19 research outputs found

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Combinatorial Structures in Hypercubes

    Get PDF

    Complexity and algorithms related to two classes of graph problems

    Get PDF
    This thesis addresses the problems associated with conversions on graphs and editing by removing a matching. We study the f-reversible processes, which are those associated with a threshold value for each vertex, and whose dynamics depends on the number of neighbors with different state for each vertex. We set a tight upper bound for the period and transient lengths, characterize all trees that reach the maximum transient length for 2-reversible processes, and we show that determining the size of a minimum conversion set is NP-hard. We show that the AND-OR model defines a convexity on graphs. We show results of NP-completeness and efficient algorithms for certain convexity parameters for this new one, as well as approximate algorithms. We introduce the concept of generalized threshold processes, where the results are NP-completeness and efficient algorithms for both non relaxed and relaxed versions. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all cycles. We show that this problem is NP-hard even for subcubic graphs, but admits efficient solution for several graph classes. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all odd cycles. We show that this problem is NP-hard even for planar graphs with bounded degree, but admits efficient solution for some graph classes. We also show parameterized results.Esta tese aborda problemas associados a conversĂ”es em grafos e de edição pela remoção de um emparelhamento. Estudamos processos f-reversĂ­veis, que sĂŁo aqueles associados a um valor de limiar para cada vĂ©rtice e cuja dinĂąmica depende da quantidade de vizinhos com estado contrĂĄrio para cada vĂ©rtice. Estabelecemos um limite superior justo para o tamanho do perĂ­odo e transiente, caracterizamos todas as ĂĄrvores que alcançam o transiente mĂĄximo em processos 2-reversĂ­veis e mostramos que determinar o tamanho de um conjunto conversor mĂ­nimo Ă© NP-difĂ­cil. Mostramos que o modelo AND-OR define uma convexidade sobre grafos. Mostramos resultados de NP-completude e algoritmos eficientes para certos parĂąmetros de convexidade para esta nova, assim como algoritmos aproximativos. Introduzimos o conceito de processos de limiar generalizados, onde mostramos resultados de NP-completude e algoritmos eficientes para ambas as versĂ”es nĂŁo relaxada e relaxada. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos. Mostramos que este problema Ă© NP-difĂ­cil mesmo para grafos subcĂșbicos, mas admite solução eficiente para vĂĄrias classes de grafos. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos Ă­mpares. Mostramos que este problema Ă© NP-difĂ­cil mesmo para grafos planares com grau limitado, mas admite solução eficiente para algumas classes de grafos. Mostramos tambĂ©m resultados parametrizados

    Compression methods for graph algorithms

    Get PDF
    Two compression methods for representing graphs are presented, in conjunction with algorithms applying these methods. A decomposition technique for networks that can be generated in O(m) time is presented. The components of the decomposition and the shortest path matrix of the compressed network can be used to find the shortest path between any pair of vertices in the original network in linear time. A compression method for boolean matrices and a method for applying the compression to boolean matrix multiplication is developed. The algorithms have an expected running time of O(nÂČ*log ₂n). From this compression method a simple heuristic that may be applied to any algorithm for boolean matrix multiplication has been developed. This heuristic will improve the average running time of boolean matrix multiplication algorithms. An order of magnitude analysis of the results published by Loukakis and Tsouris [1981], on the efficiency of algorithms for finding all maximal independent sets of a graph has been performed. This analysis showed that their conclusions, which are based on a direct comparison of the running times of the algorithms, do not take into account implementation factors. An average constant factor improvement is developed for the algorithm of Tsukiyama, Ide, Ariyoshi and Shirakawa [1977] for finding all maximal independent sets of a graph. Analysis of the running time results from the algorithm comparisons presented in this thesis show that the Bron-Kerbosch algorithm has the smallest rate of increase in running time as the size of the graphs increase

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et MĂ©tiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore