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ABSTRACT

Vector Quantization(VQ) is an image processing technique based on statistical cluster
ing, and designed originally for image compression. In this dissertation, several methods 
for multi-image classification and compression based on a  VQ design are presented. It is 
demonstrated that VQ can perform joint multi-image classification and compression by as
sociating a class identifier with each multi-spectral signature codevector. We extend the 
Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, 
that explicitly incorporates a  Bayes risk component into the distortion measure used in 
the VQ quantizer design and thereby permits a  flexible trade-off between classification and 
compression priorities. In the specific case of multi-spectral images, we investigate the 
application of the Multi-scale Retinex algorithm as a  preprocessing stage, before classifica
tion and compression, that performs dynamic range compression, reduces the dependence 
on lighting conditions, and generally enhances apparent spatial resolution. The goals of 
this research are four-fold: (1) To study the interrelationship between statistical clustering, 
classification and compression in a  multi-image VQ context; (2) to study mixed-pixel classifi
cation and combined classification and compression for simulated and actual, multispectral 
and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on 
class spectral signatures: and (4) to study the preservation of scientific da ta  integrity as a 
function of compression. In this research, a  key issue is not just the subjective quality of 
the resulting images after classification and compression but also the effect of multi-image 
dimensionality on the complexity of the optimal coder design.

xv
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Chapter 1

Introduction

Demands from the scientific c o m m u n ity  for increased spatial and spectral resolution of re

motely sensed data have created a  need for methods th a t can capture, transm it, analyze, 

and store the data  in near real-time using the most efficient processes. However, the high 

data  rates of current multispectral and hyperspectral remote sensing instrum ents create 

requirements for data  t r a n s m is s io n , storage, and processing that tend to exceed available 

capacities. Moreover, the improvement in data  quantity provided by future sensors repre

sent a huge challenge to modem data  storage and computing systems. For example, the 

anticipated rate of da ta  production for all NASA Earth  Observing Systems (EOS), including 

both raw and derived products, is about one terabyte (1012) per day, with an accumulated 

database of about 10 petabytes (1016) expected over 15 years [86] [94].

Scientists use remotely sensed data  in many applications, from the mapping of vegeta

tion species for environmental applications to the prediction of cloud patterns for weather 

applications. The common challenge in each of these applications is to reduce a  huge 

amount of da ta  to a  smaller amount tha t can easily be managed for analysis w ithout losing

2
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C H APTER 1. INTRODUCTION  3

the “scientific content” of the data. The process of performing this da ta  reduction is called 

compression. To complete the analysis, information extraction techniques are applied to 

that portion of the data that is of importance to a  particular application. Once the infor

mation is extracted, then a  thematic map labeling regions of interest in the data  can be 

produced. This process is called classification.

Ideally the processes of classification and compression should go together. One way to 

meet this challenge is through the development of a  common framework for compression 

and classification. This common framework must preserve data  integrity by simutaneously 

maintaining fidelity between the original data  and the compressed da ta  and preserving 

classification accuracy by insuring tha t the information that distinguishes classification 

categories is preserved.

In this dissertation we present a  common framework for the combined classification 

and compression of multi-images using Vector Quantization (VQ). In the remainder o f this 

chapter we introduce the concept of VQ and the inter-relationship between VQ, classifica

tion. and compression. In this context we outline a  framework for the study of VQ that 

is based on our research results. We also discuss in this chapter the importance of VQ for 

performing other image processing tasks such as image enhancement and restoration, and 

provide an overview of current methods for using VQ to perform combined classification 

and compression.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 1. INTRO DU CTIO N  4

1.1 Prelim inaries

In this dissertation we will discuss the relationship between classification and compression 

in the context of multi-images. For this purpose we will use the following terminology.

• A pixel is one element (spatial location) in an image.

• In a univariate or single-image framework, a  pixel value is the scalar (gray level) value 

associated with a  pixel and a  pixel vector is an array of pixel values associated with 

a spatially contiguous set of pixels.

• In a multivariate or multi-image framework, a  pixel value and a  pixel vector are the 

same — the vector (array) of values associated with a  single pixel.

i-2

M ulti-im age

Figure 1.1: Decomposing a multi-image into pixel vectors

As illustrated in Figure 1.1, a  multi-image is a  two-dimensional array of pixel vectors. 

A multi-image cluster is a set of pixel vectors that have some common (usually statisti

cal) characteristic. Vector Quantization (VQ) is the process of representing a  cluster of 

pixel vectors using one of a  small number of so-called codevectors (i.e, representative pixel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER  I. IN TRO D U C TIO N  5

vectors) [24] [29]. The number of possible pixel vectors is generally huge (especially for 

compression applications) relative to the number of codevectors used to represent them.

In the next section, we introduce the concept of vector quantization as it relates to 

multi-image classification and compression. In Chapter 2 we will discuss image formation 

and provide a  more formal discussion of the multi-image representation.

1.2 C lassification  and C om pression

The goal of multi-image classification is to identify and attach a  class label to homogeneous 

image regions (i.e., pixel vectors having the same “information content” ). The goal of multi

image compression is to represent the information of interest in an image in a compact form 

to speed transmission, minimize storage requirements, and possibly facilitate a  faster display 

and analysis. The goals of classification and compression are quite similar. Classification 

can be viewed as a  form of compression since all the pixels in a  homogeneous multi-image 

region are equivalenced to a  class label. Conversely, compression (in particular, VQ) can be 

viewed as a form of classification since a  codevector drawn from a small set of pixel vectors 

is assigned to each pixel vector in the multi-image. All pixel vectors assigned to  the same 

codevector belong to a  common class.

Although the goals of multi-image classification and compression are similar, there are 

some notable differences between the two in terms of performance measurements. In com

pression one measures performance by an average distortion and the corresponding com

pression ratio. The average distortion is typically based on a  squared-error fidelity criterion 

(See Section 4.4). The compression ratio is typically based on the amount of storage space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 1. IN TRO D U C TIO N  6

reduced or the reduction in average distortion measured a t various stages in the compres

sion algorithm. Squared-error fidelity is traded off against the number and choice of the 

codevectors.

In classification one measures performance by the probability of classification error or, 

more generally, by Bayes Risk (See Section 5.1). Bayes risk is typically traded off against 

some measure of the complexity of the classification algorithm. For example, the complexity 

of the classification algorithm may be defined in terms of the average number of nodes or 

branches traversed in a  decision tree.

1.3 C lu sterin g

An important concept used in both  multi-image compression and multi-image classification 

is clustering. Clustering yields a  description of the multi-image in terms of sets (clusters) 

of pixel vectors th a t possess (usually statistical) strong internal similarities. The clusters 

are constructed based on a  criterion function like a squared-error fidelity metric. The Venn 

diagram in Figure 1.2, which is based on the results achieved in this dissertation, illustrates 

the interrelationship between the concepts of compression, VQ, classification, and clustering.

Clustering can be defined within the framework of compression and classification in the 

following manner: clustering associates each pixel vector with a  codevector in such a  way as 

to minimize an average distortion (squared-error fidelity for compression, or Bayes risk for 

classification) subject to a  constraint on the complexity of the algorithm (number of code

vectors for compression or average complexity of discriminant analysis for classification). 

Because both classification and compression use principles from statistical clustering and
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require fidelity measures tha t are design criteria typically used in VQ, it is very natural for 

VQ to be investigated as a  combined approach to perform both tasks. In Chapter 5, we 

will explore methods for combined classification and compression using VQ.

Com

Classification

Vector
Quantization

Figure 1.2: Interrelationship among concepts

In the next section we introduce various VQ methods and outline a  common framework 

for combined classification and compression.

1.4 VQ and Im age P rocessing

VQ methods have been used to jointly perform compression with other image and sig

nal processing tasks such as speech processing [11] [52], edge detection [77], image en

hancement [1] [15], and image restoration and image reconstruction [89]. In terms of VQ 

methods designed specifically for classification, numerous results have been published on 

texture classification [57], medical image classification and analysis [66], and remote sens

ing analysis [42]. In this dissertation we will concentrate specifically on VQ as it relates to 

classification and compression for remotely sensed multi-images.
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There are various approaches to achieving combined compression and classification of 

single-component images. The simplest approach is an independent design in which a com

pression encoder and classifier are developed seperately and used seperately. Another ap

proach is a  sequential or cascaded design in which the results of one process are used as input 

into the next process. In Chapter 5 we review other techniques for achieving a combined 

approach including the Weighted Bayes Risk VQ (WBRVQ) design th a t explicitly combines 

the two operations into a single image coder by merging the quantizer distortion error and 

classification error into a single measure. In Chapter 6 we investigate the extension of the 

WBRVQ technique to multi-image processing.

A vector quantizer is characterized by an encoder that maps a  multi-image pixel vector 

z to an index k  tha t specifies one of a  set of codevectors in a  codebook. The best match 

codevector for a pixel vector is chosen using a squared-error fidelity criterion. Thus, VQ 

introduces some distortion (loss of information). It is difficult to say in general what level of 

distortion is acceptable since the processed image data  may be used in a  variety of applica

tions. However, a  vector quantizer should be designed in such a  manner tha t the processed 

image data maintain high visual fidelity (if visual analysis is paramount to the applica

tion) and that any subsequent analysis using this data  yields accurate results (if unmixing 

analysis and image classification are the application). Although it is reasonable to assume 

that classification and compression performed seperately will yield the best results for each 

process, since each is designed for a  specific task, there is some evidence in the literature 

that the success of the end-to-end process can be improved by a joint design [71] [66].

Most researchers who analyze scientific data are extremely skeptical of any processing 

that may compromise data  integrity, e.g., lossy compression. Therefore, one goal in this dis
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sertation is to study how to minimize the impact on data  integrity as distortion is introduced 

into the process [68]. In C hapter 7, we discuss the issues that relate to the preservation of 

scientific data  integrity in a  VQ system. More specifically, we discuss the effect of image pre

processing on the classification and compression results achieved. A series of multi-spectral 

images are used to study the application of the Multi-scale Retinex (MSR) algorithm, an 

image sharpening and enhancement technique, as a  preprocessing stage before VQ. In the 

analysis of these multi-spectral images we explore two things:

1. To what extent can a  conventional unsupervised classification algorithm  yield “good” 

results when applied directly (i.e., with no MSR pre-processing).

2. If the multi-spectral images are pre-processed with the MSR and then the same con

ventional unsupervised classification algorithm applied, to what extent does tha t pre

processing influence the “goodness” of the result?.

We demonstrate experimentally that pre-processing with the MSR produces multi- 

spectral signature images and can improve the classification quality.
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Chapter 2

Image Models

Image formation occurs when a sensor measures a  spatial distribution of radiation th a t has 

interacted with a  physical object by reflectance or emittance. Many m athem atical models 

exist in the literature th a t describe the various parts of the image formation process [7]. A 

few of these models are listed below.

• A geometric or photometric model describes how the radiation reflected and em itted by 

three-dimensional objects is projected onto a two-dimensional image representation.

• A radiometric model describes how the imaging geometry, illumination sources, and 

reflectance properties o f objects influences the amount of radiance measured a t the 

sensor.

• A spatial frequency model describes how spatial variations in the image are character

ized by a  linear combination of harmonic functions (Fourier Series).

•  A spectral model describes how the energy in the radiance th a t forms an image is 

related to spectral wavelength.

10
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•  A digitizing model describes the process of spatial sampling and brightness quantiza

tion.

Different image representation models can be used, depending on which image character

istics are to be analyzed and what mathematical model is used as the framework for the 

analysis. For example, a  scene is continuous in space, wavelength, radiance, and time, and 

all images used in tha t context require a  continuous function representation. However, when 

sampling and quantization occurs, as described in a digitizing model, a  discrete array rep

resentation is used. In the next Section we present a  digital image formation process within 

the framework of both a radiometric and digitizing model, as it applies to a  univariate 

image.

2.1 Im age Form ation

Associated with the continuum of two-dimensional (x,y) spatial locations within a uni

variate image is a  brightness (luminance, intensity, irradiance) tha t is characterized by a 

real-valued, non-negative, and bounded brightness function

f ( x , y )  =  image brightness at spatial location (x, y). (2.1)

A univariate image is uniquely defined by its brightness function measured relative to some 

two-dimensional (x, y) spatial coordinate system.1

Spatial sampling is the process of decomposing the continuum of (x, y) image spatial 

locations into a large but finite number of spatial regions know as pixels. In  practice, spatial

‘Except for minor changes in notation, the  m aterial in Sections 2.1 and 2.2 is from [TO].
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sampling is virtually always accomplished with a  digitizing imaging system (camera) which 

produces uniformly sized pixels throughout the image. The effect of spatial sampling is to 

decompose a scene into a  total of M N  pixels, where M  and N  are the number of rows 

(lines) and columns (samples) in the image. Spatial sampling associates w ith each pixel 

[m, n] an “average” brightness f [m,  n] tha t is determined primarily by the brightness of the 

points tha t lie within the area tha t defines a pixel: i.e.,

/[m , n] =  brightness o f pixel [m, n] (2.2)

The actual brightness contribution to /[m , n] from points within the pixel and from neigh

boring points outside the pixel is determined by a point spread function. The process 

of sampling the brightness function /(x , y) to produce the M  x N  real-valued array with 

elements f [m,  n ] is almost always modeled as linear and w ritten as

f [m,  n] =  f  J f { x , y ) h ( m , n ; x , y ) d x d y  (2.3)

where h(m,n;  x , y) ,  the pixel point spread, function, is the (known, normalized) contribution 

to f [rn,n] from a “point source” of unit brightness at (x, y), and the integration is over all 

those (x , y) spatial locations for which h( m, n ; x , y )  ^  0.

Spatial sampling is typically accomplished with a lens, aperture, photodetector arrange

ment whose output is an analog electrical signal. The typical units of f [ m , n ] are volts, 

which are proportional to the associated pixel brightness.

Brightness quantization is the (analog-to-digital) process of associating a non-negative 

integer value with each of the continuum of possible values of f [m,  n]. The brightness quanti

zation process is defined by the choice oI Z +1  decision (quantization) levels Qo, Q i , - - - , Qz-
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Go <2. Q , f l m ' n] (input) « * - .

I 1

V1— r
z - 1

g[m,n] (output)

Figure 2.1: Decision Levels

Specifically /[m , n] is converted to the integer g\m , n] =  z  if and  only if <5= <  /[m , n] <  

as illustrated in Figiue 2.1.

The net effect of spatial sampling and brightness quantization is a  conversion of the 

original image brightness function f ( x ,y )  into a  digital image — an M  '*■ N  array of pixel 

values g[m, n] in the range 0 ,1 , . . .  , Z  — 1, where

g[m, n] =  value (gray level) of pixel [m, n], (2.4)

Typically the image is digitized with Z  =  2R possible gray levels per pixel, where R  is the 

number of bits to required to represent a  pixel value. If so, the  total number of bits required 

to binary encode the image is R M N .
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2.2 M u lti-im age R epresentation

As described in Section 2.1, a  um'-variate digital image is an image for which a single scalar 

value (e.g., irradiance, temperature) is associated w ith each pixel in the image. In a multi

variate digital image, a  vector of values is associated with each pixel. T hat is, multi-images 

are multivariate digital images. Each pixel has associated with it a  multivariate pixel value 

that has been transformed and recorded, usually during image acquisition, into a  gray level 

pixel vector — an array of non-negative integer values.

Four integer parameters are used to characterize the size of a  multi-image. The number 

of possible pixel values in each component image is Z , the pixel dimension of each component 

image is M  x N , and the number of component images is J  (See Figure 2.2).

Multi-images occur in many scientific applications. The three most common formats 

are multi-spectral, multi-temporal, and multi-spatial. Multi-spectral component images 

are typically J-indexed by increasing wavelength, multi-temporal components by increasing 

time, and multi-spatial components by increasing spatial resolution.

A multi-spectral image is a  multi-image in which each component image represents the 

radiance present in a particular spectral band2. Color images are multi-spectral images 

where J  =  3. Remote sensing applications utilize multi-spectral imaging systems such as 

the Landsat TM (Thematic Mapper) to acquire images in J  =  7 spectral bands. A hyper- 

spectral image is a  multi-spectral image with relatively high spectral resolution (typically 5 

to lOnm) and nearly-contiguous bands (e.g., J  =  224 for Airborne Visible/Infrared Imaging 

Spectrometer (AVTRIS) images). [48] [91]

2See C hapter 7 for more detail.
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In a multi-temporal image, each component image represents the temporal variation of 

brightness a t common pixel locations. Temporal resolution is defined by the time intervals 

between measurements. In other words, multi-temporal images arise when the time evolu

tion of a fixed spatial area is recorded. In remote sensing applications, adequate temporal 

resolution is important for the identification of dynamically changing processes, such as 

crop growth, land use, hydrological events, and atmospheric flow [86].

In a  multi-spatial image, the component images have different spatial resolutions (but 

the same number of pixels) and all are registered to the same spatial area. Multi-spatial 

images can arise when several imaging systems, each with its own spatial resolution, are 

used to generate images of a common spatial area.

L

M

Figure 2.2: (I) ./-indexed multi-image, (r) Grayscale J  =  250 indexed image of Cuprite, Nevada

The conventional conceptual model of a  multi-image is that of a  1-dimensional array 

(of size J)  of 2-dimensional component images (of size M  x  N ) stacked one after another, 

as illustrated in Figure 2.2. Multi-images typically exhibit a high component-to-component 

correlation — that is, if the multi-image is viewed as shown in Figure 2.2, each component
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image is unique and yet many component images will have a  very similar appearance3.

Thus a  digital multi-image is a  3-dimensional ( J  x M  x N )  array of pixel values. In 

practice, J  is typically smaller than Z , M  and N . As a  specific example, Z  =  256, M  ~  

6000, N  a  7000, and J  =  7 for multi-spectral Landsat Them atic M apper images and 

Z  <SC 32768, M  «  1000, N  a  600, and J  =  224 for hyper-spectral AVIRIS images.

In typical multi-spectral image processing applications, the multi-image is often trans

formed by a  spatial or spectral transform to a  so-called feature space. This transform ation 

may be required because of the influence on the multi-image of external factors in the imag

ing process, such as atmospheric scattering and topographic variations. One of the goals is 

to provide a representation of the multi-image tha t best facilitates clustering for subsequent 

image processing applications such as classification [60]. The feature space may include the 

original spectral bands, atmospheric corrected/calibrated spectral bands, a  subset selection 

of the best spectral bands, spectral bands th a t have been smoothed by spatial filtering, or 

bands produced from spectral transformations such as the Principal Components Transfor

mation (PCT).

The following notation will be used through the remainder of the dissertation.

•  z  will be used to index integer-valued pixel values as z  = 0 ,1 , . . .  , Z — 1.

•  [m, n\ will be used to index pixels as m  =  0 ,1 , . . .  , M  — 1, n  =  0 ,1 , . . .  , N  — 1.

•  j  will be used to index image components as j  =  0 ,1 , . . .  , J  — 1.

•  A multi-image pixel vector is a  J-component vector in space 7lJ .

3The Cuprite muitispectral image cube was created using the ENVI image processing system [35j.
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A  pixel vector will be denoted by a  lower case boldface letter and may be subscripted 

by a  letter or number in the case of a  set o f vectors, e.g., z,zo, Zi, x,, y^. If  the 

algebraic structure of a  pixel vector is im portant, it will be treated as a  column 

vector, as illustrated.

z =

20
Zl

Z j - l

Note that, for example, z\ denotes the 2nd component of pixel vector z and z i  denotes 

the 2nd pixel vector in the set of pixel vectors {zo,Zi,Z2, ...}.

The space 7ZJ may be quantized, typically with Z J elements. If so, the ./-dimensional 

histogram calculated by tallying the count for each multi-image pixel vector z, di

vided by the total number of pixels in the image M N , approximates the pixel vector 

probability density function. That is

pdf(z) «  coun t(z)/M N . (2.5)
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Chapter 3

Multi-image Clustering

To illustrate the concept of clustering, consider a multi-spectral color image (J  =  3). In this 

case the three component images correspond to the brightness of the scene as viewed through 

red, green, and blue spectral filters respectively. Suppose tha t the image is of tomatoes, some 

ripe (red) and the others un-ripe (green). Also, suppose tha t the background surrounding 

the tomatoes is uniformly gray.

As illustrated in Figure 3.1, if we were to generate the full 3-component histogram of this 

image we would find the distribution of pixel vectors in three clusters corresponding to three 

pixel classes: background, ripe tomatoes, and un-ripe tomatoes. Each class is represented 

by a cluster of 3-dimensional points, rather than a single point, due to a  natural within-class 

color variability. For example, not all ripe tomatoes are the same color and, even if there 

were only one ripe tomato, variations in surface reflectance and lighting would cause color 

variations from pixel to pixel.

The class 0 (background) pixels will have a 3-component pixel vector with all three com

ponents nearly equal. Thus these pixels will produce a  cluster of points along the achromatic

18
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Z2 (blue)

background

un-npe
  zi (green)

ripe-

Figure 3.1: Multi-spectral RGB Clustering

axis in RGB space. The class 1 (ripe tomato) pixels will have one large component value 

(red) and the other two component values will be small (particularly the blue one). Thus 

these pixels will produce a  cluster of points along the red axis in RGB space. Similarly, 

the class 2 (un-ripe tomato) pixel vectors will have a  large green component value and the 

other two component values will be small yielding a cluster of points along the green axis.

In general, the problem of clustering can be stated as follows: given a  set S  of pixel 

vectors in R.J , determine a partition V  of S  such that the pixel vectors in the same cluster 

(e.g., ripe tomatoes, unripe tomatoes) and are “more similar” to each other than to pixel 

vectors in any other cluster.

In this chapter an extension of the notation in the previous chapter is used.

• S  denotes a set of N s pixel vectors (zo ,Z i,. - - , z/va- i } in R J tha t are to be clustered. 

Note that S  can either be a subset (i.e., a training set) or all the pixel vectors in the 

multi-image.

• K. =  (0,1, • • • , K  — 1} is a  set of integers tha t will be used to label clusters.
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•  k  denotes an index value in fC.

•  Sk denotes the set of pixel vectors in cluster k.

•  V  denotes the partition of S  into the set of clusters {So, S i, - ■ - , S k - i}- T hat is, 

Sk n  Si = 0 for k  ^  i  and So U S i U  U S k - i  =  S.

3.1 C lustering  C riterion

A clustering criterion is an algorithm and an associated similarity metric tha t can be 

applied in a local or global manner. A local criterion produces clusters by exploiting local 

structure in the data. For example, a  cluster can be formed by identifying high-density 

regions in 7lJ or by assigning a  pixel vector and its nearest neighbors to the same cluster. 

A global clustering criterion represents each cluster by a  unique codevector in 7ZJ and each 

pixel vector is assigned to that cluster whose codevector is most similar according to the 

similarity metric.

The most straighforward approach for selecting the optimal partition is to evaluate all 

possible partitions containing K  clusters. In practice, this exhaustive search approach is 

impractical because the number of possible partitions is astronomical. One way to avoid 

an exhaustive search is to use an iterative hill climbing technique. S tarting w ith an initial 

partition, pixel vectors are moved between clusters in an iterative manner th a t improves 

the quality of the partition using some similarity metric as the basis for comparison. In 

this way only a  small subset of partitions is examined. Algorithms based on this method 

are computationally efficient but often converge to local minima. Several heuristics for
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choosing the initial partition and moving pixel vectors between clusters will be discussed in 

this chapter.

3.2 S im ilarity  M etrics

In the development of a clustering criterion, a  similarity metric is chosen. Various metrics 

can be used to measure the similarity (distortion) d(z, z ') between two pixel vectors z and 

z' in TZJ , including:

•  city block distance

The city block and Euclidean metrics are the most common metrics used. However, these

j -1
(3-1)

3 =  0

•  Euclidean distance

(3.2)
j=o

•  spectral angle:

d (z,z ') =  9 =  arccos[(z • z ') /( ||z ||||z '||)] (3-3)

where

y - i
(3-4)

j=o

metrics do not always account for overlap of distributions due to cluster variances. The
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spectral angle metric 8, is independent of the vector magnitudes and thus is insensitive to 

possible topographic differences between z and z '. Therefore, the spectral angle metric, 

used in hyperspectral image analysis, can be applied to remote sensing data  th a t have not 

been corrected for topography, and facilitates comparison of these the pixel vectors to a 

database of known reflectance vectors for particular classes of interest. Unless specified 

otherwise the Euclidean metric will be used in this dissertation.

3.3 M ultivariate C lu sterin g  M eth od s

In this section we will review basic multi-image clustering methods [37] [95]. Each method 

is presented as an algorithm in pseudo code. The algorithms are provided as a  way to 

understand each method and do not necessarily represent the best implementation in terms 

of search time and storage complexity. In Chapter 4, we present methods tha t improve the 

search time complexity of multidimensional "closest” pixel vector matching from O (K )  to 

0 (lo g K ).

