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Abstract

The computation of network properties such as diameter, centrality indices, and paths on networks
may become a major bottleneck in the analysis of network if the network is large. Scalable approximation
algorithms, heuristics and structure preserving network sparsification methods play an important role in mod-
ern network analysis. In the first part of this thesis, we develop a robust network sparsification method that
enables filtering of either, so called, long- and short-range edges or both. Edges are first ranked by their alge-
braic distances and then sampled. Furthermore, we also combine this method with a multilevel framework to
provide a multilevel sparsification framework that can control the sparsification process at different coarse-
grained resolutions. Experimental results demonstrate an effectiveness of the proposed methods without
significant loss in a quality of computed network properties.

In the second part of the thesis, we introduce asymmetric coarsening schemes for multilevel al-
gorithms developed for linear arrangement problems. Effectiveness of the set of coarse variables, and the
corresponding interpolation matrix is the central problem in any multigrid algorithm. We are pushing the
boundaries of fast maximum weighted matching algorithms for coarsening schemes on graphs by introduc-

ing novel ideas for asymmetric coupling between coarse and fine variables of the problem.
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Chapter 1

Introduction

Many real world objects and the relationship between them can be modeled as networks which are
represented as graphs in the computer systems and algorithms, where vertices represent the objects and edges
abstract away the connection between them. For the purpose of this thesis, this definition of “real world” net-
works would suffice. Problems in scheduling, transportation, VLSI and robotics benefit from being modeled
as graph problems. Therefore, the capability afforded by graphs lead to algorithmic problems like searching,
spanning trees, shortest path, flow problems and matching problems. Efficient implementations for some of
these algorithms exists. However, many graph problems are computationally expensive (e.g., they can be
NP-complete). Examples of such problems include graph partitioning, linear arrangement, and coloring. In
particular, many versions of, so called, constrained cut-based problems such as partitioning, and clustering are
computationally intractable. Quadratic, cubic (and even many nearly-linear time) approximation algorithms
that produce suboptimal solutions with some guarantees become infeasible as the size of the input becomes
large, so heuristics that provide approximate solutions in strictly linear time with no hidden coefficients are
critical. Some of these problems benefit from the application of multiscale methods.

In this thesis, we focus on developing scalable algorithms for real world networks. First we introduce
a method of graph sparsification that combines the algebraic distance of edges with a multilevel framework
to filter the graph at various resolutions. We provide empirical results that show the preservation of many
important structural properties of the original network. Secondly, we develop the minimum 2-sum solver
introduced in [66] and extend the coarsening scheme with a stable matching algorithm to improve the solution

for real world networks.



Thesis Structure

We begin this thesis with an overview of various methods applied in the domain. In Chapter 1.1, we provide
a quick survey and background of multiscale methods. In Chapters 1.2-1.4, we provide an overview of stable
matching, graph layout problems and sparsification. Chapter 2 of this thesis is based on an accepted journal
paper [41]. The main focus of that chapter is graph sparsification. In Chapter 3, we develop an multilevel
algorithm for the minimum 2-sum problem first introduced in [66] and extend the coarsening scheme with a

stable matching algorithm.

1.1 Background on Multiscale methods

Data derived from complex networked systems in a form of weighted graphs can exhibit a dis-
crepancy between the macro- and the microscopic scales. This is due to the difference in the underlying
physical, biological or social models that describe the system at different scales. In many cases, it has been
observed that complex and even non-deterministic systems can exhibit a much more ordered behavior at their
coarse-grained resolutions. Multiscale methods are a class of algorithms that are employed in large scale
computational and optimization problems to efficiently produce good approximate solutions in which the
information from different scales of coarseness is used. Depending on the application and the domain, these
methods are also referred to as multilevel, multiresolutional, and multigrid techniques. In this thesis we use
them interchangeably.

Multiscale methods are typically applied to large-scale problems in which we can expect to interpo-
late a solution of one variable to another. In other words, we can find dependencies between variables. An
example is in the solving of partial differential equations where the change in the error at each iteration is
small. Solving the entire problem in one shot can be prohibitively expensive. However, solving such problems
at varying scales using multilevel algorithms, in which a solution in one point can be used to approximate
another point, help to improve the solution and eliminate the waste to computational resources [9]

Our multilevel algorithms for graphs are inspired by the algebraic multigrid [14]. In graphs, the
multilevel techniques work by aggregating parts or full vertices of the graph recursively to form a successive
hierarchy of coarse graphs, Gg, G ,..., G in increasing coarseness where GG is the finest (original) graph
and Gy, is the coarsest graph. When the hierarchy of coarse representations is constructed, the computational
problem is solved for the coarsest level and the solution is then refined and propagated to all the graphs staring

from the coarsest to the finest. (See Figure 1.1). The idea is based on the intuition that vertices that have some
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Figure 1.1: Coarsening and Uncoarsening cycle of a multilevel algorithm

“similarity, and closeness” properties might share similar solutions. For example, in the graph partitioning
they may belong to the same part. This framework tends to accelerate global optimization algorithms and
improve the quality of the solution.

The multiscale methods were first developed by Fedorenko and Bakhvalvov [4, 26, 27] and were
employed in the solving of elliptic partial differential equations (PDE). The method was however extended
by Brandt in his multi-level adaptive technique (MLAT) for solving boundary value problems [8]. Given
their scalable nature, multiscale methods have since been applied to different computational or optimization
problems in many fields. Applications of the method in previous studies have also been shown to significantly
reduce the running times. In addition, it has been shown that local algorithms at each scale can be easily
parallelized, making multiscale methods ideal candidates for parallel computers [11]. There is a long history
of applying multilevel methods on graphs. Walshaw applied it to the drawing of large graphs [87]. Safro et al.
applied the framework for solving the minimum linear arrangement problem in [65] to obtain approximate
solutions in computationally efficient time frames. Examples include solvers for linear ordering problems
[68] and network compression [70]. Numerous applications exist also for graph partitioning [34], modularity

clustering [57], and graph visualization [84] Such problems as the traveling salesman, community detection



and graph layout benefit from a multilevel framework [9, 25, 68, 85]. The multilevel methods are also broadly
applied in machine learning making different algorithms applicable on large-scale data. Examples include
support vector machines [60], clustering [47], dimensionality reduction [72], and image segmentation [76].
An in-depth theoretical treatment of multilevel algorithms is beyond the scope of this thesis. For a deeper

study, more literature on the topic can be found in [14, 15, 55]



Chapter 2

Single- and Multi-level Network

Sparsification by Algebraic Distance

2.1 Introduction

Networks are an abstract model of the relationships between discrete objects. Examples include
networks of genes, consumers and generators in the power grid, and networks of friendships or followers
in social communities. In order to study real world networks, they are often represented as graphs, where
the vertices represent the objects and edges model the relationship or interaction between them. Modeling
networks this way facilitates the analysis and understanding of many different structural properties of the
underlying complex system. Several powerful software packages such as SNAP [50], Pajek[23], NetworkIt
[80], NetworkX [31], and Gephi [6] have been developed to provide this capability. However, many complex
networks are massive in size. For example, Facebook users post about 3.2 billion likes and comments each
day [1], Twitter has more than 190 million users and about 65 million tweets are posted each day [88], and
the human gene network contain several million edges [62]. Although, modeling and understanding these
networks is very important in many application domains, the massive size of the network makes it often
impractical to perform network analysis on the entire dataset.

In sparsification methods, we aim to select a representative sample of the corresponding graph such
that some properties of the original graph are preserved. In other words, central to sparsification is the

idea that if an algorithm depends on or computes the properties that are preserved in the sparsified graph,



we can expect that the results will be similar for the original graph [36] while the algorithm will perform
much faster on the sparsified graph. Sampling is broadly being carried out in real world networks. Most
network analytics consider just a sample in time of the networks under study which is usually the result of

data collection limitations [1]. Thus, it is important to understand and develop scalable methods for sampling

massive networks.

There are several motivating examples for network sparsification. One obvious example is in the
domain of visualization. It is often computationally intensive to render huge graphs on a computer screen as
well it is hard to visually analyze such graphs. Sparsification helps to visualize a sample of the graph that re-
veals structural properties that would have been difficult to visualize and visually analyze in the original graph
[46, 74]. The computational difficulty of visualization often arises from its objective, which requires solving
a computational optimization problem [2, 38]. Another broad application is the reduction in the cost of com-
putational network analysis. In computing the betweenness centrality of every node in a massive network, for
example, by prioritizing what edges should be retained and what should be removed, it is possible to improve
the running time of the algorithms at a very minimal cost in optimality [3]. Thirdly, graph sparsification can
be applied to revealing hidden populations which are hard for researchers to find by just looking at the entire
population. For example, Salganik et. al showed that when trying to sample the population of injection drug
dealers, it is difficult to sample directly as this population is hidden and so specialized sampling algorithms
are needed [73]. Methods applied usually involve starting out with a sample of the desired population and
using that as a seed for revealing the other members of the sample population [36]. Existing methods include
snowball sampling [29, 32] and respondent driven sampling [73]. In addition, in the case where there is an
incomplete data, sampling can be used to estimate properties of the original graph. This is particularly useful
in dynamic graphs [82], graph streaming algorithms [1] and collective classification [71].

There are several approaches to sampling a large graph while preserving the desired properties. An
example involves formulating a mathematical programming problem to minimize the distance between the
sparse graph and the original graph [36]. However, such approaches are often quite complex and running
them might be costlier than running the algorithm on the larger graph. Spectral approximation algorithms
also exist [79]. However, those algorithms are not very fast as well and often infeasible for large graphs
[36] as they often involve hidden constants and require convergence in eigen-problems. The more common
approaches are (1) vertex sampling, which involves selecting a number of vertices from the original graph
and retaining the vertex-induced subgraph, and (2) edge sampling, which involves the selection of edges and

corresponding edge-induced subgraph. Other variations of edge and vertex sampling have been developed



(see [36] for a full survey). In our method we focus on the edge sampling and also preserve the nodes from
the original graph. In order to achieve this, we ensure that every node has at least one incident edge in the

sparsified graph.

2.1.1 Strength of Connectivity in Sparsification

If the properties to be preserved are known beforehand, then, in many cases, it is possible to de-
termine what kind of edges are important to preserve those properties and which ones are redundant. Thus,
the sampling transformation can then be designed with the objective of retaining those edges. A general
framework for sparsification involves: (1) ranking the edges and assigning each edge an edge score; and (2)
sampling edges based on their scores [36]. Scoring edges provides a motivation for rating the strength of
connection between two vertices. In particular, this is extremely important in weighted networks, where the
weights can be approximate, noisy or even completely missing. Different types of the connection strength
have been proposed for scoring edges. We refer the reader to [51] for a brief survey on the sparsification-
relevant types of connectivity strength. The most relevant to our work is a cohort of spectral methods widely
used in theoretical computer science to sparsify dense graphs such that some spectral properties are preserved.
These are usually cut-based properties that are formulated using Cheeger inequality. For example, Spielman
et al. introduced the edge effective resistance [77]. The effective resistance is computed using the linear
system solver [78] which runs in O(mlog'®n) time which can be time consuming to be feasible. Another
example is the vectorized PageRank [22]. Various interpretations of the diffusion have been proposed and
analyzed [43, 83] for graph kernels. However, these methods usually suffer from impractical complexity.

Another relevant class of methods is based on the Jaccard index in which a similarity between two
vertices is measured by computing the overlap in their neighborhoods. In [74], Satuluri et. al rated edges
according to the local similarity sim(é, j) = |N; N N;|/|N; U N;|, where N; is the neighborhood of node 3.
This method was designed for clustering objectives assuming that nodes with larger shared neighborhoods
are likely to belong to the same cluster. A global similarity threshold is then chosen for which edges are
filtered. The authors also introduced a method for local sparsification in which they rate and filter edges per
node by selecting the top df edges ranked by their similarity score, where e € (0,1). Their method ensures
that there is at least one edge per node after sparsification. We explore this property in our method. This
sparsification technique can be computationally expensive since it requires counting the number of triangles
an edge is a part of. The authors, however, provided an approximation for computing the similarity. Based on

the work of Satuluri et al. [74], local degree method favors the retention of high degree nodes - also known
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as hub nodes [51]. As in the local similarity, for each node, they include edges to the top df nodes. However,
edges are sorted according to the degree of their neighbors in descending order. The main idea of this method
is to keep edges in sparsified graph that leads to nodes with high degree. Additionally, vertex connectivity
can be measured by the betweenness centrality, the shortest path length, the weight of substructures (such as
spanning rooted forests, routes, overlapping paths that connect two vertices [18]) and algebraic distance [19]

which we will discuss in Section 2.3.

2.1.2 Our Contribution

We introduce two methods for complex network sparsification that distinguish between strong and
weak connectivity through neighborhoods of limited distance from the endpoints of edges. In some networks
(such as those that include geospatial information), these types of connections can be interpreted as long- and
short-range connections while in other (such as social networks) as inner- and outer-community connections.
In both methods the sampling is based on the connectivity measured by the algebraic distance between nodes
[19]. It generalizes the idea of methods that estimate the Jaccard coefficient for more distant neighborhoods
through limited application of lazy random-walks (also known as algebraic distance [19]).

In the first method (the single level approach) we demonstrate multiple settings of filtering local
and global connections with the sampling similar to [74]. In the second method we propose a multilevel
algorithm that combines the single level approach with the multilevel framework [61] to sparsify graphs at
different coarse-grained resolutions. We provide a robust method that can be tuned to preserve different net-
work properties that are important in a variety of applications. The multi- and single level methods can both
be used to either preserve the global structure or the local structure. The resulting sparsified networks are
compared with the original network using following properties: degree distribution, clustering coefficient,
number of connected components!, diameter, betweenness centrality, PageRank centrality, and modularity
[56]. Evaluation of both methods is demonstrated through comparison of the aforementioned network prop-
erties with those measured on the original network. Finally, we discuss how our method can be parallelized
and show the running time in OpenMP implementation. The proposed methods are implemented and avail-

able at [40].

'In many existing sparsification methods, the number of connected components is preserved “artificially”, i.e., even if the edge is
marked for deletion, it is not deleted if it increases the number of connected components. Here we do not restrict our algorithms with
such requirement.



2.2 Preliminaries

We denote the graph underlying a given network by G = (V, E, w), where V is a set of vertices, F
is a set of edges, and w : £ — R is a weighting function on E that represents the strength of connectivity
between two vertices. The graph is undirected, containing no self-loops and multi-edges. For each node
1 € V we define its degree by d; and its neighbors by N;. The clustering coefficient is a measure of the
probability that neighbors of a node are connected to each other [56]. Consequently, it is a measure of the
degree to which nodes in a network tend to cluster [88]. The clustering coefficient of a node ¢ is defined as
¢i = A\;/Ti, where J; is the number of triangle subgraphs ¢ participates in, and 7; = d;(d; — 1)/2, i.e., the

number of triples. The clustering coefficient of a graph G is defined as

1
Ce = ] > e @2.1)

iev’

where V! = {i € V' | d; > 1}. The diameter of a graph is defined as the maximum distance shortest path
among all pairs of vertices in G from the same connected component. The resulting sparsified networks are
compared with the original network using following properties: degree distribution, clustering coefficient,
number of connected components?, diameter, betweenness centrality, PageRank centrality, and modularity
[56]. We will use the Spearman Rank Correlation Coefficient (p) that is a measure of the correlation between
two distributions. It is defined as p = 1 — (6 > p?)/(n(n? — 1)), where p; = z; — y;, and z; and y; are the

ranks computed from the scores X; and Y.

