665 research outputs found

    Aeronautical Networks for In-Flight Connectivity : A Tutorial of the State-of-the-Art and Survey of Research Challenges

    Get PDF

    A Realistic Mobility Model for Wireless Networks of Scale-Free Node Connectivity

    Get PDF
    Recent studies discovered that many of social, natural and biological networks are characterised by scale-free power-law connectivity distribution. We envision that wireless networks are directly deployed over such real-world networks to facilitate communication among participating entities. This paper proposes Clustered Mobility Model (CMM), in which nodes do not move randomly but are attracted more to more populated areas. Unlike most of prior mobility models, CMM is shown to exhibit scale-free connectivity distribution. Extensive simulation study has been conducted to highlight the difference between Random WayPoint (RWP) and CMM by measuring network capacities at the physical, link and network layers

    Maximizing Transmission Opportunities in Wireless Multihop Networks

    Get PDF
    Being readily available in most of 802.11 radios, multirate capability appears to be useful as WiFi networks are getting more prevalent and crowded. More specifically, it would be helpful in high-density scenarios because internode distance is short enough to employ high data rates. However, communication at high data rates mandates a large number of hops for a given node pair in a multihop network and thus, can easily be depreciated as per-hop overhead at several layers of network protocol is aggregated over the increased number of hops. This paper presents a novel multihop, multirate adaptation mechanism, called multihop transmission opportunity (MTOP), that allows a frame to be forwarded a number of hops consecutively to minimize the MAC-layer overhead between hops. This seemingly collision-prone nonstop forwarding is proved to be safe via analysis and USRP/GNU Radio-based experiment in this paper. The idea of MTOP is in clear contrast to the conventional opportunistic transmission mechanism, known as TXOP, where a node transmits multiple frames back-to-back when it gets an opportunity in a single-hop WLAN. We conducted an extensive simulation study via OPNET, demonstrating the performance advantage of MTOP under a wide range of network scenarios

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey

    Get PDF
    With the widespread use of IoT applications and the increasing trend in the number of connected smart devices, the concept of routing has become very challenging. In this regard, the IPv6 Routing Protocol for Low-power and Lossy Networks (PRL) was standardized to be adopted in IoT networks. Nevertheless, while mobile IoT domains have gained significant popularity in recent years, since RPL was fundamentally designed for stationary IoT applications, it could not well adjust with the dynamic fluctuations in mobile applications. While there have been a number of studies on tuning RPL for mobile IoT applications, but still there is a high demand for more efforts to reach a standard version of this protocol for such applications. Accordingly, in this survey, we try to conduct a precise and comprehensive experimental study on the impact of various mobility models on the performance of a mobility-aware RPL to help this process. In this regard, a complete and scrutinized survey of the mobility models has been presented to be able to fairly justify and compare the outcome results. A significant set of evaluations has been conducted via precise IoT simulation tools to monitor and compare the performance of the network and its IoT devices in mobile RPL-based IoT applications under the presence of different mobility models from different perspectives including power consumption, reliability, latency, and control packet overhead. This will pave the way for researchers in both academia and industry to be able to compare the impact of various mobility models on the functionality of RPL, and consequently to design and implement application-specific and even a standard version of this protocol, which is capable of being employed in mobile IoT applications

    Design and stochastic analysis of emerging large-scale wireless-powered sensor networks

