  

The requirements for calculating network throughput are given using the tools mentioned earlier. As defined: 

 
 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ≤

𝑅𝑊𝐼𝑁
𝑅𝑇𝑇

 (3.1)  

 
where RWIN is the TCP Receive Window and RTT is the round-trip time for the path. The Max TCP Window size in 
the absence of TCP window scale option is 65,535 bytes however in the case of the testing a predefined window size of 
1.43Mbytes was picked (discussed later for unidirectional bandwidth test). 

 
 𝑀𝑎𝑥 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =

1.43 𝑀𝐵𝑦𝑡𝑒𝑠
11𝑠

× 8 =
1.09𝑀𝑏𝑖𝑡𝑠

𝑠
 (3.2)  

 
We multiply the Byte per second times 8 to get the Bit per second rate. Over a single TCP connection between those 
endpoints, the tested Bandwidth will be restricted to 1.09 Mbit/s or less even if the contracted Bandwidth is greater. 
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3.3 GEOLOCATIONAL TRACEROUTE 
 

 

FIGURE 3.2 CONNECTION ROUTE VIA NODES FROM CHAMPAIGN TO BELLEVUE 

The analysis of packet communication behavior between the two nodes resulted in packets departing from Champaign 
and visiting various nodes until reaching its final destination in Bellevue. The nodes visited are each identified by their IP 
addresses and are later analyzed. The resulting IP’s traced during site survey resulted in the following public IP 
addresses: 

7   
 

                                                           
7 Note: The addresses are blurred as to not expose the details of the Boeing internal network 
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The above list provides the node number (located on the far left) then the address or host, then the round trip delay 
(ping) in which the hop has responded to. This method is referred to as traceroute and will be considered further in 
detail in the Trace-Route section. 

Following the testing, once the packet is sent, the connection traverses through various nodes notably nodes located 
within the cities indicated in Figure 3.2 obtained from recent site survey done from University of Illinois to Boeing. 
Although it must be noted that there are 5 nodes displayed in the map and 18 nodes from the route result, most of these 
nodes are placed in the same location and can be grouped in such way. The reason for this is due to server hops that 
may occur for processing, for example a packet may travel between several substations within the same location or 
server host, thus appearing as one node on the geographical map however show as several nodes on the list of nodes 
above.  As displayed this shows that internet packets do not follow shortest path but utilize bellman Ford algorithm to 
calculate shortest cost path. In this context cost refers to network traffic or congestion. Due to this the path taken may 
change and will almost always have a fluctuating round trip delay.  

The results above are obtained from doing a traceroute from a client located in Champaign, IL to Bellevue, WA. 
Furthermore the geographical data of the hosts are obtained from visual route specifications of each IP. This process is 
known as geolocation, which is the mapping of an IP address or MAC address to the real-world geographic location of 
an Internet connected to a computing device or mobile device. Geolocation involves in mapping IP address to the 
country, region (city), latitude/longitude, ISP and domain name among other useful things. 

There are a number of commercially available geolocation databases, and their pricing and accuracy may vary. 
Ip2location, MaxMind, Tamo Soft and IPligence offer a fee based databases that can be easily integrated into an web 
application. Most geolocation database vendors offers APIs and example codes (in ASP, PHP, .NET and Java 
programming languages) that can be used to retrieve geolocation data from the database. We use Ip2Location database 
to obtain the above locations from the hosts. 

Accuracy of geolocation database varies depending on which database you use. For IP-to-country database, some 
vendors claim to offer 98% to 99% accuracy although typical Ip2Country database accuracy is more like 95%. For IP-to-
Region (or City), accuracy range is anywhere from 50% to 75% if neighboring cities are treated as correct. Considering 
that there is no official source of IP-to-Region information, 50+% accuracy is pretty good [22]. 

ARIN (American Registry for Internet Numbers) Whois database provides a mechanism for finding contact and 
registration information for IP resources registered with ARIN. The IP whois information is available for free, and 
determining the country from this database is relatively easy. When an organization requires a block of IP addresses, a 
request is submitted and allocated IP addresses are assigned to a requested ISP [23].  
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3.4 BANDWIDTH TEST 
As explained in Section 3.2 Site Survey Server Setup using the setup provided the bandwidth test can be done to 
measure the network throughput. The test was done by placing one node in Champaign, IL while the other in Bellevue, 
WA with a client/server relationship to have a test buffer packet be sent and measure the attributes of the transmission. 
The results were obtained using JPerf in combination with iPerf which are diagnostic tools for measuring bandwidth and 
quality of a network link. JPerf in particular is simply the graphical version of iPerf written in Java. 

 

 

FIGURE 3.3 IPERF SETUP 

Using the setup mentioned above (depicted in Figure 3.3) we can then obtain network data regarding the virtual link 
connecting the two nodes and the resulting output from iPerf reveals the following: 

Node1: UIUC <———> Node2: Boeing 
TCP Window Size: 16.0 Kbyte 
Port:  
 
Server (Boeing): 
uiuc@scorpio:~$ ./iperf -s -p  
———————————————————— 
Server listening on TCP port  
TCP window size: 85.3 KByte (default) 
———————————————————— 
[ 4] 
local  port  connected with  port  
[ 4] 0.0-12.6 sec 1.43 MBytes 954 Kbits/sec 
 
Client(UIUC): 
sam@eos:~$ iperf -s -p  
———————————————————— 
Server listening on TCP port  
TCP window size: 85.3 KByte (default) 
———————————————————— 
sam@eos:~$ iperf -c  -p  
———————————————————— 
Client connecting to , TCP port  
TCP window size: 16.0 KByte (default) 
———————————————————— 
[ 3] 
local  port  connected with  port  
[ 3] 0.0-11.0 sec 1.43 MBytes 
1.09 Mbits/sec 
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Before analyzing the above output, iPerf’s command line parameters need to be described in further detail. Simply put 
the client server relationship are setup using the “-c” parameter which distinguishes the particular instance of iPerf to be 
the client instance, while the “-s” parameter signifies the server. The server is started on port8  using “-p” parameter 
and the client is connected to the respective port. Following the connection a predefined TCP window size signifies the 
size in which data is transmitted during each transmission of every packet9.  However it must be noted that due to the 
wide area network being used the settings will be temporarily be changed to match the configuration of the hops utilized 
between the two nodes however the transmission configuration resumes once the packet reaches the server. This can be 
noted when the incoming port is  is different from the port in while the server is listening to, this is due the remote 
router accepting connections on random ports and allocating that port to the designated server this is also known as the 
difference between incoming port and trigger port. iPerf transmits a default set amount of data 1.43Mbytes and clocks 
the time the transmission was begun and finalizes and provides a bandwidth of the transmission calculated using (3.1) 
yielding 1.09Mbit/sec. This bandwidth will be further discussed in 3.7 Results section. 

Following the bandwidth test done above, it can be noted that it is only measuring the test going one way, while most 
communication especially those done with the MRRC are bidirectional. Thus the bandwidth test above simply notes the 
single threaded communication of sending a packet or simply transmitting using unidirectional connection. As a result 
iPerf will also be used to conduct a bidirectional test which can communicate both separately and simultaneously to 
obtain measurement of simultaneous bandwidth tests. In this case the simultaneous bandwidth test is conducted to 
denote a full-duplex behavior and not the separate bidirectional which simply conducts separate unidirectional tests but 
each of them testing opposite directions. 

Node1: UIUC <———> Node2: Boeing 
TCP Window Size: 16.0 Kbyte 
Port:  
 
Server (Boeing): 
uiuc@scorpio:~$ ./iperf -s -p  
———————————————————— 
Server listening on TCP port  
TCP window size: 85.3 KByte (default) 
———————————————————— 
[ 4] 
local  port  connected with 24.12.200.92 port  
———————————————————— 
Client connecting to , TCP port  
TCP window size: 16.0 KByte (default) 
———————————————————— 
[ 6] 
local  port  connected with  port  
[ 6] 0.0-12.1 sec 1.09 MBytes 752 Kbits/sec 
[ 4] 0.0-17.9 sec 1.58 MBytes 741 Kbits/sec 
 
Client(UIUC): 
sam@savage:~> iperf -c  -p  -d -L 

 
———————————————————— 
Server listening on TCP port  
TCP window size: 85.3 KByte (default) 
———————————————————— 
Client connecting to , TCP port  
TCP window size: 16.0 KByte (default) 
———————————————————— 
[ 5] 

                                                           
8 Although the port number is masked out to not expose too much detail the port is selected above port range of 1-1024 
to ensure it is out of the router’s scope of server port list and to also avoid loop back denial with certain routers 
9 This also defines the PDU (Packet datagram unit) size within the TCP window 
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local  port  connected with  port  
[ 4] 
local  port  connected with  port  
[ ID] Interval Transfer Bandwidth 
[ 5] 0.0-11.0 sec 1.58 MBytes 
1.21 Mbits/sec 
[ ID] Interval Transfer Bandwidth 
[ 4] 0.0-15.7 sec 1.09 MBytes 581 Kbits/sec 
 
Following the above output from iPerf for bidirectional test it can be noted that the server observed two simultaneous 
connections of 752Kbits/sec and 741Kbits/sec. It can be noted that these values are smaller than the 1.43Mbytes/sec in 
fact, they are almost half of the unidirectional test which is quite justified since the pipeline is being used to transmit two 
simultaneous data rather than one thus a slower bandwidth is expected.  

3.5 ROUND-TRIP CONSISTENCY 
For a more robust connection the designed MRRC requires a constant delay. However since this cannot be made 
possible due to modern internet design and the fact that a network congestion is a random variable the delay will 
fluctuate. As a result it becomes crucial to measure the fluctuation of the delay not only for measurement purposes but 
also for the playback buffer which will be used to maintain a constant delay to give performance to the MRRC. 