3 .3 .1  C a te g o r iza tio n

Multi-image clustering methods depend on (1) the type of probability estimates available 

about each cluster and (2) the type of classification produced. Parametric methods depend 

on an assumed probability distribution for each cluster. Bayesian and Maximum-Likelihood 

methods are examples of parametric methods. Non-parametric methods do not depend on 

any assumed probability distributions and often, but not always, require heuristic clustering 

methods to estimate the distributions. Nearest-Neighbors, Squared-Error, Level Slice, and 

Artificial Neural Network (ANN) methods [96] [19] [68] are examples of such methods.
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The methods mentioned in the previous paragraph are considered hard methods. Hard 

clustering methods assign each pixel vector to the cluster with the greatest likelihood o f being 

correct. T hat is, one label is assigned to each pixel vector. A soft method allows multiple 

assignment of labels to a  pixel vector. The most common soft methods include Fuzzy 

Clustering [100] and Linear/Non-Linear Mixing Models [3] [9]. Maximum-Likelihood and 

Artificial Neural Networks, which are typically hard clustering methods, can be modified to  

produce a soft method. In a  soft clustering, the decision is multi-valued, with the possibility 

of more than one label per pixel. Each label has an associated likelihood of being correct. 

These likelihoods can be interpreted in a  number of ways, one of which is tha t they indicate 

the proportion of each category within the pixel. This interpretation is common for linear 

mixing models tha t assume spatial-spectral mixing of classes due to the sensor spatial 

response or the multiple reflections within a  material or between objects in the same spatial 

location of a  scene [86].

Unfortunately, one cannot specify tha t one clustering method is always better than 

another. As we shall see in Chapter 7, a clustering method’s performance depends on the 

quality of the multi-images being used. If the clusters are widely seperated, most clustering 

methods will produce similar results. Maximum-likelihood clustering, however, requires 

reasonably accurate covariance estimates. This requires that we have an accurate set of 

training set data  for each cluster, or a t least accurate modeling of the image distribution. 

Given accurate parameter estimates, maximum-likelihood theoretically produces a  minimal 

amount of error in terms of cluster labeling. Nonparametric algorithms tha t adapt to  any 

distribution, like the ANN, do not have a  simple theoretical basis, but are generally easier 

to use since less care is required by the user in defining and validating the training set
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data  [86].

3 .3 .2  S q u are-E rror  C lu s te r in g  (/C -M ean s)

The most common clustering method is based on the square-error criterion [74]. Given any 

partition V , the mean vector of the cluster Sk is

t o  =  mTT E  z k E l c  (3’5)
1 ** z6S*

where the sum is over all the pixel vectors z belonging to cluster Sk- The mean square-error

for each cluster is the mean of the squared Euclidean distances between each pixel vector

in the cluster and the mean vector. That is,

=  w r r £ l l z - ^ H 2 (3-6)
1 A | Z S S *

The mean square-error for the entire partition is

K -l
D =  TF £  * •  <3' 7>

fc=0

For a  fixed K . the objective of the square-error clustering method is to iteratively search 

for a partition tha t minimizes D , as follows.

1. Select an initial set of K  cluster mean vectors.

2. Partition the multi-image by assigning each pixel vector in S  to the closest cluster 

mean vector.

3. Recompute the mean vector for each cluster.
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4. Repeat steps 2 and 3 until convergence is achieved.

A convergence criteria typically used is to halt the iteration if

(3-8)

where D 1 is the distortion computed for the current iteration, D° is the computed distortion

for the previous iteration, and e is the stopping criteria.

A lg o r ith m  3.1 Given a value for K , an initial set of K  cluster means {no, n i, - - • 

and a  value for e >  0, a  pseudo-coded representation for the square-error clustering algo

rithm  is shown in Figure 3.2. The output of Algorithm 3.1 is a  partition of S  into K  clusters 

and the corresponding set of mean vectors. The time complexity to build the partition is 

0 { T N sK ),  where T  is the number of iterations required for convergence.

3 .3 .3  N e a r e s t-N e ig h b o r  C lu s te r in g

A Nearest-Neighbor (NN) clustering method groups pixel vectors according to a  nearest- 

neighbor property typically measured using one of the similarity metrics described in Sec

tion 3.2. A general algorithm for NN clustering is the following:

1. Given a minimum distance threshold t  > 0, from the set S  assign pixel vector zo to 

cluster So. Assign 1 to i.

2. Find the nearest neighbor of Zj G S  among the mean vectors for the current clusters 

and let d  be the corresponding nearest neighbor distance.

3. If d < t, then assign z* to Sk- Otherwise, increment K  and assign pixel vector zt- to a 

new cluster S k - Increment i and goto step 2.
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D l = 0 ; 
repeat 

for (k = 0;k < K ;k+ + ) 
ck = 0;
H'k =  m*;
P k  =  0;
S * = 0 :

D° = D l;
D l = 0 ;
while (more pixel vectors) 

read(z):
A: =  0;
for (A:' =  1; A/ <  K";A/4-+)

if ( d i s t a n c e ( z , ) <  distance(z, p!k)) 
k = k';

Sk — Sk U {z};
D l = D l 4- distance (z,p'k);
ck + + :

Vk =  /xfc +  (* 
until ( -°-7jr -- <  e);

Figure 3.2: Algorithm 3.1

A lg o rith m  3.2 Given a  minimum distance threshold t, a pseudo-coded representation for 

the nearest-neighbor clustering algorithm is shown in Figure 3.3. The output of algorithm

3.2 is a value for K ,  an associated partition V , and the corresponding set of mean vectors. 

The worst case time complexity to build the partition is 0 {N sK ).

The magnitude of t and the order in which S  is processed determines the form, shape, 

and number of the resulting clusters. Large values of t typically yield a small number of 

clusters, each with globular structures, while small values of t may yield a large number of 

clusters, many with elongated structures. For arbitrary pixel vector sets, no heuristic exists 

to select an appropriate value for t. Therefore a priori or observed knowledge about the 

pixel vectors must be incorporated into the nearest-neighbor algorithm, if possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 3. M U LTI-IM AG E CLUSTERING 27

So  =  {zo};
V o  =  zo; 
co =  1:
K  =  1;
while (more pixel vectors) 

read(z); 
d  = t;
for {k' =  0;fc/ <  K ;k / + -b) 

d ' =  distance(z, Hk>); 
if (d' <  d) 

d  =  d': 
fc =  A:'; 

if (d < t)
S k  =  S k  U {z};
Cfc +  +;
V k=  Vk + (z -/Xfc)/cfc 

else
=  {z};

Mat =  z: 
cat =  1;

+  + ;

Figure 3.3: Algorithm 3.2

3 .3 .4  C lu s te r in g  b y  M ix tu r e  D e c o m p o s it io n

A popular clustering method is based on the notion of mixture density [56] [17]. Each pixel 

vector is assumed to be drawn from one of K  known probability densities. Clustering is 

achieved by assigning each pixel vector to the appropriate (most likely) density.

3.3.4.1 D ecision  Functions

One goal of a  clustering method is to maximize the likelihood of making a  correct decision1. 

Most methods use decision functions to discriminate the likelihood th a t an observed sam-

‘This Section is sum m arized bom  [59] and [17]
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pie belongs to a  particular cluster. A clustering method can be represented by a  set of 

discriminant functions {70, 71, • ■ - , 7/vT-i}- A pixel vector z is assigned to cluster Sk if

7*(«) >  7i(«) Vi 6 1C. (3.9)

Let p(z|Sfc) denote the conditional probability of pixel vector z occuring, given th a t the

pixel vector is from cluster Sk, and let p(Sk) denote the a  priori probability th a t a  pixel

vector is from cluster Sk- The cluster-conditional densities p(z|£]t) are called the component 

densities, and the a priori probabilities p{Sk) are called the mixing parameters. Note that 

p(Sk) >  0 for k  G 1C, and

K - i
£  p(Sfc) =  1. (3.10)
*=0

In a parametric clustering method, the conditional probability density p (z |5 t) and the a 

priori probability p(Sjt) must be known.

The a  posteriori probability p(Sfc|z) is the probability tha t cluster Sk was the source of 

z. This probability can be computed from p(z\Sk) by Bayes rule

P(5*|«) =  P-(-Z- 5 ^ (5-  k  €  1C (3.11)p(z)

where

p(z) =  p(z|So)p(S0) + p (zI*Si )p (S i ) +  . . .  -t-p(z|Sf(T_i)p(Sfc'-L). (3.12)

The discriminant functions are

7*(z ) = p ($ t |z )  k e lC  (3.13)
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Thus z <E if

29

p(Sfc|«) >  p ($ |« )  Vi 6 1C (3.14)

Note that the denominator p(z) in Equation 3.11 is independent of k  and so whether or not 

it is calculated is largely a  m atter o f  convenience. That is, an equivalent decision is

p(z|Sfc)p(5fc) >  p(z|5i)p(5j) Vi € K  (3.15)

A lg o rith m  3.3 Given a  knowledge of the relative frequencies p(Sfc), and the functional 

form of the class conditionals p(z(Sfc), an algorithm to accomplish Maximum Likelihood 

Bayesian clustering is shown in Figure 3.4. The output of the algorithm 3.3 is a  partition 

V . The time complexity to build the partition is 0 (N sK ).

If a  priori information about the component densities is not available, then it is often 

assumed that the component densities are multivariate Normal with different mean vectors 

and, perhaps, different covariance matrices. In remote sensing applications, the a priori 

probabilities may be estimated from resources such as ground surveys, existing maps or 

historical data. For example, suppose the goal is to determine the proportion of crop types 

planted during a particular season from a  Landsat image (J  =  7). The a  priori probabilities 

could be set to the historical estimates of the percentage of each crop type in the area [86]. 

In most instances, however, reliable a  priori probabilities are difficult to estim ate and so 

are assumed to be equal for all classes. In Chapter 5, we will explain how to estim ate the 

component densities and mixing parameters if a priori information is not available.

There are several types of non-parametric techniques that can be used to estim ate the 

density functions:
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for (k =  l ; k  < K ; k  -+- +)
Sk =<d;

while (more pixel vectors) 
read(z);
Ar =  0;
for (kJ = Uk/ < K ;k ' + +)

if (p(z|5^)p(5ak) > p(z|5jt)p(S*)) 
k = k1:

S k = Sk U {z}:

Figure 3.4: Algorithm 3.3

•  Estimate of p(z|Sfc) can be made from sample patterns (i.e., training set). If these 

estimates are satisfactory they can be substituted for the true densities.

• The feature space can be transformed (for example, dimensionality reduction) making 

it possible to employ parametric methods to the transformed space.

3.3.4.2 E stim atin g th e C om ponent D ensities

Clusters can be viewed as regions in which pixel vectors are dense, separated by regions of 

low density. Correspondingly, clusters can be identified by searching for modes, i.e., regions 

of high density in TZ.J [37]. We will use the term “potential cluster center” to refer to a mode. 

One method to identify potential cluster centers is to construct a  histogram by partitioning 

the space S  into a  number of nonoverlapping regions. Regions of high frequency count are 

the potential cluster centers and the boundaries between clusters fall in the valleys of the 

histogram. Each pixel vector is then assigned to the nearest potential cluster center.

The success of using such an approach is dependent on a few factors.

1. The number of pixel vectors must be large in order for the histogram to be a good
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representation o f the density.

2. The method for identifying potential cluster centers and valleys must be applied over 

a  neighborhood in which the relative size of a  potential cluster is known.

For a  two-component multi-image, the multi-image density can be displayed as a  Z  x Z  

bi-variate histogram in which the clusters are (hopefully) obvious [70]. By inspecting this 

bivariate histogram, we can estimate the number of clusters, the relative frequency of each 

cluster, and the bi-variate density o f each cluster. Finding clusters can be difficult to handle 

in more than  a  few dimensions and the memory and run-time requirements of storing and 

searching such histograms can be enormous.

3 .3 .5  F u z z y  C lu s t e r in g

The clustering methods described thus far assign each pixel vector to exactly one cluster. 

In fuzzy clustering a  pixel vector belongs to a  cluster with a  “grade of membership” . In 

ordinary clustering methods, the membership grade is 1 if the pixel vector belongs to a  

particular cluster and 0 otherwise. In fuzzy clustering, a  pixel vector may belong to one 

cluster w ith a grade of 0.4 and another cluster with grade 0.6 [100].

Let /fc(z) be a  membership function tha t determines the degree to which a pixel vector 

z belongs to cluster k  such tha t

K - l  J V , - 1

0 <  /* (z) < 1 ,  £  f k (z) =  1, £  f k { Z i )  > 0 (3.16)
fc=0 1 = 0

which are similar to the a  posterior probabilities in maximum-likelihood clustering [19]. The 

larger the value of /it(z), the greater the confidence th a t z belongs to cluster k .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 3. M U LTI-IM AG E CLUSTERING 32

The most im portant part of any fuzzy clustering algorithm is the definition of the mem-

in general, reflects the context in which the problem is viewed. One such membership 

assignment function is [86]

The fuzzy cluster means are calculated from the pixel vectors weighted by their fuzzy 

membership values, and the membership values are calculated by the normalized distance 

to the cluster means. The parameter r  determines the fuzziness of the partitioning. The 

value r  =  2 results in a  hard clustering; values around r  =  3 are typically used.

Fuzzy clustering algorithms generate partitions tha t m in im iz e  induced fuzziness follow

ing the same steps as square-error clustering algorithms. The induced fuzziness takes its 

minimum value if we can obtain a  partition for which €  {0,1} or, equivalently, when the 

partition is nonfuzzy. Therefore a  criterion function needs to be defined to character

ize the induced fuzziness of a  partition. The minimum value of is 0, which represents 

maximum fuzziness, and the maximum value of is 1, which corresponds to a  nonfuzzy 

partition. The problem of fuzzy clustering is to find tha t partition which maximizes $ / .

To achieve a fuzzy partitioning, the function to be m in im iz e d  incorporates the member-

bership function. The assignment of the membership function is subjective in nature and,

(3.17)

where

(3.18)
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r  =  2;
$} = 0; 
repeat

=  $};
while (more pixel vectors) 

read(z);
for (k = 0 ;k <  K ;k+ + )  

compute /^(z); 
compute
for (k  =  0;fc <  K ;k+ + )  

compute
until ( '% ? / '  <  e):

/ /  0(iVs)

/ /  O (tf)
/ /  O (K ) Eqn 3.17 
/ /  0 (N sK )  Eqn 3.19
// c m
/ /  0(iVs) Eqn 3.18 

/ /  O(T)

ship values.

Figure 3.5: Algorithm 3.4

Ns - l  K - 1

*/(t) = E  E  /fc(z«)riiz« t > i
i= 0  k = 0

(3.19)

The basic steps of a  fuzzy clustering algorithm are given below

1. Given an initial set of K  cluster means.

2. Compute the membership grade function fk  for all A; € K .

3. Compute the criterion function $ / .

4. Reclassify pixel vectors to improve $ / .  If convergence is achieved, halt. Otherwise 

goto step 2.

A lg o rith m  3 .4  Given a training set S ,  an initial membership function f k , a  set of mean 

vectors, and a  value for e, a  pseudo-coded representation for the fuzzy clustering algorithm 

is shown in Figure 3.5. The output of a fuzzy clustering is a  partition of each multi-image
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pixel vector based on weights given by the membership values. However, the membership 

values are subjective in nature and interpretation is dependent on the application being 

used. The time complexity of the algorithm is 0 {T N sK 2)

In this chapter we presented the most common methods for multi-image clustering. In 

the next chapter we use these concepts as the foundation for the design of a vector quantizer 

to accomplish joint multi-image compression and classification.
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Chapter 4

Vector Quantization and Image 

Compression

VQ Ls a multi-image compression technique. Each codevector in the codebook is a  pixel 

vector. Each multi-image pixel vector is encoded by associating it w ith the index of the 

codevector that yields the best reproduction. The codevector indices are stored or trans- 

mited, depending on the application. When the image is decoded, the indices and the 

codebook are used to create the corresponding codevectors1.

4.1 B asic  V Q

Let C = {0,1, - - - , L  — 1} be a  set of integers used to label clusters or codevectors in 'R.J ; 

£ will denote an index value in £ . Let a  be a  VQ encoder and /3 a  VQ decoder. That 

is, a (z) — £ E  C represents the codevector label assigned to z E  'R*J and 0(£) =  6  TZJ

‘ in  C hapter 3, k  was used to  label a  cluster Sk- In this chapter, I  will be used to  label a  cluster R t for 
VQ. In C hapter 5, we will use bo th  I and k  to  label clusters for jo in t VQ compression and classification.

35
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Encoding, a

Decoding, (3

n J C

Figure 4.1: Encoder a  mapping TZJ —► C and decoder 0  mapping C -> 1ZJ .

represents the codevector for label i .  A  codebook C =  {yo,yi-Y2- - - • , y c - i }  is a  finite 

set of codevectors in R J . As illustrated in Figure 4.1, a  vector quantization system  is an 

operator vq : 1ZJ —*■ R J tha t maps or reproduces a  pixel vector z by a  codevector ye  such 

tha t ye = vq (z) where £ S C. In particular, the quantizer vq(z) =  0(a(z)) is completely 

described by the codebook C together with a  partition V  of pixel vectors tha t map to 

the codevectors. Re will denote the set of pixel vectors in cluster I. P  will denote the 

partition of S  into the set of clusters {i?o, - - - , }. That is, Re fl Ri =  0 for £ #  *

and f?o U f?i U . . .  U R l- i — S .

Figure 4.2 illustrates how the encoding and decoding process can be implemented. The 

input multi-image is subdivided into pixel vectors as shown in Figure 1.1. Each pixel vector 

z is encoded by matching it to a  codevector ye in the codebook C. This matching is based 

on minimizing the distortion d{z, ye) using a  minimum distortion criterion. The result of 

the encoding process is tha t pixel vector z is associated or assigned to label £. In the
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decoding process, a  table lookup is used to match each label assigned to a pixel vector 

with its associated codevector in the codebook. The multi-image is then reconstructed by 

replacing each pixel vector z in the original image with its associated codevector y*.

Generally N s L  (i.e., the cardinality of S  is large relative to the size of the codebook) 

in which case VQ is an irreversible operation. T hat is, as illustrated in Figure 4.1, for 

a  given quantizer ou tpu t y t  =  vq(z), the input vector z  cannot be determined uniquely. 

Hence, a vector quantizer introduces distortion, which any reasonable VQ design method 

must attem pt to minimize.

The design of a  vector quantizer involves the following elements [76]:

1. Training set selection. A representative set S  of the type of multi-image pixel vectors 

expected to be encoded is selected. A training set is typically a  subset of pixel vectors 

in 1ZJ . Recall from Chapter 3 that S  can be either a  training set (subset) or all the 

pixel vectors in the multi-image.

2. Codebook initialization. There are various algorithms for initializing a codebook. 

Codebook initialization determines the initial quantity and quality of codebook vec

tors. In Section 4.3.1 we will discuss the most common codebook initialization algo

rithms.

3. Clustering. A partitioning process takes a  multi-image and assigns each pixel vector 

to a  codevector in the codebook based on some minimum distortion criteria.

4. Search and storage. The storage for the encoder and decoder and computational 

requirements for the encoder become more complex as the size of the codebook in-
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Original
Multi-image

Pixel
Vector

Decoder /3Encoder a

IFind
m in im u m
d{?,y)

Tablelookup

Pixel
Vector

Reconstructed Multi-image

L -L  -  1

Figure 4.2: Image Coding using VQ

creases. In Section 4.3.1 we discuss optimized search techniques for codebook design 

tha t attem pt to reduce this search space.

4.2 O ptim ality  C onditions

The goal in optimal VQ design is to find a  codebook tha t minimizes the average distortion 

over the set S . The following conditions must be specified to obtain an optimal VQ design:

•  Given a  decoder (3, determine the necessary conditions for am optimal encoder a .
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•  Given an encoder a , determine the  necessary conditions for an optimal decoder 0.

These conditions were given in [50] for scalar quantizer design and generalized for vector 

quantizers in [26]. In  Sections 4.2.1 and 4.2.2 we will specify how these conditions are met 

in a  vector quantizer design. It was shown in [23] tha t an algorithm to solve a  simple 

version of the m in im u m  distortion problem could also solve the exact covering by three-sets 

problem [22], which is known to be NP-complete.2 Therefore, the optimality of a  given 

solution is rarely proven.

4 .2 .1  N e a r e s t  N e ig h b o r  C o n d it io n

First we consider the optimization of the encoder for a  fixed decoder. Given a  decoder

0. an optim al partition of S  can be constructed via an encoder a , by mapping each pixel 

vector z E  S  to the codevector y e that minimizes the distortion d(z,y*) between z and ye

l l  more than one codevector minimizes the distortion, a  tie-breaking rule such as choosing 

the codevector with the lowest index can be used.

A Voronoi3 or nearest-neighbor vector quantizer is illustrated in Figure 4.3. Each cell 

of the diagram represents a  cluster Re and each dot represents the codevector ye for tha t 

partition (i.e., centroid of the cell). The partition is constructed in such a  manner that 

z E  Re if d(z,ye) < d (z ,y i) Vi E  C. T hat is, for each z in S , assign z to the cluster Re if 

the distortion d(z, y*) is the mininum over all codevectors in the codebook. This type of

2G arey et al. prove chat exact covering is possible, if and  only if, there is an encoder/decoder pair 
achieving zero distortion.

3The Voronoi diagram  of a  collection of geometric objects is a  partition o f space into cells, each of which 
consists o f the points closer to one particular object th an  to  any others. Voronoi diagram s tend  to  be involved 
in situations where a  space should be partitioned into “spheres of influence” [5] [4].
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Figure 4.3: Voronoi Partition 

partition is referred to as a  M inimum Distortion Partition. Hence, the optimal encoder is

a(z) =  t. (4.1)

where £ E C is defined by

d(z,j9(£))<d(*,0(i)) (4.2)

4 .2 .2  C en tro id  C o n d it io n

Next we consider the optimization of the decoder (3 for a  fixed encoder a. Given a  cluster, 

its centroid is defined as the codevector that minimizes the distortion between any two 

points in the region. The centroid is obtained by averaging the codevectors over Re and so 

the optimal decoder /3(£) =  ye is

(4.3)
z €  Re
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where

Re = {z : «(*) =  £} t  €  £ . (4.4)

and |/2f| is the size of cluster Rg.

4.3 C odebook  G eneration

We now discuss the key elements in the construction of VQ codebooks:

1. Codebook initialization — which codevectors should be included in the codebook.

2. Codebook design — how is the codebook searched and the codevectors updated.

3. Efficient codebook design, search and storage — how should the codebook be con

structed to allow for efficient search and storage.

4 .3 .1  C o d eb o o k  In itia liza tio n

The two optimality conditions stated in Section 4.2 provide the basis for most VQ algorithms 

that continually (generally iteratively) improve the performance of the quantizer based on 

average distortion criteria. The main goal is to jointly improve the encoder and decoder.

If a vector quantizer is designed iteratively, as most are, its performance in terms of the 

minimal amount of distortion it produces, is dependent upon the set of initial codevectors 

chosen for the codebook. For a  poor initialization choice, it is possible tha t the iterative 

procedure will not converge to the optimal solution. The initialization process typically 

starts with a small codebook and iteratively grows the codebook to the required size; or
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the process starts with a  very large codebook and iteratively reduces the codebook to the 

required size. The most common methods for codebook initialization will be presented next.

4.3 .1 .1  R andom

In the Random method, L  vectors in the training set are drawn a t random and used as the 

initial codebook [29] [64].

4 .3 .1 .2  Pairw ise N earest N eighbor (P N N )

The PNN algorithm [18] starts with all of the Ns vectors in the training set as the initial 

codebook and merges the two closest pixel vectors into a  new vector based on a  nearest- 

neighbor distortion to achieve N s — 1 codevectors. Typically the merge is accomplished by 

averaging the two vectors. This process of pairwise merging is repeated until a  codebook 

of L codevectors is generated. The codevectors in this codebook represents the centroids of 

the clusters produced by merging.

4.3 .1 .3  Pruning

Like PNN, the pruning algorithm [64] begins with the entire training set of N s vectors as 

the intial codebook and ends with a  collection of L  vectors. Unlike PNN, the codebook 

vectors are actual training set vectors and are not a  result of merging vectors. In a typical 

pruning method, the first vector zq in the training set is placed in the codebook as the 

initial codevector yo- The distortion between the next training set vector z \  and the initial 

codevector yo is computed. If the distortion exceeds some threshold, then Z\ is added to 

the codebook as y L. If the distortion does not exceed the threshold then Z \  is discarded
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as a  codevector and the next training set vector Z2 is considered. In  each iteration, the 

distortion between the next training set vector zt- and the nearest-neighbor codevector y i  

is computed to determine if a  new codevector should be added. The process is continued 

in this manner until the codebook is fully initialized.

