213 research outputs found

    A Molecular-Continuum Multiscale Model for Inviscid Liquid-Vapor Flow with Sharp Interfaces

    Full text link
    The dynamics of compressible liquid-vapor flow depends sensitively on the microscale behavior at the phase boundary. We consider a sharp-interface approach, and propose a multiscale model to describe liquid-vapor flow accurately, without imposing ad-hoc closure relations on the continuum scale. The multiscale model combines the Euler equations on the continuum scale with molecular-scale particle simulations that govern the interface motion. We rely on an interface-preserving moving mesh finite volume method to discretize the continuum-scale sharp-interface flow in a conservative manner. Computational efficiency, while preserving physical properties, is achieved by a surrogate solver for the interface dynamics based on constraint-aware neural networks. The multiscale model is presented in its general form, and applied to regimes of temperature-dependent liquid-vapor flow which have not been accessible before

    A Particle-based Multiscale Solver for Compressible Liquid-Vapor Flow

    Full text link
    To describe complex flow systems accurately, it is in many cases important to account for the properties of fluid flows on a microscopic scale. In this work, we focus on the description of liquid-vapor flow with a sharp interface between the phases. The local phase dynamics at the interface can be interpreted as a Riemann problem for which we develop a multiscale solver in the spirit of the heterogeneous multiscale method, using a particle-based microscale model to augment the macroscopic two-phase flow system. The application of a microscale model makes it possible to use the intrinsic properties of the fluid at the microscale, instead of formulating (ad-hoc) constitutive relations

    Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    Get PDF
    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized

    Numerical study on inertial effects on liquid-vapor flow using lattice Boltzmann method

    Get PDF
    Liquid-vapor flow in porous media is studied in this article. To fulfill this goal, a double-distribution-function lattice Boltzmann (LB) model is proposed based on the separate-phase governing equations at the representative elementary volume (REV) scale. Importantly, besides the Darcy force and capillary force, which were commonly included in previous studies, the LB model in this article also considers the inertial force characterized by the Forchheimer term. This feature enables the model to offer an effective description of liquid-vapor flow in porous media at low, intermediate and even high flow rates. We validated the LB model by simulating a single-phase flow in porous media driven by a pressure difference and found its results are in good agreement with the available analytical solutions. We then applied the model to study water-vapor flow in a semi-infinite porous region bounded by an impermeable and heated wall. The numerical simulation reveals the flow and mass transfer characteristics under the compounding effects of inertial, Darcy and capillary forces. Through a comparison with the results given by the generalized Darcy’s law, our numerical results directly evidence that the inertial force is a dominating factor when a fluid passes through porous media at an intermediate or high flow rate

    Dynamics of a vapor nanobubble collapsing near a solid boundary

    Get PDF
    In the present paper a diffuse interface approach is used to address the collapse of a sub-micron vapor bubble near solid boundaries. This formulation enables an unprecedented description of interfacial flows that naturally takes into account topology modification and phase changes (both vapor/liquid and vapor/supercritical fluid transformations). Results from numerical simulations are exploited to discuss the complex sequence of events associated with the bubble collapse near a wall, encompassing shock-wave emissions in the liquid and reflections from the wall, their successive interaction with the expanding bubble, the ensuing asymmetry of the bubble and the eventual jetting phase

    Microgravity fluid management in two-phase thermal systems

    Get PDF
    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system

    Conceptual models of fluid flow in fractures

    Full text link
    This thesis is titled CONCEPTUAL MODELS OF FLOW IN FRACTURES . This thesis study has two parts. In the first part, some conceptual models of fluid flow in fractures will be developed. These models will be used to analyze fluid flow in the near field region of nuclear waste canisters emplaced in fractured rock. Fluid near the canister will evaporate and move into the fractures where it condenses on the walls of the fracture. It is then absorbed by the matrix due to the capillary suction. Then, due to the capillary force, the liquid moves towards the heat source. A region of liquid vapor flow is formed which is called the heat pipe region. The heat pipe phenomenon will be analyzed for different models of fractures. The capillary pressure function and relative permeability function which are functions of the liquid saturation will be developed. In the second part of the study, the functions developed from the conceptual model of the fracture will be incorporated into the TOUGH code and the near field examined. TOUGH is a multi-dimensional, numerical model for simulating the coupled transport of water, vapor, air and heat in porous and fractured media
    • …
    corecore