2.3 Algebraic distance

In order to determine the strength of connection of edges for the purpose of sparsification, we use
the algebraic distance introduced in [19, 61]. The algebraic distance of an edge ij (denoted by d;;) is inter-
preted as locally converged iterative process that propagates the weighted average of values from /V; and N;
initialized by random numbers [19]. This expresses the strength of connectivity between two nodes through
their local neighborhoods. The process is essentially a Jacobi overrelaxation (JOR) or a lazy random walk
with limited number of steps (see Algorithm 1). The algebraic distance was successfully used in several al-

gebraic multigrid algorithms [16, 52] and in multilevel algorithms for discrete optimization on graphs (such

2In many existing sparsification methods, the number of connected components is preserved “artificially”, i.e., even if the edge is
marked for deletion, it is not deleted if it increases the number of connected components. Here we do not restrict our algorithms with
such requirement.



as the minimum linear arrangement [61], and graph partitioning [69]) to reduce the order of interpolation that

results in a sparsified coarse system.

Algorithm 1 Algebraic distance implementation: ComputeAlgDist

1: Input: Parameter « (in our experiments o = 1/2)
2: VZ]EER”:O
3: forr=0,1,2,...do > the number of test vectors r is small
4 VieVa2? « rand(—0.5,0.5)
5: for k =0,1,2,...do ) > the number of JOR iterations k is small
k—1
6: VieV x,gk) — a;vgk_l) +(1—a) 2 Vi
E]‘em Wi
end for
Rescale z back to (—0.5,0.5)
: VijGERij :Rij+(xi—mj)2
10: end for
11: return Vij € E §;; 1 > € is sufficiently small
Rij+e
12: Vij € E §;j + ——2— > optional normalization

\/di*dj

Other stationary iterative relaxations can also be applied in a similar setting but since JOR is implic-
itly parallelizable using matrix-vector multiplications, we prefer to use it instead of other relaxations (such as
Gauss-Seidel) that converge faster. Optionally, the algebraic distance can also be normalized by the square-
root of the product of the weighted degrees of the two nodes to reduce extremely high strength of connection
between hub nodes.

The algebraic distance will serve as the main criterion for choosing edges for sparsification in the al-
gorithms below. Because it helps to distinguish between so called short- and long-range connections [19], we
will use it to demonstrate different types of sparsification in which local and global properties are preserved
correspondingly to the types of algebraic distances that we choose. The short-range connections (large values

of d;;) will be called J-strong. The long-range connections (small values of §;;) will be called J-weak.

2.4 Single-level sparsification

In the single-level approach we demonstrate three types of sparsification in which we filter -weak,
d-strong edges and their mixture. In all of these cases, first, for each edge in the graph, we compute the
algebraic distance. Then, for each node 7, we sample the top df neighbors ranked by their algebraic distances,
where ¢ € [0,1]. In this approach it is possible to sample for local or global structure preservation or a

combination of both. To preserve the global structure, we select df weakest connections and add them to the

10



p
e
k (b) Sparsified network by elimi- (c) Sparsified network by elimi-
(a) Original network nating §-weak connections nating §-strong connections

Figure 2.1: An example of a small network with 3 dense clusters and sparse cuts between them (a). Sparsifi-
cation of d-weak connections will result in network presented in (b). Sparsification of d-strong connections
is presented in (c).

sparse graph (see Figure 2.1c). Similarly, df strongest connections are preserved to emphasize the importance

of a local structure in the sparse graphs (see Figure 2.1b).

Algorithm 2 Single-level sparsification: Sparsify(G)

1: Imput: Sparsification parameter e, Graph G

2: Output: Sparsified graph Gsparse

3: Gsparse < empty graph

4: COMPUTEALGEBRAICDISTANCES(G)

5: fori e V do

6: Sort N; by d;; in ascending (or descending) order
7: Add top df edges to Gparse

8: end for

9: return G pqrse

It is also possible to partially preserve both global and local structures with a slight change in the

algorithm, namely, by distributing the algebraic distances into bins, and sampling the edges from all bins. In

3.5%0

bins £ = (max d;; — min d;;)/h, where o is the standard deviation of algebraic distances.

order, to distribute the algebraic distances into bins, we define the bin width h = and the number of

2.5 Multilevel sparsification

The multilevel approach [14, 86] can be applied as a general framework for many different numerical

methods. Most real-world instances are not completely random, i.e., a particular similarity or dependence

11



Algorithm 3 Single-level sparsification with binning: SparsifyB(G)

Input: Sparsification parameter e, Graph G
Output: Sparsified graph Gparse
Gsparse < empty graph
COMPUTEALGEBRAICDISTANCES(G)
for: € V do
Distribute /V; into bins, each bin corresponds to edges ...
Randomly select bins and edges up to df to Ggparse
end for
return Gparse

R A A R ol e

between variables exists and, thus, can partially be detected to reduce their number in complex computations.
Here we introduce and advocate the use of multilevel approach as a general purpose framework for network
sparsification. In the heart of the proposed method lies an idea to sparsify the network at multiple scales of
coarseness which, in contrast to most existing sparsification methods that sample single edges, will allow to
sample clusters of edges of different sizes and J-weakness.

It is known that the topology of many complex networks is hierarchical (or multiscale) and, thus, of-
ten might be self-dissimilar across scales [7, 39, 54, 89]. In such hierarchical representations, groups of nodes
are aggregated into communities, which automatically bundles edges into coarse connections. Bundling the
edges at different scales of coarseness will introduce different levels of §-weakness for such coarse connec-
tions which may or may not be required to be sparsified for the required analysis. For example, in the analysis
of a social network, we may want to visualize only a certain type of edges that connect dense communities of
small sizes, while connections between large communities and local inner connections are out of the scope.
In the proposed framework, this can be achieved by creating a hierarchy of coarse representations, and spar-
sifying at those levels that do not correspond to the desired communities. To create a multilevel framework
we use the algebraic multigrid (AMG) aggregation strategy that was introduced in [65]. For simplicity, we do
not split fine nodes across the aggregates (like in some optimization problems [65, 69]) but instead cover the
graph with star-like structures and coarsen them. For the completeness of paper we briefly repeat the main
components of the coarsening algorithm.

Given an original graph G, in the multilevel framework we recursively construct a hierarchy of de-
creasing size coarse graphs Gg = G, (1, ..., G;. The original graph is gradually coarsened into the smaller
graphs until the small enough graph G, is reached. The sparsification algorithm is then run on the coars-
est level and the results (i.e., edges to eliminate for sparsification) are inherited by the finer graph and the

uncoarsening continues until Gy is reached. In most cases, our discussion is focused on fine-to-coarse and

12



coarse-to-fine transformations of graphs and solutions, respectively. For this purpose, we denote the fine and
coarse level graphs by Gy = (Vy, Ef), and G, = (V,, E.), respectively. At each level, after sparsifying

edges inherited from G, Algorithm 1 is applied to recompute algebraic distance on G's.

The Coarsening We begin with selecting a dominating set of seed nodes C' C V/ that will serve as centers
of future coarse nodes in V.. Setting initially F' = V; and C' = (), the selection is done by traversal of
F and moving to C' such nodes that are not strongly coupled to those that are already in C. At each step
F UC = Vy is preserved, and at the end the size of V; is known, namely, |V,| = |C|. After C' is selected,
nodes in F' = V\C are distributed to their aggregates according to the restriction operator P € {0, 1}/VsI*IC1,
where
s i
1 ifieF, J= Ic(argmaxjec w)

keC

Py = 2.2
P71 dfiec, J=1() 2

0 otherwise,

and I..(j) returns an index of coarse node J that corresponds to j € C'. Then, the Galerkin coarsen-

ing creates a coarse graph Laplacian L, = PTL ¢ P, where Ly is the Laplacian of G ;.

Coarsest Level At the coarsest level, we sparsify the edges by using the single-level Algorithm (3). These
edges correspond to bundles of edge chains at the fine levels that connect the most distant regions in a graph,

so if the goal is to preserve the global structure, the user should avoid of sparsification at deep coarse levels.

Uncoarsening We initialize the solution (sparsification) of GGy by uncoarsening the edges sparsified in G...
When the order of interpolation in the multilevel algorithm equals 1 (i.e., there is only one non-zero entry
per row in P, see Eq. 2.2), each coarse edge I.J € E. can bundle at most two types of edges in &, namely,
at most one edge that connect two seeds I, *(I) and I (), and possibly multiple edges pg € Ey such
that P, i = 1, and P, i) = 1. If 1J is sparsified at the coarse level, then edges of both types
are sparsified at the fine level. After initialization of the fine level, we recompute algebraic distances to
update the information about connectivity in the sparsified fine graph, and, then, more edges may or may
not be sparsified at the fine level depending on the parameter settings. Full multilevel cycle is presented in
Algorithm 4. Example of full multilevel cycle on a Facebook network (see fb-uf in Table 2.1) is shown in

Figure 2.2.
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Algorithm 4 Multilevel sparsification of graph: MLSparsify

1: Input: fine graph Gy = (Vy, Ey), vector of sparsification ratios
2: Output: sparse graph G = (Vy, E})

3: function ML(G)

4: COMPUTEALGDIST(Gf)

5 if | V| is small enough then

6 E§ < SPARSIFYB(Gy) > Sparsify coarse edges
7: else

8: CREATESEEDS(Gf) > Coarsening: seeds
9: Compute P > Coarsening: restriction operator
10: G.+ (L. = PTL;P) > Coarsening: coarse graph
11: G? < MLSPARSIFY(G.) > Recursive call to sparsify the next coarser level
12: G% < UNCOARSEN(G?) > Sparsification of edges inherited from coarse level
13: COMPUTEALGDIST(G}) > Algebraic distances are recomputed
14: G% < SPARSIFYB(GY) > Sparsification of current level edges
15: end if

16: end function
17: return G’;

2.6 Computational Results

Implementation and Evaluation We provide C++ implementation for both the single- and multilevel al-
gorithms in [40]. For the comparison of original and sparsified networks, we employed methods implemented
in NetworKit [80]. We experimented with varying degrees of sparsification, taking values of e ranging from
0.1 to 0.9 (see Section 2.4). All numerical properties for the comparison are the averages over 10 runs with
different random seeds for each parameter setting. The following parameter were used in computation of
algebraic distance: R = 10, k£ = 40, and o = 0.5. Their robustness is discussed in [19]. In addition, for the
single-level algorithm (Algorithm 3), we provide two sets of results for each graph, namely, with and without
the normalization (see last step in Algorithm 1) of algebraic distance. In each case we experimented with
sparsification of weak edges, strong edges and mixture of both.

In the multilevel algorithm (Algorithm 4), we experimented with sparsifying at the coarsest, middle
and the finest levels. In our experiments, we split the number of levels in the multilevel algorithm into 3
equal segments, and choose a parameter, level-span which determine how many levels in each segment gets
sparsified. We then sparsify one segment at a time and observe the corresponding network properties. For
example, for a graph with 6 levels, with a level-span of 2, to sparsify the coarsest levels only we use the fol-
lowing parameter configuration: (0.3,0.3, —1, —1, —1, —1), where a setting of —1 indicates no sparsification
occurs at this level. Similarly, the middle and finest levels can be sparsified using (—1,—1,0.3,0.3, —1, —1),

and (—1,—1,—1,—1,0.3,0.3) configuration settings respectively. However, in our implementation, users
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Figure 2.2: Complete Sparsification V-Cycle

can specify any combination of settings for different levels. The sparisification ratio (ratio of number edges
in the sparse graph to the number of edges in the original graph), is kept between 20% to 40% for each stage

in order to make the results comparable. For the purpose of our study, we maintain a level span of 3.

Datasets We experiment with 18 real-world networks (see Table 2.1), which for the purpose of our study we
grouped into two groups of social networks, one group of citation networks (CIT) and one group of biological
networks (BIO). We split the social networks into 2 groups (SN1, and SN2) - one consisting of Facebook net-
works, Livejournal and Google+ (general purpose social networks), and the other consisting other consisting
of Flickr, Buzznet, Foursquare, Catster, Blogcatalog and Livemocha. The graphs were retrieved from the
NetworkRepository [63], the Koblenz [45], and the SNAP [49] collections. The size of the networks range

between 1 million to 34 million edges.
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Table 2.1: Benchmark graphs

Group Graph V] |E| mindeg. maxdeg. avgdegree
Social fb-indiana 29.7K 1.3M 1 1.4K 87
Networks 1 fb-texas84 36.4K 1,6M 1 6.3K 87
(SN1) fb-uf 35.1K 1.5M 1 8.2K 83
fb-penn94 41.5K 14M 1 44K 65
livejournal 4M 27.9M 1 27K 13
google-plus 107.6K  12.2M 1 20.1K 227.4
Biological human-genel 22K 12M 1 79K 1.1K
Networks human-gene2 14K M 1 7.2K 1.3K
(BIO) Mouse 43K 14.5M 1 8K 670
Social flickr 105K 2.3M 7 5.4K 43.7
Networks 2 buzznet 101.2K 2.8M 1 64.3K 54
(SN2) foursquare 639K 3.2M 1 106.2 10
catster 149.7K  5.4M 1 80.6K 72
blogcatalog 88.8K 2.1M 1 9.4K 47
livemocha 104.1K 22M 1 3K 42
Citation ca-cit-Hepth 229K 2.6M 1 11.9K 233.38
Networks cit-patent 3. M 16.5M 1 793 8.75
(CIT) codblp 540.5K  15.2M 1 33K 56

Methods of Comparison We studied various levels of sparsification while comparing the following prop-
erties of the sparse graph G, to those in the original graph G,,. The single value properties are: (a) Diameter
- We measure the ratio of the diameter in G, to the new diameter in G (in plots “orig diameter/diameter”);
(b) Number of connected components - we measure the ratio of the number of connected components in G4
to that in G,, (in plots “comp/orig comp”); (c) Modularity - we measure the ratio of modularity in G to that
of G, (in plots “mod/orig mod”, Networkit [80] provides an implementation of the Louvain method). Certain
network properties are represented better by their distributions over the nodes. In order to accurately compare
the distributions, we use the Spearman rank correlation coefficient. This effectively, reveals how different the
sparse graph is from the original in the context of these properties where a correlation value of 1 means
they are perfectly correlated and correlation value of 0 means no correlation. The following distributions are
compared using the Spearman rank: (a) Node betweeenness centrality; (b) PageRank centrality; (c) Degree
distribution; and (d) Clustering coefficient distribution (c;). The method changes slightly in comparing

node betweenness centrality. Considering that the cost of computing betweenness for large graphs is very
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expensive, we make use of an approximate method provided by Networkit. However, to ensure accuracy
we compute this 10 times and take average of the positional rankings and then compute the Spearman rank

correlation.

