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Overview 
 
This work shows the design and study of a family of algorithms that solves the 
multicast routing problem. In this problem, a given node called root has to send 
information to a certain group of receiving nodes. Although the algorithm can 
be applied at any level of the protocol stack, this paper studies its performance 
in the application level. This family of algorithms provides optimal routing tables 
between nodes belonging to the same multicast group, in such a way that the 
total transmission time is minimum. 
 
The algorithms take benefit from the delay time in the transmission of a 
message between one peer and another to forward the data to a third peer. 
Beginnig with a first algorithm, defined to send only one packet, some other 
algorithms has been described under certain conditions to send more than a 
packet with the maximum possible cadence and without congestion problems. 
With this purpose, we have restricted the number of times that the root may 
send a packet and also the maximum cadence time for the rest of the nodes. 
Moreover, we have applied mechanisms to guarantee full connectivity. 
 
With the aim of evaluating the performance of the different algorithms, we have 
calculated theoretically a set of bounds for transmission delays. Moreover, we 
present a serie of simulations over a virtual network that models an IP network. 
Over that first network, we have defined a second network of user nodes, 
which has been created at application level (so we can call it overlay network). 
We have applied the algorithms over the overlay networks, obtaining delay 
times, cadence times, number of nodes with congestion problems, and routing 
trees. 
 
Finally, we compare the results to check the best algorithm in any case. As 
expected, the fastest algorithms can usually have important congestion issues 
(more than a 50% of affected nodes). Moreover, the algorithm defined to avoid 
congestion has at most 50% bigger delay than the fastest algorithms, and 
hence we finally advice its application in multicast transmissions. 
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Resum 
En aquest treball hem dissenyat i estudiat una família d’algorismes que 
permeten solucionar el problema de l’encaminament multicast, en què un 
usuari anomenat arrel ha d’enviar informació a un determinat conjunt de 
nodes. Tot i que aquests algorismes es poden aplicar en qualsevol nivell de la 
torre de protocols, en aquest document s’estudia la seva utilització al nivell 
d’aplicació. Aquesta família d’algorismes permet crear, de manera òptima, 
taules d’encaminament entre els nodes d’un mateix grup multicast, de manera 
que es pugui minimitzar el temps que tarda la informació en arribar a tots els 
membres. 
 
Els algorismes aprofiten el retard (o latència) en la transmissió d’un missatge 
entre un node i un altre per reenviar el paquet cap a un tercer node. A partir 
d’un primer algoritme, dissenyat per enviar un únic paquet a tots els nodes de 
la manera més ràpida possible, s’han creat altres algorismes per adaptar-los a 
determinades condicions i enviar més d’un paquet amb la cadència més ràpida 
possible i sense riscos de congestió. Per a això, s’ha limitat el nombre de 
vegades que el node arrel pot enviar la informació (valor que anomenem s), o 
el temps de cadència màxim dels nodes del grup. Igualment s’han aplicat 
mecanismes per impedir que cap membre del grup pugui quedar desconnectat 
de la resta d’usuaris. 
 
Per estudiar el comportament dels algorismes s’ha calculat analíticament una 
sèrie de fites pels retards de transmissió. Igualment, s’han realitzat una sèrie 
de simulacions en una xarxa virtual que modelitza la xarxa IP, sobre la que 
s’ha definit una segona xarxa overlay formada pels nodes d’usuari, creada  al 
nivell d’aplicació. En aquesta xarxa hem aplicat els algorismes, obtenint els 
temps de retard, els temps de cadència, nombre de nodes sense risc de 
congestió i els arbres d’enrutament per enviar la informació. 
 
Finalment, s’han comparat els resultats per comprovar quin és el millor 
algorisme en cada cas. Com era de preveure, els algorismes més ràpids 
poden tenir problemes greus de congestió (fins a més d’un 50% de nodes 
afectats). Per altra banda, l’algorisme que s’ha definit per evitar aquets 
problemes té un retard superior de com a màxim un 50% respecte als 
algorismes més ràpids, de tal manera que finalment hem aconsellat la seva 
aplicació en la transmissió multicast de la informació. 
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INTRODUCTION 
 
 
In recent years the number of computers connected to the Internet has grown 
up considerably, as well as the set of applications that can be executed over 
them. Very often, these applications consist in data transmission between one 
computer and another, or between one computer and a group of them. From 
the origins of computer networks, the unicast (from one computer to a single 
one) and the broadcast (from one computer to an undefined group of them) 
transmissions are available; but the transmission from one single computer to a 
well-defined group of receivers is an unsolved problem. A lot of applications can 
use this type of transmission: videoconference calls, multiplayer games, or file 
sharing in a P2P network. 
 
The multicast IP is an available solution to this problem, but it also has some 
(and relevant) drawbacks, as it was added to the original IP specification. First, 
the number of multicast addresses is low, which implies a limited number of 
groups. And second, some multicast routing algorithms and protocols are 
complex and, most important, all the network equipment (like routers and 
switches) must understand these protocols (in other case, the equipment should 
be changed in order to provide a multicast service). 
 
The solution presented in this master thesis proposes a different strategy for the 
problem of multicast routing. We present a family of algorithms which can be 
used at any level (network, link or application) thanks to their degree of 
abstraction. These algorithms present as main features: 
 

• Simple implementation 
• Low transmission delay 
• High scalability 

 
This family of algorithms is based in a very simple approach: from a source 
node (also known as root), and a set of destination nodes (which would form a 
multicast group), the algorithm must find the simplest way to generate the 
optimal paths to minimize the total delay when we send some data from the 
source to all receivers. 
 
At the beginning, the algorithm was defined to send a sigle packet in a very 
homogeneous network. After that, more complex networks and scenarios were 
proposed, adding also some behavior conditions to modify the initial algorithm 
depending on environment parameters. 
 
To study, test and check the advantages of this family of algorithms, we have 
applied the algorithms on different simulated networks. In fact, we started our 
project creating a virtual representation of an Internet backbone, which has 
transit networks (with high speed and delay) and access networks (slower, with 
lower delays, and connected to the transit nodes). 
 
Then, we created the overlay network by adding some nodes (or peers) on the 
previous networks, connecting them to the access networks. The objective is to 
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simulate a real Internet scenario: for example, five friends, who connect to 
Internet using their ADSL connection with different operators, and that want to 
start a multiplayer game without any centralized game server. So, the five 
friends will define a multicast group, and our objective is to get the best way to 
transmit the data between them. Anyway, this is a simple example, as our 
algorithms can be used in different scenarios, like an Ethernet network, and for 
a lot of applications and transmission levels. 
 
Once we have the overlay network with the peers that form the multicast group, 
we have applied the algorithms over it. This execution will report the routing 
tree, the node cadence, the time at which any node receives the packet, the 
number of nodes with congestion problems and the total transmission delay. 
We have also compared the results for the different algorithms to check the best 
one in each case. As expected, the fastest algorithms can usually have 
important congestion drawback, whereas the algorithm defined to avoid 
congestion has a bigger delay, though it may be considered of not great 
importance. 
 
The memory of this project is structured as follows: first, we explain the 
multicast transmission problem and we present a possible Internet network 
model. The second section is a brief introduction to graph theory and the 
Dijkstra’s algorithm, which is used to obtain the minimum path between two 
nodes. The third section defines the family of algorithms, beginning with the 
initial model, used to send only one packet. Fourth section is the mathematical 
analysis of the algorithm, proving theoretical values. The next section is a brief 
description about the applications created and used to generate the overlay 
graph, apply the algorithm on it, and read and process the results. Finally, the 
sixth section contains the parameters to generate the overlay networks, results 
and conclusions, and the proposal for further work. 
 



Multicast transmission and modeling of IP network    

 

3 

1. MULTICAST TRANSMISSION AND MODELING OF IP 
NETWORK 

 
 
1.1. Multicast transmission issues 
 
In all communications networks, including computer networks, there exist some 
transmission topology. The more usual is point-to-point transmission, like the 
normal telephone communication (data stream –in this case, the voice– goes 
from one unique source to one known receiver), or broadcast, which consists on 
transmitting the data from one unique source to all the possible receivers, but 
without specifying the recipients (which is the case of the FM radio). Anyway, if 
we want to transmit data from one point to a well-defined set of receivers (that 
is, knowing who belongs to the network), the issue is considerably more 
complicated. This is known as multicast transmission, where the set of clients 
can receive the same stream from one single source. 
 
The application of multicast include video conferencing, multiplayer networking 
games, corporate communications, distance learning and distribution of 
software, stock quotes and news. In the context of IP networks multicast was 
initially proposed to be implemented at the network layer [1], but it has not been 
widely deployed [2]. Multicast IP defines a multicast group where the clients 
receive the stream originated by one single source, which only sends one 
packet to the multicast group that is forwarded to the multicast routers and 
replicated at points where the paths of the distinct clients diverge. By sending 
only one copy of the information to the network and allowing the network 
intelligence replicate the packet only when necessary, bandwidth and network 
resources may be efficiently exploited. But there are significant drawbacks to 
this multicast IP, as the original IP design did not have in mind multicast 
transmission, and it is an “add-on” to the IPv4 protocol. For example, the range 
of IP addresses to create multicast groups is very limited and most of them all 
already reserved, we need complex algorithms (like PIM) to do multicast routing 
over IP network, and most importantly, the network elements (like routers) must 
know these algorithms and their messages, to understand the multicast 
transmission. 
 
These reasons make multicast transmission complex and difficult before using 
the IPv6 protocol. Also, in multicast IP the multicast group is created at level 3 
of the protocol stack (that is, the network level), so an application that needs to 
define and manage a multicast group (for example, a videoconference call 
application) will find serious difficulties to take absolute control of the multicast 
group. 
 
The lack of deployment of IP multicast has led to considerable interest in 
alternative approaches at the application layer, using peer-to-peer architectures 
[3]. In an application layer multicast approach, also called overlay multicast, 
participating peers organize themselves into an overlay topology for data 
delivery. In this topology each edge corresponds to a unicast path between two 
end-systems or peers in the underlying IP network. All multicast-related 
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functionality is implemented by peers instead of routers, with the goal of 
depicting an efficient overlay network for multicast data transmission. Obviously, 
the application-layer multicast is not as efficient as network-layer multicast, 
resulting in larger delays and bandwidth consumption, an in less stability of the 
multicast tree. 
 
Real-time applications are especially sensitive to delay and/or delay jitter. In 
multiplayer networking games the information of every player has to be 
delivered to the rest of the players within a time interval in order to preserve 
game state between all the players. In video-on-demand applications coping 
with delay is not as important as coping with delay jitter; that is, the real point is 
to preserve the cadence at which the packets arrive at the destination more 
than the delay at which they arrive. These two constraints are important when it 
comes to streaming of live events, such as concerts or sports events, because 
the playing can not be considerably delayed from the source and the cadence 
must be preserved as a normal streaming video transmission. So, it is an 
important practical problem to determine how to depict a multicast tree which 
minimizes the total multicast delay between the time at which the message 
starts being transmited, and the time at which it is completely received by all the 
nodes of the multicast group. 
 
There are several studies and proposals for application-layer multicast. These 
studies are mainly focused on protocols for efficient overlay tree construction 
and maintenance. There are two basic approaches to the problem: fixed nodes 
based overlay and dynamic nodes based overlay. The first approach, such as 
proposed in [4] and [5], places strategically some special nodes around the 
whole Internet which form, when required by the applications, an overlay 
multicast topology. Alghough the multicast tree is quite stable and easy to 
maintain, this solution has some of the practical problems of Multicast IP [2]. In 
dynamic nodes-based overlay multicast, such as [6], [7] and [8], the group 
members are self-organized into an overlay multicast tree. All the multicast 
functions are achieved by the group members. Since in large multicast groups 
there is a frequent joining and leaving of nodes, the adaptation to the network 
state is one of the main issues that should be considered together with the 
scalable formation of an efficient multicast tree. 
 
 
1.2. Modeling of IP network 
 
As said before, the overlay network used to set the multicast transmission is 
created over a real network. This “real network”, when we refer to computer 
networks, is Internet. Since the use of real networks to study the congestion, 
routing and managing under different routing algorithms is practically 
impossible, we use analysis and simulations, as long as we can consider that 
the used model is a “good abstraction” of the real network. 
 