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2016-2017. Àmbit d’Enginyeria de les TICUndeniably, the progress in wireless networks during the last two decades is extraordinary. However, the ever-increasing upward trend in the numbers of wireless devices that will overwhelm every field of our everyday life, e.g., building automation, traffic management, health-care, etc., will introduce several issues in terms of communication and energy provision that need to be handled in advance. Regarding the communication issues, it is imperative to ensure the correct operation of the vast collection of nodes, especially for life-critical applications. Two well-known metrics that can characterize sufficiently the network reliability are the coverage and the connectivity probability that are derived by taking into account the network topology, the channel conditions between every transmitter-receiver pair, and the interference from other nodes. Nevertheless, considering all those factors is not straightforward. Lately, stochastic geometry has come into prominence, which is a mathematical tool to study the average network performance over many spatial realizations, while considering all aforementioned factors. Moreover, the other crucial issue for the large-scale dense network deployments of the future is their energy supply. Traditional battery charging or swapping for the wireless devices is both inconvenient and harms the environment, especially if we take into account the enormous numbers of nodes. Therefore, novel solutions have to be found using renewable energy sources to zero down the significant electricity consumption. Wireless energy harvesting is a convenient and environmentally-friendly approach to prolong the lifetime of networks by harvesting the energy from radio-frequency (RF) signals and converting it to direct current electricity through specialized hardware. The RF energy could be harvested from signals generated in the same or other networks. However, if the amount of harvested energy is not sufficient, solar-powered dedicated transmitters could be employed. In this way, we can achieve a favorable outcome by having both a zero-energy network operation and convenience in the charging of the wireless devices. Still, extensive investigation should be done in order to ensure that the communication performance is not affected. To that end, in this thesis, we study the communication performance in large-scale networks using tools from stochastic geometry. The networks that we study comprise wireless devices that are able to harvest the energy of RF signals. In the first part of the thesis, we present the effects of wireless energy harvesting from the transmissions of the cooperative network on the coverage probability and the network lifetime. In the second part of the thesis, we first employ batteryless nodes that are powered by dedicated RF energy transmitters to study the connectivity probability. Then, we assume that the dedicated transmitters are powered by solar energy to study the connectivity in a clustered network and investigate, for the first time, the reliability of zero-energy networks. Finally, we conclude the thesis by providing insightful research challenges for future works.Innegablemente, el progreso en las redes inalámbricas durante las últimas dos décadas es extraordinario. Sin embargo, la creciente tendencia al alza en el número de dispositivos inalámbricos que abarcarán todos los ámbitos de nuestra vida cotidiana, como la automatización de edificios, la gestión del tráfico, la atención sanitaria, etc., introducirá varias cuestiones en términos de comunicación y suministro de energía que se debe tener en cuenta con antelación. Respecto a los problemas de comunicación, es imprescindible asegurar el correcto funcionamiento de la vasta colección de nodos, especialmente para las aplicaciones vitales. Dos métricas bien conocidas que pueden caracterizar suficientemente la fiabilidad de la red son la probabilidad de cobertura y la de conectividad, que se derivan teniendo en cuenta la topología de la red, las condiciones del canal entre cada par transmisor-receptor y la interferencia de otros nodos. Sin embargo, considerar todos esos factores no es sencillo. Últimamente, la geometría estocástica ha llegado a la prominencia como un metodo de análisis, que es una herramienta matemática para estudiar el rendimiento promedio de la red sobre muchas realizaciones espaciales, teniendo en cuenta todos los factores mencionados. Además, la otra cuestión crucial para los despliegues de alta densidad de las redes futuras es su suministro de energía. La carga o el intercambio de baterías para los dispositivos inalámbricos es inconveniente y daña el medio ambiente, especialmente si tenemos en cuenta el enorme número de nodos utilizados. Por lo tanto, se deben encontrar nuevas soluciones utilizando fuentes de energía renovables para reducir el consumo de electricidad. La recolección de energía inalámbrica es un método conveniente y respetuoso con el medio ambiente para prolongar la vida útil de las redes recolectando la energía de las señales de radiofrecuencia (RF) y convirtiéndola en electricidad de corriente continua mediante un hardware especializado. La energía de RF podría ser obtenida a partir de señales generadas en la misma o en otras redes. Sin embargo, si la cantidad de energía obtenida no es suficiente, podrían emplearse transmisores de energía inalambricos que la obtuvieran mediante paneles fotovoltaicos. De esta manera, podemos lograr un resultado favorable teniendo tanto una operación de red de energía cero como una conveniencia en la carga de los dispositivos inalámbricos. Por lo tanto, una investigación exhaustiva debe hacerse con el fin de garantizar que el rendimiento de la comunicación no se ve afectada. En esta tesis se estudia el rendimiento de la comunicación en redes de gran escala utilizando técnicas de geometría estocástica. Las redes que se estudian comprenden dispositivos inalámbricos capaces de recoger la energía de las señales RF. En la primera parte de la tesis, presentamos los efectos de la recolección de energía inalámbrica de las transmisiones de la red cooperativa sobre la probabilidad de cobertura y la vida útil de la red. En la segunda parte de la tesis, primero empleamos nodos sin baterías que son alimentados por transmisores de energía de RF para estudiar la probabilidad de conectividad. A continuación, asumimos que los transmisores dedicados son alimentados por energía solar para estudiar la conectividad en una red agrupada (clustered network) e investigar, por primera vez, la fiabilidad de las redes de energía cero. Finalmente, concluimos la tesis aportando nuevas lineas de investigación para trabajos futurosAward-winningPostprint (published version