Measuring round trip consistency depends on the small sample consistency [24]. If the small sampling varies within 5% 
of each iteration of round trip delay then the round trip delay needs to be measured over a larger sample to obtain an 
average delay and upper bound that represents the current network state. 

The round trip consistency is measured using the ping command which is readily available using any computer 
architecture. The ping is based on Internet Control Message Protocol (ICMP) which is one of the core protocols of the 
Internet Protocol Suite. It is chiefly used by the operating systems of networked computers to send error messages 
indicating, for example, that a requested service is not available or that a host or router could not be reached. ICMP can 
also be used to relay query messages. ICMP [25] differs from transport protocols such as TCP and UDP in that it is not 
typically used to exchange data between systems, nor is it regularly employed by end-user network applications (with the 
exception of some diagnostic tools like ping and traceroute). 

Using ping the delays are then compared to see if the variance is higher than 5%. 

 

FIGURE 3.4 ROUNDTRIP CONSISTENCY 
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Following Figure 3.4 the resulting round trip times are < 5% of one another thus the current small sample suffices 
according to [24]. The samples are taken with 1min delay between each other and have resulted in an average round trip 
delay of 110ms.  

Furthermore the delay affects the transmission speed as well, the higher the delay the lower the transmission speed. 
Wireshark (formerly known as Ethereal) is a free and open-source packet analyzer. It is used for network 
troubleshooting, analysis, software and communications protocol development. Moreover tcpdump is a common packet 
analyzer that runs under the command line. It allows the user to intercept and display TCP/IP and other packets being 
transmitted or received over a network to which the computer is attached. These tools can be used to analyze the raw 
data being transmitted by the ICMP and also comparing the transfer speeds with respect to the change in network delay. 

 

FIGURE 3.5 TRANSFER SPEED VS DELAY 

The relationship discussed above can be observed in Figure 3.5. The delay is now more visualized in this graph as the 
transfer is in progress and packets are sent back and forth in a bidirectional manner. Each bidirectional packet transfer 
observes a delay denoted by the red which the blue denotes the resulting transfer speed. From the above graph it can be 
seen that although the connection seems stable the speed varies constantly due to the various network settings such as 
MTU (discussed later) and packet sizes. Furthermore it can be seen from the symmetry of the graph that the packets trip 
times were similar to one another. Meaning if one packet took 50ms to travel from Client to server, the same packet 
would also take 50ms from the Server back to the Client.  

The maximum transmission unit (MTU) of a communications protocol of a layer is the size (in bytes) of the largest 
protocol data unit that the layer can pass onwards. MTU parameters usually appear in association with a 
communications interface (NIC, serial port, etc.). Standards (Ethernet, for example) can fix the size of an MTU; or 
systems (such as point-to-point serial links) may decide MTU at connect time [26]. 

A larger MTU brings greater efficiency because each packet carries more user data while protocol overheads, such as 
headers or underlying per-packet delays, remain fixed; the resulting higher efficiency means a slight improvement in bulk 
protocol throughput. A larger MTU also means processing of fewer packets for the same amount of data. In some 
systems, per-packet-processing can be a critical performance limitation. Although the MTU is preset by the underlying 
networks it will be discussed on how to optimize MTU to obtain an optimized network designed specifically for short 
burst transmissions utilized mainly for the MRRC. Large packets can occupy a slow link for some time, causing greater 
delays to following packets and increasing lag and minimum latency. For example, a 1500-byte packet, the largest 
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allowed by Ethernet at the network layer (and hence over most of the Internet), ties up a 14.4k modem for about one 
second. 

Large packets are also problematic in the presence of communications errors. Corruption of a single bit in a packet 
requires that the entire packet be retransmitted. At a given bit error rate larger packets are more likely to be corrupted. 
Naturally retransmission of a larger packet takes longer. 

3.6 TRACE-ROUTE 
By analyzing the various nodes within the path from Client to Server, further statistical data can be found such as node 
consistency, paths taken by the packets (Naturally the optimal path is taken the shortest one with the least cost to take). 
A tabular format of the nodes traveled within the path is shown below followed by their respective delay. 

 

FIGURE 3.6 TRACE-ROUTE TABLE 

 The above traceroute summarizes the connection attempt made to connect to the server located in Boeing, Bellevue. 
The graph on the right side signifies the delays associated with each node. As a result it can be deduced that the delay 
depends on more than just one connection rather it depends on the delay induced by every node within the path. 

3.7 RESULTS 
From the above trace-route it can be seen that certain nodes may behave in an erratic way causing a peak in the overall 
delay of the communication. As a result depending on how fast and at what rate the communication is required to be 
achieved better results can be tuned by switching the application layer or the Transport protocol of the data to achieve a 
higher priority within the transmission thus achieving a higher QoS (Quality of Service). To conclude the tests a standard 
ping test was also done confirming the above tests and providing a better resolution on choosing optimum delay average 
and upper bound. 

PING ( ) 56(84) bytes of data. 
64 bytes from : icmp_seq=1 ttl=52 time=117 ms 
64 bytes from : icmp_seq=2 ttl=52 time=117 ms 
64 bytes from : icmp_seq=3 ttl=52 time=116 ms 
… 
… 
64 bytes from : icmp_seq=92 ttl=52 time=117 ms 
64 bytes from : icmp_seq=93 ttl=52 time=118 ms 
64 bytes from : icmp_seq=94 ttl=52 time=117 ms 
—  ping statistics — 
94 packets transmitted, 94 received, 0% packet loss, time 93136ms 
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Thus from the resulting tests the following round trip times can be deduced: 

Average: 110.073ms 
Minimum: 105.033ms 
Maximum: 143.993ms (excluding TCP Delay) 
Standard deviation: 3.966ms 
Download QOS: 92% 
Upload QOS: 97% 
TCP delay: 48ms 
Download test type: Socket 
Average download pause: 6ms 
Route concurrency: 6.444185 
Download TCP forced idle: 87% 
 

As a result the system can be modeled by assuming an average of 110ms delay for transport and 48ms for application 
layer giving a 158ms block delay for communication (round trip). 

Simple bidirectional calculations produces the following: 

 
 

𝛾𝑡 + 𝛾𝑟
2

=  𝛾𝑎𝑣𝑔 

 
(3.3)  

Where 𝛾𝑡  denotes the bidirectional transmit rate and 𝛾𝑟 denotes the bidirectional receive rate (since bidirectional refers 
to simultaneous connections, the transmit and receive in this case refer to point of view from client and server 
respectively). Thus the bidirectional average transmission rate is given by:   𝛾𝑎𝑣𝑔 = 661Kbps. 

Furthermore, In order to assume a seamless connection the maximum delay witnessed is calculated to be 143.9ms, also 
once the connection is closed the socket pair associated with the connection is placed into a state known as Time-wait, 
which prevents other connections from using that protocol. Since multithreaded operation is used (discussed later) the 
TCP time delay needs to also be accounted for to account for the maximum delay visible. Thus: 

Round Trip Delay: 191.9ms 

<Client Side> ———- [Delay 95.9ms] ———- <Server Side> 

The MRRC described above can function up to 500ms of delay until instability is observed. However the smaller the 
delay the better the MRRC will perform as a result 191.9ms round trip delay is well within the design specifications. 
Furthermore the controller will be transferring coordinate data and receiving position-velocity attributes back which 
require much less than 661Kbps transfer speed to operate. As a result the site survey confirms that the given operation is 
feasible and within margin. 
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4. CHAPTER 4 CONTROLLER APPLICATIONS 
 

4.1 BILATERAL TELEOPERATION 
Following the site survey done to assure feasibility of having a remote controller, we now center our attention to the 
special problem of time delay bilateral teleoperation. In principle, a teleoperation system is a dual (or multi) robotic set 
that enables a human operator to manipulate, sense, and physically interact with a distant environment. In such system, 
the desired manipulation or task is performed remotely by a slave robot which tracks the motion of a locally human-
controlled master robot. The master and slave robot are coupled through a communication channel that, ideally, should 
be transparent to the operator, meaning that he or she should feel as if being directly active in the remote location [14]. 
This is generally achieved by transmitting remote slave information (e.g., position, velocity, and force) to the master 
robot in what is called a bilateral connection. Unfortunately, bilateral configurations can potentially yield a teleoperation 
system unstable due to delays [27] and data losses [28] experienced in the communication network [6]. 

 

FIGURE 4.1 SCHEME OF A BILATERAL TELEOPERATION SYSTEM WITH LOCAL DELAYS T1 AND T2, AND 
INTERCONNECTION DELAYS TM AND TS 

A bilateral teleoperator is a NCS with a human-in-the-loop. Therefore, network-induced delays associated with NCSs 
are also of concern in a bilateral teleoperator (see Figure 4.1). However, in a teleoperation system, time delays in the 
master’s and slave’s local control loop are typically less significant than interconnection delays between the local and 
remote site (i.e., 𝑇𝑗𝑖 ≪ 𝑇𝑖  for 𝑖 ∈ {𝑚, 𝑠}, 𝑗 ∈ {1,2}). Thereby, it is standard to ignore local delays (i.e., 𝑇1 = 𝑇2 = 0) and 
consider only the presence of interconnection delays between master and slave. From now on, we will follow this 
convention when addressing bilateral teleoperators. 