So far, the models used to modeling computer networks usually are: 
 

• Regular topologies, like rings, trees and stars. 
• “Well-known” topologies, like ARPAnet or the backbone of NSFnet. 
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• Randomly generated topologies. 
 
These three cases have obvious limitations: the regular or “well-known” 
topologies only represent a part of current and old networks; and random 
topologies do not represent a real network. This is a fact to be considered, since 
the performance of an algorithm can widely vary from one topology to another. 
 
Next, we present a possible Internet modeling in a graph form. To do this, we 
follow the model proposed by Ellen W. Zegura, Kenneth L. Calvert and Samrat 
Bhattacharjee [10], and we’ll see several ways to create a simulation for IP 
network. 
 
The purpose of [10] is modeling in a very realistic way the paths (that is, the 
nodes sequences) along which information travels in a transmission between 
any two nodes in the IP network. Nodes represent switches and routers, and 
edges represent the paths between interconnecting elements. The model does 
not include individual hosts, that is, it does not consider the terminal equipment, 
but merely the logical structure of the network. Also, different criteria can be 
applied to form the model of the network, depending on the final use.  
 
There are different ways to do this, as seen in [10]. The first one takes the 
parameters of well-known networks, to modelize a real network. Another option 
is using random plain graphs, which does not represent a real IP network but 
whose simplicity makes them a good option in some network studies. These 
models distribute nodes randomly in the plane, and then add edges between 
them using various probability functions. 
 
The last way to modelize a network is using a hierarchical model. Two models 
are available: N-Level and Transit-Stub. The first starts with a random 
connected graph, and then, recursively, the nodes are substituted by another 
new connected graph. The issue about the edges of the upper level connectivity 
can be solved in various ways, for example choosing one node of the new 
graph randomly and make the original link support it. 
 
The second model, Transit-Stub, is explained next. 
 
 
1.3. The Transit-Stub network model 
 
In this model, first we create a random connected graph, where each node 
represents a complete transit domain. Then, each node is substituted by a new 
connected graph, which represents the backbone topology for this domain 
(called transit domain). Next, for each node in each transit domain, some 
connected random graphs are generated, which represents the access domains 
added to that node (called stub domains). Finally, some edges between transit-
domain nodes and stub-domain nodes (or even between stub-domain and stub-
domain nodes) are added. If all the generated graphs are connected graphs, 
the resulting graph will be a connected graph. In addition, these random-
generated graphs can be created using any of the random plain graphs model. 
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The parameters needed to create a network using the Transit-Stub model are: 
 

• T: number of transit domains, 
• Nt: average number of nodes per transit domain, 
• K: average number of access domains per tranit node, 
• Ns: average number of nodes per stub domain. 

 
With these parameters, we can use the tools (described in section 5.1) to create 
the backbone network. We choose this model because it is simple, and gives a 
good approach of what is the Internet topology. Anyway, this model only sets 
the backbone (that is, the network-layer interconnection devices), which is not 
enough for our porpouses, since we need individual hosts (or peers) to act as 
multicast group members. To do this, we’ll use a Java application (described in 
section 5.2) to add these multicast members to the backbone graph, and then 
apply our algorithms over it. 
 
 

 
 

Fig.1.1 Transit-Stub model 
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2. GRAPH THEORY 
 
 
This section presents graph theory: some definitions about graphs and the 
Dijkstra's shortest path algorithm. With these tools, we will be able to modelize 
Internet, and create the overlay graph that will be our multicast group, and 
where we will apply the algorithms. 
 
 
2.1. Definitions 
 
A simple graph G is a pair (V(G), E(G)) in which V(G) is a finite set of elements 
called nodes or vertices, and E(G) is a finite set of non-sorted pairs of nodes, 
called arcs or edges. The order n of a graph G=(V,E) is the number of nodes, or 
equivalently, the cardinal of V(G). Also, we define the size E of a graph G=(V,E) 
as the number of edges in the graph, that is, the cardinal of E(G). Usually, a 
graph is graphically represented with points as the nodes, and lines linking 
these points as the edges. 
 
Either vertices and edges can have tagging functions, that is, an application 
Φ:V(G) → Z and Φ’:E(G) → Z such that each single node and/or edge has an 
associated number (anyway, the destination set can be of any other type, like 
sorted-pairs of numbers or real numbers). These tags (also known as weights) 
can be used to identify the elements of the graph, or set some property of these 
elements, like link bandwidth or node type. 
 
It is said that two nodes u and v are adjacent (or neighbors) when they are 
linked by an edge uv. In this case, nodes u and v are adjacent to edge uv, and 
edge uv is also said to be adjacent to nodes u and v. Two edges are adjacent 
when they have one common node. The degree δ(v) of a node v is the number 
of adjacent edges to v. 
 
An edge sequence is a succession of consecutive edges v0v1,v1v2,v2v3,..,vm-1vm. 
This sequence draws a continuous path over the graph. A sequence with no 
repeated edges is called a path, and if there are not repeated nodes, it is called 
a simple path. A cycle is a path such that the start node and the end node are 
the same; note, however, that any node of a cycle can be chosen as the start 
node, and so the start is often not specified. 
 
Two vertices u and v are connected if G contains a path from u to v. If every 
pair of distinct nodes in V(G) is connected, then the graph G is connected. A 
connected component is a maximal connected subgraph of G. Each node 
belongs to exactly one connected component, and so each edge. The distance 
d(u,v) between two nodes u and v in a graph G is the lenght of the shortest path 
between them, that is, the minimum number of edges we need to go from one 
node to the other. If a graph is not connected (i.e. it is disconnected) and two 
nodes belong to two different connected components, we say that their distance 
is infinity. The eccentricity ε(v) of a vertex v in a graph G is the maximum 
distance from v to any other vertex of the graph. The diameter D(G) of a graph 



8                                                                        Application-Layer Multicast Algorithms for Bounded Delay Transmissions 

 

G is the maximum eccentricity over all the vertices in the graph, and the radius 
R(G), the minimum. 
 
 

           
 

Fig. 2.1 Examples of a connected graph and a disconnected graph 
 
 
A tree is a connected graph with no cycles, or alternatively, a graph in which 
any two nodes are connected by exactly one path. A complete graph Kn is a 
simple graph in which all the pairs of nodes are linked with an edge, and thus its 
size is n(n-1)/2. Moreover, if all nodes in a graph have the same degree, it’s 
called a regular graph; and, in particular, if all nodes have degree r, it is called a 
regular graph of degree r or r-regular graph. 
 
 
 

 

 
 

Fig. 2.2 Examples of a tree, a complete graph, and a regular graph 
 
 
A directed graph or digraph G is an ordered pair (V(G), A(G)), where V(G) is a 
finite, non-empty set of elements called vertices or nodes, and A(G) is a set of 
ordered pairs of vertices, called directed edges, arcs or arrows. An arc e=(v,w) 
(or also designed by either (v,w) or vw) is considered to be directed from v to w; 
w is called the head and v is called the tail of the arc. Moreover, w is said to be 
a direct successor of v, and v is said to be a direct predecessor of w. If a path 
leads from v to w, then w is said to be a successor of v, and v is said to be a 
predecessor of w. Note that arcs vw and wv are different, and wv is called the 
arc vw inverted. If G has not any arc from one node to itself (that is, an arc vv 
called loop), and all the arcs in G are different, then G is called a simple 
digraph. If G is a digraph, the graph obtained by deleting the “arrows” (or the 
directions) of the arcs is called base graph of G. 
 
All the definitions given for a simple graph can be extended to a digraph. Thus, 
we can define tagging applications Φ:V(G) → Z and Φ’:A(G) → Z over the 
vertex set and the arcs set, and finite sequences of arcs v0v1,v1v2,..,vm-1vm 
where nor arcs neither vertices are repeated. 
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A digraph G is called weakly connected if the base graph of G is a connected 
graph. Otherwise, G is called strongly connected if it contains a directed path for 
every pair of nodes v,w ∈ V(G). While all strongly connected digraphs are 
connected, not all connected digraphs are strongly connected. 
 
 
2.2. The shortest path problem. Dijkstra’s algorithm 
 
In this project, we want to study the application of some algorithms to optimize 
the transmission of information over a group of nodes. Later we will see in detail 
how these algorithms works, but now we can advance that its operation is 
based in the fact that computers in the same group can forward wisely the 
information. 
 
To do this, first we need to find the closest nodes to a particular user, and the 
cost (or delay) to send them the data. This issue may arise as a simple shortest 
path problem, and it can be solved using the Dijkstra’s algorithm, an algorithm 
wich finds the best path between a given node u of the graph and the rest of the 
nodes. In this algorithm, each node v of G=(V,E) has a tag L(v). This tag shows 
the shortest known distance needed to move from one fixed node u to this node 
v. At the start, the value of L(v) is the weight w(u,v) of the edge that connects 
the nodes u and v, and, if this edge does not exist, this value is set to infinity  
(L(v) = ∞). Also, L(u) = 0, so the cost to stay in the node itself is 0. The 
algorithm works with a set of nodes T ⊂ V, which at every time have already 
obtained the shortest path from u to them. At the end of the algorithm execution, 
L(v) contains the cost (or delay or distance) of the shortest path to go from u to 
v, for any v in V(G). 
 
At each iteration, the algorithm adds a new node to the list T. This is done 
choosing a node v’, which does not belong to the list T and which has the minor 
tag L(v’). In other words: the algorithm chooses a node v’ out of the list which 
has the minor distance from u to v’. Once this is done, the nodes supported 
directly by v’ must update their tag, so the distances between u and these 
nodes are recalculated, and finally, the node v’ is added to the list T. This 
process is repeated until all the nodes of the graph have been added to the list. 
 
 

1. for all v ≠ u     L(v) = w(u,v) 
2. L(u) = 0 
3. T = {u} 
4. while T ≠ V 

init 
5. find v’∉ T such that ∀ v∉ T      L(v’) ≤  L(v) 
6. T =  T ∪ {v’} 
7. for all v∉ T such that v’ is adjacent to v 

if L(v) > L(v’) + w(v’,v) 
then L(v) = L(v’) + w(v’,v)  end if 

end for all 
end while 
 

Fig. 2.3 Dijkstra’s algorithm 
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Dijkstra’s algorithm is optimal; to prove this, let’s see that each time a node v’ is 
added to T, the tag L(v’) is the minimum distance from u to v’. Using a proof by 
contradiction, let’s suppose that L(v’) is not he shortest path between u and v’. 
Then, let’s say that w2 is the first node through which passes this new shortest 
way between u and v’, shorter than L(v’). This w2 node must belong to T by 
construction, as the distance from u to w2, which the algorithm knows since the 
first iteration, must be shorter than L(v’). The same argument can be repeated 
for the next node in the path, w3, which must have shorter distance from u than 
L(v’), calculated after adding w2 to T, and therefore this node w3 must also 
belong to T. Hence, when the algorithm reaches v’, if it would exist a shortest 
path from u to v’ than the indicated by the L(v’) tag, the algorithm would have 
added to T these nodes w2,w3,w4... which form this shortest path, and it would 
have found this path. Finally, as to complete the algorithm execution all nodes 
must be in T, the Dijkstra’s algorithm finds the shortest path from one node u to 
any other node in the graph. 
 
It is also easy to prove that Dijkstra’s algorithm has a complexity of O(n2), 
something that, in practice, means that shortest paths can be found in a low 
computing time. To get the minimum L(v’) (line 5 of the algorithm, Figure 2.3) 
we make O(n) comparisons, and line 7 does not need more than n allocations. 
These two lines are in the while loop from line 4, executed (n-1) times. Then, 
this algorithm can be completed in O(n2) computation time. Finally, it must be 
noted that this algorithm not only calculates the minimum cost (or distance) 
between any two nodes, but also draws the path which connects them. This can 
be done adding a new tag in each node, in such a way that when L(v’) value is 
updated, this new tag gets the node v from which the new value for L(v’) has 
been calculated. 
 

