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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Liquid-vapor flow in porous media is studied in this article. To fulfill this goal, a double-distribution-function lattice Boltzmann 
(LB) model is proposed based on the separate-phase governing equations at the representative elementary volume (REV) scale. 
Importantly, besides the Darcy force and capillary force, which were commonly included in previous studies, the LB model in this 
article also considers the inertial force characterized by the Forchheimer term. This feature enables the model to offer an effective 
description of liquid-vapor flow in porous media at low, intermediate and even high flow rates. We validated the LB model by 
simulating a single-phase flow in porous media driven by a pressure difference and found its results are in good agreement with 
the available analytical solutions. We then applied the model to study water-vapor flow in a semi-infinite porous region bounded 
by an impermeable and heated wall. The numerical simulation reveals the flow and mass transfer characteristics under the 
compounding effects of inertial, Darcy and capillary forces. Through a comparison with the results given by the generalized Darcy’s 
law, our numerical results directly evidence that the inertial force is a dominating factor when a fluid passes through porous media 
at an intermediate or high flow rate.  
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Nomenclature 

Symbols 
Ca    Capillary number ( 0 0u = ) 
Da    Darcy number ( 2

0K L= ) 
K      permeability ( 2m ) 
 rk      relative permeability 
Ma   Mach number ( 0 su c= ) 
p      pressure ( Pa ) 
Re     Reynolds number ( 0 0l lu L = ) 
s       saturation 
u      superficial velocity ( m s ) 
u      velocity component in the x  direction ( m s ) 
v      velocity component in the y  direction ( m s ) 
      porosity  
     density ( 3kg m ) 

       density ratio ( v l = )  
       inertial resistance factor ( 1 m= ) 

       dynamics viscosity ( Pa s )     
      interfacial tension ( N m )    
      viscosity ratio ( v l = ) 
 
Subscripts 
l         liquid 
v        vapor 
m        mixture  
c         capillary  
0        reference state 
 
Uppercases  
P       dimensionless pressure ( 0p p= ) 
U       dimensionless velocity ( 0u= u ) 
X       dimensionless coordinate ( 0L= x ) 

1. Introduction 

Porous media containing liquid and vapor ubiquitously exist in a large variety of natural resources and modern 
applications in energy engineering [1,2]. An elaboration of these complex multiphase flows at the pore scale calls for 
accurate resolutions of the underlying porous solid skeletons, which are practically unavailable in many scenarios. 
Alternatively, a simple mathematical description averaged over the so-called representative elementary volume (REV) 
was developed to capture effective gross flow characteristics without the underlying pore-scale details [3]. One of the 
most representative REV-scale models is Darcy equation [4]. However, this equation is found insufficiently accurate 
in intermediate and high flow-rate problems, e.g., oil and gas recovery in open fractures [5] where the inertial force 
plays an important role. Therefore, this work will focus on liquid-vapor flow in porous media with co-existence of the 
Darcy, inertial and capillary forces. We aim at developing a robust and efficient lattice Boltzmann (LB) model to 
investigate the interplay among these forces and revealing the inertial effects at the REV scale on two-phase flow and 
mass transfer in porous media where the flow rate is large. 