From section 3.5 Round-trip consistency, it was deduced that the delay of the packet being transmitted and received 
were symmetrical and so in this case 𝑇𝑚 ≈ 𝑇𝑠.  
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4.2 BILATERAL CONTROL DEVICES 
 
4.2.1 THE HAPTIC DEVICE 
 
The haptic device, used as the master robot and illustrated in Figure 4.2, is the commercially available PHANTOM by 
SensAble Technologies, Inc. with 6-DOF positional and rotational input and 6-DOF force and torque output. Position 
and velocity commands to/from the slave agents are relative to the base of the PHANTOM’s end-effector and are 
properly scaled to match with the mobility range of the haptic device. Rotational movements around the base of the 
end-effector are ignored, leaving the Cartesian coordinates, x, y, and z as the only controllable DOF. 

 

FIGURE 4.2 MASTER AND SLAVE AGENTS. THE LEFT AND RIGHT PHOTOS ILLUSTRATE THE PHANTOM HAPTIC 
DEVICE AND THE COAXIAL HELICOPTERS, RESPECTIVELY. COPYRIGHT © 2010 BOEING. ALL RIGHTS RESERVED. 

 
4.2.2 COAXIAL HELICOPTERS 
 
The slave agents, shown in Figure 4.2, are two modified E-Flite Blade CX2 coaxial helicopters with multiple spherical 
retro-reflective markers for identification/localization purpose and cover removed to lower weight. Each vehicle weights 
220g and measures 340mm of rotor diameter. We assume that the CX2 helicopters have three controllable DOF 
corresponding to Cartesian x, y, and z motion, while control of the yaw ψ angle is ignored. A pictorial representation of 
the relation between the rotational angles and the Cartesian coordinates is given in Figure 4.3.  

 

 

FIGURE 4.3 ROTATIONAL ANGLES WITH RESPECT TO CARTESIAN COORDINATES 
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4.2.3 MOCAP SYSTEM 
 

Position tracking of the helicopters is performed off-board, meaning that the helicopters lack of self-contained position 
and velocity sensors. Instead, the test bed employs a MoCap system [29] that consists of multiple high speed cameras 
located in the remote environment and capable of tracking position and orientation of the slave agents in real-time by 
collecting two-dimensional visual data and constructing a three-dimensional representation through a photogrammetry-
based technique. The cameras are able to sense and track unique configuration patterns of retro-reflective markers 
placed on the tracked vehicle or obstacle with sub-millimeter accuracy at a sampling rate of 120Hz. The position and 
orientation of all vehicles and obstacles are then transmitted to each helicopter’s control computer within less than 10ms 
such that every vehicle knows its own location and the location of nearby obstacles. Velocities of the agents are then 
computed locally by differentiation. 

 

FIGURE 4.4 A 3-D IMAGE GENERATED BY THE MOCAP SYSTEM USING VICON IQ2.5 GRAPHICAL DISPLAY. THE SMALL 
PURPLE CUBES REPRESENT THE POSITION AND ORIENTATION OF THE TWO HELICOPTERS WHILE THE TWO GRAY 

RECTANGULAR PRISMS REPRESENT THE POSITION OF THE OBSTACLES. COPYRIGHT © 2010 BOEING. ALL RIGHTS 
RESERVED. 

4.2.4 COMMUNICATION 
 
Communication between agents and haptic device is achieved through the multithreaded TCP socket connection 
established by the communication software discussed in Chapter 6 Pragmatic Design. Each agent transmits its Cartesian 
coordinates and velocities (𝑞𝑖 , 𝑞̇𝑖) to the virtual environment via the pipeline command within linux and receives from 
the virtual environment the coordinates and velocities of the virtual helicopter (𝑞𝑣 , 𝑞̇𝑣) and the corresponding offset for 
the desired formation. The pipeline simply links a set of processes chained by their standard streams, so that the output 
of each process (stdout) feeds directly as input (stdin) to the next one. Using this setup the server/client’s output from 
the internet stream would feed directly into the Master/Slave controller while using the program’s multithreaded design 
the opposite is done using the same program via pipeline to channel the Master/Slave controller’s output as input into 
the communication software which in turn feeds the information to the remote side to be received by the Server/ Client. 
Although the above were all tested, this actual setup was never tested with the distant remote client/server relationship 
with the SMMS (Single Master Multi Slave). However the communication software was tested separately using rigorous 
cases resembling that of the communication parameters of the current setup (discussed in Chapter 6 Pragmatic Design). 
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4.3 NETWORK DELAY COMPENSATION USING PLAY-BACK BUFFER 
 
Play-back buffers were originally designed for multimedia play-back [14]. In [30], Liberatore proposed an algorithm to 
integrate a play-back buffer with networked control for the control algorithm, actuator, and sensor. The main feature is a 
buffer located at the actuator which delays the application of a control signal until a specified play-back time is reached. 
The play-back time is determined at the controller and is paired with the appropriate control signal in a single packet. 
Control signals which arrive after the play-back time are applied immediately. 

While network delays are usually modeled by a semi-infinite, heavy-tailed distribution defined on [𝜏𝑚𝑖𝑛 , +∞), we begin 
by studying the case when all uncertainty in the loop delay can be removed. Therefore, according to [31] we generate 
random delays using a bounded-interval distribution defined on [𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 ]. We use the beta distribution, whose 
probability density function (PDF) on the interval [𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥] is given by: 

 
 

𝑓(𝑥) =
� 𝑥 − 𝜏𝑚𝑖𝑛
𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛
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𝛼−1

�1 − � 𝑥 − 𝜏𝑚𝑖𝑛
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 ��
𝛽−1

(𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛)∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢1
0

 
(4.1)  

 
It should be noted that this distribution was not chosen because it specifically matched any real network data. However, 
we chose this distribution for qualitative reasons: in most real network delay distributions, most delays will be close to 
the minimum delay and the system will be subject to less frequent, long delay spikes, this can also be confirmed that the 
average delay is closer to the minimum delay than the maximum delay. If we set 𝛼 = 1, as 𝛽 increases from 1 to ∞, the 
beta distribution shifts from uniform to an impulse at the minimum value. Therefore, as 𝛽 increases and the play-back 
delay stays at 𝜏𝑚𝑎𝑥 . 

 

FIGURE 4.5 NORMALIZED PDFS FOR BETA DISTRIBUTION FOR SEVERAL 𝜷 AND 𝜶 = 𝟏 

Here, we study varying values of 𝛽, 𝜏𝑚𝑖𝑛 , and 𝜏𝑟𝑎𝑛𝑔𝑒 , where 𝜏𝑟𝑎𝑛𝑔𝑒 = 𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛 , and we always use 𝛼 = 1. We start with 𝛽 = 
1, which is the case of uniformly distributed delays, and increase 𝛽 to 7. From previous site survey results the value of the minimum delay was 
105ms, so we consider values of the minimum delay in that neighborhood. Specifically, we consider 𝜏 ∈ [105,192]ms. 

The playback delay 𝜏𝑝𝑏 can be naively selected as 𝜏𝑝𝑏 = 𝜏𝑚𝑎𝑥 however performance degrading may occur with high delay. Thus to optimize 
this selection by design we can obtain a 𝛽 which provides the lowest 𝜏𝑝𝑏 distribution, in other words 𝛽 can be tuned to result in 
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the best playback delay which will result in the smallest constant delay representation of the network delay transparent to 
the controller. 

From analytical study and equation (3.1) Figure 4.5 can be deduced which shows the effects of tuning 𝛽 for obtaining 
nominal 𝜏𝑝𝑏 . 
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5. CHAPTER 5 NETWORK ARCHITECTURE 

5.1 UNDERSTANDING NETWORKING ARCHITECTURE 
Network architecture is the design of a communications network. It is a framework for the specification of a network's 
physical components and their functional organization and configuration, its operational principles and procedures, as 
well as data formats used in its operation. The Open Systems Interconnection model (OSI model) is a product of the 
Open Systems Interconnection effort at the International Organization for Standardization. It is a way of sub-dividing a 
communications system into smaller parts called layers. A layer is a collection of similar functions that provide services 
to the layer above it and receives services from the layer below it. On each layer, an instance provides services to the 
instances at the layer above and requests service from the layer below. Figure 5.1 describes this hierarchy: 

 

FIGURE 5.1 OSI MODEL 

In order to establish a connection from the Master control to the slave control for the MRRC a multithreaded program 
will be utilized which is better described in Chapter 6 Pragmatic Design. This “communication driver” program is 
located in the application layer of the host layer within the OSI model. This program can establish a connection to 
another workstation using similar program using all the layers and can define attributes to these layers. One of the layers 
affected by this method of connection establishment is the transport layer. 

The Transport Layer provides transparent transfer of data between end users, providing reliable data transfer services to 
the upper layers. The Transport Layer controls the reliability of a given link through flow control, 
segmentation/desegmentation, and error control. Some protocols are state and connection oriented. This means that the 
Transport Layer can keep track of the segments and retransmit those that fail. The Transport layer also provides the 
acknowledgement of the successful data transmission and sends the next data if no errors occurred. Some Transport 
Layer protocols, for example TCP, but not UDP, support virtual circuits provide connection oriented communication 
over an underlying packet oriented datagram network. Where it assures the delivery of packets in the order in which they 
were sent and assure that they are free of errors. The datagram transport delivers the packets randomly and broadcast it 
to multiple nodes10.  

                                                           
10 The transport layer multiplexes several streams on to 1 physical channel. The transport headers tell which message 
belongs to which connection 
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5.2 TRANSMISSION CONTROL PROTOCOL (TCP) 
TCP is the protocol that major Internet applications rely on, applications such as the World Wide Web, e-mail, and file 
transfer. Other applications, which do not require reliable data stream service, may use the User Datagram Protocol 
(UDP) which provides a datagram service that emphasizes reduced latency over reliability [32]. TCP provides reliable, 
ordered delivery of a stream of bytes from a program on one computer to another program on another computer. 
Several key features of the TCP are noted below. 