    Design and stochastic analysis of emerging large-scale wireless-powered sensor networks

    Get PDF
    Undeniably, the progress in wireless networks during the last two decades is extraordinary. However, the ever-increasing upward trend in the numbers of wireless devices that will overwhelm every field of our everyday life, e.g., building automation, traffic management, health-care, etc., will introduce several issues in terms of communication and energy provision that need to be handled in advance. Regarding the communication issues, it is imperative to ensure the correct operation of the vast collection of nodes, especially for life-critical applications. Two well-known metrics that can characterize sufficiently the network reliability are the coverage and the connectivity probability that are derived by taking into account the network topology, the channel conditions between every transmitter-receiver pair, and the interference from other nodes. Nevertheless, considering all those factors is not straightforward. Lately, stochastic geometry has come into prominence, which is a mathematical tool to study the average network performance over many spatial realizations, while considering all aforementioned factors. Moreover, the other crucial issue for the large-scale dense network deployments of the future is their energy supply. Traditional battery charging or swapping for the wireless devices is both inconvenient and harms the environment, especially if we take into account the enormous numbers of nodes. Therefore, novel solutions have to be found using renewable energy sources to zero down the significant electricity consumption. Wireless energy harvesting is a convenient and environmentally-friendly approach to prolong the lifetime of networks by harvesting the energy from radio-frequency (RF) signals and converting it to direct current electricity through specialized hardware. The RF energy could be harvested from signals generated in the same or other networks. However, if the amount of harvested energy is not sufficient, solar-powered dedicated transmitters could be employed. In this way, we can achieve a favorable outcome by having both a zero-energy network operation and convenience in the charging of the wireless devices. Still, extensive investigation should be done in order to ensure that the communication performance is not affected. To that end, in this thesis, we study the communication performance in large-scale networks using tools from stochastic geometry. The networks that we study comprise wireless devices that are able to harvest the energy of RF signals. In the first part of the thesis, we present the effects of wireless energy harvesting from the transmissions of the cooperative network on the coverage probability and the network lifetime. In the second part of the thesis, we first employ batteryless nodes that are powered by dedicated RF energy transmitters to study the connectivity probability. Then, we assume that the dedicated transmitters are powered by solar energy to study the connectivity in a clustered network and investigate, for the first time, the reliability of zero-energy networks. Finally, we conclude the thesis by providing insightful research challenges for future works.Innegablemente, el progreso en las redes inalámbricas durante las últimas dos décadas es extraordinario. Sin embargo, la creciente tendencia al alza en el número de dispositivos inalámbricos que abarcarán todos los ámbitos de nuestra vida cotidiana, como la automatización de edificios, la gestión del tráfico, la atención sanitaria, etc., introducirá varias cuestiones en términos de comunicación y suministro de energía que se debe tener en cuenta con antelación. Respecto a los problemas de comunicación, es imprescindible asegurar el correcto funcionamiento de la vasta colección de nodos, especialmente para las aplicaciones vitales. Dos métricas bien conocidas que pueden caracterizar suficientemente la fiabilidad de la red son la probabilidad de cobertura y la de conectividad, que se derivan teniendo en cuenta la topología de la red, las condiciones del canal entre cada par transmisor-receptor y la interferencia de otros nodos. Sin embargo, considerar todos esos factores no es sencillo. Últimamente, la geometría estocástica ha llegado a la prominencia como un metodo de análisis, que es una herramienta matemática para estudiar el rendimiento promedio de la red sobre muchas realizaciones espaciales, teniendo en cuenta todos los factores mencionados. Además, la otra cuestión crucial para los despliegues de alta densidad de las redes futuras es su suministro de energía. La carga o el intercambio de baterías para los dispositivos inalámbricos es inconveniente y daña el medio ambiente, especialmente si tenemos en cuenta el enorme número de nodos utilizados. Por lo tanto, se deben encontrar nuevas soluciones utilizando fuentes de energía renovables para reducir el consumo de electricidad. La recolección de energía inalámbrica es un método conveniente y respetuoso con el medio ambiente para prolongar la vida útil de las redes recolectando la energía de las señales de radiofrecuencia (RF) y convirtiéndola en electricidad de corriente continua mediante un hardware especializado. La energía de RF podría ser obtenida a partir de señales generadas en la misma o en otras redes. Sin embargo, si la cantidad de energía obtenida no es suficiente, podrían emplearse transmisores de energía inalambricos que la obtuvieran mediante paneles fotovoltaicos. De esta manera, podemos lograr un resultado favorable teniendo tanto una operación de red de energía cero como una conveniencia en la carga de los dispositivos inalámbricos. Por lo tanto, una investigación exhaustiva debe hacerse con el fin de garantizar que el rendimiento de la comunicación no se ve afectada. En esta tesis se estudia el rendimiento de la comunicación en redes de gran escala utilizando técnicas de geometría estocástica. Las redes que se estudian comprenden dispositivos inalámbricos capaces de recoger la energía de las señales RF. En la primera parte de la tesis, presentamos los efectos de la recolección de energía inalámbrica de las transmisiones de la red cooperativa sobre la probabilidad de cobertura y la vida útil de la red. En la segunda parte de la tesis, primero empleamos nodos sin baterías que son alimentados por transmisores de energía de RF para estudiar la probabilidad de conectividad. A continuación, asumimos que los transmisores dedicados son alimentados por energía solar para estudiar la conectividad en una red agrupada (clustered network) e investigar, por primera vez, la fiabilidad de las redes de energía cero. Finalmente, concluimos la tesis aportando nuevas lineas de investigación para trabajos futuro