The LB method has attracted tremendous interests over the past several decades owing to its unique and super 
merits in modeling fluid transport phenomena [6,7]. These include its simple coding, flexible boundary treatments for 
complex boundaries and intrinsic parallel-computing algorithmic structure, to name a few. Importantly, the method 
has been widely applied to simulate flow in porous media at both the REV and pore scales [8,9,10]. At the pore scale, 
the LB studies on liquid-vapor flow are usually interested in constructing a model with an explicit presence of liquid, 
vapor and solid interfaces [9]. These studies focus on capturing bubbles’ or droplets’ movement and deformation in 
the pore networks. As to the LB models at the REV scale, to achieve simple mathematics and reasonable numerical 
efficiency, these models smear out the pore-scale details and only describe the effective averaged transport 
characteristics [8]. In particular, the REV scale LB models for liquid-vapor two phase flow can be further classified 
into the “mixture models” [11] and “separate-phase models”. The former treats the liquid and vapor as a homogeneous 
mixture with a set of effective mixture properties, whereas the latter describes each phase using different governing 
equations with its own properties. It should be pointed out that the inertial force in terms of the Forchheimer term is 
hard to cast into the mixture framework. Due to this reason, this article will construct a LB model for liquid vapor two-
phase flow in porous media considering the inertial effects based on the separate-phase governing equations. To be 
specific, we will propose a double-distribution-function LB model to describe liquid and vapor flow in porous media 
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at the REV scale, respectively. We will then validate the model by simulating single-phase flow through porous media 
driven by a pressure difference and apply it to simulate water-vapor flow in a semi-infinite porous region afterwards. 
The numerical results in this work will reveal liquid-vapor flow and mass transfer characteristics in porous media with 
the inertial effects, which were usually ignored in the previous studies.   

This article is organized as follows: we first introduce the REV-scale separate-phase governing equations for liquid-
vapor flow in porous media in Section 2.  In Section 3, the corresponding LB model is proposed. Such a model is 
validated in Section 4 and then extended to study water-vapor flow in porous media with phase change at the wall. 
Finally, we draw the conclusion in Section 5.       

2. Separate-phase governing equations at the REV scale for liquid-vapor flow in porous media 

Consider a liquid and its vapor flow through isotropic and homogeneous porous media. At the REV scale, mass 
transfer and flow of each phase are described by the following governing equations [12],  
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where the liquid and vapor relative permeabilities 3

rlk s=  and ( )31rvk s= − [4], and their inertial resistance factors   
( )5.50.005l rlKk s = and ( )5.50.005v rvKk s  = − [12]. In this article, the velocities of the liquid and 

vapor phases, lu and vu , are the superficial averages while their pressures are defined as the intrinsic averages. 
Moreover, vp  and lp  are linked by the capillary pressure, which is computed by 

( )3 21.263 1.669 0.966 0.56c v lp p p K s s s = − = − + − + [4].  Note that the reason why we define the relative 
permeability and inertial resistance factor as above is for a direct comparison of our results to those in previous work 
[4]. Other expressions for these parameters are applicable provided that they give a more precise prediction.  

Significantly, to better analyze the involved multiphase flow and mass transfer, Eqs. (1)−(4) should be rewritten in 
a dimensionless form. By introducing the characteristic length 0L , characteristic velocity 0u ,  characteristic pressure 

0 0 0lp u L K= , we have 
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Here 0.005 = . Interestingly, Eqs. (5)−(8) can be further reduced⎯We take the divergence to Eqs. (6) and (8), and 
substitute Eqs. (5) and (7) into the resulting equations. After several manipulations, a set of the reduced governing 
equations in terms of lP  and s  are obtained  
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where the fifth-order polynomial ( ) 5 4 3 2

5 3.789 +14.705 22.347 16.701 6.236 0.966P s s s s s s= − − + − + . Note that in the 
next section, we will numerically solve Eqs. (9) and (10), rather than Eqs. (5)–(8), using the LB method. Once lP  and 
s  are obtained, the velocities lU and vU  are then specified by Eqs. (6) and (7). The latter just involves algebraic 
operations and can be solved directly.  

3. Lattice Boltzmann model 

To solve Eqs. (9) and (10), a double-distribution-function LB model is proposed in this section. For simplicity 
while without loss of generality, we only consider two-dimensional (2D) problems. The evolution equations of the 
LB model are  
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where if  and ig are the two distribution functions in terms of the discrete velocity ic .  f  and g  are the 
corresponding dimensionless relaxation times. The equilibrium distributions and external-force terms in the right side 
of Eqs. (11) and (12) are  
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In Eqs. (13)–(14), i  is the moment weight corresponding to ic . They are specified by the D2Q9 scheme [13]. In our 
LB model, the saturation and liquid pressure are computed using 
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P f
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= . In numerical 

implementation, the above LB model will compute ns  and n
lP  at the thn  step with -1n

lU and -1n
vU  from the last time 

step.  n
lU and n

vU  will then update through solving Eqs. (6) and (8) directly. The whole simulation won’t terminate 
until the convergence is reached. 