5.2.1 NETWORK FUNCTION 
TCP provides a communication service at an intermediate level between an application program and the Internet 
Protocol (IP). That is, when an application program desires to send a large chunk of data across the Internet using IP, 
instead of breaking the data into IP-sized pieces and issuing a series of IP requests, the software can issue a single 
request to TCP and let TCP handle the IP details. 

IP works by exchanging pieces of information called packets. A packet is a sequence of octets and consists of a header 
followed by a body. The header describes the packet's destination and, optionally, the routers to use for forwarding until 
it arrives at its destination. The body contains the data IP is transmitting. 

Due to network congestion, traffic load balancing, or other unpredictable network behavior, IP packets can be lost, 
duplicated, or delivered out of order. TCP detects these problems, requests retransmission of lost data, rearranges out-
of-order data, and even helps minimize network congestion to reduce the occurrence of the other problems. Once the 
TCP receiver has reassembled the sequence of octets originally transmitted, it passes them to the application program. 
Thus, TCP abstracts the application's communication from the underlying networking details. 

5.2.2 TCP SEGMENT STRUCTURE 
TCP segment consists of a segment header and a data section. The TCP header contains 10 mandatory fields, and an 
optional extension field (Options, pink background in table) [33]. 

The data section follows the header. Its contents are the payload data carried for the application. The length of the data 
section is not specified in the TCP segment header. It can be calculated by subtracting the combined length of the TCP 
header and the encapsulating IP segment header from the total IP segment length (specified in the IP segment header). 

5.2.3 PROTOCOL OPERATION 
TCP protocol operations may be divided into three phases. Connections must be properly established in a multi-step 
handshake process (connection establishment) before entering the data transfer phase. After data transmission is 
completed, the connection termination closes established virtual circuits and releases all allocated resources. 

A TCP connection is managed by an operating system through a programming interface that represents the local end-
point for communications, the Internet socket. During the lifetime of a TCP connection it undergoes a series of state 
changes [33]: 

1. LISTEN : waiting for a connection request from any remote client. 
2. SYN-SENT : waiting for the remote peer to send back a TCP segment  
3. SYN-RECEIVED : waiting for the remote peer to send back an acknowledgment 
4. ESTABLISHED : the port is ready to receive/send data from/to the remote peer. 
5. FIN-WAIT-1 
6. FIN-WAIT-2 
7. CLOSE-WAIT 
8. CLOSING 
9. LAST-ACK 
10. TIME-WAIT : represents waiting for enough time to pass to be sure the remote 

peer received the acknowledgment of its connection termination request. 
11. CLOSED 
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5.2.4 CONNECTION ESTABLISHMENT 
To establish a connection, TCP uses a three-way handshake. Before a client attempts to connect with a server, the server 
must first bind to a port to open it up for connections: this is called a passive open. Once the passive open is established, 
a client may initiate an active open. To establish a connection, the three-way (or 3-step) handshake occurs: 

SYN: The active open is performed by the client sending a SYN to the server. It sets the segment's sequence number to 
a random value A. 

SYN-ACK: In response, the server replies with a SYN-ACK. The acknowledgment number is set to one more than the 
received sequence number (A + 1), and the sequence number that the server chooses for the packet is another random 
number, B. 

ACK: Finally, the client sends an ACK back to the server. The sequence number is set to the received acknowledgement 
value i.e. A + 1, and the acknowledgement number is set to one more than the received sequence number i.e. B + 1. 

At this point, both the client and server have received an acknowledgment of the connection. 

5.2.5 RELIABLE TRANSMISSION 
TCP uses a sequence number to identify each byte of data. The sequence number identifies the order of the bytes sent 
from each computer so that the data can be reconstructed in order, regardless of any fragmentation, disordering, or 
packet loss that may occur during transmission. For every payload byte transmitted the sequence number must be 
incremented. In the first two steps of the 3-way handshake, both computers exchange an initial sequence number (ISN). 
This number can be arbitrary, and should in fact be unpredictable to defend against TCP Sequence Prediction Attacks. If 
the sender infers that data has been lost in the network, it retransmits the data, thus ensuring a reliable transmission of 
data within sequence. 

5.2.6 VULNERABILITIES 
Not all protocols are made perfect and they all contain some sort of security hole within their architecture that can allow 
unwanted access to packets being transferred. Namely two different types of vulnerabilities within the TCP architecture 
will be considered.  

5.2.6.1 DENIAL OF SERVICE 
By using a spoofed IP address and repeatedly sending purposely assembled SYN packets, attackers can cause the server 
to consume large amounts of resources keeping track of the bogus connections. This is known as a SYN flood attack. 
Proposed solutions to this problem include SYN cookies and Cryptographic puzzles. Overcoming these vulnerabilities 
will be discussed in Chapter 6 Pragmatic Design [34]. 

5.2.6.2 CONNECTION HIJACKING 
An attacker who is able to eavesdrop a TCP session and redirect packets can hijack a TCP connection. The attacker has 
to guess correctly the sequence number to be used by the sending host. If they can do this, they will be able to send 
counterfeit packets to the receiving host which will seem to originate from the sending host, even though the counterfeit 
packets may in fact originate from some third host controlled by the attacker [35]. 
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5.3 USER DATAGRAM PROTOCOL 
The User Datagram Protocol (UDP) is one of the core members of the Internet Protocol Suite, the set of network 
protocols used for the Internet. With UDP, computer applications can send messages, in this case referred to as 
datagrams, to other hosts on an Internet Protocol (IP) network without requiring prior communications to set up special 
transmission channels or data paths [36]. 

UDP uses a simple transmission model without implicit handshaking dialogues for providing reliability, ordering, or data 
integrity. Thus, UDP provides an unreliable service and datagrams may arrive out of order, appear duplicated, or go 
missing without notice. UDP assumes that error checking and correction is either not necessary or performed in the 
application, avoiding the overhead of such processing at the network interface level. Time-sensitive applications often 
use UDP because dropping packets is preferable to waiting for delayed packets, which may not be an option in a real-
time system.[1] If error correction facilities are needed at the network interface level, an application may use the 
Transmission Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP) which are designed for this 
purpose. 

UDP's stateless nature is also useful for servers answering small queries from huge numbers of clients. Unlike TCP, 
UDP is compatible with packet broadcast (sending to all on local network) and multicasting (send to all subscribers) [25]. 

5.3.1 RELIABILITY AND CONGESTION CONTROL 
Lacking reliability, UDP applications must generally be willing to accept some loss, errors or duplication. Some 
applications such may add rudimentary reliability mechanisms into the application layer as needed [25]. Most often, UDP 
applications do not employ reliability mechanisms and may even be hindered by them. Potentially more seriously, unlike 
TCP, UDP based applications don't necessarily have good congestion avoidance and control mechanisms. Congestion 
insensitive UDP applications that consume a large fraction of available bandwidth could endanger the stability of the 
internet, as they frequently give a bandwidth load that is inelastic. 

5.3.2 VULNERABILITIES 
UDP is very much vulnerable to a form of denial-of-service (DOS) attack using UDP flood attack. Using UDP for 
denial-of-service attacks is not as straightforward as with the Transmission Control Protocol (TCP). However, a UDP 
flood attack can be initiated by sending a large number of UDP packets to random ports on a remote host. Thus, for a 
large number of UDP packets, the victimized system will be forced into sending many ICMP packets, eventually leading 
it to be unreachable by other clients. 
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5.4 COMPARISON OF TCP AND UDP 
From the previous section’s detailed attributes of the two protocols a comparison is now done for analyzing the uses of 
such protocols for our communication driver program [25].  

1. TCP (Transmission Control Protocol). TCP is a connection-oriented protocol, a connection can be made from 
client to server, and from then on any data can be sent along that connection. 
• Reliable - when you send a message along a TCP socket, you know it will get there unless the connection 

fails completely. If it gets lost along the way, the server will re-request the lost part. This means complete 
integrity, things don't get corrupted. 

• Ordered - if you send two messages along a connection, one after the other, you know the first message 
will get there first. You don't have to worry about data arriving in the wrong order. 

• Heavyweight - when the low level parts of the TCP stream arrive in the wrong order, resend requests 
have to be sent, and all the out of sequence parts have to be put back together, so requires a bit of work to 
piece together. 

• Streaming - Data is read as a "stream," with nothing distinguishing where one packet ends and another 
begins. There may be multiple packets per read call. 

 
2. UDP (User Datagram Protocol). A simpler message-based connectionless11 protocol. With UDP you send 

messages (packets) across the network in chunks. 
• Unreliable - When you send a message, you don't know if it'll get there, it could get lost on the way. 
• Not ordered - If you send two messages out, you don't know what order they'll arrive in. 
• Lightweight - No ordering of messages, no tracking connections, etc. It's just fire and forget. This means 

it's a lot quicker, and the network card / OS have to do very little work to translate the data back from the 
packets. 

• Datagrams - Packets are sent individually and are guaranteed to be whole if they arrive. One packet per 
one read call. 

 

From the above comparison it can be easily deduced that for the nature of the communication being setup TCP would 
be the better choice since the MRRC requires that no packets are lost, the coordinates from the Master robot to slave 
robot must be in order (this is especially crucial for flight control). However TCP poses one threat and that is overhead. 
TCP is a heavyweight protocol and establishing the connection requires hand shaking and may cause degraded 
performance when delay is required to be minimal. 

As a result the communication driver is tested using both protocols for test purposes to see the practicality of either 
protocol. 