 

 
 

Iteration V’ L(u) L(v1) L(v2) L(v3) L(v4) T 
0 - 0 1 2 4 ∞ {u} 
1 v1 0 1 2 4 4 {u, v1} 
2 v2 0 1 2 3 3 {u, v1, v2} 
3 v3 0 1 2 3 3 {u, v1, v2, v3} 
4 v4 0 1 2 3 3 V 

 
Fig. 2.4 Dijkstra’s algorithm execution example from node u 
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3. ALGORITHM DEFINITION 
 
 
In this section, we introduce the Postal Model and we apply it over a multicast 
transmission. We also prove some basic properties of the resulting algorithms 
and calculate their complexity. Later, in the next section, we present the 
mathematical analysis of the algorithms. 
 
 
3.1. The Postal Model 
 
To improve the data transmission between peers, Bar Noi et al. introduced in [9] 
the MPS(n) Postal Model, which characterizes message-passing systems which 
use packet switching techniques and defines a latency parameter ≥λ 1, that 
corresponds to the time elapsed since the message starts to be sent by one 
peer until it is completely received by another peer. This model is used by the 
authors to study the impact of communication latencies on the design of 
broadcasting algorithms for fully connected systems. The model considers three 
aspects of such systems: full-connectivity, simultaneous I/O, and 
communication latencies. While the two first aspects express a message-
passing system as an undirected complete graph, the latter defines the same 
communication latency for any two nodes of the system. 
 
In Postal Model, we use the latency of the information (that is, the time between 
the source has finished sending the data and the destination starts receiving it) 
to improve the sending rate of source. Also, the nodes or peers that have 
already received the information (a packet, for example) can forward it to other 
peers. This model searches optimum routing trees based in Fibonacci Trees, 
instead of the traditional binomial trees. Though the original model proposed in 
[9] is for a broadcast transmission, it can be extended easily to a multicast 
transmission, creating a well-defined group of destination peers and 
broadcasting the data to all of them. 
 
Figure 3.1 presents an example of the transmission from P0 to other seven 
more peers, using the Binomial Tree and the Fibonacci Tree. In both cases, a 
peer can send a packet every unit of time t, and the latency value is 2=λ  (that 
is, we need two units of time to go from one node to another). The left tree uses 
the Binomial Tree, which needs 6 units of time to send the data to all the peers, 
while the right tree uses the Fibonacci Tree from the Postal Model, and it only 
needs 5 units of time to complete the tree. 
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Fig. 3.1 Transmission trees (Binomial on left, Fibonacci on right) 
 
 
3.2. The Extended Postal Model 
 
In this project, we extend the postal model. We define a message-passing 
system with n peers, EMPS(n,λ,μ), as a set of full-duplex peers {po,p1,…,pn-1} 
such that each peer p can simultaneously send one message to peer q and 
receive another message from peer r according to the following parameters: 
 

• For each peer p in a message-passing system, we define the 
transmission time μp as the time that requires p to transmit a message M 
of length l. We denote μ the vector of all μp’s. 

• For each pair of peers p and q in a message-passing system, we define 
communication latency λpq between p and q. If at time t peer p starts to 
send a message M to peer q, then peer q sends message M during the 
time interval [t, t+μp], and peer q receives message M during the time 
interval [t+λpq–μp, t+λpq], as shown in Figure 3.2. Note that λpq is the sum 
of transmission time μp of peer p, and the propagation delay between p 
and q. We denote by λ the matrix of all λpq’s. 

 
 

 
 

Fig. 3.2 The Extended Postal Model 
 
 
Although an overlay network will be normally fully connected (i.e. each peer in 
the overlay will be able to send an end-to-end message to any other peer), the 
performance of EMPS(n,λ,μ) does not require full connectivity. Hence, the 
definitions, bounds, and results depicted in this project will fit both fully 
connected and not fully connected networks. We also assume that the 
processing delay of the peers is negligible. However, the model could easily 

p q

pµ
pqλ
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take into account a peer p with a processing delay different to zero by adding 
the processing delay to the latency the first time that peer p forwards the 
message. 
 
EMPS(n,λ,μ) model is a generalization of MPS(n) in [9]. In the latter μp is 
assumed to be the unit for all the peers, λpq is also the same for any pair of 
peers p and q and, finally, the overlay network is fully connected. In 
EMPS(n,λ,μ) we consider the peers heterogeneity, and then we model different 
transmission times for different peers and also different communication 
latencies between any pair of peers, since the underlay network consists of a 
variable set of links and network devices. 
 
For simplicity sake, we assume that for messages of the same length the 
communication latency is constant as a function of time. Hence, we do not 
consider the possible variation of the communication latency due to the load 
and broken links of the underlying network. Application-layer networks use the 
services provided by the underlying network, such as a TCP/IP network, to 
establish unicast full-duplex connections between any pair of peers. The term 
message refers there to any atomic piece of data sent by one peer to another 
using the protocols of the underlying layers. 
 
Thus we denote by EMPS(n,λ,μ) the message-passing system with n peers, a 
communication latency matrix λ and a transmission time vector μ. 
 
 
3.3. Single Message Multicast Algorithm 
 
The problem of multicasting one message in a message-passing system is 
defined as follows. Let p0 be a peer in EMPS(n,λ,μ) model which has a 
message M to multicast to the set of receiving peers R={p1,p2,…,pn-1} at time 
t=0, find an algorithm that minimizes the multicast time, tM, that is, the time at 
which the last peer of R receives message M. Though the result of EMPS(n,λ,μ) 
is a multicast spanning tree (that is, a tree connecting all the peers of the 
network), Figure 3.3 shows that this problem is different from the well known 
Minimum Spanning Tree problem in which, given a network, we have to find the 
spanning tree with minimum weight. Furthermore, in our problem the time delay 
between two peers p and q is not always the weight λpq of the edge which joins 
them, since if the peer p has forwarded the message to other peer before 
forwarding it to q, then we must add to the delay the transmission time μp. 
 
In [9], the authors define the algorithm BCAST which provides time-optimal 
multicast trees for the case of full connectivity, μp=1 and λpq=λ for any pair of 
peers (p,q). Such time-optimal multicast trees are based on generalized 
Fibonacci numbers, and they refer to these trees as generalized Fibonacci 
trees. 
 
The authors also states in [9] that in any optimal strategy each peer, once have 
received message M, has to forward it to a new peer each time unit (recall that 
the transmission time is considered to be one). This idea also applies to the 
extended postal model EMPS(n,λ,μ), with the difference that now message 
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retransmissions of peer p have to occur each transmission time μp. The 
algorithm that we propose, called SMM Single Message Multicast, is outlined in 
Figure 3.4. 
 
 
 

 
 

Fig. 3.3 Comparison between EMPS(n,λ,μ) and Minimum Spanning Tree. In 
this case μ=1 for all nodes and the latency is the weight of the edge. In 

parenthesis we write the time at which the message arrives at each node. 
 
 
 
 

 
 

Fig. 3.4 SMM Algorithm 
 
 

Data: EMPS(n,λ,μ) 
Result: routing[i].send[j] 
send ← 1; 
routing[i].send[j] ← 0 ji ,∀ ; 
routing[i].tnext ← ∞  i∀ ; 
routing[root].tnext ← lowest latency of root;
while sent < n do 

i ← imin(); 
next ← routing[i].index; 
routing[i].send[next] ← 1; 
update_i(routing[i].index); 
update_t(routing[i].tnext); 
update_i(routing[next].index); 
update_tn(routing[next].tnext); 
send ← sent+1; 

end 
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The variables, arrays, and functions that the algorithm uses are the following: 
 

• routing[i].send[j]: the routing table. Initially all its values are 0. When 
SMM has finished, routing[i].send[j] equal to 1 means that peer i has to 
forward the message to peer j. If it equals 0 then peer i will not send the 
message to peer j. As each peer has an ordered list of its neighbors 
according to their distance, once peer i has received the message, it will 
forward it to the first peer j such that routing[i].send[j]=1. Then it will 
forward the message to the next peer k with routing[i].send[k]=1 and so 
forth. 

• i: the peer that sends the message at each step. 
• next: the peer which receives the message at each step. 
• routing[i].index: points to the closest peer to i which has not yet received 

the message. 
• routing[i].tnext: time at which if peer i sends a message, it will arrive at its 

closest peer chosen from the unvisited peers. This receiving peer is 
routing[i].index. 

• imin(): chooses the peer with lowest routing[i].tnext. 
• update_i(): searches the nearest peer to i from the set of peers which 

have not yet received the message. 
• update_t(): once i has forwarded the message, update_t() computes the 

next value for routing[i].tnext. That is, it subtracts from its previous value 
the last latency, and adds up to it the next latency plus its transmission 
time. 

• update_tn(): the same as update_t() but it applies to a peer which has 
just received the message. To the time at which the peer receives the 
message it adds up its lowest latency, chosen from the peers which have 
not yet received the message. 

 
The operation of the algorithm is simple. At each step SMM chooses the peer 
which has not yet received the message and has the lowest cost, that is, the 
unvisited peer that can be reached at minimum time from any peers which has 
already received the message. Once the message has been received by the 
new peer, the algorithm recalculates the arrival times of the remaining peers 
(considering that the new peer can forward the message immediately), chooses 
the peer with the lowest arrival time and forwards the message to it. The 
calculations of arrival times are made under the assumption that when a 
sending peer finishes the retransmission of the message to another peer, it 
begins immediately with another destination peer. SMM algorithm is very similar 
to Dijkstra’s shortest path algorithm [22] with the difference that in EMPS(n,λ,μ) 
the time delay between two peers p and q is not constant. Actually, in 
EMPS(n,λ,μ) this delay is equal to λpq plus μp multiplied by the number of 
previous retransmissions of peer p. 
 
Consider the network depicted in Figure 3.5 where the weights edges 
correspond to the communication latency λpq between the nodes of the edge. 
For simplicity, we consider the transmission time up of all the peers to be equal 
to one. We also assume that the original sender of message M is peer p0. At 
time t=0, p0 sends the message to peer p1 and this message will arrive at time 
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t=10. At time t=1, p0 has its output link free and can send the message M to the 
next closest peer p2, which will receive the message at time t=11. If peer p1, 
which is closer to peer p2 than p0, would forward the message, it would be 
received in p2 at time t=12. However, for peers p3 and p4, the arrival times from 
p0 would be t=22 and t=23, whereas from p1 these arrival times would be t=20 
and t=21. In this case the algorithm will forward the message to peers p3 and p4 
from peer p1. 
 
 

 
 

Fig. 3.5 Example of SMM algorithm in a fully connected network 
 
 
Observe that if peer p2 sends the message to peer p4 the message also would 
arrive at time t=21. The selection of either p1 or p2 for sending the message to 
p4 depends on the use of a strict comparison in the line where the algorithm 
checks if the corresponding peer has to be selected (i.e. the use of “ < ” versus 
“ ≤ ”). This consideration has an effect on the degree of the peers in the 
multicast tree, and also on the peers load in terms of network computing. 
Although the effects on computing load are not the focus of our study, it seems 
clearly useful to preserve the degree of the peers at the minimum. This has a 
certain importance since in overlay networks the peers correspond to the end-
users devices. 
 
We can prove that the multicast time achieved by the algorithm SMM is 
minimum when μp=0 for all the peers. The proof is simple: in this case, since 
μp=0 for all the peers, the time delay between two peers p and q is always the 
weight λpq of the edge which joins them, and thus the SMM algorithm 
corresponds to the optimal Dijkstra’s algorithm of complexity O(n2). 
 
In a general case, however, the SMM algorithm is not always optimal. In Figure 
3.6 we show a network where SMM is not optimal. On the left we apply SMM 
with a result of multicast time of 7. On the right we show that multicast delay 
must be reduced to 5 by redefining the order of transmission. Hence, if the 
source begins with peer p3, follows with p1 and finishes with p2 the multicast 
delay will be 5. In the picture, we show in parenthesis the time delay for every 
peer. Transmission time is 1 for all the peers. On the left we apply SMM and on 
the right another multicast transmission order which finds a better result. 
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Fig. 3.6 Example of a network where SMM is not optimal 
 
 
Nevertheless, for an overlay network we can assume that μp  <<  λpq ∀  p,q and 
thus μp ≈ 0. This means that in an overlay network the SMM algorithm may be 
described as near-optimal. Moreover, in the general case where μp ≠ 0 an 
optimal solution could be found by means of redefining the order of 
transmissions for each peer. Actually, it would be possible to define for any peer 
all the possible orders of transmission of the message and then redefine the 
weight of each edge, adding the value of i·μp to λpq, where i is the order of 
transmission from peer p to peer q in each case. Then we could apply the 
optimal algorithm Dijkstra to all the resulting graphs and choose the best result 
of all. However, if we had a fully connected graph of n peers, we would have  
(n-1)! different orders of transmission for any peer which would give us, in 
combination with the other peers, a total number of graphs of ((n-1)!)n, which is 
not solvable in practice. 
 