2.6.1 Single-level Algorithm

The single-level algorithm was tested with both unnormalized and normalized algebraic distances.
The results for unnormalized algebraic distance are presented in Figures 2.3, 2.4, 2.5, and 2.6 for groups
SN1, SN2, CIT, and BIO, respectively. (The results for the normalized algebraic distance can be found in
section 2.7.) In each figure, 3 columns, and 7 rows of plots are presented. In all 4 figures: (a) each column
corresponds to the type of filtering, i.e., to the types of edges that retain after sparsification; (b) each row
corresponds to the type of comparison. Each plot contains several colored curves that correspond to the
respective graphs (see vertical legend). One point in each curve corresponds to an average of the measured
comparison method over 10 runs for the corresponding edge ratio in each. The x- and y-axes correspond
to the sparsification ratio and method of comparison, respectively. In the y-axis of betweenness, PageRank,
degree, and clustering coefficient distribution centralities, the Spearman rank is denoted by p. For example,
we examine the behavior of the degrees in social network Google+ in SN1 when d-strong edges retain after
sparsification. In Figure 2.3, we find a row “Degree centrality” (row 3). The results for retaining J-strong
edges are found in the third column. The black curve corresponds to Google+, where each point is an average
of 10 runs.

Note: Most curves do not reach a visible zero of the x-axis. This is because the sparsification is interrupted

when the number of edges becomes less than the number of nodes.

d-weak edges Plots labelled as d-weak (column 1) are results obtained by retaining only weak edges, when
d-weak edges are preferred during sparsification (i.e, §-strong edges are deleted). In this type of sparsifica-
tion, we expect that sparsification of the local structure will mostly dominate the sparsification of the global
structure. Indeed, we observe that properties (such as the betweenness centrality, diameter, and the num-
ber of components) that heavily depend on usually limited number of long-range weak connections are well

preserved.

d-strong Plots labelled as -strong (column 3) are results obtained by retaining §-strong edges and remov-

ing d-weak edges. By preferring -strong edges during sparsification, we attempt to preserve properties that
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depends on the local structure of the graph. Such properties as clustering coefficient, pagerank and degree
centrality survive sparsification better when this method is used. In particular, we can observe that the clus-
tering coefficient (which is in many cases the reason for a strong community structure) is preserved at the
level of = 75% in SN1 when 70% of edges are removed (instead of =~ 40% for §-weak sparsification). A
similar phenomena is observed in BIO. It is interesting to note that in SN2, in comparison to the §-weak

sparsification, the changes in the clustering coefficient are not significant.

Mixture sparsification In plots labelled as mixed, we maintain a balance between the §-weak and J-strong
types of sparsification by preferring ensuring that both are sparsified. For such properties as the betweenness
centrality, PageRank and degree centrality, the results are better for up to 20% sparsification ratio when com-
pared to selecting either weak or strong edges. For such properties as the clustering coefficient, modularity,
diameter and connected components, retaining both weak and strong edges provides results that is in between

that produced by weak or strong edges sparsification.
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2.7 Normalized Sparsification

We experimented with the single-level algorithm that employ normalized algebraic distances (see
line 15 of Algorithm 1). The purpose of this normalization is to decrease the strength of connection expressed
in the algebraic distance between hubs. The normalization results show that normalizing the algebraic dis-
tance further improves properties that are sensitive to the existence of weak edges. Example are diameter
and connected components. As seen in the plots for diameter (see d-weak column in Figures 2.7, 2.8, 2.9,
and 2.10), the minimum edge ratio before the diameter deteriorates is further improved. Similarly for the
number of components the number of components for the smallest sparse graph is reduced and some case
kept constant as seen in J-weak column in Figures 2.7, 2.8, 2.9, and 2.10). Such properties as local clustering

coefficient, degree centrality, and PageRank that do not depend on global edges are relatively unaffected.
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Figure 2.7: Social Networks 1
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Figure 2.8: Social Networks 2
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Figure 2.9: Citation Networks
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Figure 2.10: Biological Networks
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Comparing with Local Degree In the introduction, we mentioned the Local Degree method (LD) [51]
which favors the retention of edges participating in hubs (nodes with high degree). In order to compare our
method to LD, we ran the single level algorithm for retaining weak edges, strong edges and a mixture of both
on the Google+ graph (google-plus in Table 2.1). Same set of network properties discussed earlier in this
section were used for comparison. For betweenness centrality, degree centrality, local clustering coefficient
and PageRank, we plot the Spearman rank correlation against the edge ratio. Figure 2.11 shows the plots
of d-weak, d-strong, mixed and local degree(LD) for each property. The results are similar for betweenness
centrality, degree centrality and PageRank. However, for such properties as modularity and clustering co-
efficient, the algebraic distance performs better than LD especially when sparsification is aggressive. The
0-weak sparsification preserves the diameter slightly bettern than LD while the §-strong method did not per-
form well on it and on the number of components. We note that the LD method was comprehensively studied
on the Facebook networks only. Four Facebook networks in SN1 demonstrate similar performance with both
methods. The Google+ network has exceptionally high clustering coefficient (0.52 vs. 0.23 in Facebook
networks) and smaller diameter (6 vs. 8 in Facebook networks) which are more difficult to preserve if the

method does not distinguish between local- and global-range connections.

2.7.1 Multi-Level Results

The purpose of the multilevel approach is to extend the general sparsification framework to enable
highly controllable sparsification of bundles of edges at multiple coarse-grained resolutions. Similar to the
single-level experiments, we group the networks into 4 groups. Tables 2.2, 2.3, 2.4, and 2.5 show the results
of the multilevel algorithm for sets SN1, SN2, BIO and CIT, respectively. The 4 major column sections in the
aforementioned tables consists of the graph name, the levels’ configuration for which sparsifcation is tested,
the number of edges at each setting, and the network properties that we study. The properties column consist
of the following properties: a) CC - clustering coefficient b) D - Diameter of the graph, c) Q - Modularity
of the graph, d) I' - the number of components in the network, e) BC, - Spearman rank correlation for
betweenness centrality, f) PR, - Spearman rank correlation of Pagerank, g) DC, - Spearman rank correlation
of degree centrality, and h) C'C,, - Spearman rank correlation of the clustering coefficient. Correlation here
represents the correlation between the original graph and the sparse graph. The “Level” column contains
the sparsification settings at different levels, where GO represents the original graph, G1 is the graph with
sparsification only at the coarsest levels, G2 is the graph with sparsification only at the middle levels and G3

represents the graph with sparsification at the fine levels. In order to keep the results comparable, we keep the
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Figure 2.11: Comparison of LD and single-level algebraic distance methods.

sparsification ratio between 20% to 40%. The sparsification parameter is obtained by a binary search fitting
algorithm. Note that we do not compare the sparse graphs (G1, G2, G3) to themselves but only with the fine
graph GO. The parameter setting of a coarsening was similar to one described in [61] with interpolation order

1.
2.7.2 Running time

Figures 2.12(a-b) show the running time of both single- and multi-level algorithms for varying spar-
sification ratios. Each point in the plot represents the number of edges in the graph versus the runtime in
seconds averaged over three runs. The coefficient of determination, R2, shows how well the regression line
fits the model. An R? of 0 indicates the line does not fit the data and an R? of 1 indicates the line perfectly
fits the data. The results show that both algorithms scales linearly with the number of edges in the graph. As
mentioned earlier, this is important as it defeats the purpose of sparsification if the algorithm is slow. The
experiments were performed in a Linux environment on a multicore compute server with 64 Intel Xeon cores