  

                                                           
11 Connectionless describes communication between two network end points in which a message can be sent from one 
end point to another without prior arrangement 
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5.5 SIMULATION 
The setup proposed above can then be utilized by setting up TCP and UDP connection programs to be tested with the 
real-time network. Since these programs contain their own processing thread delay further testing in a smaller scale can 
be performed prior to setting up client/server between Bellevue, WA and Champaign, IL. These tests can be emulated 
using modern simulated packet errors within a controlled virtual environment.  This environment can emulate TCP 
errors due to packet collisions while routing thus creating naturally occurring packet drops within networks. These 
packet drops increase the delay further than expected. The environment used to emulate such behavior used within this 
research is called Common Open Research Emulator (CORE).  

The Common Open Research Emulator (CORE) is a tool that allows us to emulate entire networks on one or more 
machines. One can connect these emulated networks to live networks or to additional emulated networks. CORE 
consists of a GUI for easily drawing topologies that drives lightweight virtual machines, and various utilities. CORE uses 
virtualized network stacks in a patched FreeBSD kernel, or Linux virtual machines. 

CORE has been developed by a Network Technology research group that is part of the Boeing Research and 
Technology division [37].  The Naval Research Laboratory is supporting further development of this open source 
project.  

By setting up the proposed network offline within a control environment like CORE the same node specifications 
obtained before can be setup within the simulator. All nodes mimic the behavior of modern internet nodes (with delays, 
packet errors etc.)  

 

FIGURE 5.2 CORE VIRTUAL SIMULATION 

From Figure 5.2 this setup can be seen, although the site survey suggested 18 nodes linking the source and the 
destination, the overall network behavior can be projected using several nodes. From the above figure it can be seen that 
the Client’s link has network speed of 661Kbps (the same as site survey) which will limit the higher link speeds to that 
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bandwidth and a delay of 95ms, this delay with the delay of node 4 which has 45ms should provide a 140ms delay 
between the client and the server. This is how most of this paper’s simulation is setup. Once the link specifications are 
setup the router linking the two hosts is configured to allow network discover of other hosts such that the two hosts are 
able to communicate. Each node, host, or router can be configured further to allow meet various specifications and 
provide a variety of network services. This configuration setup is depicted in Figure 5.3. 

 

FIGURE 5.3 NODE CONFIGURATION SETUP 

Once the overall network is setup the client and server program’s discussed in C - TCP Multi-threaded Communication 
Driver v2.1 section can be loaded on to the hosts. Each host can be accessed via a terminal for command line interfacing 
and allowing a runtime environment in which the client and server programs will be hosted. As seen in Figure 5.2 the 
two terminal’s on the right side represent the consoles of the client and server, each running their own respective 
communication driver program to initiate data transfer. This simulation environment is later used to test various 
iterations of the communication driver development discussed later. 
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6. CHAPTER 6 PRAGMATIC DESIGN 

6.1 JAVA - UDP REQUESTER/SENDER PROGRAM 
Since in Comparison of TCP and UDP from previous section it was deduced that UDP and TCP were to be both tested 
the pragmatic design began with the design of a simple UDP program that would open a connection on a default port 
and await a sender program to start sending data to that port. The two programs could be run inversely on the machines 
such that a requester program and transmitter program can both reside on the same machine thus creating a 
bidirectional negotiation. The program utilized the ServerSocket Class, which provides easy implementation of 
Socket programming within Java.  

The program worked flawlessly however Java is known to be a slower runtime component than native C programs. As a 
result the notion of developing the program using Java was rejected by Boeing. 

6.2 C - UDP COMMUNICATION DRIVER V1.0 
Considering Java’s lack of agility the pragmatic design was scratched and rewritten in C. The UDP driver utilized the 
socket programming libraries of C namely <sys/socket.h> library. Using struct based object oriented programming an 
instance of the connection attempt would be created and the input stream being a file could be flushed into the cache 
and passed into the socket connection’s buffer to be segmented into to packets and sent via UDP protocol by simply 
sending the data packets to the address at the given point. 

The operation would work by invoking the following commands on the server side: 

root@n4:/tmp/pycore.43751/n4.conf> ./receiverprog 
 

The receiver program is now running and waiting for any UDP packets. Following that, on the client side the following 
commands are invoked: 

root@n2:/tmp/pycore.43751/n2.conf> cat sample | ./senderprog 10.0.0.11 
 
Following this command the sample data packet (which can also be a stream input of data from a COM device such as 
joystick or PHANTOM device) will then be piped into the sender program which then processes the data and sends to 
the server (receiver program). Once the data is received they can be channeled into the screen (stdout) or simply piped 
into another COM component that may provide control inputs for a controller or simply helicopter. In this case the data 
is simply output to the server side’s screen and is seen in the following example: 

A10.227874332631472 
B34.5903722471121 
C47.8188418440368 
A33.826766526272 
B88.8618727061839 
C47.2337239126318 

 
Although the control input data could be in any delimited format however in this we have transmitted roll, pitch, and 
yaw movements each distinguished by their respected ID and following coordinate. The reason for the ID’s are that 
UDP packets may be lost during transmission thus it is crucial to know which ID the incoming coordinates are referring 
to.  
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Following the transmission, the client side confirms that the data has been sent (but cannot confirm their safe arrival): 

Client-gethostname() is OK... 
Client-socket() sockfd is OK... 
Using port: 4950 
sent 121571 bytes to 10.0.0.11 
Client-sockfd successfully closed! 

 
However problems began to rise as network performance was degraded within the simulation environment until the 
attributes were matching that of the modern network link between the two main nodes. As performance degraded more 
packages were lost as a result the data sent and that of the data being received began to differ. As data loss occurs the 
specific ID whom did not receive coordinates would be skipped (thus updated with a delay). As a quick fix the 
previously successfully received data can be replaced for the current skipped coordinates. Once the changes in 
bandwidth, delay and packet drop percentage were done within the CORE simulation program the problem began to 
show itself more clearly: 

Transmitted 
B89.1824117852593 
C35.9219708975616 
A99.2925314640161 
B75.7348415793786 
C89.0716297401028 
A28.3513214918003 
B57.9651240266685 
C32.4015765606418 
A44.0265127896055 

Received 
B89.1824117852593 
C35.9219708975616 
99.2925314640161B 
75.7348415793786C 
89.0716297401028A 
.3513214918003B57 
9651240266685C32. 
4017656648A44.026 
512789605B82.4490 

 
FIGURE 6.1 DATA LOSS DUE TO UDP (LEFT DATA IS THE TRANSMITTED DATA, RIGHT: DATA RECEIVED. SHADED 

DATA INDICATE MISSING DATA WITHIN THE RECEIVED END) 

By comparing the above data it can be seen that even within the simulation environment data loss occurred. From 
162bytes that were transmitted 6 bytes were not transmitted (these missing characters represented in Figure 6.1 (left) are 
highlighted). This represents a 3.7% error rate, in which may result in omitting the rest of the bits of one of the axis thus 
raising the final error rate to 14.8%, this can be confirmed from the ‘C’ ID’s main two digits which resulted in discarding 
of the whole C coordinates (which refer to the yaw axis). Although the compensator at the client end can try to do error 
correction however the lost data header for the ID cannot be recovered if the first digits following the ID (which 
correspond to the most significant digits of the coordinates) are missing. As a result the particular axis coordinates needs 
to be skipped. This is only the simplest example, one of the worse cases is a combination of these errors, especially one 
with missing delimiter like ‘.’ Once this happens there is no way of knowing where the data begin and where it ended. 
This can be seen from the above data and that if this continues to occur, a data skew may occur for a particular axis 
which can jeopardize the robustness of the MRRC. Thus it has become evident that UDP is clearly not the right choice 
for real-time control data transmission. The code for this Java edition of the communication driver is provided in 
Appendix A – Java UDP Communication driver Code v1.0. 
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6.3 C - TCP COMMUNICATION DRIVER V2.0 
Following the failed attempt of UDP to act as the simple and fast transport layer, focus is now turned to development of 
a communication driver which takes advantage of the TCP features of ensuring reduced data loss.  

Like the other designs this method also involves creating a server and a client to connect to one another. However as it 
can be noted from the Comparison of TCP and UDP, that TCP connections lack the speed and agility of the UDP 
transport however they are connection oriented as a result the handshaking process needs to be initiated prior to 
transmitting data. 

Due to this once again the <sys/socket.h> library is preloaded for use with creating a new socket connection. However 
this time the socket performs a “bind” operation to the listening socket by listening for an incoming connection. 
Following the connection that the client program requests to the server – using the “connect” directive from 
<netinet/in.h> library – the client can initiate a connection to the “listening” server that awaits a request as described in 
Protocol Operation. Following the handshaking process (using SYN-ACK) the connection is then established using a 
predefined port and now data streaming can begin. Like UDP the data is split into groups and sent off to the server. The 
server end confirms the safe arrival of every packet and the client proceeds to send more data as they become available 
either via input or once again a COM device like joystick or PHANTOM device. The implementation of such setup is 
described in further detail within the Appendix. The particular setup described utilizes port 3000 and a buffer length of 
256bytes12. The buffer length indicates the size of each packet being transmitted.  

For test purposes the same sample data used for UDP is once again utilized here to ensure data loss does not occur. The 
CORE simulation environment is used with the same parameters that were obtained during Chapter 3 Site survey. Thus 
the delay and bandwidth were setup within CORE between 18 nodes as described in the Simulation section. The input 
and output are once again compared to ensure no data loss occurred.  

At the command line on the server machine the server program is initiated: 

root@n4:/tmp/pycore.43751/n4.conf> ./server 
 

Once the server is up and running the client side can now begin invoking the transmission of sample data: 

root@n2:/tmp/pycore.43751/n2.conf> cat sample | ./client 10.0.0.11 
Socket created...................OK 
Server address lookup............OK 
Connection established...........OK 
Transmitting... 
Close connection.................OK 
 

By using the pipe command and the cat sample command the sample data is output to the screen and the output is 
channeled to the input of the transmitter program (client in this case) which then sends the data off from the socket to 
the internet address argument13. The input/output data are compared below: 

Transmitted 
C19.8254250244645 
A32.3872629433026 
B68.0662945334007 
C89.1824117852593 
A35.9219708975616 
B99.2925314640161 

 

Received 
C19.8254250244645 
A32.3872629433026 
B68.0662945334007 
C89.1824117852593 
A35.9219708975616 
B99.2925314640161 

 
FIGURE 6.2 DATA COMPARISON BETWEEN TRANSMITTED AND RECEIVED DATA 

                                                           
12 The port must be open to the server within the remote host’s router’s port forwarding section 
13 The internet address used during this experiment is a virtual node address predefined within the CORE simulation 
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Following TCP’s successful data transmission more rigorous tests are conducted. The CORE simulation is then rigged 
by introducing connection interruptions that cause packets to be dropped. Following the modification the same test as 
above is done however this time more data is transmitted (231.4KB) and the input/output are compared using the diff14 
command within Linux. The test successfully passes.  

Since the MRRC system previous described involves a bidirectional connection, the program can be updated to support 
such feature demand. Thus instead of invoking the client server programs twice inversely within each workstation such 
that a client and a server both are running within each workstation to establish a bidirectional connection, one program 
is designed which can mimic such behavior. This design can also be further expanded to allow multiple connections, 
thus a SMMS (single master multiple slave) setup can be established to allow multiple receivers to take command from 
the master. This gives rise to a multithreaded design discussed in the section. The code for this iteration is provided in 
Appendix B – C TCP Communication driver Code V2.0 

6.4 C - TCP MULTI-THREADED COMMUNICATION DRIVER V2.1 
To further build on the notion of multithreaded operation to provide bidirectional support as well as dealing with  
reading and writing to various types of standard inputs the previous version will used as a starting point for socket 
connections however with added hierarchy of parent and child processes. This can be achieved using “forking”. In 
computing, when a process forks, it creates a copy of itself. More generally, a fork in a multithreading environment 
means that a thread of execution is duplicated, creating a child thread from the parent thread. Under Unix and Unix-like 
operating systems, the parent and the child processes can tell each other apart by examining the return value of the 
fork() system call. In the child process, the return value of fork() is 0, whereas the return value in the parent process is 
the PID (Process Identifier) of the newly-created child process. 

The fork operation creates a separate address space for the child. The child process has an exact copy of all the memory 
segments of the parent process, though if copy-on-write semantics are implemented actual physical memory may not be 
assigned (i.e., both processes may share the same physical memory segments for a while). Both the parent and child 
processes possess the same code segments, but execute independently of each other. 

Using this tool we can build on the Bilateral Teleoperation design that was discussed earlier. By creating child processes 
via forking we can achieve a multithreaded program which can do several tasks in parallel. As a result the previous 
notion of client/server changes in the sense that they are only client and server by name, the programs are quite identical 
since they are now multithreaded and can now both act as “transceivers”, In other words they can both transmit and 
receive at the same time.  

The master robot which has the human operator providing input control via a haptic device such as Joystick or Phantom 
device can provide input via a serial COM device to the MRRC controller application [6] (developed in Python) which 
also receives feedback from the actual slave robot’s position and generates a control input to be sent off to the slave 
robot via the multithreaded client application. The multithreaded client application (in this case the client 
communication driver) creates child processes both to handle the MRRC controller’s request to transmit coordinates to 
the slave robot (helicopter) as well as receive robot position information from the slave robot (Vicon system) and 
channel it back to the MRRC controller.  

On the Slave side the multithreaded server applications receives helicopter coordinates via its parent process and 
channels the given data and places it into a buffer to be sent to the helicopter which is interfaced via a serial COM 
devices (such as USB). Here the buffer can also be extended via Network delay compensation using play-back buffer to 
stabilize the communication delay for better MRRC performance. Furthermore the multithreaded server application 
obtains Vicon’s position information about the helicopter and sends it back to the Master robot. This modular design is 
depicted in Figure 6.2.  

                                                           
14 Diff compares two files for any difference among them and displays the differences between the two files 
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FIGURE 6.3 MULTI-THREADED ARCHITECTURE 

Subsequent to the implementation of the multithreaded client and server program comes the test phase. The CORE 
simulation is used once again to host the server and client programs each sitting at opposite nodes. The link between the 
two nodes is configured to match the parameters of the Site survey parameters. At first stage a transmission stress test is 
applied to ensure data loss does not occur over a long period of time. Using a lorem-ipsum generator15 written in 
python, random text is generated on the fly and piped to the client application to be sent off to the server. A small 
sample of the data sent is displayed below which is generated from command line. 

 
                                                           
15 Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's 
standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a 
type specimen book. Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 
BC 
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Lorem Ipsum Stress test output: 

sam@savage:~/boeing/TCP/Threaded> python lorem.py -n 50 
lorem ipsum dolor sit amet consetetur sadipscing elitr sed diam nonumy eirmod 
tempor invidunt ut labore et dolore magna aliquyam erat sed diam voluptua at 
vero eos et accusam et justo duo dolores et ea rebum stet clita kasd gubergren 
no sea takimata sanctus est lorem ipsum dolor sit amet 
 

The parameters passed to the python program simply indicate to generate 50 random words, they can then be piped to 
the transmitter to send the data over the internet to the receiver.  

6.5 RESULTS 
Using the latter version of the communication driver the first test was conducted for 1,000,000 lines of lorem ipsum and 
was transmitted to the remote site within CORE using the same site survey configurations. This generated 67.7MB of 
data which took 17min with a 661Kbps connection that drops 92% of the packets. Using diff the results were compared 
with the original and there was 0% error.  

Furthermore bidirectional communication was tested using single master multiple slave mode (SMMS). This required 
that there be multiple clients and a single server program to capture all their commands.  

The server is invoked by: 

root@n4:/tmp/pycore.43751/n4.conf> ./server 
 

The first client was invoked by sending sample data containing coordinates for A, B, and C helicopter axes. 

root@n2:/tmp/pycore.43751/n2.conf> cat sample1 | ./client 10.0.0.11 
Socket created...................OK 
Server address lookup............OK 
Connection established...........OK 
Transmitting... 
 

The second client was invoked by sending sample data containing coordinates for D, E, and F helicopter axes. 

root@n3:/tmp/pycore.43751/n3.conf > cat sample2 | ./client 10.0.0.11 
Socket created...................OK 
Server address lookup............OK 
Connection established...........OK 
Transmitting... 
 

The resulting output from the server is: 

C82.2341028803748 
F48.97880441913 
A66.7557111170936 
G0.227874332631472 
B34.5903722471121 
E47.8188418440368 
C86.6896021832872 
F33.826766526272 
A88.8618727061839 
G47.2337239126318 
B31.9069719336767 
 

By obtaining a sample output from the output it can be seen that the client is outputting one line from each client. While 
client1 is sending coordinates in the form of ABC, client2 is sending coordinates in the form of DEF, however the 
output shows an alternative selection of the two (i.e. A_B_C + G_E_F = AGBECF). The reason for the skew in data 
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could be either due to several packet retransmissions due to deliberate failure which was programmed into the test 
environment and/or also the fact that the two programs began transmitting coordinates at separate times. The code for 
this version is provided in Appendix C – C TCP Multi-Threaded Communication driver Code. 

6.6 ROBUSTNESS AND SECURITY 
As mentioned earlier in the Vulnerabilities section, there exist several ways of eavesdropping on packets and retrieving 
data. Furthermore the connections being established are simply open to anyone who’s willing to send the right data on 
the right port. If the user is able to find which port the program is transmitting on they can create their own version of 
the transmitter and begin sending coordinates to the remote robot and control the device (in this case helicopter). 
Although a user authentication can be implemented within the C program, any authentication validation being sent via 
the internet is sent openly and the username and password can once again be sniffed by the eavesdropper. As a result a 
heavier more unbreakable form of authentication and encryption is required.  

Before approaching methods of encryption and authentication, there exist several network layer tools that not only 
provide such aids but also increase robustness by providing another level of data redundancy level by using compression 
techniques for transmitting data which can slightly reduce the amount of data being transmitted. However since these 
network layer tools provide encryption and authentication they increase the overhead of the overall transmission and are 
thus considered as speed attenuators. Nevertheless if the modes of operation of such tools are configured properly in an 
optimized manner the overhead add-on will be transparent to the overall performance. 

To introduce security into the transmission, the data being transmitted will be encrypted during transmission and 
decrypted upon arrival by using IPsec. Internet Protocol Security (IPsec) is a protocol suite for securing Internet 
Protocol (IP) communications by authenticating and encrypting each IP packet of a communication session. IPsec also 
includes protocols for establishing mutual authentication between agents at the beginning of the session and negotiation 
of cryptographic keys to be used during the session. IPsec is an end-to-end security scheme operating in the Internet 
Layer of the Internet Protocol Suite. It can be used in protecting data flows between a pair of hosts (host-to-host), 
between a pair of security gateways (network-to-network), or between a security gateway and a host (network-to-host) 
[38]. Although other internet security systems exist, such as Secure Sockets Layer (SSL), Transport Layer Security (TLS) 
and Secure Shell (SSH), Boeing’s high security does not allow certain port forwards and thus a more transparent method 
will be considered. 