At this point, we can prove that SMM algorithm for EMPS(n,λ,μ) has complexity 
O(n2). At each step, SMM searches the peer which has not yet received the 
message and has lowest cost, that is, the peer that can be reached at minimum 
time. As the maximum number of unvisited peers is n this operation requires at 
most n comparisons. Moreover, the algorithm executes one step for every peer 
which receives the message and thus the total number of steps equals the 
number of peers. Thus, we have n steps and at each step we perform at 
maximum n comparisons plus some basic and bounded operations resulting a 
complexity of O(n2). 
 
 
3.4. Message Stream Multicast Algorithm 
 
The SMM algorithm has been defined for the multicast of a single message. 
This situation is not very practical and would only apply to situations where the 
time difference between two consecutive messages is larger than the multicast 
delay. If we consider a real application-layer multicast as video streaming, we 
see that what we call message in EMPS(n,λ,μ) may be a video frame (anyway, 
it will result on a different number of network messages and bytes to be 
transmitted depending on the transport protocol and the video codec used). In 
this case, two consecutive video frames are provided with a time difference 
equal to the inverse of the frames per second (fps) rate, which usually has a 
value between 16 and 30, depending on the video quality, and thus the source 
must multicast two distinct messages with an interval value between 33 and 
62.5 milliseconds. 
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The first approach to message streaming is to repeat indefinitely the routing 
table obtained with SMM algorithm, multicasting each message as if it would be 
completely independent of the others. That means that when one message 
finally arrives at all the group members, the message source would proceed to 
multicast the next message, and so forth. The total delay multicast time of the 
stream τM would be in this case the total number of messages M multiplied by 
the multicast SMM delay for one single message. The main inconvenience of 
this solution is that the source can not send the next message until the previous 
one has been received by all the group members and this can break the 
cadence of the message. In the case of video transmission, the loss of cadence 
can be solved by using data buffering techniques just as in video streaming to 
smooth delay jitter effects. 
 
Next, we consider a new possibility. Before the first message has arrived to all 
peers, the source could stop sending it and begin with the second message. 
With this restriction, the multicast time of the first message, individually 
considered, will be increased, but we will begin to send before the second 
message, and so the third, and the fourth, and so on. This saving of time 
between the sending of two consecutive messages will be progressively 
accumulated, and, if the number of messages is large enough, it will 
compensate the increase of the multicast time for one single message. 
 
The modified algorithm, that we call MSM-s Message Stream Multicast, will stop 
the transmission of the message once a peer has already sent the message s 
times. Then it will begin to send the next message and so forth. The algorithm 
will apply the same multicast scheme for every message. First, it will send the 
first message, next the second and so forth, with the particularity that it will be 
able to send the second message before the first has been received by all the 
peers. The definition of MSM-s is then the same as SMM with the restriction on 
the number of retransmissions for every peer, which is at maximum s, and with 
the particularity that it will be applied to successive messages. Therefore, the 
scheme of the algorithm in Figure 3.4 is for MSM-s exactly the same with the 
only difference that function imin() will choose the next peer within the peers 
which have not yet forwarded the message s times or, as shown in section 3.5, 
within the peers that have forwarded the message during a time lower than a 
certain value. 
 
The restriction on the number of retransmissions could isolate some peers if we 
do not have full connectivity, as shown in Figure 3.7 when s ≤ 3. In this case the 
MSM-s algorithm should choose a minimum restriction number s to guarantee 
that all the peers receive each message. Moreover, when restricting the number 
of transmissions for each peer, MSM-s has to take into account the cadence of 
the source. That is, if the source sends at most s times the first message and 
then, after s·μr time units, stops the transmission of the first message to begin 
with the second one, we must be able to assume that the source has the 
second message ready to forward (suppose that μr is the transmission time of 
the source). That is, we must assume that the cadence of the source is high 
enough tot provide a new message each s·μr time units. Otherwise, the source 
would stop sending the first message before having the second one and would 
remain unnecessarily idle, with the consequent loss of efficiency. Therefore, 
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MSM-s has to choose a minimum restriction number s not only to avoid the 
isolation of the peers (as we have seen in the former paragraph) but also in 
order to avoid the source idleness, that is, in such a way that s·μr is not much 
lower than the cadence of the messages. 
 
 

 
 

Fig. 3.7 A network in which MSM-s isolates some peers for s ≤ 3 
 
 
For a given network, if we apply MSM-σ instead of MSM-(σ+1), that is, if the 
maximum number of messages sent by any peer is σ  instead of σ+1, then the 
first message will arrive later to all the destination peers but we will usually start 
to send the second message before, and so the third and the fourth and so on. 
We have already pointed that for every new message we will save a little time. 
In this case, if the number of messages is large enough, the increase of the 
multicast time for one single message will be compensated and thus MSM-σ will 
be faster than MSM-(σ+1). In the next sections we prove that under certain 
conditions it is possible to calculate a minimum number Mσ in such a way that if 
the number of messages is equal or larger than Mσ then MSM-σ is better than 
MSM-(σ+1). 
 
Finally, we can also prove that algorithm MSM-s for EMPS(n,λ,μ) has 
complexity O(n2). The proof is the same as for SMM, since MSM-s performs 
exactly the same operations with the difference that at each step MSM-s has to 
limit to s the number of message retransmissions for each peer. This little 
restriction, however, does not affect the complexity of MSM-s. MSM-s performs 
n steps and at each step it makes at maximum n comparisons plus some simple 
and bounded operations, including the limitations on the number of 
retransmissions. Thus, its complexity is O(n2). 
 
 
3.5. MSM Algorithm with Time Restriction 
 
In Figure 3.8 we show a peer q which has the same transmission time μq than a 
peer p which forwards to q the message. Let sp(s) ≤ s be the actual number of 
times that p forwards the message for MSM-s. In this case the second message 
will be received at q with a delay of sp(s)·μp in respect to the first message, 
since the second message follows the same path but with a source delay of 
sp(s)·μp. That is, p will send the first message sp(s) times and then, sp(s)·μp time 
units later, it will begin with the second and so forth. In this case, if we also limit 
to sq(s) = sp(s) the number of retransmissions of q, then peer q will receive the 
second message at the same time that it sends the first message for the last 
time. Although this is not important since we have usually full-duplex 

source 
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connections, it could be avoided by restricting to sp(s) the retransmissions of p 
and to sq(s) = sp(s)-1 the number of retransmissions of peer q. 
 
 
 

 
 

Fig. 3.8 Transmission times of 2 different peers 
 
 
In a more general case, when the forwarding period sq(s)·μq of peer q is higher 
than the forwarding period sp(s)·μp of peer p which is in a higher level of the 
multicast tree (i.e. which has forwarded the message in the path from the 
source to peer q), then successive messages may have higher delays than 
former messages. In this context, the second message could arrive at peer q 
before it has finished forwarding the first message and then the second 
message would have to be buffered, with the consequent time delay. This 
buffering delay would be accumulated by the third message and by the forth 
message and so on. This situation has been avoided in the present project by 
limiting the time period of length sq(s)·μq at which each peer forwards a 
message, that is, by assuring that the forwarding cadence 1/(sq(s)·μq) of any 
peer q is higher than the cadence 1/(sp(s)·μp) of any peer p which is in the path 
from the source to peer q, including the source. Therefore, in our case the delay 
of the first message is the same as the time delay of any other message, an 
issue which has great importance in Section 4. 
 
Furthermore, observe that we do not want sp(s)·μp >> sq(s)·μq  since in this case 
q would stop forwarding the first message long before receiving the second one 
and the algorithm would lose efficiency. Thus, the value of sq(s) should be 
different for every peer q, depending on its transmission time μq and also on 
sp(s)’s and μp’s (i.e. on the parameters of the peers which depict the path that 
forward the message from source to peer q), in such a way that  
sp(s)·μp >≈ sq(s)·μq. Since the source is at the top of the multicast tree, we will 
also have for any peer q the inequality s·μr ≥ sr(s)·μr >≈ sq(s)·μq. The possibility 
of s ≥ sr(s) is discussed in Section 4.1.  
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3.6. MSM with Cadence Restriction 
 
Since the MSM algorithm depends on some parameters (the number of 
retransmissions of the root node, or the transmission time limit for any of the 
other peers, as seen in previous section), we can apply some modifications 
over the original algorithm, to improve its performance in terms of peer 
congestion. Thus, all the algorithms defined in the present work are based on 
the definition of Figure 3.4, with some changes in the imin() function that 
chooses the next forwarding peer. In fact, these changes affect mainly two 
different points: the condition that considers one peer better than other to be the 
next to forward the data; and the strategy that we follow when, under certain 
conditions, the algorithm can not find any node which can send the data, and 
the tree is still incompleted (that is, we do not have yet full connectivity). Next, 
we explain the algorithms that we have finally applied in last chapter. 
 
Cadence: with this name, we define a MSM algorithm with time restriction, like 
the one defined in Section 3.5. In this case, the time limit b0 is the value of s 
multiplied by the mean of all the root transmission times (recall that the 
transmission time between the root and any other peer is not always the same, 
since it depends on the bandwidth of all the links of the path beetwen the root 
and the peer). The root can send the packet at most s times, while the other 
peers will be able to send the packet while their cadence time is lower than b0, 
that is, while its total transmission time for one message is lower than b0. Note 
that, with this algorithm, depending on the value of s and the link bandwidth, 
some peers can be isolated (for example, if one peer has a very slow access, 
and the time to transmit the packet to it is higher than b0), resulting an 
incomplete tree. Also, we can find some cases where a node fulfills the 
condition for its cadence time, but this time is higher than the cadence time of 
the root. For example: set s to 5, and the value of b0 to 50 ms (because the 
average μ of the root node is 10); then, if the root sends the packet to the 
nearest peers, whose μ is 9 for all of them, we can have a total cadence time 
for the root of 45 ms. As the time limit is b0, some other peer can have a 
cadence time of 48 ms, which fulfills the restriction of being lower than b0. 
Anyway, this cadence time is higher than root cadence, which could result in a 
congestion issue. 
 
In this algorithm variation, the root peer could send at most s times the packet, 
instead of using the time limit value b0, because using the time limit may result 
in a more restrictive tree. To explain this, see next example: set s=5 and n=10. 
The root peer needs 1, 2, 2, 4, 10, 2, 2, 2, 2, and 2 ms to send the packet to the 
other peers, sorted by proximity (i.e. time transmission plus propagation delay). 
So the b0 time limit value will be 14.5 ms. Then, if we set that the root can send 
s times the packet, we get that its cadence time may be 1+2+2+4+10=19 ms 
(considering that, for any of these nodes, any path between one visited node 
and it has a higher cost than the link from the root). If we limit the root cadence 
time to b0, we can see that once the root has sent 4 times the packet, its 
cadence time is 1+2+2+4=9 < b0, but if it sends the packet again, its cadence 
time will be over b0 (19 > 14.5). Hence, the root peer would be unable to send 
the fifth packet. 
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Forced leaves: in this case, the root can send the packet at most s times, and 
also determines a value b0 like the previous one. Again, the remaining nodes 
can send the packet while their cadence time is lower or equal to b0, but this 
time, if there is not any node that fulfills the condition of retransmission and we 
have already some isolated peers, the algorithm forces a leaf peer (that is, a 
peer that has not yet forward the packet) to send it at least once. This leaf peer 
is chosen with the aim of obtaining the lowest receiving time for the next 
isolated peer. This algorithm always generates complete trees, but now some 
peers not only may exceed the root cadence time, but also the time limit b0, 
resulting again in congestion issues. 
 