and 64 GB of memory.
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Properties
Graph Name | Level | |E]| oc D 0 T BC, [ PR, | DC, | CC,
GO 1.3M 02180 | 045 |1 1.0 1.0 1.0 1.0
fhoindiana Gl 361.4K | 031 | 13.0 | 0.93 | 18 1.0 0.84 | 0.83 | 0.64
G2 349.8K | 0.14 | 10.0 | 0.34 | 8 0.99 | 0.89 | 0.89 | 0.57
G3 402.7K | 0.04 | 12.0 | 0.3 | 37 0.99 | 093 | 095 | 0.03
GO 1.6M 02 |70 |038 |1 1.0 1.0 1.0 1.0
fb-texassd Gl 3747K | 0.29 | 16.0 | 0.92 | 16 1.0 | 0.86 | 0.82 | 0.57
G2 574.8K | 0.13 | 9.0 | 031 |5 0.99 | 094 | 0.94 | 0.66
G3 5219K | 0.05 | 12.0 | 0.24 | 29 1.0 | 094 | 0.96 | 0.08
GO 1.5M 022 )80 | 044 |1 1.0 1.0 1.0 1.0
fbouf Gl 423.4K | 024 | 120 | 0.61 | 3 0.99 | 0.88 | 0.88 | 0.58
G2 425.1K | 0.16 | 11.0 | 0.37 | 15 1.0 |09 |09 |06
G3 4189K | 0.05 | 11.0 | 0.27 | 57 1.0 | 092 | 095 | -0.01
GO 1.4M 022 |80 |048 |1 1.0 1.0 1.0 1.0
fb-penn94 Gl 351.7K | 0.33 | 16.0 | 0.95 | 16 1.0 | 085 | 0.8 | 057
G2 463.4K | 0.16 | 11.0 | 0.38 | 23 1.0 | 089 |09 |06
G3 365.6K | 0.04 | 140 | 0.3 | 122 1.0 | 0.89 | 092 | -0.09
GO 347M | 035 | 21.0 | 0.75 | 1 1.0 1.0 1.0 1.0
livejournal Gl 13.6M | 047 | 72.0 | 1.0 | 1.7K 1.0 | 085 | 0.81 | 0.75
G2 134M | 039 | 42.0 | 0.8 | 7.1K 1.0 | 091 | 0.87 | 0.76
G3 8.2M 0.02 | 30.0 | 0.72 | 316.9K | 1.0 0.67 | 0.73 | 0.37
GO 122M | 052 | 6.0 | 047 | 1 1.0 1.0 1.0 1.0
aplus Gl 3.6M 0.54 | 14.0 | 0.89 | 15 1.0 | 091 | 09 | 0.59
G2 3.0M 042 | 12.0 | 0.38 | 18 1.0 0.9 0.88 | 0.57
G3 3.3M 0.15 | 19.0 | 0.26 | 905 1.0 0.79 | 0.88 | -0.26

Table 2.2: Multiscale results for social networks 1 (SN1) graphs

2.7.3 Parallelization

Parallelization of the single-level algorithm does not require redesigning it. There are two computa-
tionally intensive parts of our method that gain from parallelization. One is the computation of the algebraic
distance and the other the deletion of edges. Because of the implicitly parallel nature of the Jacobi over-
relaxation, we are able to parallelize it by using OpenMP’s shared data, multiple thread model. Since vector
updates are independent, this method is highly efficient, creating speed gains of more than 50% with only 8
threads as seen in Figure 2.13. Figure 2.13 shows the benchmark results of parallelizing the algebraic dis-
tance computation where y-axis represents the average runtime averaged over 3 runs and x-axis represents
the number of threads. We tested with number of threads ranging from 1 to 64 on 4 networks, namely, fb-uf,

human-genel, cit-patent, and catster. The experiments were performed in a Linux environment on a multicore

compute server with 64 Intel Xeon cores and 64 GB of memory.
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Properties
Graph Name | Level | |E| oc D ) N BC, [ PR, | DC, | CC,
GO 23M 0.09 | 9.0 0.67 | 83 1.0 1.0 1.0 1.0
fickr Gl 921.0K | 0.15 | 35.0 | 091 | 144 1.0 0.6 0.62 | 0.78
G2 496.1K | 0.12 | 18.0 | 0.84 | 134 1.0 0.71 0.73 0.8
G3 6349K | 0.04 | 250 | 0.55 | 58K 1.0 0.64 0.77 0.74
GO 2.8M 025 | 50 031 | 1 1.0 1.0 1.0 1.0
buzznet Gl 713.8K | 026 | 11.0 | 0.5 1 1.0 0.82 | 091 0.6
G2 919.3K | 0.21 | 18.0 | 0.3 12 1.0 0.83 0.94 0.6
G3 666.6K | 0.1 16.0 | 0.29 | 239 1.0 075 | 0.89 | 0.28
GO 3.2M 022 | 4.0 041 | 1 1.0 1.0 1.0 1.0
foursquare Gl 1.IM 0.17 | 36.0 | 0.94 | 18 1.0 0.74 0.88 0.87
G2 7659K | 0.19 | 47.0 | 0.94 | 366 1.0 049 | 078 | 0.79
G3 1.IM 0.04 | 140 | 057 | 10.0K | 1.0 036 | 074 | 0.73
GO 5.4M 041 | 10.0 | 0.39 | 281 1.0 1.0 1.0 1.0
catster Gl 1.3M 031 | 150 | 0.69 | 293 1.0 0.59 0.59 0.39
G2 1.7M 0.26 | 11.0 | 0.37 | 360 1.0 0.86 | 0.87 | 0.63
G3 1.5M 027 | 140 | 029 | 11K 1.0 076 | 084 | 04
GO 2.1M 046 | 9.0 032 | 1 1.0 1.0 1.0 1.0
blog-catalog Gl 4239K | 041 | 140 | 0.67 | 1 1.0 0.81 0.87 | 047
G2 570.8K | 026 | 11.0 | 027 | 9 1.0 085 | 089 | 0.44
G3 566.1K | 0.18 | 12.0 | 0.23 | 391 1.0 0.7 0.83 0.29
GO 2.2M 0.06 | 6.0 036 | 1 1.0 1.0 1.0 1.0
livemocha Gl 6369K | 0.04 | 120 | 045 | 3 1.0 0.89 | 091 0.48
G2 869.1K | 0.04 | 100 | 029 | 8 1.0 0.9 0.91 0.49
G3 556.7K | 0.02 | 11.0 | 0.29 | 14K 1.0 0.77 | 0.88 | 0.38

Table 2.3: Multiscale results for social networks 2(SN2) graphs
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Figure 2.13: Running time in shared memory model.
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Properties

Graph Name Level | |E| cC D 0 N BC, | PR, | DC, | CG,
GO 123M | 0.63 | 8.0 0.38 | 17 1.0 1.0 1.0 1.0
Gl 2.8M 0.66 | 18.0 | 0.8 19 0.99 0.9 0.95 0.74
G2 4.0M 0.33 | 9.0 0.39 | 22 0.99 | 091 0.91 0.71
G3 39M 0.06 | 11.0 | 033 | 78 0.99 0.89 0.93 0.21
GO 9.0M 0.66 | 7.0 031 | 2 1.0 1.0 1.0 1.0
Gl 24M 0.67 | 7.0 0.74 | 15 1.0 0.87 0.86 0.74
G2 3.IM 0.64 | 260 | 052 | 14 098 | 0.87 | 0.88 | 0.74
G3 2.5M 0.62 | 39.0 | 042 | 66 0.93 0.88 0.87 0.64
GO 145M | 053 | 12.0 | 0.62 | 97 1.0 1.0 1.0 1.0
Gl 4.6M 0.6 21.0 | 0.89 | 105 | 0.99 0.94 0.95 0.72
G2 4.1M 0.28 | 13.0 | 056 | 132 | 1.0 093 | 094 | 0.65
G3 4.1M 0.06 | 140 | 0.52 | 400 | 1.0 0.91 0.95 0.08

bio-human-genel

bio-human-gene2

bio-mouse-gene

Table 2.4: Multiscale results for biological (BIO) networks

Properties
Graph Name | Level | |E| oc D Q N BC, [ PR, | DC, | CC,
GO 2.4M 0.61 | 9.0 041 | 74 1.0 1.0 1.0 1.0
ca-cit-Hepth Gl 487.5K | 0.7 18.0 | 0.93 | 86 0.99 0.84 0.84 0.75
G2 875.3K | 0.49 | 13.0 | 037 | 111 0.99 0.91 0.94 0.81
G3 7222K | 021 | 16.0 | 0.25 | 279 099 | 083 | 095 | -0.04
GO 165M | 0.09 | 26.0 | 0.81 | 3.6K 1.0 1.0 1.0 1.0
cit-patent Gl 5.8M 0.16 | 61.0 | 093 | 43.8K 1.0 079 | 078 | 0.73
G2 3.4M 0.13 | 57.0 | 097 | 631.4K | 1.0 0.58 0.64 0.59
G3 5.0M 0.01 | 39.0 | 0.84 | 2355K | 1.0 0.68 0.74 0.54
GO 15.2M 082 | 23.0 | 0.84 | 1 1.0 1.0 1.0 1.0
codblp Gl 5.3M 0.91 | 30.0 | 0.98 | 20.1K 1.0 055 | 078 | 0.68
G2 3.4M 0.81 | 32.0 | 0.97 | 443K 1.0 027 | 063 | 0.62
G3 4.7M 0.5 29.0 | 0.84 | 29.1K 1.0 0.51 0.82 | 038

Table 2.5: Multiscale results for citation (CIT) networks

2.8 Conclusions

In this study we introduced single- and multi-level methods of network sparsification by algebraic
distance. While many sparsification methods exist, most of them target certain properties without distin-
guishing short- and long-range connections that is the main goal of our method. We showed that by enabling
different filtering capabilities, sparsification can be tuned to preserve either global or local structure or a com-
bination of both. In addition to preserving a host of graph properties, we believe that the development of
the multilevel sparsification framework can serve as a foundation for future work in that direction in which a

variety of sparsification criteria (such as the algebraic distance) can be incorporated into it.
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Chapter 3

A Multilevel Algorithm for the

Minimum 2-Sum Problem

3.1 Introduction

Linear ordering (or graph layout) problems are a class of computational optimization problems
which deal with the permutation of the vertices of a graph in such a way that some objective is optimized
subject to certain constraints. Many problems occurring in various disciplines such as VLSI design, numeri-
cal analysis, graph drawing, information retrieval and scheduling can be modeled as linear ordering problems
(see [24, 35, 48, 75]). One of the most important applications is in the area of numerical analysis where the
goal is to reorder the rows and columns of large sparse matrices such that the non-zero entries lie close to the
diagonal thereby enabling efficient storage and improving the performance of the algorithms that depend on
location of non-zeros such as Cholesky factorization [24].

Many versions of linear ordering problems are NP-hard and their decision versions are NP-complete
which make them especially attractive for developing of new approximation algorithms. However, the prac-
tical importance also required development of fast and scalable heuristics that run in a linear (in the number
of edges) time. For example, Juvan and Mohar applied spectral methods to the bandwidth, cutwidth and min-
imum p-sum problems in [42]. Other well known methods include various local search methods including
randomized ones such as the simulated annealing [58], multilevel method for the minimum linear arrange-

ment problem introduced by Koren et. al [44], multilevel method for the minimum wavefront reduction
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[37], optimally oriented decomposition tree [5] and genetic hill-climbing [17]. Some methods are targeted
towards improving the quality of the results while others focus on the execution time. Spectral methods were
the first in which both questions have been successfully addressed. Their complexity mostly depends on
the algorithm for computing the Fiedler vector of a graph Laplacian. However, recent studies have shown
that multilevel methods outperform spectral methods both in execution time and quality of the solutions (see
[65-67]).

In this chapter, we open with a discussion on different optimization objectives for linear ordering
problems and the role of multilevel framework for solving these problems. Next we provide a multilevel
framework algorithm that scales linearly and produces quality solution in practice. Our main contribution is
in the introduction of a new asymmetric coarsening scheme for multilevel algorithms. By exploiting different
asymmetric vertex aggregation algorithms in the coarsening process, we demonstrate that the current state
of the art results for the minimum 2-sum problem are still far from being optimal, and substantially improve

them for a certain class of networks.

3.1.1 Notation

Unless stated, all graphs in this chapter are simple and undirected. Given a graph G = (V, E), the
vertex set is denoted by V' and the edge set is denoted by E. The edge between nodes ¢ and j of the graph
is represented as j and w;; denotes the nonnegative weight of the edge such that if ij ¢ E then w;; = 0.
The nonnegative volume of a node ¢ is denoted as v;. We denote the ordering on the nodes 1) as a bijection
PV — {1,2,...,n}, where n is the number of nodes in G. Additionally, we define ¢)(G) as the set of all
possible orderings of G. It then follows that a graph ordering can represented by mapping each vertex ¢ to an

integer position () on a horizontal line.

3.1.2 Minimum Linear Arrangement Problem

The minimum linear arrangement problem (MinLA) was originally formulated by Harper in 1964
[33]. It is applied in the field of VLSI where is used to the minimize the total length of wires used to connect
logical gates [21]. In addition, it is applied to various fields of numerical analysis where large sparse matrix
reordering is helpful and in graph drawing. Other applications can be found in [24, 35, 48, 75]. The MinLA

problem is defined as follows. Given an edge weighted graph G = (V| E) where V' = {1, 2, ..n} represents
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the labeled vertices. The goal of the MinLA is to find an ordering on the nodes v such that

b= wil(i) — ¢ G.1)
ijEE
is minimized.
In [66], the problem is further generalized to account the volumes of nodes. The minimization

objective is redefined as

Z ww\xz - Z‘j‘, (32)

ijEE
where for all i € V @; = 5 + > ) 4y <) Vk- The original problem is the case where all volumes are

equal.

3.1.3 Minimum 2-sum Problem

The minimum 2-sum problem (M2sP) belongs to the same class of graph layout problems such
as MinLA and finds application in many disciplines. The M2sP is also closely related to the problem of
calculating the envelope size of a symmetric matrix or more precisely, to the amount of work needed in the
Cholesky factorization. In addition, the M2sP may be motivated as a model used in VLSI design, where at the
placement phase it is chosen to minimize the total squared wire length. The corresponding decision problem
is also known to be NP-complete.

The goal of the M2sP is to find an ordering on the nodes v such that
Y=Y wilp(i) — ()
ijeE

is minimized. Similar to MinLA, it is generalized for the vertex-volumed version with the minimization

objective

Z w1]|£L’l — Xy 2, (33)

ijEE

where foralli € V z; = % + Zk,w(k)«b(i) Vk-

3.1.4 Main Contribution

In this thesis our focus is primarily on the minimum 2-sum problem. However, the framework we

developed can be extended to most of the other cost objectives. Our multilevel algorithm is based on the algo-
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rithm developed in [66] which itself is based on the Algebraic Multigrid scheme (AMG) [10, 12, 13, 64, 81].
The AMG methods were first developed for solving linear systems of equations resulting partial differential
equations (See Chapter 1). In our approach, we introduce and explore different asymmetric matching-based
coarsening scheme, and compare their performance with AMG-based schemes. Particularly, we attempt to
solve the classical stable matching problem for graph vertices resulting in a one-to-one matching between
initial seed vertices and non-seed vertices. Finally, we provide the empirical results of our experiments, and

demonstrate advantages of the proposed method.

3.2 The Algorithm

Given a graph G, in the multilevel framework we recursively create a hierarchy of graphs in in-
creasing coarseness G, G1, ..., Gr. The original graph is successively coarsened into smaller graphs until
the graph is small enough to be solved. Typically a threshold is chosen to determine the size of the smallest
graph G,. However, it also depends on the available computational resources, because, at the coarsest level,
the problem is solved exactly on the coarsest graph. This result is inherited successively by each graph during
the uncoarsening. At each level of the uncoarsening process, small segments of the ordering are individually
refined, keeping the runtime linear while improving the quality of the overall solution. In other words, we

improve the global solution at the finest level by local operations at multiple levels of coarseness.