4. Results and discussions 

4.1. Single-phase flow in porous media 

We first validate the LB model in Section 3 by simulating a single-phase flow in porous media, see Fig. 1. The 
reason we chose this case is because its analytical solutions are available. In this problem, a fluid flows through porous 
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media confined in a domain with a characteristic length 0L . The inlet and outlet pressures are inP  and outP   while 
periodic boundary conditions are imposed at the domain’s top and bottom boundaries. The streamwise superficial 
velocity (component in the x  direction) is then solved [14].       

 

 

Fig. 1.  Schematic of the single-phase flow in porous media. The origin of the coordinates is at the left bottom corner. 
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where U and V  are the velocity components in the X  and Y  directions.  

We carried out the LB simulations on 100 100 grids subject to the boundary conditions 1inP =  and 0outP = . These 
pressure boundary conditions were implemented in our algorithm by the non-equilibrium extrapolation method [15]. 
Meanwhile, the periodic boundary treatments were employed on the top and bottom boundaries.  As to the relaxation 
time, we specified it as ( )3 2 0.5 0.6732f ss c t =  + = , resulting in 0.001Ma = . In addition, we set 0.001Da = , 

0.5 =  and Re 0.001= , 10 , 30  and 50 . In simulation, all the results were justified by the grid-independence tests.  
 

 

Fig. 2. The streamwise velocities with different Reynold numbers. Solid line: analytical solutions; open circles: LB results.   

Figure 2 shows the streamwise velocities obtained by our LB simulations with different Reynolds numbers, 
together with the corresponding analytical solutions. It is seen that the numerical results are well agreed with those 
analytical solutions. Note that in the limit of Re 0= , at which the flow rate is very small, Darcy’s law should be held. 
Figure 2 exhibits the obtained dimensionless streamwise velocity under that condition 1U = . This is the very solution 
to the Darcy equation. Meanwhile, when Re  increases, U in Fig. 2 gets smaller and smaller. This indicates at 
intermediate and high flow rates, the inertial effects represented by the Forchheimer term are not trivial.   
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4.2. Water-vapor two-phase flow in a semi-infinite porous region  

Next, we apply the LB model to simulate water-vapor flow in a semi-infinite region occupied by isotropic and 
homogeneous porous media with porosity   and permeability K , see Fig. 3. To be specific, consider liquid water 
flows into the porous media, and at the bottom there is a plain heated plate. Phase change occurs on this plate where 
liquid water turns into vapor. In order to compare with the results in Ref. [4], we assume a uniform saturation 0.8s =  
on the bottom plate, and set other boundary conditions as 0X = : 1,  1lU s= = ; 1X = : 0, 0lU X s X  =   = ; 

0Y = : , 0.8l vV V s= − =  and 1Y = :  1,  1lU s= = .       
 

 

Fig. 3. Schematic of the water-vapor flow in a semi-infinite porous region. The origin of the coordinates is at the left bottom corner. 

Again, we conducted the LB simulation on 100 100 grids and specified the density and viscosity ratios 
46.23 10 −=   and 24.25 10 −=  , referring to water and its vapor’s states at the standard atmospheric pressure 

[4]. In simulation, 0.001Ma = , 0.001Da = , 0.5 = and 0.1Ca = . The Reynolds number ranges from 0.001 to 50 . 
Moreover, to compare with the results in Ref. [4], we introduced the mixture momentum m m l v = +U U U  with the 
mixture density ( )1 1m s = + − , and computed its values based on our LB results. We also introduced the transform 
coordinate 24CaY DaX =   and a scaling factor 2 24 Ca X Da =  for the velocity component in the Y direction 
in our following discussion [4].  