The major differences between a Nearest Neighbor (NN)4, PNN, and  Prim ing method 

can be summarized as follows. NN is an order dependent, (i.e., the next training set vector 

in some ordered list is chosen) merging (i.e., two vectors are combined to produce a new 

codevector) of training set vectors. PNN is an order independent (i.e., the  next training set 

vector is chosen based on a criterion, and therefore is not the next vector on the ordered 

list) merging. Pruning is an order dependent “non merging” (i.e., the  next training set 

vector that does not meet the criterion becomes the new codevector.

4 .3 .1 .4  P rodu ct C odes

A product code initialization algorithm designs each ./-dimensional codebook vector as a 

composite of ./'-dimensional codebook vectors, where J ' < J .  There are various methods 

to design product code codebooks. The design of product code vector quantizers will be 

discussed in more detail in Section 4.3.3.2.

4 .3 .1 .5  Sp litting

In [49] a method was proposed, similar to product codes, for codebook initialization that 

grows large codebooks from small ones. The method starts with a  one-level quantizer y  

(i.e., the centroid of the entire training set). Next y  is split into two vectors yo and y i, by

4 Refer to Section 3.3.3.
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perturbing y  a  small amount, and the 2-level quantizer is applied to the training set and 

new yo and y i are generated, yo and y i are then split into the vectors yoo>yoi>yio»yu 

again by the addition of a  perturbation factor, and a 4-level quantizer is applied to the 

training set. The splitting method is continued in this same manner until L  codevectors are 

generated. This method assumes tha t L  is a  power of two. If L  is not a  power of two, then in 

the last step, instead of generating two new codevectors from each of the codevectors of the 

quantizer designed previously, we can perturb as many codevectors as necessary to obtain 

the desired number of codevectors [84]. For example, if we desire an 11-level quantizer, we 

would generate a one-level quantizer first, then a two-level, then a four-level, and then an 

eight-level quantizer. At this point, we would perturb only three of the eight codevectors 

to get the 11 codevectors of the 11-level quantizer. The three codevectors should be those 

with the largest number of associated training set vectors, or the largest distortion.

4 .3 .2  C o d e b o o k  D e s ig n

The most popular approach to designing vector quantizers is based on a  clustering procedure 

similar to the Squared-Error or K-means algorithm described in Section 3.3.2. Given a 

training set, and an initial set of k  cluster mean vectors, assign each pixel vector of the 

training set to the closest cluster mean vector by applying a  squared-error criterion. After 

a  partition of the training set is complete, the k  mean vectors are updated by computing 

the centroid of the training set vectors assigned to it. S tuart Lloyd used a similar approach 

in Lloyd’s Method I (LMI) [50] to generate pdf optimized scalar quantizers, assuming tha t 

the distributions are known a priori.

The Generalized Lloyd Algorithm (GLA) [49] is an iterative method based on LM-I
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for scalar quantization as described in [50] [51] [55] [98]. The Linde-Buzo-Gray Algorithm 

(LBG) [49] extends the LMI algorithm to the case of vector quantization. In  general, the 

LBG algorithm is difficult to implement because it requires the integration of probability 

density functions. The GLA was developed as a  generalization of the LBG algorithm to the 

case where a  training set is available.

1. Given: a  value for L , an initial set of L  codebook vectors {yo, y i , . . .  , y t - i } ,  a  training 

set,and a value for e >  0.

2. Encode the training set by mapping each vector in the training set to its nearest

equal to the threshold, i.e.,

then convergence has been achieved and the algorithm halts. Otherwise continue to

codevector.

z -)•/?/ if d {z ,y i)  <  d(z,y,-) Vi €  C (4.5)

3. Compute the average distortion D l resulting from the encoding process. If the frac

tional change in the average distortion from the previous iteration D° is less than or

step 4.

4. Update tbe codebook using the centroid condition.

(4.7)

Goto step 2.
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The GLA method guarantees only a  locally optimal codebook, and generally numerous 

local optim a will exist. One method tha t has been applied to help guide convergence to a  

optimal codebook is Stochastic Relaxation (SR) [101]. SR is characterized by an iterative 

search, guided by the minimization of a  distortion measure, and the perturbation of the 

codebook in a  random fashion. At each iteration, the perturbed codebook is accepted or 

rejected probabilistically based on the change in value o f the  distortion measure resulting 

from the perturbation.

Simulated Annealing (S A) is a family of SR techniques tha t can be used to find a  globally 

optim al codebook at the expense of computational complexity [93]. In [101] a  particular 

modification to the GLA algorithm was proposed using SA. The main idea of the algorithm 

is to add a zero-mean noise factor to each codevector following the centroid computations 

in each iteration. The noise variance (in the SA literature called temperature) is reduced 

monotonically according to a  cooling schedule as the algorithm proceeds.

In Deterministic Annealing (DA), instead of applying random perturbations to the 

system state as in SA, the statistical description of the randomness is added into the cost 

function. The algorithm incorporates a  measure of fuzzy clustering where the membership 

probability is modeled by a parameterized Gibbs distribution [79] [80]. The procedure is 

started  with high fuzziness (i.e., equal membership in all clusters) a t high temperatures, 

and converges to a  nonfiizzy clustering algorithm at low temperatures.

4 .3 .3  S tr u c tu r e d  C o d e b o o k  D e s ig n  a n d  S ea rch  M e th o d s

Each codevector in the codebook is a  ./-dimensional vector of scalar (typically integer) 

values where each scalar value is normally represented in R  bits. This means th a t (R J)  bits
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are required to represent each codevector. W ith  R J  bits we can represent L  =  2 ^  different 

codevectors w ith a  search and storage complexity of a  full search method proportional to 

J L  =  J 2 r j  . Neither the storage or search requirements of such a  design are computationally 

desirable. There are several approaches to solving these problems. Each approach requires 

the introduction of some structure in the codebook and /o r the quantization process to 

constrain the search space. While adding structure solves some of these problems, it is 

often a tta ined  a t the expense of an increase in average distortion [76] [84] [24]. Codebook 

design methods can be divided into three m ajor categories: Variable-rate Codes, Product 

Codes, and M ulti-stage/M ulti-state codes. An overview of these methods will be provided 

next.

4 .3 .3 .1 V a ria b le - ra te  C odes

Given a  set of N s vectors, a full codebook search requires a  0 (N sL) computational cost. To 

reduce the codebook search complexity a  tree structure can be imposed on the quantizer 

design [11] [10] [30] [34]. In Tree-structured VQ (TSVQ) each node has n& branches5 and a 

total of p =  logn6 L levels in the tree. The use of TSVQ can reduce the computational cost 

of a search for the training set to 0 (N srib log„fc L), since for each of the N s pixel vectors, n<, 

branches are compared at each of the p  levels of the tree.

The TSVQ encoder processes each pixel vector by comparing a right or left branch 

testnode a t each level. The encoder produces binary symbols that represent the sequence 

of right or left branch decisions. These symbols can be concatenated to form a  vector 

index th a t represents the path through the tree. This index can then be transm itted to

5 The num ber of branches is user specified o r based on the application.
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the decoder. Although we have reduced the computational complexity of the encoder, we 

ultimately trade computational cost for increase in storage, as well as a  possible increase 

in distortion. For example, it may be possible that a  pixel vector z i s  closer to codevector 

y j  than ye in a  nearest-neighbor sense. Because of the series of choices (in a  greedy sense) 

that led to ye, the path  tha t leads to the minimal distortion codevector y i s  not taken. 

Furthermore, because test codevectors are required a t each node, the complexity increases 

from N SL  to N snb(L — 1 )/(«6 — 1). To increase the performance of the tree-structure (at the 

expense of increase in computational complexity) the number of branches can be increased 

to 4 in the case of Quad-tree [83] or to 6 for Oct-tree [27] structures.

A comparison of the number of computations and the storage required for several dif

ferent tree structures is given in Table 4.1 [76].

Methods
Branches 
per node

Number 
of nodes Computations Storage

Bi-tree 2 6 0(12J) 126J
Quad-tree 4 3 0(12J) 84J
Oct-tree 8 2 0(16J) 72J
Full search 64 1 0(64J) 64J

Table 4.1: Comparison of VQ tree structures for L ~  64

VQ tree structures can be designed with a uniform number of branches (i.e., fixed-rate 

codes) or nonuniform number of branches (i.e., variable-rate codes) [10] [78] at each node. 

One structure for generating variable rate codes is a  pruned tree [12]. In pruned trees, 

a  large initial tree is pruned by removing codevectors, so tha t the final tree achieves a 

given average length with minimum average distortion. The basic idea is to remove those 

codevectors tha t do not contribute significantly to increasing the distortion.
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W ith a design similar to the tree-structured methods mentioned previously, J -d  trees (J -  

dimensional) were developed to provide a  data  structure which allows for improved search 

time complexity of multidimensional “closest” pixel vector matching 0(log  K )  [8] [21] [18]. 

J -d  trees consist of a  set of interconnected nodes and a  set of term inal nodes, or “buckets” , 

located at the lowest level of the tree. The nodes serve to organize the data, and the buckets 

hold the data. J -d  trees partition the training set a t each node by performing a  threshold 

test on a single coordinate (dimension) of each pixel vector. The dimension being tested is 

the same for all pixel vectors being partitioned a t a  given node, but can be different a t each 

node of the J -d  tree. One can consider a  J -d  tree to be a J-dimensional partitioning with 

each node corresponding to a hyper-plane parallel to all but one cooordinate axis.

4.3.3.2 P rod u ct C odes

Another method to improve the storage and computational complexity of a  vector quantizer 

while providing a robust and more optimal design is the Product VQ [82]. In product VQ 

a codebook is formed as the product or combination of several smaller codebooks. Each 

codebook is designed to specifically quantize certain features such as shape, magnitude or 

orientation, tha t are obtained from the input vector. During the encoding process, an index 

is selected from each of the different feature codebooks and combined to form a  feature 

vector index which is transm itted or stored. In the decoding process the feature index is 

separated into the individual indices for each feature codebook. The output vector is a 

combination of the codevectors for each feature index used. Each feature vector can have a 

different vector dimension. Because of this, each feature vector can be coded more efficiently 

and a t a  different bit rate than the original input vector. There are several categories of
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product code structures: mean/residual [6], interpolative/residual [31], gain-shape [11] [47], 

and mean-gain-shape [62] [47] [64].

4 .3 .3 .3  M u lti-stage  and M u lti-sta te  C odes

Multistage VQ is a  method in which a  pixel vector is quantized in several stages [41]. There 

are three general categories of multi-stage/multi-state codes: Multi-stage codes, Recursive 

Codes, and Lattice Codes. A pixel vector is represented as the sum of two or more vectors, 

where each successive term  of the sum can be considered as a refinement or successive 

approximation improvement of the previous terms. Finite-state (FSVQ) or Recursive Codes 

[20] [90] [2] are modeled as a  vector quantization system with memory. T hat is, these 

codes can be modeled by a  finite-state machine where each state represents a  separate VQ 

codebook. A lattice is a  regular arrangement of output points in a space. When a  subset 

of lattice points is used as the output points of a  vector quantizer, the  quantizer is known 

as a Lattice VQ [14]. Because any lattice point can be regenerated if the basis set of points 

is known, a  quantizer based on this structure decreases the storage requirement for the 

codebook.

4.4  Im age F id e lity  M etrics

VQ introduces distortion and some quantity of information loss th a t cannot be recov

ered [25]. The techniques used should ensure that the data  maintain high visual fidelity and 

tha t any subsequent analysis using the data should yield accurate results. In this Section, 

we describe several metrics used to specifically measure the differences between the original 

and the reproduced multi-image.
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4 .4 .1  M ea n -S q u a red  E rror

A few distortion measures exist that quantify the performance the quantizer over the entire 

input image. If we define D  as the expected distortion over the entire image then

D = J (z — vq(z))2p(x)dz (4.8)

defines the mean-squared error difference (MSE) where p(z) is the probability distribution 

function over the image distribution. If S  is used instead of a pdf, then the average distortion 

is often w ritten as

. at, - i
D  =  —  5 2  ll*i -«?(*») II2- (4-9)

5 i=0

4 .4 .2  S ig n a l-to -N o ise  R a tio

The signal-to-noise and peak signal-to-noise ratios are measured for each component of 

the multi-image. The signal-to-noise ratio (SNR) measures the size of the distortion error 

relative to the multi-image component. It is computed as a  ratio of the squared mean of 

the component and the MSE described previously. The SNR is measured on a logarithmic 

scale and the units of measurement are decibels.

10.og lo «  (« o ,

The peak-signal-to-noise ratio (PSNR) measures the size of the distortion error relative to 

the peak component pixel vector. It is computed as a  ratio of the squared value of the peak 

component pixel vector and the MSE.

1 0 1 o g ,„ 5 2 #  (4.11)
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4 .4 .3  P e r c e p tu a l M easu res

Another method for measuring the fidelity of each component of the reproduced multi

image is by using perceptual measures. These measures take advantage of how humans 

perceive distortion. Typically MSE and SNR metrics are not enough to perform a  qualitative 

assessment of image quality [63]. If a picture is designed for constant visual display, then 

subjective metrics are definitely required [54].However, subjective metrics yield results that 

may depend on the users participating in the tests and the test conditions itself. Subjective 

tests results can be difficult to quantify and use in the redesign of a  coding scheme. A number 

of objective quality measures have been developed over the last 20 years to include MSE 

and PSNR, and most recently methods based on the perceptual properties of human vision 

[67], Several recent methods propose measurements that take into account known image 

encoding impairments, such as random errors, and emphasize the perceptual importance of 

structured and localized errors that are hard to quantify using MSE and PSNR [58]. The 

accuracy of objective metrics is hard to assess unless there is quantitative evidence that 

they correlate with subjective measurements. Furthermore, it is difficult to find a  single 

metric that could be useful across many different applications.
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Chapter 5

VQ and Classification

In remote sensing applications, image classification is used to produce theme maps that 

can range from soil or vegetation descriptions to atmospheric or oceanic descriptions. One 

significant result of the classification process is the reduction of hundreds of megabytes of 

multi-image data  to a  single-component image consisting of the labels th a t represent each 

class. In other words, image classification can be considered the ultim ate form of image 

compression.

Extending the previously used notation, we define the following:

•  A classifier 7 : 'R.J —v AC assigns a  classification label 7 (2) =  k G fC to each pixel vector

z  e n J.

•  A VQ encoder a  : TZJ —> C assigns a  codevector label a(z) =  £ 6  £  to each pixel 

vector z.

•  A VQ classifier 5 : £  —► AC assigns a  classification label 5(2.) =  6  AC to each codevector

label a(z) =  £ €  C.

53
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5.1 Param etric C lassification

The design of parametric classifiers is based on a  loss function T, which quantifies the cost 

for correct and incorrect decisions [17] [59]. Suppose a  pixel vector z is assigned to a  label 

k  (i.e., is assigned to cluster S*). If z actually belongs to cluster S k, a  loss of r (S k \S k ) will 

be incurred for the incorrect assignment to cluster Sk- Given the a  posteriori probability 

p(5jt|z) (See Equation 3.11), the overall conditional risk

K - 1

B (z\k)  =  £  r (S k \Sk)p(Sk \») (5-1)
h=0

is the loss associated with observing z and misclassifying it.

The overall risk B (7 ) is the expected loss associated with a  classifier 7 . Since B (z\k)  is 

the conditional risk associated with assigning z to cluster S k, the expected risk is given by

A T , - 1

E[B(j)] = p (z i)£ (zi|7 (zi))
1=0

• V . - l  K - 1

=  Y i  p fa )  [ 5 Z =  ^)-S(zilfc)J
:= 0  k=0

N , - l  AT—I K —l

= Yi p  ̂ [ H  = k)Yi
1=0 *=0 h=0

where p(zj) is the probability of pixel vector zi occuring, and

* * « > - * > - { J  otherwise^

If k  is chosen so tha t B (z|7 (z)) is sis small as possible for every z, tha t is if

K - 1
7 (z) =  arg min ^  r (S k\Sh)p(Sk \z) (5.2)

h =0
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then the overall risk

jv K - 1

E[B(7)1 =  £ > (« ,- )  [nun  £  HSfclS/OptSfclz,-)] (5.3)
t=0 h=0

will be minimized.

Consider a symmetric loss function defined for all A: €  /C, h G 1C as

This loss function assigns no loss to a  correct decision and a  unit loss to all incorrect

decisions. Thus, all incorrect decisions are equally costly. The corresponding conditional

average loss is

B (z\k) =  £ > ( S / i l z ) =  1 -p (S * |z ) . (5-4)
ft#*

In this case, to minimize the conditional average loss, the class Sk tha t maximixes the a 

posteriori probability p(Sjt|z) should be selected.

5.2 Param etric VQ C lassification

Given an encoder a  and decoder (3, a classifier 5 assigns a  label <y(e*(z)) =  k  to each encoder 

output a(z) =  L  Recalling that the encoder has L  possible outputs, we can reformulate 

the Bayes risk from Equation 5.1 in terms of each output a(z) =  £. The loss for assigning 

encoder output £ to cluster k  is

K- 1

f?((a(z) =  £)|fc) =  £  r(S k \S h)p(Sh\a(z) = £) (5.5)
h=0
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where the a  posteriori probability p(Sft[a(z) =  £) is the probability tha t Sh was the source 

of a (z) = L  This can be computed from p{Sh |z) as

r e  i t \ a\ ( k. a\p(Sh\a(z) =  i) = =  ^  - ------  - -  (5.6)
L^k Z^x:a(x)=tP(Sklz )

where z : a(z) =  I  denotes summation over all pixel vector z tha t are assigned to the 

codevector y i by the encoder a.

The overall risk is [64]

L-l
B ( a , S )  =  £ > ( « (  z )= * )B (a (z )= £ |* (a (z )) )

1=0
L-1 A'-l K-1

=  X > ( a ( z )  =  i) [ £  m v  =  *) £  n S k \S h)p(SH\a{z) = i)\
1=0 k=0 h=0

If k  is chosen so that B(a(z)\S(a(z))) is as small as possible for every ce(z), tha t is if

K-1
6(i) = arg nun £  r(Sk \Sh)p(Sh\a (z) = i)  (5.7)

h=0

and i  is chosen so that the distortion produced by the a(z)  is as small as possible for every 

z, tha t is if

d{z , /?(£)) <  d(z, 0(i)) Vi €  £

then the overall risk

L -i K-1

B (a ,S ) > £ > ( a ( z )  =  i)  [nun £  T{Sk\Sh)p{Sh\a(z) =  i)] (5.8)
e=o h=o
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will be minimized.

Rewriting the Bayes risk in terms of the pdf of z, the overall risk is

iV5 - l  K - 1 K - 1

B (a ,S ) = p(«i) £  *(*(«(«*•)) = fc) E  r(Sfc|Sfc)p(Sft|zf)
i - 0  fc=0 h = 0

i V , - l  £ . - 1  K - 1 i C - l

= E  p(z«) E  * ( " ( * > = E  = fc) E  nsk\sM sh\zi)
t= 0  1=0 fc=0 h= 0

;V5 —t  A T -1  A - l

> p(zi) nun [ ^2 E  r (5 fc|5 /l)p(S/l|zi )j
1=0 t = 0  h = 0

The extra complexity to provide classification only adds a slight increase to the VQ pro

cess. The obvious benefit is that the compression and classification information is embedded 

within the codevector itself.

5.3 VQ M ethods for C lassification  and C om pression

There is an abundance of literature on the design of classification and compression systems. 

The most common design is a cascaded approach in which the compression process is applied 

to the data, then a classifier is applied to the compression output (or visa versa). Although 

[64] [65] [66] report work that shows the benefits of a combined approach, there does not 

appear to be any other significant work that attempts to achieve optimal joint classification 

and compression. In Section 5.2 we discussed how to design a Bayes classifier based on a 

VQ design. It is important to understand that this approach is very beneficial compared to 

a cascaded approach because the compression codebook is designed with the classification 

in mind. The codevector labels assigned to an input pixel vector contain information for
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reconstruction and classification simultaneously. In [32] a  cluster/compression method was 

used th a t had an early flavor of a  joint classification and compression design. A clustering 

method similar to the LBG algorithm was applied to design the VQ codebook. Once the 

codebook was designed, a  maximum likelihood classifier was used on each codevector to 

assign a  class label to it. During the compression process, these labels were also available 

to perform a simultaneous classification. Even though the actual encoding involved a  joint 

process, no attem pt was made to jointly optimize both processes.

The most common VQ methods for joint classification and compression can be summa

rized as follows:

1. Design the quantizer (a, (3) to minimize MSE and then design the classifier S to min

imize the error of the quantized data: see Hilbert [32], and McLean [57]. This design 

has the disadvantage that the first step uses one optimality criterion, minimizing MSE, 

while the second uses another criterion (possibly Bayes Risk), minimizing classification 

error.

2. Design the classifier 7 and then design a seperate quantizer (a t ,  (3k) for each class: 

see Ram am urthi [77]. In this method the codebook is tailored to the distribution of 

each class, but cannot be used for any data  outside the respective classes.

3. Design the quantizer (a, (3) with squared-error encoder explicitly to operate as a  classi

fier (i.e., 7 (z) =  a (z) =  k). This design uses a  non-parametric classifier with a  training 

set to estim ate the probabilities: see Devijer and Kittler[dev80], Xie et al. [99], Popat 

and Picard [75] (Clustered VQ), Kohonen (Learning VQ) [43]. These methods have 

the commonality of designing the codebook to implicitly reduce classification error
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without explicitly considering compression.

4. Design the quantizer (a , 0) as a  variable rate code with a  progressive structure. This 

design uses a TSVQ tree that incorporates successive splitting to minimize classifica

tion error: see Breiman et al [10], Gersho and Gray [24], Riskin [78], and Oehler [64]. 

As an alternative to a  full-search VQ design, this method can provide a substantial 

reduction in time complexity to search the codebook.

5. Explicitly incorporate squared-error D (a, 0) and classification error B(ct, S) terms into 

one joint metric (i.e., J \  =  D (a, 0) + \B{oc, 5)). In this design the classifier S operates 

on the encoder output I: see Oehler [64], Oehler and Gray [65] [66], and Perlm utter 

et al. [71] (Weighted Bayes Risk (WBRVQ)).

The first 4 methods select the best codevector match using a Euclidean metric to classify 

the input vectors. The WBRVQ method can use a  Euclidean distance metric to select the 

best codevector match once the codebook is designed, but a modified distortion method that 

incorporates both a  MSE and Bayes Risk term in a  Lagrangian form is used for codebook 

design. If a good estimate of the a  posterior class probabilities are provided, it is possible 

for the WBRVQ method to provide superior results over the first 4 methods [66].

In the next four sections we summarize a representative technique selected from each of 

the joint VQ classification and compression methods presented above.

5 .3 .1  C la ssif ied  V Q

In [77] a Classified VQ was designed so tha t the images could be separated into classes 

based on certain spatial properties. For instance, an image could be composed of several
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uniform regions tha t represent different land features; edge detection could be performed 

on the image which would then be classified into edges and non-edges. A codebook is then 

designed for each class.

Once a  pixel vector z is classified into a particular class k, the codebook designed for 

that class can be used to quantize the vector. The encoder transm its both the index for the 

codevector match and the index for the classification match. Given the size of a  particular 

class, quantizers of various sizes and dimensions can be designed to yield a  more efficient 

encoding for tha t class.

5 .3 .2  L ea rn in g  V Q

Learning VQ (LVQ) [43] is a  classification method based on VQ tha t is specifically designed 

to define class regions in . Similar to the case of a  nearest-neighbor classifier, the ability 

to compress is not explicitly considered in LVQ. T he general goal is to imitate a Bayes 

classifier but w ith less complexity; i.e., to approximate the Bayesian boundaries with good 

accuracy. The class space is initialized with a  subset of codebook vectors and then a  GLA 

type of approach is used on the training set to assign a  pixel vector z to a  codevector in a 

nearest-neighbor sense. A training set vector is assumed to belong to the same class as the 

closest codevector. Given this initialization, several methods were designed by Kohonen 

to improve the classification. These LVQ algorithms are based on a supervised learning 

premise, that is, a  reward-punishment scheme. The details of these algorithms will be 

presented next.
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5.3.2.1 LVQ1

The following equations define the LVQ1 process for iteratively updating the minimum 

distance codevector y f o r  a  training set vector z for a given time (i.e., iteration).

y[t+ l  ̂ =  y* +  p(t)[zl — y|] if z and y* belong to the same class,

y[t+l) =  y j — p(t)[zl — yj] if z and y i  belong to the different classes.

Here, p(t) is the learning ra te  with 0 <  p(t) < 1. It decreases monotonically w ith each

iteration step.

5 .3.2.2 O p tim iz e d  L e a rn in g  R a te  LV Q l

The LVQl algorithm can be modified so that an individual learning-rate factor Pi(t) is 

assigned to each codevector yi-

yj*+ l  ̂ =  y j 4- p i(t)\zL — yj] if z and y i belong to the same class,

y[*+ l* =  yf — pi{t)\zl — yf] if z and y, belong to different classes.