Forced all peers: this algorithm is very similar to the previous one, but this 
time, if no peer fulfills the condition of retransmission and we have already 
isolated peers, we can force all peers that have already the message to forward 
it (in the previous case, we only forced the peers which had not yet forwarded 
the message). Again, the peer that will be forced to send the packet (and skip 
the conditions) is chosen in such a way that we obtain a minimum delay. The 
results are similar to the previous, with always complete trees, and congestion 
issues when some peers exceed the root cadence or the b0 time limit. 
 
Dynamic: the last algorithm does not use the b0 time limit value. The root can 
send the packet at most s times, whereas the other peers will be able to send 
the packet while their cadence time is lower than the root cadence. In this case, 
the resulting tree may be uncompleted and the total transmission time will be 
usually higher than the time obtained with the former algorithms, since it is more 
restrictive. Nevertheless, we will not have congestion issues, since the root will 
have maximum cadence time and thus any other peer will finish the 
transmission of any message before receiving the next one. 
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4. ANALYSIS OF MSM-s 
 
 
In this section we calculate theoretically some parameters of the performance of 
MSM-s algorithms. First, we obtain the delay transmission for one single 
message, and also for a generic number Ms of messages, depending on the 
value of s. We also obtain an analytical bound for M1, that is, for the number of 
messages from which the total stream multicast delay is better for s=1 than for 
s=2, and also an upper and a lower bound for total time delay. Finally, we 
provide some expressions to estimate the robustness of MSM-s algorithm. 
 
 
4.1. Stream Multicast Delay 
 
Let ts[0] be the time delay for an individual message when a number of 
transmissions is established up to s, M the number of messages of the stream 
and μr the transmission time of the source peer, also called root. We assume 
that we have full connectivity, that is, s is large enough to arrive at all the peers 
of the network. In this case, the total stream multicast delay τMs for  
MSM-s is: 
 

[ ]0)1( srMs tμsMτ +⋅⋅−=         (4.1) 
 
 
That is, the root sends the first message s times and then, s·μr time units later, it 
begins with the second and so forth. At moment (M-1)·s·μr the root finishes to 
send the (M-1)th message and it begins with the last message, that will arrive at 
the last peer ts[0] time units later. Remember that, as shown in Section 3.5, 
under certain restrictions that we consider for MSM-s the delay ts[0] for the last 
message is the same as the delay for any other message and so we do the 
calculations, for simplicity sake, for the first message. Then we denote by ts[0] 
the time delay for the first message. 
 
Equation 4.1 is only valid when the root sends each message s times. When the 
bound s is large the message may be received by all peers before the root has 
sent it s times, that is, finally the root may send the message a number of times 
lower than s. Though in this case the peer could remain idle and wait until s·μr 
and then begin to send the second message, this would mean a loss of 
efficienty. So, for MSM-s, when the message is received for all peers before the 
root has sent it s times, we will allow the root to send the second message 
immediately, without an interval of silence. In this particular case the parameter 
s in Equation 4.1 should be replaced by the actual number of times sr(s) that the 
root sends each message for MSM-s, where sr(s) ≤ s: 
 
 

( ) ( ) [ ]01 srrMs tμssMτ +⋅⋅−=  
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Given the algorithm MSM-s for EMPS(n,λ,μ), the delay of the first message is 
such that tσ+Δ[0] ≤ tσ[0] ∀Δ>0. The proof of this sentence is by construction of 
the algorithm. When bounding up to σ+Δ the transmissions of each peer,  
MSM-(σ+Δ) will depict a better multicast tree than MSM-(σ+Δ-1) for the first 
message only if there exists a better solution. Otherwise, MSM-(σ+Δ) will depict 
the same multicast tree depicted by MSM-(σ+Δ-1). Thus tσ+Δ[0] ≤ tσ+Δ-1[0]. 
Repeating the argument for tσ+Δ-1[0] and tσ+Δ-2[0] and so forth, we obtain  
tσ+Δ[0] ≤ tσ[0] for all Δ>0. 
 
Note that this also will be valid from the second message onward if we limit the 
forwarding cadence 1/(sp(s)·μp) of each peer p as shown in Section 3.5, with the 
aim of avoiding messages buffering, that is, in the case that all the messages 
have the same delay. 
 
Given the algorithm MSM-s for EMPS(n,λ,μ), we may obtain the conditions such 
that MSM-σ is faster than MSM-(σ+1). First we define, in the case that MSM-σ 
could be better than MSM-(σ+1), the minimum number Mσ of messages from 
which MSM-σ is better than MSM-(σ+1). We begin with σ=1. The value of M1 can 
be easily obtained once we have computed t1[0], t2[0] and ( )2rs  by 
implementing MSM-1 and MSM-2. Recall that ( )2rs  is the number of times that 
the root sends each message in MSM-2 and that, as seen before, t1[0] ≥ t2[0]. 
Then: 
 

( ) [ ]01 11 tμMτ rM +⋅−=  
( ) ( ) [ ]021 22 tμsMτ rrM +⋅⋅−=  

 
 
In this case ( )2rs  may be equal to either 1 or 2. In the unusual first case where 

( ) 12 =rs , since t1[0] ≥ t2[0], MSM-2 will be equal or better than MSM-1 for any 
number of messages. In the more usual case where ( ) 22 =rs  we establish the 
restriction τM1 ≤ τM2 and then: 
 
 

[ ] [ ]
1

21 100 M
μ

ttM
r

=+
−

≥     (4.2) 

 
 
For a general case, the number Mσ of messages from which the total stream 
multicast delay is better for s = σ  than for s = σ+1 may be obtained repeating the 
arguments for M1. First we obtain the parameters of the following expressions 
by implementing MSM-σ and MSM-(σ+1). 
 
 

( ) ( ) [ ]01 σrrσM tμσsMτ +⋅⋅−=  
( ) ( ) [ ]011 11 ++ +⋅+⋅−= σrrσM tμσsMτ  
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By a previous result, we have tσ[0] ≥ tσ+1[0]. Thus, in the unusual case that 
( ) ( )1+≥ σsσs rr , MSM-(σ+1) will be equal or better than MSM-σ for any number 

of messages. In other case, when ( ) ( )1+< σsσs rr  we may repeat the 
operations for M1 and obtain: 
 
 

[ ] [ ]
( ) ( )( ) σ

rrr

σσ M
μσsσs

ttM =+
⋅−+

−
≥ + 1

1
00 1  

 
 
Though it is not an usual case, in Figure 4.1 we depict a network where ( )σsr   
may be greater or equal than ( )1+σs r . In particular, we have ( ) 33 =rs  and 

( ) 24 =rs , if we consider that the root and peer p have a time transmission 
equal to one. Note that we could have the same case even in a fully connected 
network (by joining the unconnected peers of Figure 4.1 with edges of latency 
higher than 15) and that the situation does not depend on the forwarding 
cadence of peers, since in Figure 4.1 peer p could have, for s=4, either a higher 
or lower cadence than the root, depending on transmission times. In this case 
MSM-4 will be faster than MSM-3 for any number of messages. 
 
 

 
 

Fig. 4.1 Example of network where ( ) ( )1+≥ σsσs rr   
 
 
The last result has practical consequences. As the number of transmissions 
allowed in MSM-s increases, we decrease the value of ts[0], but if the number of 
messages is large enough, we have that the total stream multicast delay may 
be smaller. This number Ms of messages can be obtained during the process of 
the multicast tree computation. In consequence, the algorithm can determine 
the value of s more suitable for every performing network. Moreover, although 
we do not focus the subject of this project on load balancing, a small s may also 
benefit the link-stress of the network, as it will be seen in next sections. 
 
 
4.2. Analytical bound for M1 
 
In this section we obtain an analytical bound for M1, that is, for the number of 
messages from which the total stream multicast delay is better for 1=s  than for 

2=s . As explained in former section, we assume ( ) 22 =rs . In other case, that 
is, for ( ) 12 =rs , MSM-2 will be always faster than MSM-1. We assume, as said 
before, that we have full connectivity both for 1=s  and 2=s . 
 
Consider EMPS(n,λ,μ), defined by one source peer, the root, and n-1 receivers. 
Let M be the number of messages; τM1 and τM2 the multicast delay for MSM-1 

15
1

1

root

p

1 1
11
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and MSM-2 respectively; μr the transmission time of the source peer (for 
simplicity we consider it is the same for all receiving peers); and λmin and λmax 
the minimum and maximum latency between any pair of peers, respectively. 
First, we find an upper bound for τM1 and a lower bound for τM2 which we denote 
respectively by T1 and t2. If we force T1 to be lower or equal than t2, then MSM-1 
will be better than MSM-2: 
 

2211 MM τtTτ ≤≤≤      (4.3) 
 
 
To find T1 and t2, we modify slightly the MSM-s performance. First we have: 
 
 

( ) ( ) 1max1 11 TλnμMτ rM =⋅−+⋅−≤     (4.4) 
 
 
Recall that for MSM-1 each peer sends each message only once, so  
MSM-1 depicts a linear tree with 1−n  links. In this case it is clear that τM1 ≤ T1 
since Equation 4.4 corresponds to the worst case where a message has to 
cross the n-1 links with the maximum latency λmax. 
 
To find a lower bound for τM2 we consider an algorithm with a lower delay than 
MSM-2. First we assume that the latency for any pair of nodes is the minimum 
latency λmin. Moreover, in the new algorithm we consider that a peer can send 
the same message simultaneously to two different peers, that is, that 
transmission time μp is equal to 0 for all the peers. Note that, though this is 
physically impossible, the new algorithm would be better than MSM-2. Let  
N(t), t∈Z+, be the number of peers that have received the message at step t 
according to the new algorithm: 
 
 

( )




>−=++++

=
=

+ 0122421
01

1 tif
tif

tN ttL
 

 
 
If we equal N(t) to the number n of peers we will obtain the number of steps that 
we need to arrive at all the network: 
 
 

( ) 11log2 −+= nt      (4.5) 
 
 
In this case the new algorithm could send the single message to all the other 
peers in log2(n+1)-1·λmin time units and then for all the messages we have: 
 
 

( ) ( )  min222 11log21 λnμMtτ rM ⋅−++⋅⋅−=≥      (4.6) 
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Finally, if according to Equation 4.3 we force T1 to be lower or equal than t2 then 
τM1 will be also lower or equal than τM2 and MSM-1 will be better than MSM-2. 
From Eq. 4.4 and Eq. 4.6 we have: 
 
 

( ) ( )  1
11log1 min2max +

⋅−+−⋅−
≥

rμ
λnλn

M  

 
And since we have considered tighter cases than MSM-1 and MSM-2: 
 
 

( ) ( )  111log1 min2max
1 +

⋅−+−⋅−
≤

rμ
λnλnM      (4.7) 

 
Note that when ( ) 22 =rs  there is always a number of messages from which 
MSM-1 is better than MSM-2. From Equation 4.7 we see that this minimum 
number of messages is linear respect to the number n  of peers. So we can 
conclude that for the general case that ( ) 22 =rs , MSM-1 is in general better 
than MSM-2, provided that the number of messages is usually larger than the 
number of peers. 
 
 
4.3. A tighter bound for M1 
 
The bound obtained in Equation 4.7 can be improved by recalculating t2, that is, 
by comparing MSM-2 to a tighter algorithm and by using the same lower bound 

1T  for MSM-1. We assume that ( ) 22 =rs . In Figure 4.2 we depict an algorithm 
such that, at each step, each peer sends the message to one peer and such 
that each peer can send the message only twice. We do not consider by the 
moment time delays. We call ( )tN  the number of peers which have received the 
message at step t . Note that from step 1−t  to next step t , only the 

( ) ( )31 −−− tNtN  peers which have not yet forwarded the message twice can 
forward it. Thus we have, at step t , the ( )1−tN  peers of the last step plus the 

( ) ( )31 −−− tNtN  peers that have just received the message. Then: 
 
 

( ) ( ) ( ) ( )( ) ( ) ( )312311 −−−⋅=−−−+−= tNtNtNtNtNtN  
 
 
In our case we have also ( ) 10 =N , ( ) 21 =N  and ( ) 43 =N . In Table 4.1 we see 
that ( ) ( ) 13 −+= tFtN  where ( )tF  is the well known Fibonacci Serie for ( ) 00 =F  
and ( ) 11 =F . Hence, considering ( ) 2511 +=λ  and ( ) 2512 −=λ  we have: 
 

 

( ) ( ) 1
5

13
3

2
3

1 −
−

=−+=
++ tt λλ

tFtN     (4.8) 
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Suppose now that we have a network with 19=n  peers. From Figure 4.2 we 
see that at least we have to arrive at the fifth level, since at the fourth level we 
have only twelve peers. Actually, we could have arrived even at the sixth level if 

μλλ 335 +> , but we can not assure it. Moreover, from Figure 4.2 we see that if 
we consider time delays we can arrive at level t at minimum time of 

( ) 2minmin μλt +⋅ , where minλ  is the minimum latency of the network and minμ  is 
the minimum transmission time of the peers. Remember that by definition 

minmin μλ ≥ . 
 