 

 

Fig. 4. The saturation distributions with different Reynold numbers. Line A: LB results at Re 0.001= ; line B: LB results at Re 50= ; open 
circles: results from Ref. [4]. 
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Fig. 5. (a) the streamwise mixture momentum; (b) the cross-streamwise mixture momentum. Line A: LB results at Re 0.001= ; line B: LB results 
at Re 50= ; open circles: results from Ref. [4]. 

 

Fig. 6. (a) the streamwise velocity;  (b) the cross-streamwise velocity. Line A: liquid velocity at Re 0.001= ; line B: Liquid velocity at Re 50= ; 
cross C: vapor velocity at Re 0.001= ; line D: vapor velocity at Re 50= . 

Figure 4 exhibits the saturation distributions obtained from the LB simulations at different Reynolds numbers. For 
demonstration, the figure only displays the results when Re 0.001=  and Re 50= , together with those from Ref. [4] 
using the generalized Darcy’s law without the Forchheimer term. It is found that saturation grows from its boundary 
value 0.8s =  to its bulk value 1s =  in all cases. In particular, saturation is smaller than one but larger than its 
boundary value in the vicinity of the plate, indicating there is a two-phase flow zone involving both liquid water and 
its vapor. Interestingly, we see the saturation profiles depend on the Reynolds number. When Re  is small, say 
Re 0.001= , the LB results are in good agreement with those from Ref. [4]. However, when Re  grows, a deviation 
in s  from the Darcy profile is observed in the two-phase zone. This demonstrates that the inertial effects on liquid-
vapor mass transfer are nontrivial when the Reynolds number is finite. In this scenario, the generalized Darcy’s law 
is not sufficiently accurate any more.  

Figures 5 and 6 further show the mixture momentum, liquid and vapor velocities along the   direction. In Figs. 
5(a) and 6(a), we see the streamwise mixture momentum and liquid velocity decay when moving from the bulk region 
to the plate. Meanwhile, both of them have an apparent slip on the wall. The decay phenomenon occurs in the two-
phase zone and results from the decrease of saturation. For the streamwise vapor velocity, it is shown its maximum 
appears at the wall where phase change occurs and then gradually decreases to zero in the bulk flow region. Figures 
5(b) and 6(b) also show the cross-streamwise mixture momentum, liquid and vapor velocities. A careful observation 
can identify the zero cross-streamwise mixture momentum at the wall as the wall is impermeable. However, both the 
liquid and vapor cross-streamwise velocities at the wall are nonzero. This is not surprising since phase change takes 
place at the wall, at which water turns into vapor.  
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It should also be noted that both figures compare the flow characteristics when Re 0.001=  and Re 50= . Due to 
the existence of inertial force, the mixture momentum and liquid velocity display clear differences when the Reynolds 
number grows. Interestingly, the vapor flows shown in Figs. 6(a) and 6(b) are nearly insensitive with the changing 
Re⎯The results of Re 50=  almost overlap those of Re 0.001= . We analyze this is because the Reynolds number 
used in this work is defined as 0 0Re l lu L = depending on the liquid properties. For the vapor phase, its own 
Reynolds number should be Re   . In our studies, Re    is very small regardless of Re 0.001= or Re 50= . 
It is expected that the inertial effects in the vapor phase would become significant when Re    is large enough.  

4. Conclusion 

In this article, we developed a double-distribution-function LB model to study numerically liquid vapor two-phase 
transport characteristics at the REV scale. Different from those previous studies, our model considers the compounding 
effects resulted from the Darcy, capillary and inertial forces. The numerical results indicate that the inertial force will 
be significant when the flow rate is intermediate or high. Importantly, the simulations in this article demonstrate the 
proposed LB model is a useful tool to capture both single-phase and two-phase flow and mass transfer with the inertial 
effects in porous media.   
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