446 research outputs found

    S-TREE: Self-Organizing Trees for Data Clustering and Online Vector Quantization

    Full text link
    This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm, can be implemented with various cost functions. An alternative implementation, S-TREE2, which uses a new double-path search procedure, is also developed. S-TREE2 implements an online procedure that approximates an optimal (unstructured) clustering solution while imposing a tree-structure constraint. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including a Gauss-Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction.Office of Naval Research (N00014-95-10409, N00014-95-0G57

    A fast compression-based similarity measure with applications to content-based image retrieval

    Get PDF
    Compression-based similarity measures are effectively employed in applications on diverse data types with a basically parameter-free approach. Nevertheless, there are problems in applying these techniques to medium-to-large datasets which have been seldom addressed. This paper proposes a similarity measure based on compression with dictionaries, the Fast Compression Distance (FCD), which reduces the complexity of these methods, without degradations in performance. On its basis a content-based color image retrieval system is defined, which can be compared to state-of-the-art methods based on invariant color features. Through the FCD a better understanding of compression-based techniques is achieved, by performing experiments on datasets which are larger than the ones analyzed so far in literature

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Multi-image classification and compression using vector quantization

    Get PDF
    Vector Quantization (VQ) is an image processing technique based on statistical clustering, and designed originally for image compression. In this dissertation, several methods for multi-image classification and compression based on a VQ design are presented. It is demonstrated that VQ can perform joint multi-image classification and compression by associating a class identifier with each multi-spectral signature codevector. We extend the Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, that explicitly incorporates a Bayes risk component into the distortion measure used in the VQ quantizer design and thereby permits a flexible trade-off between classification and compression priorities. In the specific case of multi-spectral images, we investigate the application of the Multi-scale Retinex algorithm as a preprocessing stage, before classification and compression, that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The goals of this research are four-fold: (1) to study the interrelationship between statistical clustering, classification and compression in a multi-image VQ context; (2) to study mixed-pixel classification and combined classification and compression for simulated and actual, multispectral and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on class spectral signatures; and (4) to study the preservation of scientific data integrity as a function of compression. In this research, a key issue is not just the subjective quality of the resulting images after classification and compression but also the effect of multi-image dimensionality on the complexity of the optimal coder design

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Multilevel Methods for Sparsification and Linear Arrangement Problems on Networks

    Get PDF
    The computation of network properties such as diameter, centrality indices, and paths on networks may become a major bottleneck in the analysis of network if the network is large. Scalable approximation algorithms, heuristics and structure preserving network sparsification methods play an important role in modern network analysis. In the first part of this thesis, we develop a robust network sparsification method that enables filtering of either, so called, long- and short-range edges or both. Edges are first ranked by their algebraic distances and then sampled. Furthermore, we also combine this method with a multilevel framework to provide a multilevel sparsification framework that can control the sparsification process at different coarse-grained resolutions. Experimental results demonstrate an effectiveness of the proposed methods without significant loss in a quality of computed network properties. In the second part of the thesis, we introduce asymmetric coarsening schemes for multilevel algorithms developed for linear arrangement problems. Effectiveness of the set of coarse variables, and the corresponding interpolation matrix is the central problem in any multigrid algorithm. We are pushing the boundaries of fast maximum weighted matching algorithms for coarsening schemes on graphs by introducing novel ideas for asymmetric coupling between coarse and fine variables of the problem
    • …
    corecore