3.2.1 Coarsening

We explain the coarsening process using two graphs that are consecutive in the hierarchy. We define
the fine-level graph as Gy = (V, Ey) and the next coarser graph as G, = (V¢, E.). The coarsening here is
similar to the one developed in [66]. The main focus of our work is a combination of stable matching with
AMG coarsening, but we describe the full algorithm for completeness of the thesis.

We begin by selecting an initial set of seed nodes C' C V that will serve as centers of future coarse
nodes in V.. We initialize F' = V; and C' = (), and then iteratively move vertices from F' to C based on their
relative strength of connection to C' such that the nodes that are not strongly coupled to those that are already
in C are given preference. At each step F' U C' = V7 is preserved, and, at the end, the size of V, is known,

namely,

Ve| = |C|. This can be done in one pass through V. The future volume for each seed node is then
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defined as

-

Where E”-ij is the normalized weight of edge ji with respect to its neighbors. The future volume
¥; here is a meaglirve of the possible capacity of the aggregate seed 7. The C-node selection will accessed in
the descending future volume order. We define a parameter p such that nodes with future volume greater than
1 times the average of all future volumes are selected as seed nodes. The selected seed nodes are removed
from V and added to C, i.e., F = V' \ C. Another parameter 7 is defined such that for each node i € F, we
add 7 to C if its weighted connection to C' divided by its weighted degree is less than T". The algorithm for

seed creation is defined in Algorithm 5.

Algorithm 5 Seed node selection

Input: Parameters pu, T,V
Output: Set of seed nodes C'
C+—0F«V
Compute ¥; Vi € F
C < nodes with ¥; > p - ()
F+V\C
Recompute 9; Vi € I
Sort F' in descending order of 1
for : € F'do
if Eﬁicuw)] < T then

jev Wij

move 7 from F' to C'
end if
. end for
return C

R AN A R

_
e

—_ = e
B W N =

After C is selected, nodes in F' = V' \ C are distributed to their aggregates that form coarse nodes
according to the restriction operator P which is a matrix of size |Vy| x |C| (see Equation 2.2) and I.(j)
which returns an index of coarse node J that corresponds to j € C. Then, the Galerkin coarsening creates a
coarse graph Laplacian L. < PT L ; P, where Ly is the Laplacian of G y. See Algorithm 6 for the coarsening

algorithm.

3.2.2 Stable Matching

The stable matching problem, referred to in some literature as the stable marriage problem, is the

problem of finding a stable match between two disjoint set. The matching result is a one-to-one mapping of
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Algorithm 6 Coarsening Algorithm (AMG)

1: Input: Fine Graph G ¢
2: Output: Coarse graph G
3: function COARSEN(G )

4: C <~ CREATESEEDS(Gf)

5 for each edge ij in Gy do

6 ifi € F'and j € N; then > N; is the coarse neighborhood of node ¢
7 Pij = wij/ Y e, Wik

8 elseif ; € C' and j = ¢ then

9 -Pij =1

10: else

11: Pij =0
12: end if

13: end for

14: Initialize G.(|C)

15: for each coarse node p do

16: for each coarse node ¢ where p # ¢ do

17: w;game = Zk?él Pkiwklplj

18: end for

19: vp = ;i Pji > Volume of coarse node p
20: end for
21: return G,

22: end function

members in one set to another. Matching finds application in many real world problems. In particular, many
coarsening schemes in multilevel algorithms employ different versions of weighted matching. Basically,
matching algorithms help to answer the question on how to pair vertices during the process of coarsening to
maximize the number of coarsened pairs.

In our framework, we provide an implementation of the classical algorithm developed by Gale and
Shapley in [28]. The two disjoint sets consist of the set of seed nodes previously selected by the seed creation
algorithm (Algorithm 3) and the set of non-seed nodes. Each seed vertex ¢ maintains a preference list of
non-seed vertices and likewise each non-seed vertex maintains a preference list of seed vertices. Edges are
weighted by their relative extended p-normed algebraic distances, which is a new measure of the connectivity
strength that we introduce in this work. The original extended p-normed algebraic distance was introduced
in [20, 61], which is implemented in Algorithm 1. The corresponding strength of connectivity is defined as

an inverse of

R
1
pij = (Yl =), (35)

r=1

where R is the number of randomly initialized test vectors, k is the number of iterations of Jacobi over-
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relaxations applied on the homogeneous system of the corresponding graph Laplacian Lx = 0, and xgk) is
the ith entry of the relaxed vector.

Although the original algebraic distance is symmetric (i.e., p;; = pj;), we can make it asymmetric
by dividing each algebraic distance by the sum of the algebraic distances of the neighbors for both ¢, and j,

namely, for all edges ij, we define

(3.6)

which becomes a new asymmetric measure for the strength of connectivity which will be reflected in the
ordering of list of neighbors for the stable matching.

In stable matching, the stability is achieved where there are no two currently matched objects that
prefers each other to their matched partners. Stability for unequal sets and weighted preference lists have been
treated in previous studies (see [53, 59]). We propose to use this in multilevel algorithms in the stages when
one has to decide how to aggregate the variables. Most popular energy functions that describe the strength
of connection between coarse and fine variables are designed in such a way that the decision process of
connecting fine j to coarse 1 takes into account only one of the relative strengths of connection. Moreover,
a similar reasoning is used to sparsify the restriction operator. We propose to bridge this gap by exploring
stable matching-based multilevel schemes. The result of the matching is a list of matched pairs of nodes. The
nodes that are left unmatched are converted to seed nodes and this result is used to create the next coarse

graph. See Algorithm 7 for the complete coarsening algorithm with stable matching.

3.2.3 Coarsest Level

At the coarsest level, we solve the problem exactly. For linear ordering, this involves generating all
possible permutations and choosing the ordering with the minimum cost. The number of nodes here is chosen

so that this does not become a bottleneck in the framework.

3.2.4 Uncoarsening

At each of the finer levels, the solution is initialized by inheriting the ordering from the coarser level
and then placing the remaining F-nodes in such a way that the quadratic arrangement cost (3.3) is minimized.
After initialization, the new ordering is further refined by multiple sweeps of Compatible and Gauss-Seidel

relaxation, followed by node-by-node and window minimization (see [66]).
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Algorithm 7 Coarsening Algorithm with stable matching

1: Input: Fine Graph G ¢

2: Output: Coarse graph G,

3: function COARSEN(G )

4 C < CREATESEEDS(G )

5 COMPUTEALGEBRAICDISTANCE(G )

6: matching < GETSTABLEMATCHING(V,, V)
7: for each node iin Vy do

8 if matchingli] is unmatched then

9: C =1

10: else

11 J + matchingli]

12: Pi=1

13: end if

14: end for

15: Initialize G.(|C|)

16: for each coarse node p do

17: for each coarse node ¢ where p # ¢ do

18: wpe™* =3 ks Priwii P

19: end for
20: vp =30 Py > Volume of coarse node p
21: end for
22: return G,

23: end function

3.2.4.1 Initialization

After solving the coarsest problem, we begin the process of uncoarsening at each level by first
placing the seed nodes in order according to y; = x7(j), where x is the coordinate of the coarse aggregate
whose center of mass is 7. Let V' be the nodes that have already been placed. Then initially, V' = C. Then
for each fine node 4, position ¢ at y; according to Equation 3.7 starting nodes whose relative connection to C

is greater.

2 jevr YiWij

(3.7
Zjev’ Wi

Yi =

Moving ¢ to V' until V/ = V. Then the ordering is made legal by converting 3; back to the z; as

defined in Equation 3.8.

V4
=+ 3w (3.8)

Yr<Yi
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3.2.4.2 Relaxation

Initialization is followed by several relaxation sweeps. Compatible relaxation is first applied and
then Gauss-Seidel (GS) relaxation. The relaxation process is similar to the initialization procedure. In Com-
patible, we only attempt to improve the positi