5 .3 .2 .3  T h e  LVQ2

The LVQ2 algorithm updates the two codevectors y t- and y j  tha t are the first and second 

nearest neighbors to training set vector z.

y p + l  ̂ =  y | — p{t)[zl — y ‘] if z and y i  belong to different classes,

y(t+i) _  ^  +  p(t)[zl — yj] if z and yy belong to the same class.
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The main idea is to move the decision region for the nearest neighbor test closer to the 

correct class and further from the incorrect class. Furthermore, z must fall within a  zone 

of values called a  ’window’, which is defined around the midplane of y* and y j.  Assuming 

that di and dj are the Euclidean distances o f z from y i and y j ,  then z is defined to fall in 

a window of relative width w  if

. .di d j. 1 — wmint — , ~r) > s, where s =   ------
dj d i '  1 4“ U7

Experiments show that a  relative window width w  of 0.2 -  0.3 provides good results.

5 .3.2.4 T h e  LVQ3

While LVQ2 is based on the idea of moving the class decision borders toward the Bayesian 

limit, no attention was given to assure that the codevectors continued to approximate the 

class distributions. The LVQ3 algorithm is similar to the LVQ2 with the following learning 

rule added

If yi and yj  belong to the same class then the update rule is

y * +I1 =  y t  +  < p ( ‘ ) [ * ‘ - y  H

where experimentally, suitable values of e ranged from 0.1 to 0.5. The optimal values of e

depend on the size of the window as defined for the LVQ2 method, and seem to be smaller

in value for narrower windows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 5. VQ AN D  CLASSIFICATION 63

5 .3 .3  C la ssified  T ree -S tru c tu red  V Q

This method is based on a TSVQ design in which the node splitting criterion incorporates 

classification information [64]. There have been various methods reported in the literature 

tha t incorporate classification information into a tree-structured design. For instance, see

The goal in [64] is to force the tree to grow more rapidly in the areas where classification 

was most difficult. Three different splitting criteria were investigated in tha t study

That is, the node that maximizes the magnitude slope \SD/SR\ to obtain the largest 

decrease in distortion D  per bit rate R  is chosen to split.

2. Split the node that has the greatest fraction of misclassified training vectors. This 

corresponds to measuring the Hamming distance between the chosen label Sk and the 

true label S/,, i.e., if Sk =  Sh then dff(Sk,Sh) = 0 otherwise 1. Let Tt be the label 

for node t, and |Tf| be the number of vectors assigned to node t. The node t w ith the 

highest distortion computed as

[10] for a  method which splits on individual coordinates of a  the input pixel vector.

1. Ignore the classification information and split the node using the method in [78].

is split. Thus, the tree is grown in a  manner that reduces classification error.

3. Split the node that has the greatest number of misclassified training vectors or the

partial Hamming distance

Dt = ^ 2  df{(Sk,Sh)
x e r t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 5. VQ AND  CLASSIFIC ATIO N  64

Note tha t Grom the normalization factor 1/|T£|, methods 2 and 3 are identical.

After the application of a  criterion, the chosen node t is split into a  branch w ith t and  

an offset or perturbation value applied to t. After a  node t has been split, then a  2-level 

quantizer is run on the set of vectors St tha t map to t. W ith this method, it is guaranteed 

tha t a  split will not increase either the average distortion or the classification error. If the 

class labels of the child node changes from the parent, the classification error decreases; 

otherwise, the classification error remains the same.

5 .3 .4  W e ig h te d  B a y es  R isk  V Q

Oehler et al. [64] [65] [66] present a  second method for designing VQ for simultaneous com

pression and classification. Unlike in the previous method where node splitting criteria are 

altered to incorporate classification information, in this method the distortion measure is 

altered to incorporate both a  compression and classification term. This method is term ed 

the Weighted Bayes Risk VQ (WBRVQ) method. The WBRVQ method is designed for 

simultaneous compression and classification of single-component images. In this disserta

tion, we are extending the method to perform simultaneous compression and classification 

of multi-images. Therefore, the presentation of the WBRVQ method given in this chapter 

is based on the original work of Oehler et al., but the mathematical notation given, is based 

on a design using a multi-image.

In order to simultaneously consider the compression and classification of a  system, a  

Lagrangian distortion expression th a t contains the VQ MMSE and the Bayes Risk Classi
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fication error is given as:

J x (a ,0 ,6 )  =  D (a ,0 )  +  A B (a,8). (5.9)

The modified distortion measure is used to determine the encoder partitioning by mapping 

each input vector z to the codevector I  producing the minumum distortion. This measure 

allows for trade-offs between compression and classification priorities: when A — 0 we have 

an MMSE VQ, when A —» oc we have a  Bayes Risk classifier based on a  VQ structure. The 

modified distortion measure J \  is given as:

J x =  D (a ,0 )+ A B (a ,8 )
i V , - l  . V , - t  K - 1  K - 1

= E  p(zi )d{zi ,(3(a (zi ) ) + \ [  Y ,  p(zi) 53  <£(<*(«(*»)) = k ) 53  n S k l S M S x l * ) ]
1=0 t=0 fc=0 h=0

A T , - I  L — L

=  13
1=0 e=o

iVt - 1  i . - t  AT—I A ' - l

+a[ 53 p(Zi) 53 <f>(a{zi) = i) 53 *(*(*) =  A:) 53 r(Sfc|Sfc)p(Sfc|zi)]
1=0 1=0 k = 0 A =0

, V , _ L  L - 1  A T - l  AT — 1

=  E  p(zi) 5 3  *(«(■*) =  + a [  5 3 ^ ( o  =fc) 5 3  rtsfc is /jposh iz i)]}
i= 0  #= 0  fc=0 A =0

iVa - L  A T -l A"—I

> 53 p(zi) m in{d(zt ,^ (Q ) +  a [  53 <f>W) = k ) 53 r(5* |5 fc)p(5&|zf-)] }
t=0 k=0 h=0

Based on an iterative attem pt to minimize JTx(at. 0 ,8 ), Oehler defines three properties tha t 

dictate the steps of the WBRVQ method. These properties result in the  joint design of an 

optimal encoder a , decoder 0  and classifier 5.

•  Property 1. Given an encoder a , the Lloyd decoder 0  minimizes J7a, regardless of the 

classifier 8. The distortion is minimized when the codevectors are chosen using the
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centroid condition

=  ( , 10,

where

R e =  (z : a(z) =  t }  I  €  C.

• Property 2. Given an encoder a, the Bayes classifier S minimizes the overall Bayes 

risk. The distortion is minimized when the Bayes risk associated with the codevector 

labels is minimized. The minimization depends only on the partition represented by 

a  and not the codevector values. If a(z) =  t  then

K-1

£(£) =  arg min £  T{Sk\Sh)p{Sh\e).
h=0

Property 1 and 2 imply that the design o f the decoder and classifier are independent.

• Property 3. For a  given decoder 0  and classifier 5, the optimal encoder a  is chosen to 

minimize J \  given by

K - 1  PC— I

a(z) =  nun {d(z, /?(£)) +  A [ £  = k ) J ^  r(5*|5&)p(Sft|z)J } (5.11)
k=0 h=0

The WBRVQ method uses the combined Lagrangian distortion measiure to develop a 

descent algorithm that iteratively modifies the encoder, decoder, and classifier. We start 

with an initial coder defined as C (a 0,/3°, <5°) and iteratively apply an  improvement trans

formation

C{cti+\ p i+\ 5 i+l)= T { C (a i , (? ,? ) )
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The transformation T  is implemented by applying properties 1, 2, and 3 to the coder C.

A lg o rith m  5.1 Given the number of clusters K , the number of codebook vectors L, an 

initial codebook C, a  training set S , the probability density function p(z), the apriori prob

abilities p(5*), the class conditional densities p(Sfc|z), a  loss function T, and a  Lagrangian 

parameter A, the basic steps of the WBRVQ method are given below

1. Compute the posterior probabilities for all h  €  AC, £ €  £ .

5Iz:a(z)=/P(^fclz )p(SA|a(z) =  i) =
IT* H z:q(z)= €P (^Iz )

2. Partition the codebook C into regions {So, S i, • -• , S /c -l } by classifying each encoder 

output £ using the Bayes Risk Classifier S.

K - 1

S{£) =  arg nun r ( S fc|Sft)p(S/,|a(z) =  £) (Property 2)
h = 0

3. Partition the set S  into regions {f?o, R i, - •• ,R ^ ~ i} by assigning each pixel vector z 

to the codevector £ producing the minumum distortion.

K - l  K - l
a(z) =  arg nnn{d(z,/?(£)) +  ^  <f>(S{£) = k) ^  IXSfclS/JpCSftlz)] } (Property 3)

fc=o h=o

4. Compute the Lagrangian distortion expression J \  tha t contains the VQ MMSE and 

the Bayes Risk Classification error over the set S .

N t - 1  K - l  K - l
Jx  =  j ^ p ( z t-)irun{d(zil^ ) )  +  A [ 5 ; 0 ( J ( O = f c ) 5 ^ r ( 5 fc|5fc)p(S'ft|zl-)]}

i—0 k=0 h=0
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5. Update the codevectors using the centroid condition.

P W  =  TFT Y  * (Property 1)

6. If convergence of J \  is achieved, halt. Otherwise goto step 2.

A simple convergence criteria is to halt the iteration if

W - J ? l  . .
J l  '

where is the distortion computed for the current iteration and is the computed 

distortion for the previous iteration. The output of the algorithm is (1) a  partition of S  

into the set {R q, R i ,- ■ ■ ,R l- i h  (2) an updated codebook set C, and (3) a  partition of C 

into the set {So,5i,--*
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Chapter 6

Image Preprocessing

Internal and external factors play a role in the type of image degradations tha t result 

from the imaging process. Internal errors are created by the sensor itself, and external errors 

are created by platform perturbations, atmospheric modulations, and scene characteristics. 

Most researhers would agree tha t geometric and radiometric errors are the most common 

cause of image degradations in remote sensed imagery [38]. Image restoration involves 

the correction of distortion, degradation, and noise introduced during the imaging process. 

Image restoration produces a  corrected image tha t is as close as possible, both geometrically 

and radiometrically, to the radiant energy characteristics of the original scene. T hat is, the 

restored image g in Figure 6.1, will look as close as possible to the input scene s. Although, 

generally termed an image enhancement technique, the Multi-Scale Retinex (MSR) has 

proven to be an  effective tool in correcting image degradations due to the PSF of the 

image acquition device, illumination variations, and atmosphere (i.e., absorption of radiant 

energy). In this chapter we discuss the theory and implementation of the Retinex image

69
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Figure 6*1: System Model 

enhancement method based on the work in [40], [39], [92]1.

6.1 R etin ex  T h eory  o f  H um an vision

The term Retinex was coined by Edwin Land [44] for his model of lightness and color 

perception in human vision, combining the retina, of the eye and the cerebral cortex of the 

brain. Land developed the concept of a  center/surround operation [45], which is related 

to the neurophysiological functions of individual neurons in the primate retina, lateral 

geniculate nucleus, and cerebral cortex.

6 .1 .1  S in g le  S ca le  C e n te r /S u r r o u n d  R e t in e x  (S S R )

A single scale center/surround retinex is an operator ssr  : TZJ —*■ R J that maps a  pixel 

vector z from the set 5  to a  pixel vector z' such that z ' =  s sr (z ) . The ssr  operator is 

applied, pixel by pixel, to each component of a  multi-image as

s s r j ( g j [ m ,  n]) =  log(#[m, n]) -  logfa'[m, n]) (6.1)

1 Except for some m inor changes in notation, the material in this chapter is taken from [39].
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where j  is the subscript of the spectral band, and

g'j [m, n] =  H [m, n] * gj [m, n] (6.2)

where * denotes spatial convolution, and H[m, n] is the surround function (convolution 

kernel).

The design of the ssr involves the specification of:

1. a  surround function H(-);

2. the surround space constants that control the extent of the surround

3. the treatm ent of the retinex processed bands before subsequent analysis.

6.1 .1 .1  Surround Function

The general form of the center/surround retinex (see Figure 6.2) is similar to the difference- 

of-Gaussian (DOG) function widely used in natural vision science to model both the re

ceptive fields of individual neurons and perceptual processes. For all the results in this 

dissertation

H [m , n] = I  exp (6‘3)

where a  is the surround space constant tha t controls the extent of the surround function. 

Smaller values of a  provide more dynamic range compression, and larger values provide 

more lightness/color rendition. I  is selected so tha t £  H  H[m,n] =  1.

6 .1 .1 .2  T reatm ent o f R etin ex  O utput

Land’s [45] proposal of the center/surround retinex does not explicitly address the issue of 

a  final treatm ent, with the possible implication tha t none is necessary. On the other hand,
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(Lamer

0.0004

Figure 6.2: Spatial form of center/surround retinex operator

Moore [61] advocates the automatic gain/offset approach, whereby the output values for 

each band are adjusted by the absolute maximum and minimum found across all values 

in all the bands. The implementation used here is a  constant gain/offset. This results in 

actually clipping some of both the highest and lowest signal transitions. Little information 

is lost because the retinex output signals form, to a  large degree, a contrast image (being 

in essence a  ratio). This constant gain/offset has thus far proven to be independent of 

image/scene content.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 6. IM AG E PREPROCESSING  73

6 .1 .2  M u lt i-sc a le  C e n te r /S u r r o u n d  R e t in e x  (M S R )

Given the definition of the single-scale retinex operator in Section 6.1.1, the MSR is then 

simply a weighted sum of several different SSR outputs. Mathematically,

m sr(z) =  W s • ssr3(z) (6.4)
S

where Ws is the weight associated with scale s, s srs(z) denotes the single-scale retinex 

applied a t spatial scale s, and the summation is over all scales. The only difference between 

ssr(z) and ssrs(z) is that the surround function is now given by

Hs[m, n] =  I  exp [ ~ ( 6-5)

where as is the surround space constant a t scale s.

The design of the MSR involves the specification of the scales and the weights associ

ated with each scale. In [39] the authors report tha t after experimenting with one small 

scale crs < 20 and one large scale as >  200, the need for a  third intermediate scale was im

mediately apparent in order to produce rendition with visible “halo” artifacts near strong 

edges. Experimentation showed that equal weighting of the scales was sufficient for most 

applications. Weighting the smallest scale heavily to achieve the strongest dynamic range 

compression in the rendition leads to ungraceful edge artifacts and some graying of uniform 

colors.

The MSR combines the dynamic range compression of the small scale retinex with the 

tonal rendition of the large scale retinex to produce an output which encompasses both. 

Through experimentation, two fundamental issues in the application of the MSR are noted:
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1. The MSR reduces dependency on lighting conditions/geometry caused by such con

ditions as obscured foregrounds, and poor lighting caused by defects in illumination 

due to atmospheric conditions or artificial illuminants.

2. As atmospheric (illumination) conditions change, the MSR will produce results such 

that the restored image /  in Figure 6.1 will look more like the original scene s before 

image acquisition/digitization.
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Chapter 7

Experimental Results

A discussion of experimental results in multi-image classification and joint compression 

and classification using VQ is presented in this chapter. For a  series of experiments, it is 

demonstrated th a t a combination of VQ methods, both heuristic and iterative, can be used 

to achieve near optim al1 joint classification and compression. Each experiment presented 

demonstrates the use of supervised and unsupervised training methods.

• In a supervised method, the training set pixels are partitioned and labeled based on 

knowledge of ground tru th  data or previously developed classification maps.

•  In an unsupervised method, the training set pixels are partitioned and labeled based 

on algorithms tha t iteratively and heuristically locate clusters in TZJ .

We will use the following terminology when discussing the details o f the experiments. 

The vector quantization of a  multi-image requires two stages: a  training stage and a  testing 

stage.

1 From Section 4.2 we know th a t optim ality of a  given solution is rarely proven.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7. EXPERIM ENTAL RESU LTS  76

•  In the training stage, training set selection occurs. Once a set of representative pixels 

S r are chosen, a training encoder a r , training decoder /3r , and training classifier Sr 

are designed to produce a training codebook CT.

• In the testing stage, the multi-image is actually encoded. Specifically, a  testing en

coder a e, testing decoder /?e, and testing classifier Se are designed based on a  possible 

iterative improvement of CT to produce Ce.
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7.1 E xperim en t 1

This section presents an experimental design for joint multi-image classification and com

pression using the WBRVQ method. The WBRVQ method by Oehler et al. is designed 

in a  univariate or single-image framework, where a  pixel value is the scalar value (gray 

level) associated with a  pixel and a pixel vector is an array of pixel values associated with 

a  contiguous set of pixels. The WBRVQ method is extended to a  multivariate or multi

image framework, where a  pixel value and a  pixel vector are the same — the vector (array) 

of values associated with a single pixel. The WBRVQ method provides a  flexible trade

off between classification and compression priorities and provides a  unique framework for 

analyzing multi-images.

7 .1 .1  E x p e r im e n t M e th o d s

The ability of the WBRVQ method to classify and compress is analyzed along with sev

eral other methods.2 We demonstrate the flexibility of WBRVQ when the a  priori, class- 

conditional, and a  posteriori estimates are available by analyzing the impact of the Lagrange 

parameter A on optimal coder performance. A brief review of the experiment methods will 

be provided next.

7.1.1.1 Param etric B ayes Full Search VQ w ith  O ptim al E ncoding

This is the WBRVQ method described in Chapter 4 and will be abbreviated as WBRVQ/O. 

The WBRVQ/O method is based on a VQ design in which a  full search of the codebook

2In this experim ent we try  to  model the experiments, tests, and  param ters used in [64] [66]. M ethods 
reported in this section reflect as close as possible, the m ethods th a t were reported in those papers.
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is applied during encoding. In the training stage, posterior estimates for the training set 

are used to design £r , a r ,/3r , and Cr- In the testing stage, posterior estimates for the multi

image are used to design 5e, a e, f3e. and Ce. In both stages the classification and compression 

performance of the design is weighted using the Lagrange param eter A.

7.1.1.2 Param etric B ayes Full Search VQ  w ith  M SE E ncoding

This is the WBRVQ method described in Chapter 4 with MSE encoding instead of optimal 

encoding as in WBRVQ/O. This method will be abbreviated as WBRVQ/M. In the training 

stage, posterior estimates for the training set are used and the Lagrange parameter A is used 

to design of the codebook. In the testing stage, the actual encoding of the multi-image is 

completed using an MSE encoding.

7.1.1.3 Sequential Full Search V Q /C lassifier

In the Sequential full search VQ/classifier (SEQCVQ) method, a  full search MSE quantizer 

is first designed using the Generalized Lloyd Algorithm. A Bayes classifier is then applied to 

the quantizer outputs. In the testing stage, posterior estimates for the training set are used 

to design Sr, a r, /?r , and CT. In the testing stage, posterior estimates for the multi-image are 

used to design £e, a e,/3e, and Ce.

7.1.1.4 Sequential C lassifier/L im ited  Search VQ

In the Sequential classifier/limited search VQ (SECQVQ) method, a  Bayes classifier with 

probability estimates is first designed. Seperate full-search quantizers are then designed for 

each class. The testing and training stages are similar to the SEQCVQ method
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7.1.2 S im u la tio n

The WBRVQ method requires knowledge of probability estimates of the multi-image dis

tribution. For this purpose, we are interested in synthesizing, via simulation, a  multi-image 

design in which the parameters of the distribution can be specified a  priori. The idea is to 

specify the following parameters for the simulation:

•  The design of pd/(z) in 1ZJ .

•  Ground tru th  da ta  for supervised training.

•  Multivariate random number generator.

•  Multi-image construction algorithm.

•  Training set selection algorithm.

The specific details of the design of each parameter for Experiment 1 are provided in the 

following sections.

7.1 .2 .1  D esign  o f  P robab ility  D istr ib u tion  Functions

In this experiment we consider the classification of a  multi-image scene of seven geometric 

objects, illustrated in Figure 7.1.

We consider a  five class problem in which the geometric objects comprise classes 0-2 

and the background (a mixture of two distributions) comprise classes 3-4. The areas that 

represent an overlap between regions in Figure 7.1 represent mixed pixel locations3. At

3 From C hapter 3, we know th a t the  m ultiple labeling of pixel vectors can result from soft clustering 
m ethods.
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Figure 7.1: Gray-scale representation of simulated multi-image scene.

these pixel locations it is assumed tha t we have a spatial/spectral mix of pixel vectors [86]. 

The image pixel vectors are drawn from five multi-variate Gaussian distributions where 

K  =  5. J  =  3, Z  = 32, M  =  64, and N  =  64. Table 7.1 provides the parameters for each 

class distribution in 1ZJ .

class Sk p(Sk) P0,Pl,t*2 cro,cri,cr2 Ident
0 0.112 21,11,8 2,2,2 objects
1 0.096 13,6,21 2,2,2 objects
2 0.121 8,24,13 2,2,2 objects
3 0.329 16,15,15 2,2,2 background
4 0.340 19,21,17 2,2,2 background

Table 7.1: Multivariate Gaussian Overlapping Distributions

The multivariate Gaussian distributions are designed so that they overlap in therefore, 

it is not possible to achieve perfect classification with any decision rule. Because the class 

distributions overlap, a t most 65% of the vectors can be classified correctly4. Two particular 

issues are of interest in this experiment:

1. To measure the ability of the m ethod to correctly classify and compress all objects in 

the multi-image relative to the am ount of object and background distribution overlap 

in R J .

'’The distributions can be designed so th a t the % of pixels correctly classified can be user specified.
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2. To measure the ability of the method to specifically correctly classify and compress 

the mixed pixel areas of the image in Figure 7.1.

7.1 .2 .2  Ground Truth D a ta  for Supervised Training

The effect of supervised training on the accuracy of classification results is investigated 

in this experiment. Recall from the chapter introduction that in supervised training, the 

training set pixel vectors are already labeled by virtue of ground tru th 0 or existing maps. 

For the purpose of this experiment, the ground tru th  data that will be used, is a  character 

encoded template representation of Figure 7.1. The ground tru th  tem plate (character en

coded) illustrated in Figure 7.2, is designed as a single component image in which each pixel 

location is labeled by the appropriate cluster index given in Table 7.1. This 64 x 64 template 

is stored in a  32-level character encoded CEF file format, where ‘0 \ T , \ . . . ,  ‘9’,‘A’,‘B’, . ..  ,‘V’ 

represents the 32 possible image gray levels [70]. The character encoding used for the CEF 

image is based on the character/gray level correspondence given in Table 7.2.

character 0 1 . . .  9 A B . . . V
graylevel 00 01 . . .  09 10 11 . . . 31

Table 7.2: CEF to gray level conversion

Table 7.3 shows the CEF character representation for each mixed pixel region shown in 

Figure 7.2 and the multiple class labels assigned to each region.

CEF character Probable Class in TZJ Multiple Class in TV
A 1 1,2
B 0 0,2
C 1 0,1
D 0 0,2
E 1 0,1

Table 7.3: CEF character to class conversion

5 “G round ‘tru th ’ refers to any knowledge of an  area which is, for all practical purposes, certain.” [86]
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34343343333333343222222222222222222220D D D D D D 00000000000000044433 
43443334343334332222222222222222222220D D DDD D D0000000000000343444 
4343444343434333333344434334443444333000000000000000000003443343 
4344434333434334344344344443443334344000000000000000000044434443 
4433434344334443434444443334333333443000000000000000000434434333 
3433443344334444333434434444434443343000000000000000004333444333 
4344334333444343444344444334343344434000000000000000044443443443 
4333333311111111111111111111111111111EEEEEEE00000000333334434443 
3334411111111111111111111111111111111EEEEEEEE0000004433444444343 
3434433411111111111111111111111111111EEEEEEE00000044343344443443 
3344343444443333344333333344433333434000000000000344344434343444 
4343343434344443433444333443444433433000000000003343434433344444 
4444444333343344433344433334333443343000000000033334333333433434 
3444434443434443433433344444433344444000000000444444333334434444 
3444334344333343433434343434434444433000000004444434444344434334

Figure 7.2: CEF Ground Truth Template
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Figure 7.3: Pseudocolor Enhancement of Figure 7.1 (1) ideal classification (r) mixed-pixel regions 
highlighted

A pseudocolor enhancement of Figure 7.1 is shown in Figure 7.3. T he purpose o f this en

hancement is to make the gray level variations in Figure 7.1 more evident to facilitate easier 

analysis of the classification results presented in the remainder of the  chapter. Two pseu

docolor enhanced images are shown in Figure 7.3. The first image is the ideal classification 

results to be obtained, and the second image highlights the mixed-pixel regions in black6. 

Table 7.4 shows the class color assignment for the objects in the pseudocolor enhanced 

Figure 7.3.

class Sk Ident Color
0 objects red
1 objects green
2 objects blue
3 background gray
4 background white

Table 7.4: Geometric object class color assignment.

te c h n ic a lly , the background and  the  overlap regions between geometric objects are considered mixed 
pixel regions. However, for the  purpose o f this experim ent, we are focusing on the classification o f  the  black 
regions.
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7.1 .2 .3  M u lti-im age C onstruction  A lgorithm

Figure 7.4: Simulated Muiti-spectral

The 3-component multi-image shown in Figure 7.4 was generated using a simulation pro

gram that generates gaussian random variables [69]. Each component of this multi-image 

is constructed from the multivariate pixel vector z generated by the random variable gen

eration program, i.e., if z e  Sk (the pixel location in Figure 7.2 is equal to k) then

zq =  gauss(fi0,(To) 
z i =  gauss(ni ,  a)

z =

.  z j - 1  =  gauss(nj-i ,erj- i)  

where zj denotes the j t h  component in pixel vector z and no, • - - , crj-i, era, • • * , c j - i  axe 

the parameters assigned to class k. Each component of the pixel vector z is converted to the 

CEF format using Table 7.2 and stored in multi-image format as illustrated in Figure 1.1 

and Figure 2.2.

7.1 .2 .4  Training S et Selection  A lgorithm

In order to classify the multi-image, a training set selection algorithm is needed. From 

Chapter 4, we know that a  training set is a  sample of pixel vectors representative of the types 

of images to be classified. Because we have a  ground tru th  map of our ideal classification,
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the training set will be selected from areas in the multi-image previously constructed from 

the ground tru th  template. In selecting the appropriate set of pixel vectors:

1. Homogeneous regions representative of each class were chosen.

2. Mixed pixel regions in the image were included in the training set to provide additional 

variability within each class and to ensure the accuracy of class conditional probability 

estimates.

7.1.3 D iscussion

In this section the implementation details of the classification methods will be provided. 

The WBRVQ method uses the combined Lagrangian distortion measure

Jx(a , 0, S) =  D (a, 0) + XB(a, 6).

to develop a  descent algorithm that iteratively modifies the encoder, decoder, and classifier. 

Two im portant implementation issues for the WBRVQ method are a  choice for A and the 

stopping rule used to halt iterations.

7.1.3.1 Iteratively  Increase A.

No standard algorithm exists to determine the value of A that works consistently for the 

simulated images tested. By testing successive increments of A in seperate trials, it was 

observed that the classification accuracy oscillated. Table 7.5 shows the MSE and classi

fication accuracy results obtained from testing various values of A and iterating with that
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same value. The results depicted in the table also show that for seperate trials, as the value 

of A was increased, the resulting MSE also increased by a  small percentage.

A MMSE Accuracy
0.010 2.245 0.978
0.011 2.243 0.978
0.500 2.241 0.980
1.000 2.353 0.968
2.000 2.375 0.962
3.000 2.401 0.971
4.000 2.542 0.970
5.000 2.601 0.981
6.000 2.621 0.982
7.000 2.649 0.985
8.000 2.667 0.987

Table 7.5: Effect of chosing static value of A

Oehler et al. reported slight improvements in classification accuracy if the value of A is 

gradually increased during successive iterations in the same trial ra ther than  iterating with 

a constant value7. One explanation they give is that the gradual increase may help the 

codebooks avoid being trapped in a  local minima, a typical problem for vector quantizers. 

In out tests, the value of A is initialized to 0.01 and allowed to increase a t each iteration by 

a multiplicative factor o f 1.1. The halting rule used in this iterative m ethod is described in 

Section 7.1.3.3.

7.1 .3 .2  M ism atch B etw een  O ptim al a r and M SE a e (D esign  o f  M SE  Cr).

Generally, when an optimal codebook is being trained, each iteration decreases the Bayes 

risk calculation. This is also true when a MSE codebook is being trained. Sometimes, if the 

optimal trained codebook is used with the MSE test encoder, it gives worse performance

'S im ilar to the O ptim ized Learning LVQ algorithm  of Section S.3.2.2, A is acting  as the  ”learning rate” .
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than  if an MSE trained codebook is used with a  MSE test encoder. To correct this problem, 

a t the training stage, two algorithms are used simultaneous:

1. Train the optimal codebook using probability estimates of the training set.

2. Train a MSE codebook using a  nearest-neighbor distortion metric.

Algorithm 2 halts if  the  increase in A, a t any iteration, causes the Bayes risk calculated 

with the MSE trained codebook to increase. That is, if the Bayes Risk associated with 

the MSE codebook increases, while the Bayes Risk associated w ith the optim al codebook 

is decreasing, then algorithm 2 halts. Algorithm 1 continues until the halting condition 

described in Section 7.1.3.3 is met.

7 .1 .3 .3  C hoosing th e  M axim al Increase in  A.

The maximal value for A is decided by many factors: (1) the distortion measure D that 

calculates the MSE, (2) the Bayes risk measure B , (3) the accuracy of the probability 

estimates, and (4) the codebook size specified. Oehler et al. reported tha t as the codebook 

size increases, the distortion decreases and the classification results generally improve. In a 

related experiment, they show that as A increases for each seperate trial, the classification 

results improve and the MSE shows a  slight increase. Is the best choice for A dependent on 

the codebook size used?

Figure 7.5 illustrates the classification results when two different values for the maximal 

increase in A are tested during codebook training. In  the first image, a  maximal value of 

A =  103 is used, in the second image a  maximal value of A =  102 is used. These two 

images show that if a high value of A is used for the training of large sized codebooks, the
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Figure 7.5: Accuracy for codebook size of 60 where the maximal increase in A is varied during 
codebook training. (1) A = 103 (r) A =  102

classification accuracy during testing with the large codebook will start to decrease more 

than if a smaller value of A had been used during training. This may be attributed to the 

fact that when small codebooks are used, typically a  higher value of A is required to get good 

classification results than when large codebooks are used8. Therefore in our experiments, 

we halt the iteration of A during t ra in ing  of large codebooks at a lower value than would 

be used for smaller codebooks9.

7.1 .3 .4  Perform ance M etrics.

The compression performance in this experiment is measured by SNR and MSE. For sim

plicity we provide only the MSE values here. The classification performance is measured by 

sensitivity and overall Bayes risk. The sensitivity, for this particular experiment, is defined 

as the fraction of pixel vectors correctly labeled.

8Smaller codebooks require more emphasis to  be placed on classification performance a t the training 
stage.

9Oehler et al. refers to this as the mismatch problem.
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7.1.3.5 C odebook D esign.

Codebook sizes ranging from 5 to 240 were tested to investigate their effect on distortion 

rate, A, and sensitivity. The codebooks are initialized during training using a K-Nearest 

Neighbor algorithm; part of the LVQ library of algorithms.

C odebook  
D esign  M ethod

C odebook size
5 15 30 60 120 240

SEQCVQ 0.645 0.644 0.642 0.630 0.620 0.640
SECQVQ 0.606 0.606 0.606 0.606 0.606 0.606

WBRVQ/O 0.648 0.648 0.648 0.648 0.615 0.610
WBRVQ/M 0.645 0.644 0.643 0.630 0.620 0.635

Table 7.6: Multi-variate Gaussian Example: Sensitivity

Table 7.6 shows the sensitivity results of applying the WBRVQ algorithm to the multi

image in Figure 7.4. As stated before, an iterative increase in the value of A was chosen 

during encoding instead of a static value. The results indicate tha t the WBRVQ with opti

mal encoding (WBRVQ/O) produces consistent results across the codebook sizes. However, 

the performance decreases at large codebook sizes, which is true for all methods. We spec

ulate that at higher rates (1) the emphasis on classification decreases, (2) many of the 

codebook vectors have low probability values, or they lie very close to more than one class 

border. WBRVQ/O was able to classify over 64.8% of the vectors correctly. However, the 

sensitivity measurement decreased for codebook sizes larger than 120. WBRVQ with MSE 

encoding (WBRVQ/M) performed quite well, especially since no parametric probability es

timates were used during the testing stage. The performance of the SEQCVQ method was 

very competitive with the WBRVQ methods. It was reported in [66] tha t Gaussian distri

butions are well-suited for MSE encoding algorithms (such as SEQCVQ) and that methods
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like WBRVQ, tha t stress to a  certain extent classification, may provide only a  small amount 

of improvement.

An interesting observation is the moderate performance of th e  SECQVQ method, which 

is initially designed for classification. It is speculated tha t the overlap of distributions in R J 

decreased the performance of the Bayes rule. In this experiment it was observed tha t the 

discriminant boundaries for the Bayes rule can actually be improved by the incorporation 

of the nearest-neighbor rule used in MSE encoding. This fact is dem onstrated by how well 

the WBRVQ methods performed.

One m ajor issue of interest is how does the heterogeneous mixture of image classes 

within an image pixel effect classification results. Previously, we stated tha t a  majority 

of the 35% of misclassifications occur in the background and are due to the overlap of 

background distributions with the object distributions. Furthermore, we know that addi

tional spatial/spectral mixing is occuring in the pixel locations illustrated in Figure 7.6. We 

next show the ability of each method to compensate for these two types of mixtures. The 

classification results for a  codebook of size 60 using each m ethod is shown in Figure 7.7.

W BRVQ/O performs the best at classifying the highlighted regions in Figure 7.6. The 

W BRVQ/M and the SEQCVQ methods produce about the sam e amount of misclassifi

cations. The SECQVQ method begins to reverse the correct classification of the mixed 

regions where the blue object and red object in the upper left comer exist. It is evident 

from these images tha t one discriminate rule alone cannot compensate for class mixing 

within a  pixel. Combination methods like the WBRVQ may work best to compensate for 

pixel class mixtures and overlapping distributions.

Finally, the performance of the methods to compress the multi-image are given in Ta-
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Figure 7.6: (1) ideal classification (r) mixed-pixel regions highlighted

Figure 7.7: (tl) SECQVQ, (tr) SEQCVQ, (bl) WBRVQ/M, (br) WBRVQ/O
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ble 7.7. As expected, MSE decreases as the codebook size increases, which is typical for 

vector quantizers. The SEQCVQ method gives the best compression performance, which 

is expected because this method emphasizes quantization in the first step. The SECQVQ 

method is effected by the initial classification performed, therefore the compression perfor

mance is also effected. The WBRVQ/O method has good performance, which is expected 

since it optimizes the tradeoff between classification and compression priorities. Figures 7.8 

and 7.9 show the compression result of the WBRVQ/O method with the size 60 codebook. 

We see tha t the original and reconstructed images are close in appearance. We also see 

tha t the 3rd component reconstructed image contains more homogenous edges than in the 

original image, which is another benefit of VQ.

C odebook  
D esign  M ethod

C odebook  size
5 15 30 60 120 240

SEQCVQ 4.031 2.440 1.565 1.027 0.646 0.415
SECQVQ 4.298 2.910 1.867 1.271 0.835 0.572

WBRVQ/O 4.449 2.673 1.731 1.182 0.734 0.504
WBRVQ/M 4.036 2.443 1.571 1.031 0.648 0.411

T a b le  7 .7 : M ulti-varia te  G au ssian  E xam ple: M ean  S quared  E rro r

7.1.4 Im p le m e n ta tio n  Issues

•  Although the performance of the quantizer improves as the size of the codebook 

increases, the complexity of the quantizer design also increases as the codebook size 

increases. Therefore, full search methods are not practical for most applications, 

because of the requirement to search through each codebook vector at every iteration. 

A more efficient search and storage method would be the use of a  tree-structured
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design, possibly using an octree representation. Prom Chapter 4 we know tha t at 

minimum the use of TSVQ (binary tree) can reduce the com putational cost of a 

search from 0 (N sL) to OiNsUm lognjn L), since for each of the N s pixel vectors, nm 

branches are compared at each of the p  levels of the tree.

•  An efficient algorithm for multi-dimensional histogramming is needed, to facilitate 

probability estimate computations is needed. Search and storage of values in a  mul

tidimensional (J  > 3) da ta  structures wastes a great deal of space if a  conventional 

array is used. For example, if J  =  3, the storage requirements would be an array of 

Z J  elements, most of which would be unused. More efficient methods use some type 

of hash table structure combined with a  tree-structured design as described in the 

previous paragraph.

• The MSE is a  very simple distortion metric that does not provide an accurate assess

ment of compression performance for all applications. One example of this is if the 

image is pre-processed to correct for anomalies in the imaging process such as inade

quate lighting and noise. Because of this preprocessing, the original and reconstructed 

images may be quite different. Also, the MSE only measures the difference between 

corresponding pixel vectors in the two images being compared. It does not provide 

important information such as the spatial location of these errors, i.e., a  majority of 

the errors may be localized to certain regions of the image. O ther perceptual fidelity 

metrics may provide better measurements of performance.
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Figure 7.8: Original multi-image

Figure 7.9: Compressed image using WBRVQ/O.
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7.2 E xperim en t 2

The goal of multi-image classification is to identify and label “sim ilar regions” within a 

scene. The ability to correctly classify a  remotely sensed multi-image of a  scene is af

fected by the ability of the classification process to adequately compensate for the effects 

of atmospheric variations and sensor anomalies. Better classification may be obtained if 

the multi-image is preprocessed before classification, so as to reduce the adverse effects 

of image formation. In this paper, we discuss the overall impact on multi-spectral image 

classification when the retinex image enhancement algorithm is used to preprocess multi- 

spectral images. The retinex is a  multi-purpose image enhancement algorithm  that performs 

dynamic range compression, reduces the dependence on lighting conditions, and generally 

enhances apparent spatial resolution. The retinex has been successfully applied to the en

hancement of many different types of grayscale and color images. We show in this paper 

tha t retinex preprocessing improves the spatial structure of m ulti-spectral images and thus 

provides better within-class variations than would otherwise be obtained without the pre

processing. For a  series of multi-spectral images obtained with diffuse and direct lighting, 

we show that without retinex preprocessing the class spectral signatures vary substantially 

with the lighting conditions. Whereas multi-dimensional clustering without preprocessing 

produced one-class homogeneous regions, the classification on the preprocessed images pro

duced multi-class non-homogeneous regions. This lack of homogeneity is explained by the 

interaction between different agronomic treatments applied to the regions: the preprocessed 

images are closer to ground tru th . The principle advantage tha t the retinex offers is that 

for different lighting conditions classifications derived from the retinex preprocessed images
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look remarkably “similar” , and thus more consistent, whereas classifications derived from 

the original images, without preprocessing, are much less similar.

7 .2 .1  P r o b le m  D o m a in

The analysis of remote sensed imagery obtained over agricultural regions can be used for the 

detection and discrimination of “stressed” and “non-stressed” vegetation: this is an issue 

of considerable importance to the agriculture industry. The terms “stressed” and “non

stressed” are used in a qualitative sense to designate the relative plant growth over different 

regions of a field. The differences in growth patterns can be due to several factors including 

different agronomic treatments. Various algorithms for the discrimination and detection of 

vegetation using remote sensed imagery exist in the literature. One way to characterize these 

algorithms is by the characteristics of the multi-dimensional space in which they operate. 

For example, many users of remote sensed imagery use spectral signatures to characterize 

and identify materials in multi-dimensional “spectral” space. The spectral signature of a 

material can be defined in the solar-reflective spectral region by its reflectance as a function 

of wavelength, measured a t an appropriate spectral resolution. In other spectral regions, 

signatures of interest are tem perature and emissivity (Thermal Infrared TIR) and surface 

roughness (radar) [86].

There are fundamental problems with the spectral signature approach that are well 

documented in the literature. First, adl spectral signatures are unique to the sample and 

the environment in which they are obtained. Second, the ability to distinguish spectral 

signatures is often complicated by natural variability for a  given material, spectral quanti

zation of many remote-sensing systems, and modification of signatures by the atmosphere
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as a  result of the image formation process[86]. Therefore, even though one may wish to 

apply different “labels” to differentiate vegetation signatures, there is no guarantee tha t the 

signatures obtained by the remote sensing system will exhibit measurably different, or even 

recognizable, signatures.

In recent years, a considerable amount of ground-based (laboratory) data have been 

accumulated that describe spectral reflectance characteristics of soils and vegetation, with

out the problem of atmospheric complications. It is difficult, however, to duplicate natural 

reflectance measurements under laboratory conditions. The comparison between natural 

reflectance signatures and laboratory produced signatures, therefore, becomes even more 

complicated. Furthermore, the spectral signature of vegetation also changes over the sea

sonal life cycle of many plants, acquiring a  “yellow” characteristic in senescence,10 with 

a corresponding increase in the red region reflectance caused by a  loss of photosynthetic 

chlorophyll [86].

As an alternative to classification based on spectral signatures, multi-dimensional spec

tral space is transformed into a  “feature” space prior to classification (see sectionx). In 

this way, information in the image is redistributed into a  different and, depending on the 

application, more useful form. For example, transformations such as multi-spectral ratios 

of Near Infrared (NIR) to visible bands have been used to enhance reflectance differences 

between soils and vegetation and form “vegetation indices” tha t aid in classification. In this 

way, soil and other geological formations will exhibit similar ratios near 1, while vegetation 

will show a relatively larger ratio of 4 or more. O ther common vegetation indices are the 

Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI),

l0Senescense is the physiological d eath  of plants.
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Transformed Vegetation Index (TVI), and the Perpendicular Vegetation Index (PVI) [86]. 

The success of using these indices in the past has been affected by relatively few acquisition 

dates during a  growing season, the paucity of ground tru th  d a ta  a t the time of acquisi

tion. and the lack of suitable methods to account for atmospheric effects on the radiance 

measured by the remote sensing device [36].

W hether a particular classification algorithm uses spectral signatures or multi-spectral 

ratio indices to facilitate discrimination and detection of vegetation changes in an agri

cultural region, either technique requires good radiometric calibration o f the image before 

analysis can be performed. Figure 7.10 illustrates the major steps in the image classification 

process. Radiometric calibration, a  fundamental stage in this process, generally involves 

(1) sensor calibration: at-sensor radiance values obtained from quantized d a ta  during A/D 

conversion, (2) atmospheric correction: surface radiance values obtained from at-sensor ra

diance, and (3) solar and topographic correction: surface reflectance values obtained from 

surface radiance. Usually, detailed information about atmospheric conditions is not available 

for a  given data set. However, parametric atmospheric correction methods can generally be 

used to compensate for atmospheric conditions. The success of multi-image classification 

in the analysis stage is based on the quality of these methods.

In this paper, we approach multi-image classification differently. Instead of using band 

ratios or absolute spectral signatures, we use “relative” signatures in the image to discrim

inate and detect vegetation changes. We compensate for the atmospheric effects on the 

multi-spectral images by applying the Multi-Scale Retinex (MSR)[39] image enhancement 

algorithm to the multi-image, prior to image classification.
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Figure 7.10: System Model.

7 .2 .2  A g r o n o m ic  D a ta

For our analysis we used remote sensed images of a  cotton field in Texas acquired in the 

summer of 1997. We chose two multi-spectral images of the field taken on consecutive 

dates. The first image (acquired 08/14/97) has overcast sky, i.e. diffuse light, and the 

second (acquired 08/15/97) has almost clear sky, i.e. direct sunlight. The highlighted sub

image in Figure 7.11 is the area of interest for this experiment. We label the images of this 

area TXoa for date 08/14/97 and TXob for date 08/15/97. The cotton field was the site of 

a controlled experiment to study the effects on vegetation growth of different combinations 

of water and nitrogen treatment levels for a  particular soil tillage type.11 In all, 4 water 

treatment levels, 5 nitrogen treatment levels, and 2 soil tillage types were used. Figure 7.12 

shows a schematic of the treatment experiments applied to the TXoa and TXob regions.

The field was divided into 120 blocks representing 4 • 5 • 2 =  40 unique combinations of 

water, nitrogen, and tillage type. Each combination was repeated 3 times over the whole 

field. The 4 irrigation levels used were: 0.00, 0.25, 0.50 and 0.75 (fraction) of potential

“ Tillage prepares the soil for growing crops. This preparation is traditionally accomplished by using a 
plow to cut and m ix the soil.
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Figure 7.11: Test site captured on 08/14/97. The area of interest is highlighted within the rect
angle.

evapotranspiration (P E T )12. The 5 fertilizer nitrogen application levels were: 0, 20, 40, 60 

and 80 lbs/acre Best Practice (B P)13.

In theory, each of these 40 unique blocks represents a  different “spectral class” and there 

are three samples of each class. However, classification results show that the number of ac-

12Evapotranspiration (ET) is a  measurement of the total am ount of w ater needed to  grow plants and 
crops. Since there are thousands of cultivated plants, the potential ET  (PE T ) is a  standard  ET  rate for 
general reference and use. The water requirements of specific crops and tu rf  grasses can be calculated as a 
fraction of the PET. This “fraction” is called the crop coefficient (Kc) or tu r f  coefficient (Tc) [88]

I3Best Management Practices are farming practices th a t are designed to  reduce nutrient contam ination of 
surface and ground water. These practices are based on research results and  field experiments and maybe 
as simple as following fertilizer recommendations and irrigation scheduling. [16]
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pta ptb

ptc ptd

pte pif

W4 W l W3 W2
N1 N4 N3 N4
W4 W l W3 W2
N4 N2 N2 N2
W4 W l W3 W2
N2 N1 N5 N5
W4 W l W3 W2
N5 N5 N4 N1
W4 W l W3 W2
N3 N3 N1 N3

ptb-TW

4 W ater Treatm ent Levels 
W l- no irrigation 
W2- 25% PET (potential ET) 
W3- 50%  PET 
W4- 75% PET

5 Nitrogen Treatm ent Levels 
N I- 0% BP (best practice)
N2- 25% BP 20 lbs/acre
N3- 50% BP 40 lbs/acre
N4- 75% BP 60 Ibs/acre
N5- 100% BP 80 Ibs/acre

2 Tillage Types 
T l- Bare Soil
T2- Term inated W heat

3 Repetitions of each Tillage Type

F ig u r e  7 .1 2 :  A gronom ic tre a tm e n ts  app lied  to  th e  a re a  o f in te re s t in  F ig u re  7.11.

tual spectral classes is fewer than 40. Moreover, the blocks are generally not homogeneous. 

T hat is, within each block there are mixed areas where the levels of water and /o r nitrogen 

treatm ent are not uniform. In addition, the ground tru th  data was reliable for water treat

ment, but not for nitrogen treatm ent. The four-band multi-spectral images were acquired 

from an aircraft platform with an approximate nadir view, and calibrated to reflectance. 

The aircraft multi-spectral sensor band centers were at 486, 560, 685, and 840 nm.

7 .2 .3  D isc u ss io n

There were two prim ary motivations for this study: (a) to what extent can a  conventional 

unsupervised classification algorithm yield “good” results when applied to the original im

ages “as is” (i.e., w ith no preprocessing); and (b) if the multi-spectral images are prepro

cessed with the retinex algorithm and then the same conventional unsupervised classification
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algorithm applied, to what extent does that retinex processing influence the “goodness” of 

the result? This section summarizes the results of our initial experiments.

7.2 .3 .1  M SR  P re-classification  P rocessing

The MSR was used to preprocess the multi-spectral image before it was used for classifica

tion. Figure 7.14 shows the results of the MSR algorithm  applied to  band 3 (685 nm) of 

the image in Figure 7.11. The left column shows the original images: TXoa and TXob, for 

the cloudy and clear day. The right column shows the MSR processed images: TX ra and 

TXrb. In TXoa the band reflectance is uniformly very dark, because of the cloud cover on 

tha t day. The low contrast in this image creates a  problem in obtaining spectral signatures 

tha t adequately discriminate agronomic variables. After the image is processed with the 

MSR, subtle patterns emerged that were not visible in the TXoa image. Specifically, the 

patterns represent the boundaries between the 20 different nitrogen and water treatm ent 

regions. The MSR also improved the TXob image, obtained on the clear day. One of the 

prim ary results from the application of the MSR is that the processed images, TX ra and 

TXrb, are more “similar” to each other in brightness, contrast and detail than the original 

images, TXoa and TXob.

The MSR processed images display far more visual information than is evident in the 

unprocessed images. Even though radiometric calibration is not preserved by the MSR, we 

conclude tha t it can be used as an auxiliary tool for the visualization of spatial patterns 

in dark regions, as is demonstrated herein. Visual information in darker regions tha t may 

not be detected with linear representations which preserve radiometry will “pop out” with 

a  clarity limited only to the dynamic range of the sensor and any intervening digitalization
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Figure 7.13: Post processing system model.

scheme used prior to the MSR. For this experiment, we have not yet conducted extensive 

performance comparison of the MSR with other image enhancement algorithms such as 

histogram equalization, gamma correction, and point logarithmic nonlinearity. However, 

we expect to find that those image enhancement algorithms are not appropriate for use 

in preprocessing multi-spectral images for remote sensing applications where atmospheric 

conditions are the major contributor to data inaccuracy.

7.2 .3 .2  M ulti-im age C lassification

The literature is rich with both supervised and unsupervised methods for classifying re

mote sensed multi-spectral images. These methods include spatial/spectral discriminant 

functions, e.g., the Maximum Likelihood, and spectral specific methods, e.g., linear mixing 

models that require some a  priori knowledge such as ground tru th  maps or ground samples. 

Whereas, supervised classification requires training sets to teach the classifier to recognize 

certain specific features in the image, unsupervised methods require little or no training 

data  and attem pt to discover the underlying patterns in multi-dimensional space by using 

techniques such as gradient descent. In this experiment, we have limited a priori informa-
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08/14/97 TXoa 08/14/97 TXra

I

08/15/97 TXob 08/15/97 TXrb

Figure 7.14: TX Images- Original and retinex processed images.
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tion available about the field being analyzed. The a  priori information was used to verify 

the accuracy of the classes obtained using unsupervised classification.

We used vector quantization (VQ) to perform unsupervised classification on the multi- 

spectral image. The only user specified param eter is the number of classes K . T he  primary 

goal was to study and compare the effects of MSR preprocessing on the classification results. 

The same classification algorithm was applied to both o f the original four-band images 

TXoa, TXob and both o f the M SR  four-band images TX ra, TXrb. For all four images, we 

systematically experimented with K  to see how the number of classes affects the overall 

classification results.

To cluster the images we used VQ along with a splitting method to define the spectral 

signatures. The method starts with a  one-level quantizer (i.e., the centroid o f  the entire 

training set). Next, the one-level quantizer vector is split into two vectors obtained by 

perturbing the one-level quantizer. The 2-level quantizer is then applied to the training set. 

The two 2-level quantizer vectors are then split into four vectors and a  4-level quantizer is 

applied to the training set. The splitting is continued in this manner until K  code vectors are 

generated. This method assumes that K  is a power of two. If K  is not a  power o f  two, then 

in the last step, instead of generating two new code vectors from each of the code vectors 

of the quantizer designed previously, we can perturb as many code vectors as necessary 

to obtain the desired number of code vectors [84]. As in most classification methods, the 

performance depends on the quality of the set of spectral means used to discriminate classes 

in the image. For this analysis, we did not focus on methods to obtain spectral means, but 

compared the relative accuracy of the spectral means obtained by the VQ to signatures 

derived from the training areas defined by the schematic map of Figure 7.12.
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Table 7.8: List of constants used to process the TXoa and TXob images with the MSR

Constant 0  i 02 0-3 04 Gain Offset
Value 2 5 20 200 180 0.57

7.2.4 C lassification  R esu lts

Figures 7.15 and 7.16 show the classification results for the original and MSR preprocessed 

images. To examine the accuracy of our results we compare these results to the schematic 

plot of the proposed treatm ent of water and nitrogen for the cotton field shown in Fig

ure 7.12. To facilitate analysis, the figures are annotated with a grid tha t provides an 

approximate separation boundary between each treatm ent level block.

Our classification results were very encouraging for a number of classes, from as few as 

K  = 4 (i.e., 4 water treatm ent levels), to as many as K  — 40 (i.e., 4 water treatm ent levels 

x 5 nitrogen treatm ent levels x 2 tillage types). For the case K  =  4, we were interested in 

determining how well the four water treatm ent levels could be discriminated in the image. 

In the case K  =  8, we were interesting in discriminating the four water treatment levels 

for each tillage type. From our results we did not see any m ajor differences between the 

different tillage types in terms of classification results. T hat is to say, we could not resolve 

two different classes of each water treatm ent type. The prim ary effect of the case K  =  8 

was that we were able to see more clearly the water-nitrogen iterations.

Generally, for all four images we were able to see very clearly the “block” treatment 

structure that is present. There are differences in the results, however, depending on 

whether the lighting was diffuse or direct and depending on whether or not retinex pre

processing was used. The left column of Figures 7.15 and 7.16 show th a t without MSR
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preprocessing the blocks tend to be classified as homogeneous (one class); the right column 

of Figures 7.15 and 7.16 show that with MSR preprocessing the blocks tend to be classified 

as more non-homogeneous (multi-class). Comparison of the classification results for TXoa, 

TXob (original images) and TXra, TXrb (MSR processed images), show considerable vari

ation in classes for the unprocessed images as the atmospheric and lighting conditions vary, 

but slight or no variations for the MSR processed images.

Because consistent classification results are achieved regardless of the atmospheric condi

tions, we can argue empirically that MSR preprocessing tends to produce “spectral signature 

images” . Note that classification consistency in this experiment is really a measure of the 

resiliency of the classification process to changes in the process that affect the formation 

of the multi-spectral image. In other words, classification consistency is really a  measure 

of how well we can classify the multi-spectral image given that the atmospheric condi

tions have changed substantially from day to day. To illustrate classification consistency, in 

Table 7.9 we show the mean spectral reflectance measurements for the original and MSR 

preprocessed images for each class. From this table we see that the spectral signatures for 

the MSR preprocessed images for each day are more similar than the signatures for the 

original images.

Initially, we expected to see one different class for each column in the field representing 

a different water treatment level and not the multi-class variations tha t are shown in Fig

ures 7.15 and 7.16. However, because the nitrogen and water treatment affect the vegetation 

growth jointly, it would be a mistake to consider the two treatments independently. For 

example, the effect of applying water treatment level 4 and nitrogen level 3 may be the same 

as applying water treatm ent level 3 and nitrogen level 5. Therefore the original assumption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7.. EXPERIM ENTAL RESU LTS 108

3 1

'F* ' • J ‘£j

V

i m m i

08/14/97 TXoa 08/14/97 TXra

■ ,93
T

II

m
08/15/97 TXob

\xwx 
x m m

mm
L i

08/15/97 TXrb

Darker
Reflectance

W4
W3
W2
W 1

Lighter
Reflectance

Figure 7.15: Classification Results: 4 Classes
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Figure 7.16: Classification Results: 8 Classes
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tha t there are 40 distinct classes is, of course, not valid. In  further study, we realized tha t 

what we are actually discriminating is the change in reflectance due to different nitrogen 

effects and water treatment, i.e., joint effects. In Table 7.9 we see tha t reflectance generally 

increased with water stress for all water levels in the 486, 560, and 685 nm wavelength, but 

decreased in the (NIR) 840 nm range. This increase in reflectance effect has been reported 

elsewhere as the effect water stress has on diffusive resistance and plant metabolism in 

general [85]. However, the increase was affected by the nitrogen treatments applied. These 

same measurements all showed a clear nitrogen and water stress interaction.14 Thus water 

treatm ent labels for each class were identified as W4 for the darkest spectral reflectance in 

the 486, 560. and 685 nm range and W1 for the lightest reflectance in that same range.

To identify the water treatment levels, we matched the mean spectral reflectance mea

surements of each column in Table 7.10 for the original and MSR processed images shown 

in Figure 7.12 with the mean spectral reflectance for each class shown in Table 7.9. From 

this analysis we were able to conclude tha t the mean spectral reflectance for each column 

matched the correct mean spectral reflectance for each class. Although the magnitude of 

the results may be different for other tillage types, the results presented here should prove 

useful for determining the amount of information that can be expected from particular 

agronomic variable interactions for given atmospheric conditions.

7 .2 .5  C o n c lu sio n s

Spectral signatures alone do not provide adequate classification of a  scene, especially if 

the atmospheric or lighting effects have severely affected the multi-image components [86].

u This m erits a  re-examination of the data , which is the  subject for another paper.
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Table 7.9: Mean spectral reflectance measurements for each class.

I l l

Class Wavelength (nm)
486 560 685 840 486 560 685 840

08/14/97 diffuse 08/14/97 MSR
W4 55 49 33 102 140 138 123 161
W3 58 52 38 93 146 145 139 155
W2 60 54 41 104 151 148 151 146
W1 63 58 45 90 158 157 167 144

08/15/97 direct 08/15/97 MSR
W4 115 113 66 201 124 119 92 156
W3 127 128 83 195 143 140 126 152
W2 136 138 97 190 146 148 159 149
W1 148 149 106 190 169 167 173 147

This is evident if we compare the classification results before and after MSR preprocessing. 

W ithout additional ground tru th , or results from other classification studies, it is difficult to 

state with any confidence whether the classifications obtained with the preprocessed images 

are "‘better" in some absolute sense than the classifications obtained from the original im

ages. We can state, however, that the classifications from the MSR preprocessed images for 

the two different lighting and atmospheric conditions are remarkably “similar"’ both visu

ally. and in terms of the mean spectral reflectance of a class. We speculate tha t this occurs 

because the MSR preprocessing is minimizing the effects of the atmospheric conditions on 

the multi-spectral image, leading to consistent classifications from consistent data.

To summarize, we conclude tha t conventional unsupervised classification can be applied 

to this significant problem of detection and discrimination of stressed and unstressed veg

etation. Although classification results from both the original and the MSR preprocessed 

images are encouraging, the MSR preprocessed images are more robust to changes in a t

mospheric and lighting conditions. We need to conduct additional experiments to test the
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Table 7.10: Mean spectral reflectance measurements for each column in Plotb of Figure 7.12.

Column Wavelength (nm) Class
486 560 685 840 486 560 685 840

08/14/97 diffuse 08/14/97 MSR
1 54.83 50.68 33.49 103.65 140.46 141.93 125.12 162.60 W4
2 60.37 54.88 41.54 91.22 154.25 153.09 156.12 145.28 W1
3 56.77 52.15 36.85 94.85 143.66 143.80 134.99 153.09 W3
4 58.29 53.42 39.12 92.49 148.19 147.92 144.54 150.00 W2

08/15/97 direct 08/15/97 MSR
1 102.07 104.53 61.38 176.28 128.47 127.800 101.82 156.43 W4
2 124.47 126.46 91.42 162.21 157.97 157.38 164.08 146.14 W1
3 112.83 115.05 76.03 165.88 141.24 140.29 130.38 151.37 W3
4 117.06 120.30 83.67 162.03 147.88 147.31 145.53 149.41 W2

validity of our speculation tha t MSR preprocessed multi-image classification is more robust 

in the presence of atmospheric and lighting changes. In addition, we need to substantiate 

our conjecture that other image enhancement algorithms do not have the same “beneficial” 

effect on the classifications.
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Figure 7.17: AVTRIS image of a mixed agriculture/forestry landscape in the Indian Pine Test Site 
in Northwestern Indiana [46].

7.3 E xp erim en t 3

The analysis of m ultispectral images is a common task for imaging scientists and other 

users of such data. However, we have learned from the results of Experiment 2 that this 

is not a trivial task. Extraction of specific information from a  m ultispectral image, espe

cially as the num ber of bands increases, is a  complex problem requiring the application of 

techniques based on fundamentals of image spectroscopy, and signal and image processing 

theory for the full potential of the data  to be utilized. One m ajor concern in the analysis of 

multispectral images is determining the correct dimensionality of the da ta  that will best al

low features to be discriminated for classification. In this experiment, we study the effect of 

multispectral image dimensionality and training set selection on image classification. Using 

the multi-image WBRVQ algorithm, we demonstrate tha t depending on the scene complex

ity, classification sensitivity can be increased up to 95% depending on the Lagrangian A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 7. EXPERIM ENTAL RESULTS  114

parameter specified. We show that the WBRVQ algorithm is susceptible to certain types of 

unmixing errors based on training set selection even though improvement in classification 

sensitivity occurs as the Lagrangian A parameter increases. This susceptibility is based on 

the fact tha t the discrimination of certain vegetation species is based on whether specific 

features characteristic of tha t species are distinguishable in the multi-image set chosen for 

analysis. We also show that the application of the MSR, as a  preprocessing stage before 

classification, greatly enhances observed spatial detail within the multispectral scene. We 

speculate that image preprocessing can be useful in increasing classification accuracy, but 

only if training sets are selected based on a  reconnaisance map and /o r ancillary ground 

tru th  data derived from an MSR preprocessed multispectral image first.

The objectives of this experiment are to determine:

• The combinations of methods that should be used to specify the classes of species 

that we desire to discriminate in a classification algorithm.

• How well the WBRVQ algorithm works on classfication and compression of multispec

tral images of various dimensionality.

• The combinations of multispectral image bands and features tha t result in the best 

classification accuracy for MSR preprocessed images, and

• The effect of the MSR algorithm, applied as a preprocessor, on the ability of the 

BayesVQ algorithm to classify and compress m ultispectral images.
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7.3.1 P ro b le m  D o m ain

In this experiment the location of various soil and plant classes are m apped. To do this we 

must specify the classes of vegetation species desired to be identified. There are a  number 

of possible approaches to this problem. For example, we could use a  database of spectral 

signatures. While straightforward in concept, this approach has several drawbacks, which 

we have previously outlined in Experiment 2.

•  Extensive image restoration may be required. This is the case because we must identify 

and reconcile the observation and atmospheric conditions present when the data  was 

collected with the conditions under which the spectral signatures were measured.

•  The radiometrically corrected spectral signatures of the materials of interest must be 

known beforehand.

•  The spectral signatures of other materials that are not of interest but may occur in 

the same scene must also be available.

A simpler procedure is to label image samples in the data  (if some ground tru th  da ta  is 

available) which display the characteristics of the classes of materials of interest to us. This 

allows our analysis to be more robust in the sense that it can be applied to multispectral 

images collected from various sites of limited ground tru th  data. Four criteria should be 

used when choosing and labeling image samples [46]:

1. The list of classes must be exhaustive, in the sense tha t there should be a  class that 

every pixel logically falls within.

2. The classes must be seperable in the feature space used for analysis.
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3. The classes must contain information of interest to the user.

4. The probability distribution of the data  set should be adequately modeled.

In other words, these criteria state tha t a  well trained classifier must successfully model 

the distribution o f the entire data  set, but it must be done in such a way tha t the different 

classes of interest to the user are as distinct from one another as possible.

7 .3 .2  A g ro n o m ic  D a ta

The multispectral image used in this experiment is a  220 band AVTRIS dataset of a  mixed 

agriculture/forestry landscape in the Indian Pine Test Site in Northwestern Indiana15. This 

dataset was used primarily because of the availability of ground tru th  da ta  and analysis 

that has previously been completed on this testsite. The original RGB and Color Infra-Red 

(CIR) composites of the scene are shown in the (left) top and bottom  columns of Figure 7.18. 

For this experiment a moderate 9 band dataset of specific multispectral bands will be used. 

The 9 band wavelength centers are given in Table 7.11. The multi-image consists of three 

RGB bands (band numbers 1-3), one Near Infra-Red (NIR) band (band number. 4), and 

five IR  bands (band numbers 5-9).

The scene appears to be about 2/3 agriculture and 1/3 forest or other natural perennial 

vegetation. Due to early season data collection, the cultivated land appears to have very 

little canopy cover. There is a  major dual lane highway and a rail line crossing near the top 

and a  major secondary road near the middle.

15 Except for minor changes in notation and verbage, the m aterial in th is section is taken from [46].
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Figure 7.18: Purdue Images- Original and retinex processed rgb (t) and cir (b) images.
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Table 7.11: AVTRIS Dataset

Band No. AVIRIS Wavelength 
Band No. center,/xm

1 8 0.47953
2 16 0.5584
3 27 0.6675
4 39 0.7560
5 46 0.8235
6 70 1.0550
7 86 1.2092
8 136 1.6589
9 186 2.2186

A comparision of a  reconnaisance map illustrated in Figure 7.19 with the CIR image 

illustrated in Figure 7.18 shows tha t the reconnaisance map is highly generalized. For 

example, many small variations within the fields tha t are evident in the color image are not 

shown in the map. Therefore not every pixel inside a  designated region on the map can be 

expected to belong to the vegetation species class associated with that region. Furthermore, 

the reconnaisance map tends to illustrate land use classes, rather than land cover classes. 

For example, an area marked “Com-notill" on the map may really have a  land cover of bare 

soil and residue from previous vegetation, with only a small percent of corn vegetation as 

land cover.

7.3.3 D iscussion

7.3.3.1 M SR  Pre-classification P rocessing

The MSR algorithm was used to preprocess the AVIRIS image before classification. The 

(right) top and bottom column of Figure 7.18 shows the results of the MSR algorithm 

applied to the (left) column original image of the same Figure. The low contrast found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7. EXPERIM ENTAL RESU LTS  119

in several areas across this scene along with the limited canopy cover in certain areas can 

cause problems in obtaining the appropriate training set labeling in these areas. We find 

tha t after the image is processed with the MSR. subtle patterns emerge th a t were not visible 

in the original image. For instance in the RGB image, classes such as (1) G rass/trees, (2) 

soybeans, (3) corn, (4) woods, and (5) wheat are more visible and show more constrast 

than in the original. In the C1R image, classes such (6) corn min, (7) soy min, (8) com, 

(9) corn-notill, (10) woods, (11) soy-notill show more spatial detail. Furthmore, in the CIR 

image, more agricultural areas are visible than can be seen in the original CIR image. It is 

evident, that the biggest contrast changes are in the forestry areas in the images. One of 

the primary results of this application of the MSR is that the preprocessed images appear 

to have more visual inform ation^ than  the original.

The MSR processed images display far more visual information than is evident in the 

unprocessed images. Even though radiometric calibration is not preserved by the MSR, as 

we concluded in Experiment 2, it can be used as an auxiliary tool for the visualization of 

spatial patterns in dark regions, as is demonstrated in this scene.

Table 7.12: List of constants used to process Figure 7.17 with the MSR

Constant cr i 0-2 CfZ 04 Gain Offset
Value 2 5 20 200 6000 -1

7 .3 .4  M u lti- im a g e  C la ss if ica tio n

In this section, we present the results o f applying the WBRVQ method to the multispectral 

images. As we know from C hapter 4, the WBRVQ/O method is based on a  VQ design
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in which a  full search of the codebook is applied during the training and test stages of 

encoding. In the training stage, posterior estimates for the training set are used to design 

Sr. a r, (3r , and CT. In the testing stage, posterior estimates for the multi-image are used to 

design 6e,cxc,0 e, and Ce. In both stages the performance of the design is optimized using the 

Lagrange param eter A. The parameters used for training set selection, codebook training, 

and testing stages will be briefly discussed.

7.3.4.1 T raining S et Selection

In order to classify the multi-image, a  training set selection algorithm is needed. Because 

we have a  ground tru th  map of our ideal classification, the training set will be selected from 

regions in the multi-image previously identified from the reconnaisance map.

We consider possible classes in a  hierarchical form in which we subdivide the vegetation 

into two species, annual and perennial. Subdividing the annual species we get com, oats, 

soybeans, and wheat. Still further subdivision within these might be to subdivide the com 

and soybean classes by tillage practice, since the amount of residue from previous vegetation 

varies in this case. W ithin the category of perennial vegetation, classes such as alfalfa/hay, 

grass, and trees/woods would be possible categories. Due to the early season date of data 

collection, several species of annual vegetation may have so limited a  canopy cover (<  5%) 

tha t these areas may not be seperable in terms of plant species. Rather, the soil type of 

the tillage practice as manifested by the amount of surface residue from previous vegetation 

may be more appropriate classes.

Using the results obtained from previous studies of the dataset [46], tentative training 

set classes were selected using a  combination of information from the original image data,
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Figure 7.19: Cultural Features Reconaissance Map

an unsupervised cluster classification, and the CIR image. These three sources allowed 

one to pick classes that were seperable and exhaustive (unsupervised clustering) as well as 

informational (CIR image). The chosen training areas are shown as white striped polygons 

in Figure 7.19.

7.3 .4 .2  C odebook  G eneration

In the training stage, codebook sizes that range from L  =  8 to L =  256 were tested to 

investigate their effect on distortion rate, A, and classification sensitivity. Instead of using 

a static value, the value of A was incremented at each iteration to a maximal value during 

the training cycle. The A threshold values tested were 102 <  A <  105. The codebooks were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 7. EXPERIM ENTAL RESULTS 122

Codebook Generation Using LVQ

tra in ing
s e t

KNN
Algorithm

Classify 
tentative 
codevectors 
against 
training set

MinOist
Algorithm

Balance
(OLVQ1)

Compute
minimum
distances
between
codevectors

Reallocate
codevectors Initialized

to balance
minimum Codebook

distances Vectors

Figure 7.20: Codebook Initialization.

initialized during the training stage using the Learning VQ algorithm described in Chapter 

4 [43]. A brief description of the LVQ initialization process will be given next.

Once the tentative number of codebooks for each class have been fixed, the initial 

values are obtained by first using samples of the training set data from the different classes. 

Since the codebook vectors should always remain inside the respective class borders, for 

the initial codebook vectors, only samples that are not misclassified can be accepted. In 

other words, a sample is first tentatively classified against all the other samples in the 

training set using the K N N  algorithm, and accepted for possible initial inclusion in the 

codebook if this tentative classification is the same as the class label of the sample. Next 

a minimum distance algorithm is applied to determine the distances between each initial 

codebook vector and class border. Next, codebook vectors may be added or deleted using 

the balance algorithm to ensure tha t a minimum distance is maintained between codebook 

vectors in each class16. If the inital codebook distribution for a class is represented by 

Figure 7.21c, then the balance algorithm is designed to produce a distribution represented

I6The shortest distance between codebooks vectors should differ by a  factor of 2, bu t not more than 
that[43j.
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Figure 7.21: M inim um  D istance  a n d  B alance o f C o d eb o o k  V ectors.

by Figure 7.21b or Figure 7.21a. Finally, One training cycle of the O lvql17 algorithm is 

next applied to improve the minimum distance between codebook vectors as represented in 

Figure 7.21a.

In this experiment we present the results for a  codebook of size L  =  256 with an 

allocation of 16 codebook vectors per class. The algorithm did not always produce an equal 

allocation of codebook vectors per class because some training set classes had as few as

1 ‘ See Section 5.3.2 for more details.
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18 samples. Because of the way the LVQ initialization algorithm works, if the minimum 

distance between codebook vectors in a  particular training set class 5& does not meet the 

minimum distance criteria, then codebook vectors from other classes tha t meet the minimum 

distance criteria are reallocated to class Sk- This means tha t not all training set classes will 

have the same number o f vectors. We will discuss how the reallocation o f codebook vectors 

during training may effect the classification results achieved.

7.3 .4 .3  B ayes P a ra m e te r s

The WBRVQ/O method was applied to three different multi-images. The first multi-image 

is the 9 band dataset w ith wavelength centers described in Table 7.11. The second multi

image is a 4 band dataset composed band numbers 1-4 of Table 7.11. T he th ird  multi

image is a  5 band dataset composed of band numbers 5-9 of Table 7.11. These three band 

combinations were chosen to provide answerrs to the following questions:

1. W hat spectral features are available in each band of the multi-image and how does 

the availability of certain features effect the ability of the classification algorithm to 

discriminate vegetation classes.

2. W hat type of classification results can be expected using the WBRVQ algorithm on 

each multi-dimensional multi-image dataset.

For this experiment, the compression performance is measured for each each original and 

MSR multi-image using the MSE error between the original and compressed multi-image. 

The classification performance is measured using sensitivity. The sensitivity is defined for 

this experiment as the number of pixel vectors correctly labeled for each cultural features
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Tbble 7.13: 4-band Cultural Features Classification (Max pixels 21025).

Original Retinex
A % correct #  pixels correct % correct #  pixels correct
102 81.67 17172 76.26 16034
103 83.05 17463 77.18 16228
104 91.56 19252 87.86 18473

category. Later in the chapter we shall present a  different set of sensitivity measures that 

present the classification performance in a  different form.

Table 7.14: 9_band Cultural Features Classification (Max pixels 21025).

Original Retinex
A % correct #  pixels correct % correct #  pixels correct
102 84.83 17837 79.88 16795
103 86.07 18097 80.99 17029
104 94.63 19897 90.73 19076

Table 7.15: o_band Cultural Features Classification (Max pixels 21025).

Original Retinex
A % correct #  pixels correct % correct #  pixels correct
102 82.28 17301 78.58 16523
103 85.20 17914 79.80 16779
104 96.97 20388 91.45 19229

Tables 7.13- 7.15 shows the cultural features’ sensitivity results of applying the WBRVQ/O 

algorithm to the original and MSR processed images. During the testing stage, the La- 

grangian parameter A is increased a t each iteration up to a maximum value. The maximum 

values ranged from 102 <  A < 105. The results indicate tha t as the value of A increases 

the sensitivity increased for each of the three original and MSR multi-images. This result 

was expected because the emphasis on classification increases as the value of A increases.
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However, the sensitivity values were higher for the original images as compared to the 

MSR images. We also note a  difference in performance based on the particular multi-image 

dataset used. Overall, for A >  104, the 5 band original and MSR multi-images produced 

higher sensitivity values. However, for A <  104 the 9 band original and MSR multi-images 

performed best.

Figure 7.22 shows the cultural features classification results for the  5 band original and 

MSR multi-images. The top row is the original multi-image results, the bottom  row is 

the MSR results. The four columns represent Lagrange parameters 102,103,104, 10°. Each 

image was produced with a  trained codebook of A =  103.