 
Fig. 4.2 The Fibonacci tree  

 
 
Table 4.1. ( )tN  vs. Fibonacci Series 
 

t    0 1 2 3 4 5 6 
N(t)    1 2 4 7 12 20 33 

 

F(t) 0 1 1 2 3 5 8 13 21 34 
t 0 1 2 3 4 5 6 7 8 9 

 
 
As we are determining a lower bound, in order to calculate the number t of 
steps as a function of the number n  of peers we define ( )tN ′  which is a little 
faster than ( )tN : 
 

( ) 1
5

13
1 −

+
=′

+tλ
tN  

 
 
Observe that from Equation 4.8 we have -1 < λ2 < 0 and then ( ) ( )tNtN >′ . 
Hence, if we calculate for ( )tN ′  the number of steps necessary to visit n peers, 
we will obtain a lower bound for ( )tN . For 1>>t  the term 3

2
+tλ  is close to 0 and 

then we have a very accurate bound. If we equal ( )tN ′  to n  we obtain: 
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And considering that at each step we have a minimum delay of ( ) 2minmin μλ +  
then we have: 
 

( ) ( )( )
2

3
log

151log21 minmin

1
22

μλ
λ

nμMtτ rM
+
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




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
−

−+
+⋅⋅−=≥  

 
 
Hence, considering the new bound of t2 with ( ) 2511 +=λ  and repeating the 
arguments from the former section with the same value of 1T , we have: 
 
 

( ) ( )( )
1

2
3

log
151log1 minmin

1
max

1 +

+









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
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≤
rμ

μλ
λ

nλn
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This bound is tighter than the bound of Eq. 4.7 depending on the value of minμ . 
Actually, if minμ  is close to minλ  the new bound is better than the former, 
whereas if minmin λμ <<  then we must consider Equation 4.7. In a practical case 
we can calculate both bounds and consider the best one. 
 
 
4.4. An upper bound for Time Delay in MSM-s 
 
Let Msτ  be the multicast delay for MSM-s and Ts an upper bound of Msτ . We 
obtain first a bound for 2=s  and then we generalize the result. To calculate T2 
we consider once more the algorithm of Figure 4.2. Suppose again that we 
have a network with 19=n  peers. We have to arrive at least at the fifth level, 
since at the fourth level the message has only arrived at twelve peers. Actually, 
with 19 peers we could have arrived at even the sixth level if μλλ 335 +> , but 
in this case the delay due to μλ 33 +  would be lower than the maximum delay 
λ5  at the fifth level. As we calculate an upper bound we will considerate the 

value of λ5 . 
 
As we determine an upper bound, in order to calculate the number t of steps as 
a function of the number n  of peers we define ( )tN ′′  which is a little slower than 

( )tN : 
 

( ) 1
5

13
1 −

−
=′′

+tλ
tN  

 
 
From Equation 4.8 we have 1 < λ2 < 0 and then ( ) ( )tNtN <′′ . If we calculate for 

( )tN ′′  the number of steps that we need to visit n  peers we will obtain an upper 
bound for ( )tN . Remember that for 1>>t  we will have a fitted bound. If we 
equal ( )tN ′′  to n  we obtain: 
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And considering that at each step we have a maximum delay of maxλ : 
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Finally, since ts[0] ≤ t2[0] 2≥∀s  and the root sends ( )ssr  times each message, 
where ( ) sssr ≤ , we have: 
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Furthermore, for 1=s  we apply Equation 4.4. 
 
 
4.5. A lower bound for Time Delay in MSM-s 
 
To find a lower bound for Msτ  we consider, as we did for MSM-2 in section 4.2 
but now in a general case, an algorithm such that a peer can forward the same 
message simultaneously to s different peers. Moreover, we assume that the 
latency for any pair of nodes is the minimum latency λmin. The new algorithm is 
therefore faster than MSM-s. Let ( ) +∈ Ζ, ttN  be the number of peers that have 
received the message at step t : 
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If we equal ( )tN  to the number of peers n  we obtain the number of steps that 
we need to arrive at all the network: 
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And thus: 
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Note that for 2=s  we obtain the expression in Equation 4.6. For the case 1=s  
we obtain the following expression: 
 

( ) ( ) min1 11 λnμMτ rM ⋅−+⋅−≥  
 
 
4.6. A general bound for Mσ 
 
Taking the upper and lower bounds of former sections and repeating the 
arguments of section 4.2 for the bound of 1M , we can obtain a bound for the 
minimum number σM  of messages from which MSM-σ is better than  
MSM-(σ+1). Remember that, as we have said in the in section 4.1, this bound 
has only sense when ( ) ( )1+< σsσs rr . In other case, MSM-(σ+1) will be always 
better than MSM-σ, no matter how large is the number of messages. We 
consider 2≥σ . 
 
From Equation 4.10 the upper bound for σs =  is: 
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And from Equation 4.12 the lower bound for 1+= σs  is: 
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Forcing 1+≤ σσ tT  we will have 1+≤ σσ ττ  and MSM-σ will be better than  
MSM-(σ+1): 
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And then, since we have a pessimistic case: 
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4.7. Robustness of MSM-s 
 
Frequently, real-time applications use unreliable transport-layer protocols such 
as User Datagram Protocol (UDP). That means that it is not always possible to 
ensure the ordered and complete arrival of the data at the destination peers. 
The overlay links of application-layer multicast for real-time applications could 
therefore provide some degree of reliability. We analyze in this section, under 
the assumption that there is no message retransmission, the robustness of 
MSM-s algorithm. 
 
First note that MSM-1 algorithm depicts a linear topology for the multicast tree, 
that is, a message arrives at a peer which immediately forwards it to another 
peer and so forth, whereas the MSM-s algorithm depicts in general s divergent 
paths from each peer of the multicast tree, as shown in Figure 4.3. In this case, 
for MSM-1 the probability that a message arrives at l  peers is always lower 
than the probability of arriving at 1−l  peers. This is because for arriving at the 
l th peer the message will have to arrive first until the ( )1−l th peer and then 
cross successfully the edge between them. This undesirable characteristic does 
not appear in MSM-s when 1>s  due to the different multicast tree that depicts 
the algorithm, with divergent paths. In MSM-3, for example, the probability of 
arriving at three peers is much higher than the probability of arriving at only one, 
an issue which does not happen in MSM-1. Then, as we show in this section, 
MSM-1 will be less robust than the rest of MSM-s algorithms. 
 
 

 
 

Fig. 4.3 Multicast tree for the calculation of MSM-s roustness 
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Let ( )qpPc ,  be the probability that peer q  receives correctly a message sent by 
peer p . For the sake of simplicity we consider that ( ) cc PqpP =,  for all the 
peers. Actually, if we consider ( ){ } ),,(,,max μλnEMPSqpqpPP cc ∈∀= , we 
will get a lower bound of the robustness of the MSM-s algorithm. We call a peer 
which has received correctly the message a “visited peer”. Note that, since the 
results would be the same, we calculate the robustness only for the 
transmission of one single message. 
 
We denote by sn  the average number of peers that receive the message for 
MSM-s with a probability Pc for each peer-to-peer communication. To calculate 

sn  we divide the peers into levels, according to Figure 4.3. We call ( )nE l  the 
average number of peers that receive the message at level l . For the first level 
we have s peers and then: 
 
 

( ) ( ) ( ) ( ) ( )( ) cs PsppsiEsiiiEnE ⋅=⋅+⋅⋅=⋅=+++= 11001211 L  
 
 
Note that ij  refers to the number of messages received by the j th peer at level 
l . This number may be 0 or 1 depending on whether the peer has received the 
message or not (we calculate the average number of visited peers when we 
send only one message). Thus i1 + i2 + ··· + is is equal to the number of peers that 
have received the message. For the 2s  peers of the second level, we have: 
 
 

( ) ( ) ( ) ( ) ( )( ) 222
1

2
212 11002 cs PsppsiEsiiiEnE ⋅=⋅+⋅⋅=⋅=+++= L  

 
 
And in general for the level l : 
 

( ) ( ) ( ) ( ) ( )( ) l
c

lll
sl PsppsiEsiiiEnE l ⋅=⋅+⋅⋅=⋅=+++= 1100121 L  

 
 
Finally we can calculate sn  as the sum of the averages of each level, 
considering that, since the root always will have the message, for level 0 this 
average is 1. We denote by the number L of levels: 
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            (4.13) 

 
 
In this case we assume that the number of peers is 

( ) ( )111 12 −−=++++ + sssss LLL  and that we flood the network level by level 
(this only would happen on a very regular network with little time transmissions). 
Nevertheless we have been shown by simulations that the results from 
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Equation 4.13 are quite realistic in the case that ( ) ( )111 −−= + ssn L . For the 
MSM-1 algorithm the assumptions of Equation 4.13 are valid. Since we have  
L = n -1 it results: 
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Thus if 1/(1-Pc) is much smaller than the number n  of peers, the average 
number of visited peers with MSM-1 will be also much smaller than n . But if, on 
the contrary, 1/(1-Pc) is higher than n  then the average number of visited peers 
may be close to n . In Table 4.2 we see some values of the average for MSM-1 
depending on n and Pc. For Pc=0.9 we have 1/(1-Pc)=10 and then the average 
may not be greater than 10, no matter how high is n. However, for the usual 
values of Pc=0.999 and 50=n  or 100=n  we have good averages, close to n. 
For the other values the average is much smaller than n, which means that the 
message is not received by a large percentage of peers. In this case the 
algorithm should automatically change from MSM-1 to MSM-2. For instance, for 

1000≈n  and Pc=0.999 we would arrive at only the %2.63  of the peers with 
MSM-1 whereas for MSM-2 the percentage would be of %1.99 . In this case the 
percentage for MSM-3 would be only a little higher than for MSM-2: %4.99 . 
Actually, in a general case the robustness of MSM-2 will be acceptable. 
 
 
Table 4.2. Average of the number of peers that receive the message for  
MSM-1, depending on n and Pc 
 

n Pc = 0.9 Pc = 0.99 Pc = 0.999 
50 9.9 39.5 48.8 

100 10 63.4 95.21 
1000 10 99.9 632 

 
 
Therefore, when we want to apply MSM-1 to a real network (assuming that 
MSM-1 can topologically arrive at all the peers with the restriction 1=s , that the 
cadence of the source is high enough to provide a new message every rμ  time 
units, and that for the number of messages that we have the time delay is lower 
for MSM-1 than for MSM-2), the algorithm itself should estimate the average 
number of peers that will receive the message for MSM-1 and if it would not be 
high enough then it should apply MSM-2, consider the new average number 
and change if necessary to MSM-3 and so forth. 
 
Nevertheless, the assumption that Pc is equal for all the links has major 
implications on MSM-1 than on MSM-s for 2≥s . In MSM-1 there are a larger 
percentage of short end-to-end transmissions than in MSM-s for 2≥s . This 
means that in MSM-1 there will be in general more transmissions than in  
MSM-s with a probability of success larger than Pc. Thus, the results of 
Equation 4.13 can be more pessimistic for 1=s  than for 2≥s .  
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5. ALGORITHM EVALUATION 
 
 
In previous chapters we have studied the theoretical aspects of the proposed 
algorithms. Anyway, we also need to show the algorithms performance, that is, 
to test their behaviour over a real network. To do this, we have run the 
algorithms over the Internet network model presented in Section 1.3, slightly 
extended with the user peers that form the multicast group. Now, we explain the 
procedure followed to create an overlay network, to execute the algorithms, and 
to obtain the results. 
 
 
5.1. Backbone graph generator 
 
As said in previous sections, we need first to define a transit backbone. As we 
have seen in Section 1.3, the Transit-Stub model, that depends on a set of 
variables of Internet network topology, is good enough for our purposes, and it 
can be easily used through the Georgia Tech Internet Topology Models  
(GT-ITM) package [15], a set of applications that are capable of drawing graphs 
with different topologies according to a variety of probability laws. It also allows 
to create graphs following the models presented in Section 1.2.  
 
This package works with a generator data file, which contains all the 
parameters for the backbone model. The output result is a “.gb” file with the 
graph information (nodes, edges, and costs). Though it is a text file, it is not 
easy to read, due to its description of nodes and edges. To solve this, we use 
another tool of the package, which converts the “.gb” file to a “.alt” file which 
contains “human readable” information. This file will be used by our application 
to add the user peers (the members of the multicast group), generating the final 
overlay graph. The GT-ITM package has more tools for the backbone graphs. 
For example, the “.gb” result file can be converted to use with NS-2 Network 
Simulator [20]; the package can calculate the average of some parameters for a 
set of backbones; or even we can use another application, the NED Network 
Editor [16], to graphically represent the backbone network. 
 
The result graph topology looks like a real Internet topology, with a set of nodes 
acting as backbone routers, with high-speed links which interconnect the 
subnetworks (or stubs). These subnetworks represent the ISP networks, or 
corporate LANs, which have access networks connected to the backbone 
network. Finally, we have to add to the ISP networks the user peers (that is, the 
nodes that will form the multicast group). 
 
 
5.2. MSM Algorithms-Simulator application 
 
5.2.1. Application description 
 
To obtain the overlay network, to apply the algorithms over it, and to obtain the 
results, we use a Java application created for this project. Its name is “MSM 
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Algorithms Simulator”, and it has been implemented with Java and the Eclipse 
RCP. We chose the Java programming language [17] because, thought it is a 
bit slower than other languages (for example, C language), it is easy to use (it 
there exists a lot of libraries with full documentation, and the memory-
management is automated), and also has a great portability (since it is an 
interpreted language, any Java application can be run on any computer if it has 
a Java Virtual Machine, which is avalaible for almost every existing Operating 
System). 
 
 

 
 
Fig. 5.1 MSM Algorithms Simulator application layout with the “Graph batch” tab 
 
 
The use of Eclipse RCP Rich Client Platform [18], [19] allows the development 
of complex applications with little effort, and with complete GUI interfaces (using 
different widgets, views and perspectives from a complete UI framework). The 
platform also allows the developer to add preferences management (including 
all the “preference-page” related issues), updates management (also with the 
GUI controls), jobs management (for example, to execute code in separate 
threads in background), and a lot of other tools like a web-server to use web 
code in the application (for example, to show the help related to a specific 
action of the application). 
 
Moreover, with the plugin architecture of the platform, a developer can easily 
add new features and functions to an existing RCP application. This means that 
a developer can use the set of connectors from the platform itself, or create new 
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ones, to add any possible improvement to the application. For example, if a 
future user wants to create a new algorithm, he only needs to implement it 
following the definition of its connector; then, without any change in the main 
application, the new algorithm will be available to use. 
 
The application is used to perform the actions we need to study the algorithms. 
First, it generates the overlay network over the backbone network acquired in 
the previous step, then it applies the algorithm on it, and finally it gets the 
results. 
 
 
5.2.2. Generate overlay network 
 
The first operation of the application is the drawing of the overlay network from 
an existing “.alt” file that contains the backbone network. The method adds n 
nodes (or peers) which act as “multicast group members” to the backbone 
network, connecting each of them to one and only one of the stub nodes. The 
application creates only one single overlay, but it also can be used in batch 
mode, that is, it also may generate a set of overlays using the same 
parameters. 
 
This function needs as input data: one backbone graph, the number of peers, 
and a generator data file. This generator data file contains the characteristics of 
the user peers that will form the multicast group, like the link bandwidth (either if 
it is symmetric or not), and the percentage of nodes of each type. This 
information file sets the parameters for the application, which finally adds each 
peer in a random way: first, it randomly chooses a node of the backbone 
network, with an uniform distribution. If this node is a stub node, the new user 
node is linked to it; if it is a transit node, then another node is choosed. We do 
this to ensure that all multicast group members are connected to an access 
network. 
 
Once we have the stub node, we add the link to the new user, with the 
bandwidth randomly selected from the information file. In this file, we have 
information about the probabilities for the link bandwidth of the users, and the 
expected number of users (or the percentage) that will have this link in the 
resulting overlay graph. The type of the information (speed in kbps or Mbps, 
symmetric or asymmetric links, absolute number of users or percentage) is set 
using other parameters of the generator. The application also provides a pattern 
system to set the name of the files in batch mode. For example, with this 
pattern, the user can set the name of the overlay graph depending on the 
backbone graph and the number of users added. This is useful when we want 
to generate a set of graphs or results to obtain later average results. 
 
 
5.2.3. Algorithm simulation 
 
Next, we must apply our algorithm over the previous generated overlay. The 
application has a view tab, “Algorithm”, which executes one of the available 
algorithms over a chosen overlay. The algorithm needs the s value, and the 
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identification of the peer that will be used as “root”. Also, a list of algorithms is 
available, where the user can select the algorithm that he wants to apply. As 
said before, the RCP platform structure allows to easily add new algorithms to 
the list. 
 
Like the previous function, the application can execute the algorithms in batch 
mode, with a set of overlay graphs, and using different algorithms and s values. 
 
 
5.2.4. Algorithm results 
 
The next step is to know how the algorithm works over an overlay network. With 
this aim, the application has an “Algorithm results” view, which presents the 
relevant parameters of the execution results: the number of connected nodes, 
the delay for connected nodes, the cadence of any of them, and the routing 
tree. Also we can know the number of connected nodes that can have 
congestion difficulties. Recall that a node can suffer from congestion when its 
cadence time is bigger than the root cadence time, or also when one of the 
nodes which forms the path from the root to the node has also congestion 
problems. Again, we can use the application in batch mode to get the average 
value of the delay or the maximum cadence for a single algorithm and a single s 
value. 
 
 
5.2.5. Results comparation 
 
The last function of the application is used to compare the different algorithms. 
It generates a table with the relevant information for each execution, with the 
values averaged over the overlay graphs, and obtaining the minimum s value at 
which the algorithm draws a complete tree, and the s value at which the 
algorithm has a minimum delay. 
 
Some modifications have been made to this function to get tables comparing 
different parameters, like the number of nodes that can be affected by 
congestion issues, or the total delay. Anyway, these modifications are not 
available directly in the RCP application, and only can be executed using the 
Java application. Anyway, as said before, the addition of this function in the 
main application is simple and easy. 
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6. RESULTS, CONCLUSIONS AND FURTHER WORK 
 
 
In this last chapter we define the final overlay networks, we apply over them the 
algorithms described in Section 3.6, and present the results in terms of time 
delay and nodes with congestion difficulties. We also compare the different 
algorithms, we decide which the best is in each case and we explain the 
reasons of their different performances. We also point which is the best policy in 
any general case and finally we present a proposal for further work. 
 
 
6.1. Transit backbone parametrization 
 
As seen in Section 5.1, first of all we need a transit backbone as a basis for our 
overlay network. With this purpose, we have used the GT-ITM tools to build five 
networks according to the parameters shown in Table 6.1. This represents five 
different backbone networks based on the Transit-Stub model. 
 
 
Table 6.1. GT-ITM parametrization 
 

Transit domains 1 
Av. Nodes (T) / Transit domain 4 

Stub domains / Transit node 3 
Av. Nodes (S) / Stub domain 8 

Edge Prob (between nodes in the same Transit domain) 0.6 
Edge Prob (between nodes in the same Stub domain) 0.42 

Transit-Stub extra edges 0 
Stub-Stub extra edges 0 

Transit-Transit bandwidth 1 Gbit/s 
Transit-Transit propagation delay 100 ms 

Transit-Stub bandwidth 100 Mbit/s 
Transit-Stub propagation delay 10 ms 

Stub-Stub bandwidth 100 Mbit/s 
Stub-Stub propagation delay 10 ms 

 
 
6.2. Data for overlay graphs generation 
 
To obtain a realistic network model as a testbed for the algorithms, in addition to 
the use of the Transit-Stub model for the backbone, we have also applied the 
generator application described in Section 5.2. We have consider the user 
parameters from the results of a survey in February 2006 by the AIMC 
(Asociación para la Investigación de Medios de Comunicación) [21]. Then, we 
represent the user peers as ADSL users, who are connected to an ISP network. 
The values used in the generator user data file are shown in Table 6.2. 
 
We also consider that the propagation delay for the links that join a peer with a 
stub node is 1 ms, since the peer nodes and the access network are usually 
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very close together. In the table, the bandwidth speeds are symmetric, whereas 
in a real ADSL they are asymmetric. Nevertheless, the increment of the upload 
speeds and the use of high-speed connections, like the future use of FTTH and 
cable connections, make this restriction valid to test the algorithms. With these 
values, we have generated 10 overlay graphs for each of the 5 backbone 
networks with 10, 25, 50, 100 and 200 peers respectively (in total, 50 networks 
for each number of peers), by using our application. 
 
 
Table 6.2. Survey of ADSL users, February 2006 
 

Base link Absolute users % 
I don’t know 3,725 7.1 

56 kbps 4,951 9.4 
64 kbps 445 0.8 

128 kbps 914 1.7 
256 kbps 2,235 4.3 
512 kbps 5,278 10.1 
1 Mbps 21,811 41.6 
2 Mbps 6,342 12.1 
4 Mbps 5,767 11.0 
8 Mbps 765 1.5 

Don’t know / Don’t answer 165 0.3 
 
 
 
6.3. Algorithms results and conclusions 
 
For each overlay graph, we have applied the four algorithms described in 
Section 3.6, with s from 1 to n if the number of peers is lower than 25, and 30 if 
the number of peers is higher. Then, using the application, we obtain some 
values from the execution results: number of connected nodes, number of times 
that the root sends every message, cadence time for the root (i.e. the time that 
the root sends one message), maximum cadence time in the whole tree, and 
the time transmission t[0] for one packet. Also, we count the number of nodes 
whose cadence time is higher than the root, and the total number of nodes that 
can be affected by congestion (i.e. the nodes with a cadence time higher than 
the root plus the nodes which follows some of them in the multicast tree). 
 
In addition to the four algorithm variations described in Section 3.6, we also run 
the original SMM algorithm, which is independent of the s value. It always 
chooses the nearest peer from all the peers that have already the data, with no 
special constrictions. Thus, the transmission tree is always full connected, but, 
as it happens with the MSM algorithm, some peers can have higher cadence 
time than the root, and thus we can have congestion difficulties. Finally, in the 
example of Table 6.3, we can see the results of the executions with the fourth 
overlay network for the first backbone for 100 peers, and with s=9. 
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Table 6.3. Example of algorithms results 
 

Algorithm Cadence Forced Leaves Forced All Dynamic SMM 
S Min / S Best 6 / 6 1 / 5 1 / 6 10 / 10 – 

S value 9 9 9 9 – 
Connected 100 100 100 89 100 
Root sends 9 9 9 9 11 

Root cadence 99 99 99 111 324 
Max cadence 269 269 269 111 324 

Time t[0] 475 475 475 349 474 
b0 342 342 342 342 342 

Excess b0 0 0 0 0 0 
Excess Root 12 12 12 0 0 

Affected nodes 61 61 61 0 0 
 
 
For each graph and each algorithm, we seek the minimum s value that allows 
full connectivity (that is, a complete tree) for the n users. In addition, we also 
seek the minimum s optimal value, which is the minimum s value for a specific 
algorithm with the lowest maximum cadence time; as seen before, if the number 
of packets M is high enough, the total transmission time to send all the data will 
be minimum for the lowest cadence time. In case that two or more results have 
the same maximum cadence time, then we consider the minimum multicast 
delay t[0]. Finally, if we still have two or more executions with the same 
maximum cadence time and with the same t[0], we consider the number of 
affected nodes, that is, we choose the value of s with a minimum number of 
affected nodes. 
 