    Engage D3.10 Research and innovation insights

    Get PDF
    Engage is the SESAR 2020 Knowledge Transfer Network (KTN). It is managed by a consortium of academia and industry, with the support of the SESAR Joint Undertaking. This report highlights future research opportunities for ATM. The basic framework is structured around three research pillars. Each research pillar has a dedicated section in this report. SESAR’s Strategic Research and Innovation Agenda, Digital European Sky is a focal point of comparison. Much of the work is underpinned by the building and successful launch of the Engage wiki, which comprises an interactive research map, an ATM concepts roadmap and a research repository. Extensive lessons learned are presented. Detailed proposals for future research, plus research enablers and platforms are suggested for SESAR 3

    Business process resource networks: a multi-theoretical study of continuous organisational transformation

    Get PDF
    Drawing on multiple theoretical lenses, this research studies continuous transformation, or ‘morphing’, of a business process resource network (BPRN). The aim is to further our understanding of continuous organisational change at the lowest levels of analysis within an organisation: that is, at the resource level, and that resource’s relationships to other resources as they exist within a BPRN. Data was gathered from a single, in depth case study. Analysis was achieved by means of mapping BPRN evolution using ‘temporal bracketing’, ‘visual’ and ‘narrative’ approaches (Langley, 1999). The analysis revealed two mechanisms that appear to govern microstate morphing: bond strength and stakeholder expectation. In addition, four factors emerged as important: environmental turbulence, timing and timeliness of changes, concurrency of changes, and enduring business logic. An emergent model of microstate morphing which acknowledges the importance of socio-materiality in actor network morphogenesis (ANM) is presented. This study shows how effective relationships and configuration of resources within the BPRN can be achieved to facilitate timely, purposeful morphing. Five propositions are offered from the emergent ANM model. Specifically, these relate to the conditional operating parameters and the identified generative mechanisms for continuous organisational transformation within the BPRN. Implications for practice are significant. A heuristic discussion guide containing a series of questions framed around the ANM model to highlight the challenges of microstate morphing for practitioners is proposed. Two routes for future research are suggested: replication studies, and quantifying BPRN change in relation to an organisation’s environment using a ii survey instrument and inferential statistical analysis based on the ANM model features and propositions
    corecore