To increase security either Boeing’s local PPTP (Point-to-Point tunneling protocol) can be used or an IPsec setup could 
be implemented. In this chapter since PPTP is already setup and since this project could be utilized for high security 
channels IPSEC will be emphasized.  

The security architecture of IPsec involves three stages. The first is the Authentication Header (AH) which provides 
connectionless integrity for IP datagrams and provides protection against replay attacks16, The next is the Encapsulating 
Security Payloads (ESP) which provides confidentiality which protects the origins and destination of packets. Finally the 
last stage is the Security Associations (SA) which provides the bundle of algorithms and data that provide the parameters 
necessary to operate the AH and/or ESP operations. For better robustness and increased speed a hardware router with 
IPSEC capability is utilized. In the case of this current setup the same server and client computers can be utilized. So 
long as both systems are running a Linux architecture the Racoon (IPsec Key management daemon) package can be 
utilized in combination with OpenSwan (Linux based implementation of IPsec) to provide IPsec support.  

Configuring the IPsec tunnel is not as simple as PPTP since all three stages must be configured properly and both 
systems need to have the same configurations to be in tune and to make IPsec function, however IPsec allows the user 
more control over the setup of the secure tunnel as well as increased security. 
                                                           
16 A replay attack is a form of network attack in which a valid data transmission is maliciously or fraudulently repeated or 
delayed. This is carried out either by the originator or by an adversary who intercepts the data and retransmits it, possibly 
as part of a masquerade attack by IP packet substitution (such as stream cipher attack). 
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The main theoretical and understanding of IPsec will not be covered within this section however a brief configuration 
setup procedure used to obtain a secure tunnel is discussed below. In order to setup the tunnel the parameters and 
configurations used come as a pair, thus both configurations are identical except the host address in which the tunnel 
will connect to will vary between the server and the client. On each side the following settings are in place within the 
OpenSwan configuration file: 

Server IPsec Config 
 

Client IPsec Config 

Mode: Tunnel 
Interface: WAN 
DPD interval: 60sec 
Local subnet: LAN subnet 
Remote subnet: 192.168.1.0/24 
Remote Gateway:  
Description: Connect to Boeing 
Phase 1 Proposal (authentication) 
--------------------------------- 
Negotiation: Aggressive 
My Identifier:  
Encryption algorithm: 3DES 
Hash Algorithm: SHA1 
DH Key group: 1024 
Lifetime: 28800 
Authentication method: PSK 
Phase 2 proposal (SA/Key exchange) 
--------------------------------- 
Encryption algorithm: 3DES 
Hash Algorithm: SHA1 
PFS Key group: 1024 
Lifetime: 3600 

 

Mode: Tunnel 
Interface: WAN 
DPD interval: 60sec 
Local subnet: LAN subnet 
Remote subnet: 192.168.1.0/24 
Remote Gateway:  
Description: Connect to Champaign 
Phase 1 Proposal (authentication) 
--------------------------------- 
Negotiation: Aggressive 
My Identifier:  
Encryption algorithm: 3DES 
Hash Algorithm: SHA1 
DH Key group: 1024 
Lifetime: 28800 
Authentication method: PSK 
Phase 2 proposal (SA/Key exchange) 
--------------------------------- 
Encryption algorithm: 3DES 
Hash Algorithm: SHA1 
PFS Key group: 1024 
Lifetime: 3600 

 
 

The mode of operation is chosen as tunnel rather than transport mode to help gear the network for host-to-host 
communication and allow NAT-T (or network address translation traversal which allows port forwarding of routing 
packets to function properly). The interface being used to connect to the outbound network is WAN (Wide area 
network) rather than LAN (local area network) since the remote host is not within the local area of the connecting host. 
DPD interval simply is the time interval to detect Dead Pear Detection interval, which is the time it takes to full 
reestablish connection. The subnet being used to connect hosts will be the local subnet since the client/server is located 
within the local subnet of the IPsec server, while the remote gateway points to the address of the remote host being 
connected to. Aggressive mode of negotiation ensures faster recovery which guarantees that the VPN tunnel rebuilds 
itself quickly and will not time out an application if the tunnel was down when the resource on the other end was 
requested. The time out mentioned within the negotiation mode is also preset to 28800 seconds which the default setup 
time of IPsec tunnels. Both the authentication stage and key exchange stage use military strength 1024bit to encrypt the 
channel. The encryption algorithm being used is 3DES17 which is now the world de facto standard. While the hash 
algorithm uses SHA118 for doing checksum on the encryption hashes. While the authentication is done by PSK (pre-
shared key) meaning both client and server have a preset key that both match which authenticates the encrypted 
communication session. Again for the key exchange 3DES algorithm is used to protect the key from being decrypted.  

  
                                                           
17 In cryptography, Triple DES (3DES) is the common name for the Triple Data Encryption Algorithm (TDEA or 
Triple DEA) block cipher, which applies the Data Encryption Standard (DES) cipher algorithm three times to each data 
block. Because of the availability of increasing computational power, the key size of the original DES cipher was 
becoming subject to brute force attacks; Triple DES was designed to provide a relatively simple method of increasing 
the key size of DES to protect against such attacks, without designing a completely new block cipher algorithm. 
18 SHA-1 is a cryptographic hash function designed by the National Security Agency and published by the NIST as a 
U.S. Federal Information Processing Standard. SHA stands for Secure Hash Algorithm 
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CONCLUSION 
 

From site survey (Chapter 3) we can obtain an overall picture of the link establishing the connection between the two 
nodes. This picture can define the network behavior, namely the delay, bandwidth, and consistency of delay. The round 
trip network delay induced within the link connecting the two nodes is measured to be 191.9ms which falls much under 
the controller stability threshold of 500ms. Following the controller design and the stability of the delay requirement a 
protocol can be selected to best suit the application. In this case since data is transmitted as a stream of information 
(command coordinates and feedback) the TCP protocol can best address the requirements to guarantee no packet loss 
(Section 5.2).  

In terms of pragmatic design the chosen architecture is that of a multithreaded communication system that can 
simultaneously handle bidirectional communication of command coordinates and feedback information and consult the 
data in real-time with the model reference robust control system (Section 6.4). To further guarantee the stability of the 
overall system network delay compensation using play-back buffer (Section 4.3) can be utilized to set a constant upper 
bound on the network delay to any value 𝑇 such that 191.9𝑚𝑠 < 𝑇 < 500𝑚𝑠. As 𝑇 approaches the upper bound of 500ms 
the performance is reduced however better system stability is observed. 

From the simulation and test results it becomes evident that by using the above structure, a stable communication 
environment can be constructed to allow bidirectional communication between a human controller and a remote slave 
robot.   
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APPENDIX A – JAVA UDP COMMUNICATION DRIVER CODE V1.0 
 

/* 
 * File:   senderprog.c 
 * Author: Sam Naghshineh 
 * 
 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <netdb.h> 
 
/* the port users will be connecting to */ 
 
#define MYPORT 4950 
 
int main(int argc, char *argv[ ]) { 
 
    int sockfd; 
    char data; 
 
    /* connectorâ€™s address information */ 
 
    struct sockaddr_in their_addr; 
    struct hostent *he; 
    int numbytes; 
 
/* 
    if (argc != 3) { 
        fprintf(stderr, "Client-Usage: %s <hostname> <message>\n", argv[0]); 
        exit(1); 
    }*/ 
    /* get the host info */ 
 
    if ((he = gethostbyname(argv[1])) == NULL) { 
        perror("Client-gethostbyname() error."); 
        exit(1); 
 
    } else 
        printf("Client-gethostname() is OK...\n"); 
 
    if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) { 
        perror("Client-socket() error."); 
        exit(1); 
 
    } else 
        printf("Client-socket() sockfd is OK...\n"); 
 
 
    /* host byte order */ 
 
    their_addr.sin_family = AF_INET; 
    /* short, network byte order */ 
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    printf("Using port: %d\n",MYPORT); 
    their_addr.sin_port = htons(MYPORT); 
    their_addr.sin_addr = *((struct in_addr *) he->h_addr); 
 
    /* zero the rest of the struct */ 
 
    memset(&(their_addr.sin_zero), '\0', 8); 
    while ((data = getchar()) != EOF) { 
         
        if ((numbytes += sendto(sockfd, &data, 1, 0, (struct sockaddr *) & their_addr, 
sizeof (struct sockaddr))) == -1) { 
            perror("Client-sendto() error lol!"); 
 
            exit(1); 
 
        } else 
            printf(""); 
            //printf("Client-sendto() is OK...\n"); 
    } 
 
    printf("sent %d bytes to %s\n", numbytes, inet_ntoa(their_addr.sin_addr)); 
 
 
 
    if (close(sockfd) != 0) 
        printf("Client-sockfd closing is failed!\n"); 
    else 
        printf("Client-sockfd successfully closed!\n"); 
    return 0; 
 
} 
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/* 
 * File:   receiverprog.c 
 * Author: Sam Naghshineh 
 * 
 */ 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
 
/* the port users will be connecting to */ 
#define MYPORT 4950 
#define MAXBUFLEN 500 
 
int main(int argc, char *argv[]) 
 { 
    int sockfd; 
    /* my address information */ 
    struct sockaddr_in my_addr; 
 
    /* connectorâ€™s address information */ 
    struct sockaddr_in their_addr; 
    int addr_len, numbytes; 
    char buf[MAXBUFLEN]; 
 
    if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) 
 { 
        perror("Server-socket() sockfd error."); 
        exit(1); 
 
    } 
    //else 
        //printf("Server-socket() sockfd is OK...\n"); 
 
    /* host byte order */ 
 
    my_addr.sin_family = AF_INET; 
    /* short, network byte order */ 
    my_addr.sin_port = htons(MYPORT); 
    /* automatically fill with my IP */ 
    my_addr.sin_addr.s_addr = INADDR_ANY; 
    /* zero the rest of the struct */ 
 
    memset(&(my_addr.sin_zero), '\0', 8); 
 
    if (bind(sockfd, (struct sockaddr *) & my_addr, sizeof (struct sockaddr)) == -1) 
 { 
        perror("Server-bind() error."); 
        exit(1); 
 
    } 
    //else 
        //printf("Server-bind() is OK...\n"); 
    addr_len = sizeof (struct sockaddr); 
    while (1) { 
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        if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN - 1, 0, (struct sockaddr *) & 
their_addr, &addr_len)) == -1) 
 { 
            perror("Server-recvfrom() error."); 
           /*If something wrong, just exit lol...*/ 
 
            exit(1); 
 
        } 
        else 
 { 
 
            //printf("Server-Waiting and listening...\n"); 
 
            //printf("Server-recvfrom() is OK...\n"); 
 
        } 
 
 
 
        //printf("Server-Got packet from %s\n", inet_ntoa(their_addr.sin_addr)); 
 
        //printf("Server-Packet is %d bytes long\n", numbytes); 
 
        buf[numbytes] = '\0'; 
 
        printf("%s", buf); 
 
    } 
 
    if (close(sockfd) != 0) 
 
        printf("Server-sockfd closing failed!\n"); 
 
    else 
 
        printf("Server-sockfd successfully closed!\n"); 
 
    return 0; 
 
} 
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APPENDIX B – C TCP COMMUNICATION DRIVER CODE V2.0 
 
/* 
 * File:   server.c 
 * Author: Sam Naghshineh 
 * 
 */ 
 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
 
int main(int argc, char**argv) 
{ 
   int listenfd,connfd,n; 
   struct sockaddr_in servaddr,cliaddr; 
   socklen_t clilen; 
   pid_t     childpid; 
   char mesg[1000]; 
 
   listenfd=socket(AF_INET,SOCK_STREAM,0); 
 
   bzero(&servaddr,sizeof(servaddr)); 
   servaddr.sin_family = AF_INET; 
   servaddr.sin_addr.s_addr=htonl(INADDR_ANY); 
   servaddr.sin_port=htons(32000); 
   bind(listenfd,(struct sockaddr *)&servaddr,sizeof(servaddr)); 
 
   listen(listenfd,1024); 
 
   for(;;) 
   { 
      clilen=sizeof(cliaddr); 
      connfd = accept(listenfd,(struct sockaddr *)&cliaddr,&clilen); 
 
      if ((childpid = fork()) == 0) 
      { 
         close (listenfd); 
 
         while (1) 
         { 
            n = recvfrom(connfd,mesg,1000,0,(struct sockaddr *)&cliaddr,&clilen); 
            //sendto(connfd,mesg,n,0,(struct sockaddr *)&cliaddr,sizeof(cliaddr)); 
            printf("-------------------------------------------------------\n"); 
            mesg[n] = 0; 
            //printf("Received the following:\n"); 
            printf("%s",mesg); 
             
     //printf("-------------------------------------------------------\n"); 
         } 
 
      } 
      close(connfd); 
   } 
} 
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/* 
 * File:   client.c 
 * Author: Sam Naghshineh 
 * 
 */ 
 
 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
 
int main(int argc, char**argv) 
{ 
   int sockfd,n; 
   struct sockaddr_in servaddr,cliaddr; 
   char sendline[1000]; 
   char recvline[1000]; 
    
   if (argc != 2) 
   { 
      printf("usage:  client <IP address>\n"); 
      exit(1); 
   } 
 
   sockfd=socket(AF_INET,SOCK_STREAM,0); 
 
   bzero(&servaddr,sizeof(servaddr)); 
   servaddr.sin_family = AF_INET; 
   servaddr.sin_addr.s_addr=inet_addr(argv[1]); 
   servaddr.sin_port=htons(32000); 
 
   connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)); 
    
    
 
   while (fgets(sendline, 10000,stdin) != NULL) 
   { 
      sendto(sockfd,sendline,strlen(sendline),0,(struct sockaddr 
*)&servaddr,sizeof(servaddr)); 
      //n=recvfrom(sockfd,recvline,10000,0,NULL,NULL); 
      //recvline[n]=0; 
      //fputs(recvline,stdout); 
   } 
    
} 
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APPENDIX C – C TCP MULTI-THREADED COMMUNICATION 

DRIVER CODE V2.1 
 
/* 
 * File:   server.c 
 * Author: Sam Naghshineh 
 * 
 */ 
#include <stdio.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <sys/signal.h> 
#include <sys/wait.h> 
#include <stdlib.h> 
#include <strings.h> 
 
 
#define SERVER_TCP_PORT 3000 /* default connection port */ 
#define BUFLEN  256 /* buffer length */ 
 
int echod(int); 
void reaper(int); 
 
int main(int argc, char **argv) 
{ 
 int  sd, new_sd, client_len, port; 
 struct sockaddr_in server, client; 
         
 
 switch(argc){ 
 case 1: 
  port = SERVER_TCP_PORT; 
  break; 
 case 2: 
  port = atoi(argv[1]); 
  break; 
 default: 
  fprintf(stderr, "Usage: %d [port]\n", argv[0]); 
  exit(1); 
 } 
 
 /* Create a stream socket */  
 if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { 
  fprintf(stderr, "Can't creat a socket\n"); 
  exit(1); 
 } 
 
 /* Bind an address to the socket */ 
 bzero((char *)&server, sizeof(struct sockaddr_in)); 
 server.sin_family = AF_INET; 
 server.sin_port = htons(port); 
 server.sin_addr.s_addr = htonl(INADDR_ANY); 
 if (bind(sd, (struct sockaddr *)&server, sizeof(server)) == -1){ 
  fprintf(stderr, "Can't bind name to socket\n"); 
  exit(1); 
 } 
 
 /* queue up to 5 connect requests  */ 
 listen(sd, 5); 
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 (void) signal(SIGCHLD, reaper); 
         
 while(1) { 
   client_len = sizeof(client); 
   new_sd = accept(sd, (struct sockaddr *)&client, &client_len); 
   if(new_sd < 0){ 
     fprintf(stderr, "Can't accept client \n"); 
     exit(1); 
   } 
   switch (fork()){ 
   case 0:  /* child */ 
  (void) close(sd); 
  exit(echod(new_sd)); 
   default:  /* parent */ 
  (void) close(new_sd); 
  break; 
   case -1: 
  fprintf(stderr, "fork: error\n"); 
   } 
 } 
} 
 
/* echod program */ 
int echod(int sd) 
{ 
 char *bp, buf[BUFLEN]; 
 int  n, bytes_to_read,end; 
        end = 1; 
 
 
 while(n = read(sd, buf, BUFLEN)){ 
                write(sd, end, n); 
                write(1, buf, n); 
        } 
 
 close(sd); 
 
 return(0); 
} 
 
/* reaper  */ 
void reaper(int sig) 
{ 
 int status; 
 while(wait3(&status, WNOHANG, (struct rusage *)0) >= 0); 
} 
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/* 
 * File:   client.c 
 * Author: Sam Naghshineh 
 * 
 */ 
#include <stdio.h> 
#include <netdb.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdlib.h> 
#include <strings.h> 
 
 
 
#define SERVER_TCP_PORT 3000 /* default connection port */ 
#define BUFLEN  256 /* buffer length */ 
 
int main(int argc, char **argv) 
{ 
 int  n, i, bytes_to_read; 
 int  sd, port; 
 struct hostent  *hp; 
 struct sockaddr_in server; 
 char *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN]; 
 
 switch(argc){ 
 case 2: 
  host = argv[1]; 
  port = SERVER_TCP_PORT; 
  break; 
 case 3: 
  host = argv[1]; 
  port = atoi(argv[2]); 
  break; 
 default: 
  fprintf(stderr, "Usage: %s host [port]\n", argv[0]); 
  exit(1); 
 } 
 
 /* Creating a stream socket */ 
 if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { 
  fprintf(stderr, "Can't create a socket\n"); 
  exit(1); 
 } 
 
 else{ 
  printf("Socket created...................OK\n"); 
 } 
 
 bzero((char *)&server, sizeof(struct sockaddr_in)); 
 server.sin_family = AF_INET; 
 server.sin_port = htons(port); 
 if (hp = gethostbyname(host)){  
   bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); 
   printf("Server address lookup............OK\n"); 
 } 
 else if ( inet_aton(host, (struct in_addr *) &server.sin_addr) ){ 
   fprintf(stderr, "Can't get server's address\n"); 
   exit(1); 
 } 
 
 /* Connecting to the server */ 
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 if (connect(sd, (struct sockaddr *)&server, sizeof(server)) == -1){ 
   fprintf(stderr, "Can't connect \n"); 
   exit(1); 
 } 
 else 
   printf("Connection established...........OK\n"); 
  
  
 printf("Transmit: \n"); 
 while(n=read(0, sbuf, BUFLEN)){ /* get user message */ 
   write(sd, sbuf, n);  /* send it out */ 
   /*printf("Receive: \n"); 
   bp = rbuf; 
   bytes_to_read = n; 
   while ((i = read(sd, bp, bytes_to_read)) > 0){ 
  bp += i; 
  bytes_to_read -=i; 
   } 
   write(1, rbuf, n); 
          */ 
   //printf("Transmit: \n"); 
 } 
 
 close(sd); 
 return(0); 
} 
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