We observe in Figure 7.22 tha t there appears that there are problems seperating the 

major cultural features classes such as corn, soybean and grass. For example, several class 

mixtures of (1) corn/soy-notill and (2) soy-min/com-min. There were also class mixtures 

with Bldg-Grass-Trees-Drives and the classes woods, grass/pasture and grass/trees (3) . 

We also note problems seperating crop tillage types such as (4) com-notil/corn-min, and 

(5) soy-notil/soy-min classes. The classification results (initial) in the first column is impor

tant because it indicates how seperable the spectral signatures are before the emphasis on 

classification is increased using higher A values. It also an indicator of the performance of 

the initial codebook during the training stage. For example, the wheat and hay-windrowed 

signatures are well distinguished in column one. However the crop and tillage signatures 

are not well distinguished and will require a greater reliance on probability information 

(A > 103) in order to produce the best classification results.

In the following sections we identify three possible explanations for the classification 

results presented.
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Original

1*~J MSR 1 f ~ 4  1®~*

Figure 7.22: 5 band classification results- (t) original and (b) retinex.

G ro u n d  tr u th  d a ta  a n d  M S R  p r e -p r o c ess in g

In Section 7.3.1 we compared the reconnaisance map in Figure 7.19 with the CIR image 

in Figure 7.18 and observed tha t the reconnaisance map was highly generalized. T ha t is, 

small variations within the fields evident in the color image were not shown in the map. 

These low contrast/sm all variation areas along with the limited canopy cover in certain 

areas possibly resulted in a  suboptimal selection of training set pixels. In Section 7.3.3 

we show tha t after the original image is processed with the MSR, subtle patterns emerge 

tha t were not visible in the original image. For instance in the RGB image, classes such
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original

H ~2 i i ~ j MSR 1 § ~ 4

I
F i g u r e  7 .2 3 : 5 b a n d  c lassification  results for th e  so y b ean s-n o till reg ion- (t) o rig inal an d  (b) re tin ex .

as G rass/trees, soybeans, and wheat are more visible and show more contrast than in the 

original. In the CIR image, classes such corn min, soy min, woods, and soy-notill show 

more spatial detail. Furthmore, in the CIR image, more agricultural areas are visible in the 

MSR image than  are visible in the original CIR  image. Therefore, it was obvious th a t not 

every pixel inside a  designated region on the map belonged to the vegetation species class 

associated w ith tha t region.

Furthermore, we saw that the reconnaisance map tends to illustrate land use classes, 

ra ther than  land cover classes. For example, an area marked “Corn-notill” on the map may
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really have a  land cover of bare soil and residue from previous vegetation, with only a  small 

percent of corn vegetation as land cover. Therefore, we conclude tha t if the original data  

were retinex processed and then classified, we may have had a  different “cultural features” 

reconnaisance map. The new reconnaisance map would have led to a new selection of class 

categories which would have resulted in a new set of training set data. We speculate that 

with the new m ap and training set da ta  an improvement in sensitivity values, especially for 

the MSR images, would have resulted.

C la ss if ica tio n  C a te g o r ie s

At closer examination, we find tha t many of the classification mixture errors are based 

on how the classes are grouped [46]. For example classes G rass/Pasture, Grass/Trees, 

Grass/pasture-mowed, and Bldg-Grass-Tree-Drives can be combined into a class based on 

soils, tillages, and crops. Classes Corn-notil/ Corn-min/Corn and soybeans-notill/soybeans- 

min/soybean-clean can be combined into a class based on crops. Classes Corn-notill/soybeans- 

notill and Corn-min/soybeans-min and com/soybeans-clean could be combined into classes 

based on erosion related to tillage type. Tables 7.16 - 7.21 show the classification results for 

each multi-image dataset for the original and MSR enhanced images after the original cul

tural features classes are regrouped. W ith the new class categories we find improvements in 

the classification errors. It appears tha t the Crops class categories provides the best results 

in terms of classification errors. Listing the categories in order of best to worst results we 

have: Crops, erosion related to tillage, soils/tillage/crops, then finally cultural features.

A closer examination of Figure 7.22 reveals that at A =  104 a  significant improvement 

in the classification performance for the original image is occurs. However, for the same
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Table 7.16: 4_band Classification Original

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
102 81.67 17172 82.08 17259 85.92 18065 84.73 17816
103 83.05 17463 83.44 17545 86.93 18278 85.88 18057
104 91.56 19252 91.78 19297 92.88 19529 92.88 19529

Table 7.17: 4_band Classification Retinex

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
102 76.26 16034 76.84 16157 81.38 17112 79.21 16655
103 77.18 16228 77.75 16347 82.12 17267 80.06 16834
104 87.86 18473 88.11 18526 90.63 19057 89.48 18814

Table 7.18: 9_band Classification Original

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
102 84.83 17837 85.04 17880 88.41 18590 87.26 18347
103 86.07 18097 86.26 18138 89.25 18765 88.37 18580
104 81.45 19897 94.69 19909 95.84 20151 95.01 19976

Table 7.19: 9-band Classification Retinex

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
10-i 79.88 16795 80.37 16898 84.50 17768 82.75 17400
103 80.99 17029 81.43 17122 85.35 17945 83.74 17607
104 90.73 19076 90.87 19106 92.44 19437 92.24 19395
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param eter for the MSR image, many of the mixture errors still occur. For example, mixture 

errors occur in the com, com-min, soybean-clean, and Bldg-trees-grass classes. However, 

we observe in Figure 7.23, tha t the soybeans-notill region achieves signficant improvement 

for both the original and  MSR images for A =  104.

We speculate that soil type variations, and the varying amount o f  residue from last sea

son’s crops represented in the different tillage types, has a  far greater effect upon the ability 

to distinguish spectral signatures than  vegetative species variation defined by the cultural 

features classes of shown in the reconnaissance map. This is seen in  the improvement in 

classification sensitivity results shown in Tables 7.16 - 7.21

C o d e b o o k  A llo c a t io n

Another factor which may affect classification error is the allocation of codebook vectors 

during the codebook initialization stage. Tables 7.22 and 7.23 show the codebook allo

cation results for each multi-image data  set for a  codebook size of L  =  256. The original 

initialization allocated 16 codevectors to each class. However, as sta ted  in section 7.3.4.2, if 

the minimum distance criteria is not met for the tentative codebook vectors chosen for each 

class, then codevectors are reallocated. We observe from Tables 7.22 and  7.23 tha t classes 7, 

9 for the original and classes 3,7,9 for the MSR images were allocated the fewest codebook 

vectors for training. However, because of the small size of these class regions compared 

to the size of the other regions, this allocation was expected. We do not know for certain 

whether this factor produced the classification results in which class 9 was not distinguished 

in the 5 band original nor in any of the MSR multi-images. However, as illustrated in the 

class spectral means shown in Figure 7.24, because these classes were distinguishable in
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the 4 and 9 band multi-images for the original, we conjecture tha t the information was not 

available in the 5 band multi-image for either the original or MSR images to distinguish 

it. We conjecture tha t the codebook allocation of only 2 and 5 vectors in the 4 band and 

9 band MSR multi-image respectively for class 9, possibly explains why that class was not 

distinguished in those datasets either.

T.3.4.4 C om pression F id elity

Figures 7.25 and 7.26 show the quantized image results for the NTR band (band number 

1) of the 5 band multi-image. The top row is the original image results, the bottom row is 

the MSR image results. We observe overall tha t no visual change is apparent as the value 

of A increases. However, we know from the computed RMS errors in Figures 7.27 - 7.29 

that as A increases, the compression error increases. Figure 7.26 shows an expanded view of 

the compression results for the soybeans-notil class region. From this view, we see visually 

tha t as the value of A increases the compression accuracy decreases, and the restored image 

has more of a ""classified” visual quality.

If we compare the original image to the MSR image, we observe an improvement in 

visual quality in the MSR image. For many annual vegetation class regions such as (1) 

corn, (2) corn-min, (3) soybean-min and perennial class regions such as (4) woods and the 

mixed class of (5) Bldg-grass-trees-drives, the MSR images exhibit more spatial detail than 

is visible in the original images.

To determine the optimal A parameter for our simulations, we produced lambda vs 

compression vs classification plots for each multi-image band set. For compression fidelity 

we use the MSE metric given in Equation 7.1
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Figure 7.24: 4,5,and 9 band class means for classification results for a trained codebook of A =  103.
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Figure 7.25: 5_band VQ results (NIR band 1 shown) -  (t) orig and (b) MSR

1
D =  —  ^ 2  \\zi - v q { 2.i)\\2 (7.1)

s o

The plots shown in Figures 7.27 - 7.29 illustrate the most optimal18 value of A for a 

particular multi-image band set in terms of classification and compression performance. We 

apply this test to identify possible trends tha t could indicate the expected performance of

18 In this context, optim al indicates the  value of A th a t provides the  best simultaneous classification and 
compression performance for a  given dataset. T he optim al value of A is measured a t the  point where the 
classification and compression error graphs cross. Because of tim e and  resource constraints, it is not always 
feasible to  test m any sets of lambda values. Therefore, the concept of an  optimal value is required.
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original

Figure 7.26: 5-band VQ results for the soy-beans no-till region (NTR band 1 shown) - (t) orign 
and (b) MSR.

the MSR and original images for different multi-image band sizes and the effect of A on the 

performance. It is evident tha t the larger the value of A required for optimality, the longer 

the algorithm will take to process the data  and produce results.

The optimal point in the plot is marked with an for clarity. For the 4 band multi

image, the original image reaches its optimal value before the MSR image. However, we 

do observe that the compression RMS for the MSR image is lower than  for the original. 

For the 5 band multi-image, the MSR image reaches its optimal value before the original 

image. However, the compression RMS for the original is lower than  for the MSR. We were
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Figure 7.27: 4_band Fidelity

not able to determine an optimal parameter for the 9 band multi-image. One observation 

is that, for the 9 band multi-image, the compression RMS for the original and MSR images 

maintains a contant values and never decreases. This phenomenon is unusual given the 

results for the previous multi-image datasets. However, we can only speculate tha t for the 

9 band multi-images and images of dimensionality J  > 5, that some other type of metric is 

required to accurately measure compression performance.

We conclude therefore, that based on the Figures presented in this section, tha t we 

cannot identify any trends for simultaneous classification and compression for an optimal A 

for the datasets presented here. However, we cannot say that such a  trend does not exist 

for other types of datasets.
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Figure 7.28: 5-band Fidelity

7.3.5 C onclusions

It is evident that the variation in spectral response due to the soil type variations, and 

the varying amount of residue from last season’s crop represented in the different tillage 

types, has a much greater influence upon the ability to distinguish spectral signatures than 

would vegetative species variation defined by the cultural features classes. In this sense, 

the problem of species discrimination represents a specific example of a  generic, low signal- 

to-noise information extraction problem (i.e. its not as important where the information 

is located in the image, but how much is contained there [97] [46]). Even following the 

sound techniques used in this experiment, there was a problem in discriminating between 

the major plant species with high accuracy using the 9 band dataset.

During training set selection, training areas were chosen based on information contained 

in a  reconnaisance map, RGB and CIR image of the scene. However, because of the improved
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Figure 7.29: 9_band Fidelity-

spatial quality gained by the use of the MSR algorithm, we speculate that if the M SR image 

had been used as an information source, tha t the types and locations of training set areas 

would be different from the ones chosen in this study. This is a  vital point because it 

clearly effects how training set codebook vectors are allocated during training codebook 

vector initialization. Because the distributions for the training set classes were different in 

the MSR image, some classes probably should have been split or regrouped into smaller 

classes to be consistent with the changes in the distributions. As we mentioned in the 

previous section, if the original da ta  were MSR pre-processed and then classified, we may 

have had a different “cultural” map resulting in different and improved sensitivity values.

This leads to the next point of how to develop a  list of classes tha t are exhaustive relative 

to the information content of the data. As shown in previous studies of this d a ta  [46] if a  

probability map (i.e, a  map that shows in color coded fashion the degree of membership of
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each pixel to the class to which it has been assigned) held been produced after an initial 

cluster classification, areas of low membership in a  particular class could be identified as 

potential areas for creating new classes. The addition of this step to our analysis could have 

influenced and improved our results.
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Table 7.20: 5-band Classification Original

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
102 82.28 17301 82.54 17355 87.44 18386 84.83 17836
103 85.20 17914 85.46 17968 89.29 18775 87.25 18346
104 96.97 20388 97.16 20429 97.44 20487 97.32 20462
105 99.69 20960 99.69 20960 99.78 20979 99.76 20975

Table 7.21: 5-band Classification Retinex

A Cultural Soils,Tillage Crops Erosion Related
Features Crops to Tillage

% Pixels % Pixels % Pixels % Pixels
102 78.58 16523 79.15 16642 83.79 17618 81.76 17191
103 79.80 16779 80.35 16894 84.63 17795 82.91 17432
104 91.45 19229 91.61 19262 93.26 19610 92.97 19549
105 99.60 20943 99.61 20944 99.62 20946 99.69 20961

Table 7.22: Training Set Codevector Allocation- Original

Class 4 band 9 band 5 band
# 1  Alfalfa 18 17 12
# 2  Corn notill 17 17 17
# 3  Corn min 17 17 18
# 4  Corn 18 16 17
# 5  G rass/Pasture 17 17 17
# 6  Grass/Trees 17 17 17
# 7  Grass/Pasture-mowed 8 13 9
# 8  Hay-windrowed 18 16 17
# 9  Oats 7 8 12
#10  Soybeans notill 17 17 17
#11 Soybeans min 17 16 17
#12  Soybeans clean 17 17 18
#13  Wheat 17 17 17
#14  Woods 17 17 17
#15 Bldg-Grass-Tree-Drives 17 17 17
#16 Stone-Steel Towers 17 17 17
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Table 7.23: Training Set Codevector Allocation- Retinex

Class 4 band 9 band 5 band
# 1  Alfalfa 19 14 11
# 2  Cora notill 19 17 17
# 3  Com  min 13 17 17
# 4  Com 18 17 16
# 5  G rass/Pasture 18 17 17
# 6  Grass/Trees 19 17 16
# 7  Grass/Pasture-mowed 6 13 16
# 8  Hay-windrowed 18 18 16
# 9  Oats 2 5 12
#10  Soybeans notill 19 17 17
#11 Soybeans min 18 17 16
#12  Soybeans clean 18 18 17
#13  Wheat 13 17 17
#14  Woods 18 17 17
#15  Bldg-Grass-Tree-Drives 18 17 17
#16  Stone-Steel Towers 19 18 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7. EX PE RIM EN TAL RESU LTS  142

7.4 E xperim en t 4

Even though mixed pixels are unavoidable in remote sensed imagery, spectral unmixing 

models can be used to improve the usefulness of multispectral images. Most unmixing 

models require the application of image restoration techniques to compensate for the effects 

of the image acquisition process. The application of the MSR image enhancement technique 

provides an alternative approach to image restoration tha t restores the quality of degraded 

images for improved spectral signature identification. The simulation results presented in 

Section 7.4.4.2 show that, despite the degree of image degradation encountered, classification 

error can be substantially improved by using the MSR algorithm. Furthermore, we show 

that, similar to the results achieved in Experiment 2, the classifications obtained from the 

MSR preprocessed images for various scene degradations, are more similar to each other than 

are those for the original unprocessed images. This is observed in the visual quality of the 

MSR enhanced images even before classification is performed. We conclude in general, and 

specifically in the application of the MSR, that image preprocessing is useful in increasing 

the accuracy of spectral unmixing in image classification problems.

In order to exactly measure the improvement due to pre-processing the multi-image 

with the MSR, we used simulated images with exactly known ground tru th . In order to 

create the simulated images, the parameters for two optical radiation models are specified: 

a  surface reflectance model and an atmospheric tranm ittance model. These models are 

used to specify the scene radiance model. The simulated scene is generated in the following 

manner:

1. The parameters of the simulated image in terms of scene size and average class spatial
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size are defined.

2. Spatial and spectral statistics of radiance da ta  for each class axe obtained from actual 

measurements.

3. The radiance data  for each band of the simulated image is generated. The ideal 

simulated multi-image may require interpolation of the actual measurements between 

spectral bands.

4. Using the scene radiance model, each radiance vector is transformed to have the 

desired mean and covariance for each class. The real image is generated by convolving 

the scene with a  system PSF model and then adding random noise for a  chosen SNR.

5. The atmospheric transm ittance model is applied to the simulated scene in the previous 

step.

The result of this procedure is a  real simulated scene degraded by the application of 

the atmospheric transm ittance model. A restored version of the real scene is created by 

applying the MSR to the image. In subsequent analysis we will compare the original and 

MSR restored real image scenes to the ideal simulated images created in Step 3 in terms of 

classification performance and visual quality. The details of each step required to generate 

the simulated image will be discussed in Sections 7.4.2 and 7.4.3.

7 .4 .1  P r o b le m  D o m a in

Identifying and discriminating endmember spectral signatures is complicated by many fac

tors of which image acquistion is ju st one key factor. Another factor is when the species
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of interest is experiencing physiological effects. For instance, when classifying vegetation, 

factors such as senescence and water deprivation become extremely important. These fac

tors affect the type of spectral information available for identifying endmembers. Although 

accuracy in classification, has been improved using unmixing models, attem pts have been 

made to improve unmixing by methods such as image preprocessing [97] [87]. However, 

there is some concern among researchers about using such preprocessed data  for image 

classification. Landgrebe [46] for instance, suggests that

Care must be exercised that, preprocessing procedures which are intended to 

improve the first order characterisitics (of the data) do not inadvertently neg

atively impact the second order characterisitics and thus, rather than improve, 

actually diminish the information content of the data. Examples of where this 

could occur are in attem pts to ^calibrate” the data to “correct” for various 

observational or environmental effects.

Furthermore he specifies that

~A preprocessing step should re-orient the feature space toward the specific set 

of classes of interest.”

As opposed to just re-orienting the variation of the data set to possibly lower order compo

nents as in some preprocessing algorithms such as the Principle Components Transforma

tion.

We demonstrate, in this experiment, that not only does the application of the MSR 

algorithm result in improved visual quality and increased spatial variation of the multispec- 

tral image, it is also optimal for certain types of multispectral image classification. The
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Figure 7.30: AVIRIS Reference Spectra.

type of image classification we are interested in are problems caused by various atmospheric 

models that affect the illumination conditions in the scene.

7 .4 .2  A g r o n o m ic  D a ta

The reference spectra used to create the ideal Mondrian scene were taken from an 

AVIRIS dataset acquired of the San Luis Valley in Colorado [13]. Reference spectra plots 

for 9 representative species of vegetation are used in the scene, of which 8 will be used in this 

experiment. These reference spectra were chosen because due to the considerable amount 

of work that has been done w ith species mapping in this area, the results produced by our 

simulation can be verified using the ground tru th  data. In this section, we summarize the 

study from which the reference spectra were taken. This reference information will provide 

additional insight into the problems of encountered in classifying vegetation species.
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7.4 .2 .1  R eference Sp ectra

The study used farmland reference spectra representing potatoes, alfalfa, barley, oat hay, 

canola, and open fields containing chico19. Ideally, one would have a  digital spectral library 

of reference spectra of the plant species to be classified. However, such a  library does not 

exist for vegetation, as it does for minerals.

The reference spectra obtained from the AVIRIS dataset are shown in Figure 7.30. 

Based on the analysis provided by the USGS study in [13], the alfalfa, canola, oat hay, and 

nugget potato spectra showed the plants to be green and healthy. The barley has lost all its 

chlorophyll signature. The norkotah potatoes were not being irrigated as they were about 

to be harvested, and consequently they showed weak chlorophyll and cellulose absorptions, 

with soil (clay) absorptions from exposed soil. These potatoes were also being sprayed with 

a defoliant. Thus, they showed decreased chlorophyll absorption along w ith a  shift of the 

red edge of the absorption to shorter wavelengths. The chico and pasture spectra showed 

combinations of chlorophyll and cellulose (dry vegetation) absorptions. There was rain in 

the valley in the few days before the flight so the chico/pasture may not have shown much 

water deprivation stress (being native plants they axe hardy and can also w ithstand some 

reduced precipitation compared to the crops). The bare field calibration spectrum  is from 

a sample measured on a  laboratory spectrometer; all others are averages o f several spectra 

extracted from the AVIRIS data.

In the next section we will describe the scene synthesis model used to generate the 

simulated images used in this experiment.

10 Except for m inor changes in notation and  verbage, the m aterial in this section is taken  from [13]
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7 .4 .3  S cen e  S y n th e s is

In studies of lightness and color constancy, the radiance field is usually represented by the 

following simple model [33] [86]:

1. The scene is a two-dimensional Mondrian20 flat surface tha t is divided into patches 

of uniform reflectance.

2. The effective irradiance I{x, y) 21 varies slowly and smoothly across the entire scene, 

and

3. The reflected radiance field L (x,y)22 is everywhere independent of the viewer’s posi

tion.

These assumptions permit us to express the radiance field L(x,y)  by the simple rela

tionship

L(x,y) =  -p (x ,y )/(x ,y ) , (7.2)
7T

where p(x, y) is the Lambertian surface reflectance23, and /(x , y) is the irradiance.

The target scene with reflectance p(x, y) is represented by the 2-D Mondrian illustrated 

in Figure 7.32. This scene consists of random polygons whose boundaries are distributed 

according to Poisson probability with a  mean separation of p p, and whose reflectances are 

distributed according to independent zero-mean Gaussian statistics of variance cr2. The 

mean seperation p p between the edges of the polygons is measured relative to the sampling

20 Random spatial distribution of polygon patches over a  2 dimensional scene.
21 T he irradiance is the am ount o f source light incident on the scene being viewed.
'"T h e  radiance is the intensity or the  am ount of light leaving the surface of the  scene.
23 Reflectance is the am ount of light reflected by the objects in the scene.
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intervals of the image-gathering process and treated as the mean spatial detail of the scene. 

The PSD24 of this reflectance Mondrian is approximately given by

2*7
W * ) -  [1 +  (27r/ip02]3/2’

where £2 =  v2 +  ui2 and u, uj are the spatial frequencies. It has been shown tha t this PSD 

is typical of many natural scenes.

The normalized irradiance i (x , y) is represented by a blurred 2-D Mondrian whose PSD 

4 > i ( u , u ; )  is approximately given by

*> =  +  ]•

where m  is the mean spatial detail, o f is the variance of the unblurred Mondrian, and o^ 

is the blur index that controls the sharpness of the polygon edges to mimic the penum rbra 

scenes. The radiance field L{x.y)  thus defines the simulated degraded scene.

7.4.3.1 Scene G eneration

The 2 dimensional scene size used in the simulation is 256 x 256 pixels. The spectra from 

Figure 7.30 were subsampled at every .05y.m to produce ideal spectra of 42 points. This 

results in a scene size of 256 x 256 x 42 bands. Figure 7.31 illustrates the process by which 

the 42 band real multi-image is generated. To generate the ideal scene the parameters of

“'The Fourier transform of the covariance function is called the Power Spectral Density (PSD), or power 
spectrum. It characterizes the spatial frequency content in the covariance function. The width of the power 
spectrum is proportional to the inverse of the spatial correlation length. If the correlation length of the data 
is small, the covariance function is narrow, and the power spectrum will be wide. Conversely, data that is 
corelated over a substantial distance will have a narrow power spectrum, with little power at high spatial 
frequencies [86].
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the 2-d mondrian template are input into the  generation model. Each spatial location in the 

mondrian is assigned a  number corresponding to a  specific reference spectra. The resulting 

ideal image is created by assigning the reference spectra of each location corresponding to the 

identification number for each vegetation species. Each resulting real image is blurred using 

a  PSF blurring model according to the description of the scene radiance model described 

in Section 7.4.3. Figure 7.32 shows the ideal mondrian template and class color m ap of 

the vegetation species regions. Figure 7.35a shows an RGB composite of the real scene 

generated using the reference spectra of Figure 7.30.

To generate the atmospheric models the  parameters for the templates are input into the 

generation model and the resulting image is further blurred using the atmospheric trans

m ittance model. A simulation of two atmospheric models is shown in Figures 7.33 and 7.34. 

Each model represents a  different atmospheric transmittance I ( x ,y )  simulation where the 

value ranges between 0 and 1. Where 0 represents complete absorption, and 1 represents 

complete transm ittance. In most studies, the  irradiance i{x,y)  is assumed to be constant 

over the scene. However, in this experiment, we model a spatially varying irradiance over 

the scene. This spatially varying irradiance is represented by the two atmospheric models 

of Figures 7.33 and 7.34.

The first model which we will term  a tra n s l, has two moderately sized regions (<  30%) 

of low transm ittance a t the lower left and right portions of the image. For the m ajority of 

the scene the transm ittance is less than  45%, with some higher transm ittance areas located 

through the middle portion of the image of about 80%. The second model which we will 

term  atrans2, has a  general transm ittance o f about 65% for most of the scene.

Continuing with the simulation of Figure 7.31, after the ideal scene image m  and atmo-
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Figure 7.32: (1) Ideal 2-D Mondrian and (r) ground truth map.

spheric transm ittance image m'  are created, the real image g is generated by multiplying 

image m! and m (see Equat:on 7.2). Finally, the real mage g is processed with the MSR 

algorithm to create the restored image / .

7 .4 .4  D iscu ss io n

In order to analyze the data, fidelity metrics are computed for the ideal, real, and the 

MSR enhanced images. Because we have “ground tru th” data, these fidelity metrics can 

be applied and the results compared to the ground tru th . The fidelity analysis will be 

based on the use of two metrics that measure the accuracy and consistency of the results, 

as they are affected by the application of the two atmospheric transmittance models. (1) 

A difference or Squared-Error metric is used to measure the consistency between the two 

real original images for each atmospheric models, and the consistency between the two real
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Figure 7.34: ATRANS2: Model 2
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Table 7.24: List of constants used to process the simulated images with the MSR
Constant <r2 o3 a 4 Gain Offset

Value 2 5 20 200 175 0.57

retinex images. (2) A sensitivity metric is used to measure the classification consistency 

and accuracy between the real original and real MSR images for two different ground tru th  

maps.

7.4 .4 .1  M S R  Pre-classification P rocessing

Figure 7.35 and 7.36 show RGB and linear contrast stretched (LCS) composites of the 

real original and MSR processed scene. In Figure 7.35a, the original scene has a  reflectance 

of at most 60, thus making it difficult to compare it to the MSR processed image of Fig

ure 7.35a. However, in the LCS versions of the images we are able to compare features 

in both images. The most striking observation between the two images is that the MSR 

enhances details between class borders and within the class regions so that the sharpness 

of features in the image distinguishes it over tha t of the original image. We do note the ap

pearance of edge artifacts within the borders of the regions for the MSR image. These edge 

artifacts are caused by Mach band undershoots and overshoots displayed as dark boundaries 

around the border of certain regions [28].

Figure 7.37 shows the real original and MSR images created using the two atmospheric 

models of Figures 7.33 and 7.34. The original images have been linearly stretched so tha t 

subtle differences between them and the MSR image can be compared. As we recall from 

Figures 7.33 and 7.34, the atransl model had an overall transm ittance of about 45%, the 

atrans 2 model 65%. Comparing the effects of the atmospheric models on the original and
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Figure 7.35: real 2-d mondrian scene: (1) original (r) linear contrast stretched version.

Figure 7.36: real 2-d mondrian scene: (1) MSR processed (r) linear contrast stretched version.
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Original atrans 1

Figure 7.37: Effect of atmospheric models on original and MSR images.

MSR images, we see that the MSR images appear visually consistent between both models. 

However, the original images show the effects of the transmittance models as various dark 

reflectance areas in the images. For instance, we can easily see the low transm ittance areas 

in the bottom left and right portion of the original atransl image. We also observe very 

bright areas of reflectance in the atrans2 model in which the tranm ittance was the highest. 

In the MSR atransl image we do observe a darkening of reflectance in the lower left comer 

of the image which corresponds to the same low transmittance in the a transl model in the
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Figure 7.38: Difference images for the (1) original and (r) MSR images.

same area. However, overall the MSR images are more consistent. We also observe that 

the boundaries between regions in the MSR images are more clear and are in greater detail 

than the original. We observe, however, edge effects in the MSR images, around the region 

borders as we identified previously in the MSR images of Figure 7.36.

In Figure 7.38 we illustrate the results of using the squared-error difference m etric to 

compare the original and MSR images for each atmospheric transm ittance model. T he met

ric is applied by calculating the squared-error distance between the two original images and 

an squared-error distance between the two MSR images. We conclude from the difference 

images tha t the consistency observation between the MSR images for the difference trans

mittance models is again confirmed. The bright constrast areas in Figure 7.38 represent 

large differences between the degradations caused by each atrans model. In the original 

image, the areas of bright contrast occur because of regions of high absorption which result
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Figure 7.39: Training Set.

in low reflectance for one image and  the high transm ittance which result in high reflectance 

in the other image. These different transm ittance patterns are occurring a t the same spa

tial location in the atransl and a trans 2 degraded original images. We observe the same 

patterns in the atrans models shown in Figures 7.33 and 7.34. The areas of bright contrast 

occur less frequently in the MSR difference image.

7.4 .4 .2  M ulti-im age C lassification

Because we have a  ground tru th  map of our ideal classification, the training set will be 

selected from regions in the image shown in Figure 7.32. The chosen training areas are 

shown as rectangular polygons in Figure 7.39. We used vector quantization (VQ) to perform 

unsupervised classification on the multi-spectral image. The only user specified parameter 

is the number of classes K.
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Figures 7.40 and 7.41 show the spectral means for the training set areas shown in Fig

ure 7.39. We observe that the spectra for the oat hay, potato (Nt), and alfalfa classes appear 

to be better separated for the MSR processed images than for the original. Particularly, in 

the visible region of the spectrum, the spectra are better separated in the MSR image than 

for the original image. We also note a  significant seperation for the pasture (C), Potato 

(Nh), pasture, barley, and bare field spectra for the MSR image. We observe th a t the MSR 

algorithm boosts the reflectance in the visible, flattens the reflectance in the NIR regions. 

This result indicates that the MSR algorithm can transform the feature space in which 

the analysis and classification of multispectral data is performed. The implication of this 

transformation is that spectral regions with limited feature information before MSR pre

processing, can now be used for spectral analysis. This transformation of the feature space 

is also evident in the visual quality of the MSR images shown in Figure 7.37. We conclude, 

that the MSR algorithm results in better seperation between the spectral signatures for 

each of the 8 vegetation species.

For classification, a 9 band subset of features were chosen from the original 42 band 

image. The wavelength centers for the nine bands are given in Table 7.25. The multi-image 

consists of three RGB bands (band numbers 1-3), one Near Infra-Red (NIR) band (band 

number 4), and five short-wave ER (SWIR) bands (band numbers 5-9). This combination 

of bands, is similar to that used in Experiment 3.

To cluster the images we used VQ along with a splitting method to define the spectral 

signatures [84]. The splitting algorithm used to generate the trained codebook, splits each 

training set codebook vector using the best perturbation factor for that dataset. The 

perferred perturbation factor is the one tha t generates the smallest MSE for the input
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Table 7.25: AVIRIS Dataset

Band No. Mondrian Wavelength 
Band No. center,pm

1 1 0.45
2 3 0.55
3 5 0.65
4 7 0.75
5 8 0.80
6 13 1.05
7 16 1.20
8 25 1.65
9 36 2.20

training set. The algorithm is designed to produce cluster means for a  specific codebook 

size. As is the case for most classification methods, the performance depends on the quality 

of the set of spectral means used to discriminate classes in the image. For this analysis, 

we did not focus on methods to obtain spectral means, but compared the relative accuracy 

of the spectral means obtained by the VQ to signatures derived from the training areas 

defined by spectra given in Figures 7.40 and 7.41.

In the training stage, training set vectors were chosen from the areas shown in Fig

ure 7.39. The training set vectors were input into the splitting algorithm and the trained 

codebook vectors were generated. In the testing stage, the images were classified w ith 

the trained codebook vectors, using a  MSE VQ clustering algorithm. The resulting test 

codebook vectors were used as candidate spectral means to identify each vegetation species.

Figure 7.44 shows the classification results for the 9 band multi-image for the real original 

and MSR processed images. The classification results for the real original image are more 

consistent with the ground tru th  image of Figure 7.32. The MSR classified image shows 

classification errors around the region borders which were identified as edge artifacts. These
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Figure 7.44: Classification results for original and retinex.

errors are seen in some of the Potato (Nh) regions in which the edge artifacts are classified 

as Pasture (C), and in the Barley regions in which the edge artifacts are classified as Bare 

Field.

7.4.4.3 S p ectra  A nalysis

Figures 7.45 and 7.46 show the output plots for the test codebook vectors or candidate 

spectral means20 for the original and MSR images for each atmospheric model. The candi

date spectra means are labeled by the DN number generated by the clustering algorithm, 

and by the color of the class label that it was matched to. For each image shown, two sets 

of the same DN numbers are shown. For the first group of DN numbers are the atrans 1

25 For the rem ainder of th is chapter, the  spectral vectors generated by the clustering algorithm  will be 
refered to as candidate spectra  because they have not been assigned a  class label. The spectral means of 
Figures 7.40 and 7.41 will be referred to  as reference spectra, because each candidate will be m atched to  one 
of these spectra.
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candidate spectra and they are plotted first, then the atrans 2 spectra are plotted. Labeling 

of candidate spectra can be done by matching spectral means to library spectra or to  refer- 

ene spectra tha t have been identified using ground tru th  data. This matching is typically 

done using a similarity metric such as described in Chapter 3 alone, o r in combination with 

possibly one of the following feature extraction methods [86]:

•  image residuals — the intent is to remove the external factor o f  topographic shading 

and to emphasize the absorption bands of different species relative to an average 

signature with absorption features [53]. The process requires two steps: (1) divide 

each image spectrum by a reference band. (2) Calculate the  average normalized 

spectrum  for the entire scene and subtract it from the normalized spectrum produced 

in step 1.

•  spectral fingerprints — the concept is to locate the local points o f  inflection (maximum 

slope) in the spectral curve using scale-space filtering [73]. A spectral fingerprint is 

calculated by convolving the spectrum with the Laplacian of Gaussian (LoG) filters of 

different widths and plotting the zero-crossings on a graph of the filter’s sigma value 

versus wavelength.

•  absorption band parameters — for the single absorption bands, the parameters of 

depth, width and position can be defined [81]. The width is measured a t half the 

band depth, and the position is the wavelength a t the band minimum [86]. These 

features can be compared to the same features derived from a  spectral database for 

identification.
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•  spectral derivative ratio — this method reduces the effects of atmospheric scattering 

and absorption on spectral signatures [72]. It can be shown w ith the aid of a simple 

radiometric model, that the ratio of any-order derivative of the at-sensor radiance 

data a t two wavelengths approximatly equals the ratio of the same-order derivative 

of the spectral reflectance.

Most of the candidate spectral means in Figures 7.45 and 7.46 were labeled by compar

ing their absorption band features to the features of the reference spectra in Figures 7.42 

and 7.43. Three observations about the candidate spectra are noted:

1. The candidate spectra have a  lower average spectral reflectance than  the reference 

spectra they are matched to.

2. The candidate spectra from the atrans 1 degraded image have a  lower average spectral 

reflectance than the candidate spectra from the atrans 2 degraded image.

3. The candidate spectra show a decrease in the depth of absorption features. As a 

result, the spectra appear smoother in comparison to the reference spectra.

However, for the MSR candidate spectra, we observe additional effects:

1. Except for the Pasture (C) spectra, the candidate spectra have a t least the same 

or a slightly higher average spectral reflectance than the reference spectra they are 

matched to.

2. The candidate spectra are well seperated in terms of spectral reflectance.

3. Each candidate spectra generated by each atrans degraded image was matched to a 

reference spectra.
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In the original image, it was difficult to determine if the DN:2 spectral mean for the 

a trans 1 model and the DN:2 spectral mean for the atrans 2 model should be matched to 

the Pasture (C) or Potato (Nh) reference spectral means of Figure 7.42 just by comparing 

absorption band features. Therefore, we decided to try a  different approach by applying 

continumm removal to the reference and candidate spectral means and then comparing 

them  using their absorption band features.

7 .4 .4 .4  C ontinuum  Rem oval

Continuum removal is a  method for normalizing reflectance spectra to allow comparison 

of individual absorption features from a common baseline. The continuum is a  convex 

hull fit over the top of a  spectra utilizing straight line segments that connect the maxima 

of the local spectra. Figure 7.47a shows a typical cholorophyll absorption for vegetation. 

The continuum is typically marked from one maximum to the next in a spectra. The first 

and last spectral data  values are on the hull and therefore the first and last bands in the 

output continuum removed spectra will be equal to 1.0. The continuum is removed by 

dividing it into the actual spectra for each point located within the first and last band of 

the absorption of interest. The resulting spectra is equal to 1.0 where the continuum and 

the spectra match and less than 1.0 where absorption features occur. Figure 7.48 shows a 

continuum removed absorption feature. Typically continuum removed candidate spectra are 

identified by matching the depth, width, and band position to that of continuum removed 

library spectra.

The continuum removal to isolate diagnostic spectral features is an im portant step, 

particularly when a pixel contains spectral information from green plants, dry vegetation,
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reflectance

contiuum

wavelength

Figure 7.47: C h lo ro p h y ll a b so rp tio n  in v eg e ta tio n .

Value

wavelength

Figure 7.48: C o n tin u u m  Rem oved A bso rp tion

and soil [13]. In such a case, the combination of materials within a pixel changes the color 

perceived by the human eye. By isolating absorption features with continuum removal, the 

position and shape of the continuum removed spectral feature remains constant, although 

its depth changes with absorption fractional area coverage in the pixel.

Figure 7.49b shows a  comparision of the continuum removed cholorophyll absorption 

(0.68 — 0.73nvn) spectra for pasture (c) and potato (nh) for the original reference spectra, 

and two candidate spectra. The subtle shape differences in absorptions between certain veg

etation species can possibly provide a  better method for species identification. To identify
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(0 .45 -  2 .2 /i).

the candidate spectra in Figure 7.49a, we match each spectra to the reference spectra based 

on the wings of the continuum removed absorption features shown in Figure 7.49b. The 

depth of the absorption can change, depending on the type of atmospheric effects occurring. 

However, the wings of the absorption are generally constant, and are mainly affected by 

senescence and water deprivation effects [13]. From initial examination of the normal spec

tra  plots shown in Figure 7.49a, it is not clear that significant absorption feature differences 

exist between the candidate and reference spectra. However, examining the continuum re

moved spectra in Figure 7.49b, subtle differences in width, height, and depth between the 

spectra are evident.

In Figure 7.49b, we show a continuum removal plot generated by the ENVI software tool. 

This plot shows the generation of continuum removal features for each absorption region 

located within each spectra. To analyze this continuum removed spectra plot further, we 

will concentrate on the absorption located a t the long-wavelength side of the chlorophyll
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absorption at (0.68 — 0.73pirn) or between band numbers 3 and 4.

Figure 7.50 shows a closer examination of the normal and continuum removed features 

for the wavelength region between 0.5 — 0.8pm. Figure 7.50b shows a  plot of the DN 

2:atransl candidate spectra with the reference spectra. Figure 7.50c shows a plot of the DN 

2:atrans2 candidate spectra with the reference spectra. The depth, width, and band position 

of each absorption is illustrated in each plot. Examining Figure 7.50b, we observe th a t the 

DN 2:atranl candidate spectra closely matchs the features for the pasture (c) reference 

spectra in terms of depth, width, and band position. Examining Figure 7.50c, we observe 

tha t the DN 2:atrans2 candidate spectra more closely matchs the potato (nh) reference 

spectra in terms of width, and band position than the pasture (c) spectra. However, we 

speculate the accuracy of such a labeling would be strengthened if the continuum removed 

features for a  42 band dataset in the wavelength region of interest had been used. The 

reduction of the original dataset from 42 to 9 bands, resulted in a  lost of feature information 

available for matching candidate spectra. Furthermore, the application of each atrans model 

reduced the depth of the absorption features present in the candidate spectra, resulting in 

a  further lost of information.

7.4.4.5 Perform ance M etrics

Figure 7.51 shows the classification results for the original and MSR images for both atrans 

models. We observe, that the classification for the MSR images are more consistent than 

the original images. However, there were problems seperating certain class pairs such as 

pasture (c) and potato (nh), and barley and bare field. The pasture (c) spectra is not 

identified in the atrans 2 model image for the original. Both original and MSR atrans 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7. EXPERIM ENTAL RESULTS 170

Normal
60

dn 3: Posture
~ dn 2: Potato (I 
• dn 2: otms250
dn 2: ■atmsl

c.a  _ 
■Q 304>

20

1 0

.5 3.0 3.5
land Number

Continuum Rem oval
dn 5: Pasture
dn 2: Potato 0 
dn 2: <atrns 1

0.9

3^ 0.8

0.7

and Number

Contiuum Removal
1 .ao

dn 3: Pasture
dn 2: Potato (I 
dn 2 : <3trns2

0.90

o>J3O>- 0.80

0.70

Band Number

Figure 7.50: Normal vs. Contiuum Removal Feature Fitting for pasture (c) and potato (nh) spectra 
(.5 -  .75ft).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H APTER 7. EX PERIM E N TAL RESULTS 171

Original atrans 1

Retinex atrans 1 Retinex atrans2

Figure 7.51: Classification results for original and MSR images.

degraded images have class errors resulting from the effect of the low transm ittance area in 

the lower left portion of the images.

Table 7.26 shows the classification sensitivity results for the original and M SR image 

for different ground tru th  images. The original and MSR ground tru th  images refer to the 

images shown in Figure 7.44. The sensitivity measurements are listed in terms o f the % of 

pixels corrected classified and the actual number of pixels correctly classified out o f the total 

65536. From examination of the table, we observe tha t the MSR images resulted in better
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Table 7.26: Sensitivity (#  pixels out of 65536)

Ground T ruth Image Model 1 Model 2
% correct #  pixels correct % correct #  pixels correct

Real Original Original 57.56 37722 54.32 35599
Real Original MSR 60.99 39970 74.34 48719
Real MSR MSR 70.63 46288 86.86 56924

sensitivity results. For the real original ground tru th  image, the MSR produces sensitivity 

results close to that of the original image for the atrans 1 model. However, a  greater 

seperation in results is seen between the original and MSR images for the atrans 2 model. 

For the real MSR ground tru th  image, we observe tha t the MSR images show a  greater 

improvement in sensivity than  was observed with the real original ground tru th  image. 

One im portant question tha t arises from the presentation of this sensitivity data: can we 

estimate the sensitivity results if the dn 2: atrans 2 spectra of Figure 7.50 was assigned to 

label pasture (c) instead of potato (nh). We speculate tha t the two atrans original images 

would appear more consistent in Figure 7.51. However, in terms of sensitivity, the expected 

errors would be about the same.

Figure 7.52 shows an RGB composite of the quantized images created using the spectral 

means of Figures 7.45 and 7.46. The original images have been linearly stretched so that 

subtle differences between them and the MSR image can be compared. Comparing the 

effects of the atmospheric models on the original and MSR images, we see that the MSR 

images appear visually consistent between both models which is consistent with the results 

obtained using the 42 band multispectral image results discussed earlier in this experiment. 

However, the effects of the transm ittance models on the original images is more apparent 

in these quantized images. The low transm ittance areas are sharply contrasted with the
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Retinex atrans 1 Retinex atrans2

Figure 7.52: Effect of atmosperic models on VQ original and MSR images.

high transm ittance regions. In the MSR atransl image we do observe the same darkening 

of reflectance in the lower left corner of the image which corresponds to the same low 

transm ittance in the a transl model in the same area. We observe the same edge artifcats 

effects around the borders of regions in the MSR quantized images as seen in the 42 band 

MSR image. For this experiment, the advantage of generating classification and quantized 

images simultaneously is tha t the classified image may provide an indication of how closely 

the quantized image will match the original data.
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Difference
M easurement

VQ Original VQ Retinex

Figure 7.53: Difference images for the (1) original and (r) MSR images.

Finally, in Figure 7.53 we illustrate the results of using the squared-error difference 

metric to compare the original and MSR images for each atmospheric transmittance model. 

We conclude from the difference images that the consistency observation between the MSR 

images for the difference transm ittance models is again confirmed. These results are similar 

to the results shown in Figure 7.38. However, we observe more high difference regions in 

Figure 7.53 for the original image, than in Figure 7.38.

7 .4 .5  S u m m a ry  a n d  C o n c lu sio n s

Although image enhancement is typically applied to improve the visual quality of multispec- 

tral images, in this experiment we have given quantitative evidence tha t the application of 

the MSR algorithm restores images that are degraded by atmospheric transm ittance effects 

and improves the results of multispectral image classification. Because the MSR algorithm
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was applied before clustering, the classification algorithm generated candidate spectra tha t 

were better seperated in reflectance for the MSR images than the spectra generated for the 

original images. Furthermore, the MSR candidate spectra m aintained seperabiiity and high 

reflectance values regardless of the atmospheric transm ittance models applied.

We conclude tha t the application of the MSR algorithm produces spectral signature 

images and our results show this fact. Except for class regions in which edge artifacts 

produced incorrect classifications around region boundaries, the classification results and 

the difference measurement results show a consistency between MSR images not shown in 

the original images.

W hat we have not presented are classification results comparing MSR processed images 

to images restored using other types of image enhancement and restoration techniques. 

That work is beyond the scope of this experiment.
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Chapter 8

Summary and Future Research

In this dissertation, several methods for multi-image classification and compression based 

on a VQ design were presented. It was demonstrated tha t VQ can perform multi-image 

classification and compression jointly by associating a class identifier with each spectral 

signature codeword. Utilizing four experimental simulations, it was shown that clustering 

methods used to produce codebook vectors to accomplish compression could also be used 

to identify potential spectral signatures to accomplish classification.

In Chapter 1, the interrelationship between the concepts of statistical clustering, classifi

cation and compression were defined in a  multi-image VQ context. It was further illustrated 

in Chapter 3, tha t each concept shares common definitions, notational descriptions, and fi

delity metrics used for image analysis.

In Chapter 5 the WBRVQ method was extended to multi-component image applications 

to study the flexibility and benefits of an approach tha t incorporates a  trade-off between 

classification and compression priorities. In Chapter 7, the WBRVQ m ethod was experimen

tally tested with other traditional methods and was shown to provide superior performance

176
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when classifying nonseperable overlapping distributions.

Additionally in C hapter 7. the Multi-scale Retinex image enhancement method was 

applied experimentally as a  preprocessing stage before classification and compression to a 

series of multi-spectral images. In terms of the effect of multi-image enhancement on class 

signatures, it was shown that the Retinex method produces more in-class variability, and 

consistency among images effected by different lighting variations. Furthermore, it was 

shown that the application of VQ as a  classifier did not effect data  integrity as much as the 

initial quality of the images used in the analysis.

The following topics are potential extensions to the work represented in this dissertation.

•  Multispectral Image Synthesis. Simulation of imaging systems is useful in visualizing 

image degradations of the image formation process such as noise and blurring caused 

by sensor optics, A /D  quantization, and atmospheric effects. In Chapter 7, experiment 

1 and experiment 4 illustrated the complexity when designing models to simulate the 

reflectance and atmospheric conditions for a real scene. In future work, we could 

expand these models to simulate the spatial/spectral detail degradations caused by 

different ground instantaneous field of view (gifov) and ground sample interval (gsi) 

parameters tha t determine the level of spatial resolution available for each pixel in 

the image. Furthermore, we would like to develop a more comprehensive model for 

simulating complex atmospheric conditions.

•  Retinex Image Enhancement. Remote sensing data must generally be corrected for 

atmospheric and imaging optics effects if the identification and classification of images 

using spectral signatures is required. This correction is definitely required in order to
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compare classification results over several acquistion periods. The Multi-Scale Retinex 

technique, applied as a  pre-processing step, has been shown to enhance the capabilities 

of the classification algorithm to correctly identify spectral signatures in multispectral 

images. In future work, we would like to investigate the use of a  Single-Scale Retinex 

operator as a  preprocessor before classification. This would require the design of a 

method to determine the SSR param eter scale size tha t would be the most effective 

for a  particular application. For example, this could require the development of a 

metric that quantifies the amount of degradation in the image and characterizes how 

that degradation varies across the image.

•  Search and Storage Methods. In Chapter 4 we studied alternative methods to improve 

the search and storage complexity of traditional full-search vector quantizers. For ex

ample, variable-rate codes such as Tree Structured VQ and k-d trees (k-dimensional), 

and product codes such as M ean/residual and G ain/shape VQ can be used to  provide 

a more efficient method for multi-dimensional sorting and searching. Although these 

methods can increase the average distortion of the resulting quantized data, these 

methods provide more efficient techniques for histograming, sorting, and searching 

of multi-dimenstional space for iterative probability estimation computations. These 

types of computations are required in each iterative step of the WBRVQ m ethod. In 

future work, we would like to investigate which of these methods could provide the 

best alternative to the full-search methods used currently in the WBRVQ method.

•  Soft Classification in VQ Design. To a  large extent, the ability to accurately classify 

a  multispectral image is determined by the extent of overlap between class signatures.
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Methods such as Maximum Likelihood and Fuzzy Clustering previously outlined in 

C hapter 3, allow the ability to show th a t overlap as likelihoods of membership in each 

candidate class. Because m ultispectral image analysis often involves the classification 

of mixed pixel regions, soft classification methods such as Maximum Likelihood and 

Fuzzy Clustering more accurately characterize and classify these types o f regions. In 

future work, we would like to explore the incorporation of these methods into the  

WBRVQ method to improve the classification and compression results of mixed pixel 

regions in the image.
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