Once we have the best value of s for all the algorithms, we seek the algorithm 
that, for each overlay network, works better. In other words: for a specified 
number of user nodes we count the times that each algorithm is the best for all 
the graphs. If two or more algorithms can be considered as the best (they have 
the same maximum cadence time, the same t[0] value and the same number of 
affected nodes), we count all of them. 
 
The results after averaging the values for all the backbone graphs can be seen 
in Table 6.4. We show the average of the times that each algorithm gives the 
best result, and the average of the affected nodes (the nodes that can have 
congestion difficulties) after using this algorithm. 
 
As can be seen, the Forced Leaves algorithm is the best, followed by the 
Forced All and the Cadence algorithms. Anyway, the number of affected nodes 
is quite large, especially for the Forced Leaves algorithm (we can see that, for a 
large number of nodes, the percentage of affected nodes is higher than 50%). 
This could be a serious issue, since these nodes could be blocked with the 
consequent loss of data. This number of affected nodes is large enough to try to 
find an alternative. 
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Table 6.4. Results with affected nodes 
 

Users Algorithm Times Affected nodes 
Cadence 5.8 1.81 

Forced Leaves 10.0 2.80 
Forced All 6.8 2.04 
Dynamic 2.4 0 

10 

SMM 1.6 0 
Cadence 5.6 4.06 

Forced Leaves 10.0 8.22 
Forced All 6.0 3.75 
Dynamic 2.0 0 

25 

SMM 0.8 0 
Cadence 3.6 16.22 

Forced Leaves 10.0 24.44 
Forced All 3.6 16.22 
Dynamic 1.4 0 

50 

SMM 0 0 
Cadence 2.8 22.05 

Forced Leaves 10.0 64.30 
Forced All 2.8 22.05 
Dynamic 1.2 0 

100 

SMM 0 0 
Cadence 2.6 102.67 

Forced Leaves 10.0 161.22 
Forced All 2.6 102.67 
Dynamic 1.0 0 

200 

SMM 0 0 
 
 
Then, a new approach has been used to decide which algorithm is the best. If 
previously the main criterion was the maximum cadence time, now we only take 
into account the results with no affected nodes, and, from here, we use the 
same previous criteria. With this restriction, we can find that, for some graphs 
and/or algorithms, no value of s satifies this condition, so the final tree has 
always at least one node whose cadence time is higher than the root one. But, 
on the other hand, if this value of s exists, it means that we can find a tree 
transmission that avoids any problem caused by congestion. These results are 
shown in Table 6.5. It is very similar to the previous table, but now the values in 
“affected nodes” column will be always 0. Again, the “times” value is the 
average of times that one algorithm is considered “the best”. 
 
Now the Dynamic algorithm is usually the best (nine out of ten times 
approximately, as it has been designed to avoid any congestion issue). Thus, if 
we want to get a transmission tree in which no node exceeds the cadence time 
of the root, we should use the Dynamic algorithm. Anyway, as it is not always 
the best algorithm, we can generate the transmission tree for more than one 
algorithm variation, and compare the results. For example, if we want to use 
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only two algorithms, we can execute the Dynamic and the Forced All over the 
same overlay network, and use the best tree. Anyway, in case that we can use 
any algorithm and the processing time is irrelevant (that is, we have a lot of time 
to draw the tree), we can use all the algorithms and apply the best one. 
 
 
Table 6.5. Results without affected nodes 
 

Users Algorithm Times 
Cadence 4.8 

Forced Leaves 4.8 
Forced All 4.8 
Dynamic 9.8 

10 

SMM 1.4 
Cadence 5.0 

Forced Leaves 5.2 
Forced All 5.2 
Dynamic 9.2 

25 

SMM 1.4 
Cadence 4.6 

Forced Leaves 4.6 
Forced All 5.2 
Dynamic 9.2 

50 

SMM 2.4 
Cadence 3.0 

Forced Leaves 3.0 
Forced All 3.0 
Dynamic 9.0 

100 

SMM 1.2 
Cadence 2.4 

Forced Leaves 2.4 
Forced All 2.4 
Dynamic 9.0 

200 

SMM 1.4 
 
 
The use of this approach to avoid congestion issues may result in thicker trees, 
changing the total delay time t[0] for one packet and also increasing the 
maximum cadence time. So, we can point the differences between one case 
and the other. In Table 6.6 we show the average of the maximum cadence time 
for the best algorithm in each overlay and the total delay t[0], for the two 
approaches: when the best algorithm minimizes the total time, but it may have 
congestion issues; and when the best algorithm ensures that any node will have 
lower cadence time than the root. 
 
Thus, when we apply the algorithms without affected nodes, the maximum 
cadence time is higher, resulting in a worse transmission time for large number 
of packets. Anyway, this cadence time is about 50% higher than the cadence 
with affected nodes, whereas in this last case the number of nodes that may be 
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affected by congestion is very high (in fact, the percentage increases with the 
number of user peers). Then, despite the increment of the total time to transmit 
the complete data, we advice to use the Dynamic algorithm to avoid the loss of 
messages due to congestion issues. 
 
 
Table 6.6. Time results 
 
User nodes Type Max cadence t[0] Affected nodes 

With affected 176.94 516.08 2.80 10 Without affected 226.66 480.80 – 
With affected 208.48 541.00 8.22 25 Without affected 287.46 532.82 – 
With affected 214.00 598.76 24.44 50 Without affected 305.94 586.10 – 
With affected 214.00 602.74 64.30 100 Without affected 323.32 597.40 – 
With affected 214.00 612.62 161.22 200 Without affected 325.24 607.34 – 

 
 
After previous results, now we discuss why some algorithms are better than 
others. For the case with affected nodes in Table 6.4, the best algorithm (that is, 
the one which obtains the best solution more frequently) is the Forced Leaves, 
followed by the Forced All. The reason is that the Forced Leaves only forces to 
transmit the nodes which have not yet send the packet, whereas Forced All can 
force any node, which includes upper nodes from the tree (that is, nodes with a 
higher cadence time, in general). Hence, the maximum cadence time will be 
usually higher in Force All, and so the total transmission time. 
 
Moreover, the Forced All and the Cadence algorithms obtain similar results. In 
the Cadence algorithm we need a nimimum s to get complete connectivity with 
all peers, while in any of the Forced algorithms the connectivity is achieved with 
s=1. To get a complete tree with the Cadence algorithm, we may increment s to 
allow a higher time limit and let the peers enough time to send the packet to all 
of them. This increment of s may increase the cadence time for the upper peers 
of the tree (that is, the nearest peers to the root), and hence the cadence time 
may also be increased. The use of the Forced All algorithm is similar, with the 
difference that the increment of s is made “automatically” when we need it, but 
again the upper peers will have more branches, and thus the cadence time will 
be similar for both algorithms. Finally, the Dynamic algorithm is the most 
restrictive of all, because a node can never have higher cadence time than the 
root. Then, to get a complete tree, the s value may be higher, as it can be seen 
in Table 6.7, which results in higher cadence times. 
 
Table 6.7 shows, for all users and algorithms, the average of the s values that 
make the tree full connected, the s that gives the best time result (for each of 
the algorithms), and the s at which the algorithm builds a tree where no node 
exceeds the root cadence. Note that, in this last case, some algorithms may not 
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fulfill the condition, and so at the side of the average number of s we point the 
number of times that the algorithm fulfills it (over a maximum value of 50, for 10 
overlay graph on each of the 5 backbone graphs). 
 
 
Table 6.7. s values for the algorithms 
 
Users Algorithm s minimum s best s for not affected nodes 

Cadence 3.58 3.86 3.58 (36) 
Forced Leaves 1.00 3.04 3.56 (36) 

Forced All 1.00 3.34 3.56 (36) 
Dynamic 4.12 4.12 4.12 (50) 

10 

SMM 1.00 1.00 1.00 (32) 
Cadence 5.38 5.62 5.71 (28) 

Forced Leaves 1.00 4.38 5.76 (29) 
Forced All 1.00 4.80 5.76 (29) 
Dynamic 6.40 6.40 6.40 (50) 

25 

SMM 1.00 1.00 1.00 (20) 
Cadence 5.34 5.68 6.50 (30) 

Forced Leaves 1.00 4.16 6.10 (30) 
Forced All 1.00 5.18 6.10 (30) 
Dynamic 6.08 6.08 6.08 (50) 

50 

SMM 1.00 1.00 1.00 (23) 
Cadence 5.60 5.84 5.88 (16) 

Forced Leaves 1.00 4.40 5.88 (16) 
Forced All 1.00 5.70 5.63 (16) 
Dynamic 7.32 7.32 7.32 (50) 

100 

SMM 1.00 1.00 1.00 (15) 
Cadence 5.82 5.86 7.69 (16) 

Forced Leaves 1.00 4.80 7.69 (16) 
Forced All 1.00 5.86 7.69 (16) 
Dynamic 8.56 8.56 8.56 (50) 

200 

SMM 1.00 1.00 1.00 (16) 
 
 
According to the results without affected nodes, the best algorithm is Dynamic, 
as we said before, since it has been defined to avoid congestion issues. After it, 
the best algorithm is Forced All, followed by Forced Leaves and Cadence 
(actually, these three algorithms may not be considered in many cases because 
they do not fulfill the constriction of not having affected nodes, as seen in Table 
6.7). Anyway, these three algorithms obtain very similar results, and the s 
values are not very different than the Dynamic ones. Moreover, the number of 
times that these algorithms draw a complete tree with no nodes affected by 
congestion is much lower than Dynamic, which always finds complete trees 
whose nodes have a cadence time lower than the root one. Recall that Dynamic 
algorithm needs a higher s since it is the most restrictive one. After it, the 
Cadence algorithm needs the second higher s because it is the second most 
restrictive algorithm, whereas Forced All and Forced Leaves guarantee 
connectivity for s=1. Moreover, for “s best” we have a little bit higher value for 
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Forced All than for Forced Leaves. This is because in Forced All we have in 
general a higher cadence time for the upper peers, which finally results in a 
worse transmission time than the time for the Forced Leaves algorithm. 
 
As conclusion, we can consider two possible cases to optimize the total 
transmission time: first, try to do it as fast as possible, using the Forced Leaves 
algorithm that, on average, is the best one and draws complete trees, but which 
has the drawback that it may cause congestion. 
 
On the other hand, we can use the other approach: try to find the quickest way 
to transmit any information, but with the guarantee that we never could have 
congestion issues. To do this, we use the Dynamic algorithm, which has been 
the best performing algorithm in a large percentage of cases; and which always 
fulfills the cadence restriction in such a way that it always avoid congestion. 
 
 
6.4. Further work 
 
We have shown in previous sections that, depending on the constrictions used 
to avoid congestion, one algorithm may be better than the others. Nevertheless, 
we must keep in mind that all the algorithms are based on the same main 
principles, described in Section 3, which were designed to optimize the delay 
time to send a single packet. Anyway, as it has been seen in previous sections, 
when we want to send a package set (which will be the usual case in data 
transmissions) the main objective is to minimize the cadence time. Thus, we 
could describe another algorithm –also based on SMM– with the objective of 
minimizing the maximum cadence time of the nodes (again trying to avoid 
congestion issues) instead of the total delay t[0] for one single packet. 
 
In addition, we could describe new scenarios as a basis for the simulator, using 
other generator data to model the present ADSL services, or even more 
sophisticated environments, like a college network or a corporate one. 
 
With respect to the algorithm, we could consider dynamic effects like connection 
and disconnection of multicast group members, to know how it could affect the 
whole tree. At this point, some approaches could be used: apply the algorithm 
again from the beginning when there is a change, or try to connect the new 
nodes or those which have lost their source to one of the other peers (for 
example, the root, or one of the leaves of the tree). Thus, the program could be 
modified to allow, once the original tree has been build, the connection and 
disconnection of nodes with the aim of preserving full connectivity. At this point, 
we can also consider the network availability. Thus, in the case that a network 
link breaks down, we could try to restore the transmission tree as soon as 
possible with the least loss of data. 
 
Finally, as a direct application of this work, we could apply the proposed 
algorithms in a real network, and check if theoretical results correspond to their 
performance in a real network. 
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