500,649 research outputs found

    Control of spinning flexible spacecraft by modal synthesis

    Get PDF
    A procedure is presented for the active control of a spinning flexible spacecraft. Such a system exhibits gyroscopic effects. The design of the controller is based on modal decomposition of the gyroscopic system. This modal decoupling procedure leads to a control mechanism implemented in modular form, which represents a distinct computational advantage over the control of the coupled system. Design procedures are demonstrated for two types of control algorithms, linear and nonlinear. The first represents classical linear feedback approach, and the second represents an application of on-off control, both types made feasible by the modal decomposition scheme

    A Computationally Efficient Projection-Based Approach for Spatial Generalized Linear Mixed Models

    Full text link
    Inference for spatial generalized linear mixed models (SGLMMs) for high-dimensional non-Gaussian spatial data is computationally intensive. The computational challenge is due to the high-dimensional random effects and because Markov chain Monte Carlo (MCMC) algorithms for these models tend to be slow mixing. Moreover, spatial confounding inflates the variance of fixed effect (regression coefficient) estimates. Our approach addresses both the computational and confounding issues by replacing the high-dimensional spatial random effects with a reduced-dimensional representation based on random projections. Standard MCMC algorithms mix well and the reduced-dimensional setting speeds up computations per iteration. We show, via simulated examples, that Bayesian inference for this reduced-dimensional approach works well both in terms of inference as well as prediction, our methods also compare favorably to existing "reduced-rank" approaches. We also apply our methods to two real world data examples, one on bird count data and the other classifying rock types

    Exploiting Anonymity in Approximate Linear Programming: Scaling to Large Multiagent MDPs (Extended Version)

    Get PDF
    Many exact and approximate solution methods for Markov Decision Processes (MDPs) attempt to exploit structure in the problem and are based on factorization of the value function. Especially multiagent settings, however, are known to suffer from an exponential increase in value component sizes as interactions become denser, meaning that approximation architectures are restricted in the problem sizes and types they can handle. We present an approach to mitigate this limitation for certain types of multiagent systems, exploiting a property that can be thought of as "anonymous influence" in the factored MDP. Anonymous influence summarizes joint variable effects efficiently whenever the explicit representation of variable identity in the problem can be avoided. We show how representational benefits from anonymity translate into computational efficiencies, both for general variable elimination in a factor graph but in particular also for the approximate linear programming solution to factored MDPs. The latter allows to scale linear programming to factored MDPs that were previously unsolvable. Our results are shown for the control of a stochastic disease process over a densely connected graph with 50 nodes and 25 agents.Comment: Extended version of AAAI 2016 pape

    Sparse Regression with Multi-type Regularized Feature Modeling

    Full text link
    Within the statistical and machine learning literature, regularization techniques are often used to construct sparse (predictive) models. Most regularization strategies only work for data where all predictors are treated identically, such as Lasso regression for (continuous) predictors treated as linear effects. However, many predictive problems involve different types of predictors and require a tailored regularization term. We propose a multi-type Lasso penalty that acts on the objective function as a sum of subpenalties, one for each type of predictor. As such, we allow for predictor selection and level fusion within a predictor in a data-driven way, simultaneous with the parameter estimation process. We develop a new estimation strategy for convex predictive models with this multi-type penalty. Using the theory of proximal operators, our estimation procedure is computationally efficient, partitioning the overall optimization problem into easier to solve subproblems, specific for each predictor type and its associated penalty. Earlier research applies approximations to non-differentiable penalties to solve the optimization problem. The proposed SMuRF algorithm removes the need for approximations and achieves a higher accuracy and computational efficiency. This is demonstrated with an extensive simulation study and the analysis of a case-study on insurance pricing analytics

    LINEAR AND NONLINEAR MIXED-EFFECTS MODELS

    Get PDF
    Recent developments in computational methods for maximum likelihood (ML) or restricted maximum likelihood (REML) estimation of parameters in general linear mixed-effects models have made the analysis of data in typical agricultural settings much easier. With software such as SAS PROC MIXED we are able to handle data from random-effects one-way classifications, from blocked designs including incomplete blocked designs, from hierarchical designs such as splitplot designs, and other types of data that may be described as repeated measures or longitudinal data or growth-curve data. It is especially helpful that the new computational methods do not depend on balance in the data so we are able to deal more easily with observational studies or with randomly missing data in a designed experiment . We describe some of the new computational approaches and how they are implemented in the nlme3.0 library for the S-PLUS language. One of the most powerful features of this language is the graphics capabilities, especially the trellis graphics facilities developed by Bill Cleveland and his coworkers at Bell Labs. Although most participants in this conference may be more familiar with SAS, and most of the models described here can be fit with PROC MIXED or the NLiNMIX macro or new PROC NLM IXED in SAS version 7, some exposure to the combination of graphical display and model-fitting approaches from S-PLUS may be informative . We show how data exploration with trellis graphics, followed by fitting and comparing mixedeffects models, followed by graphical assessment of the fitted model can be used in a variety of situations. On some occasions, such as modeling growth curves, a linear trend or polynomial trend or other types of linear statistical models for the within-subject time dependence are just not going to do an adequate job of representing the data. In those cases, a nonlinear model is more appropriate. We show how the concept of a random coefficient model can be extended to nonlinear models so as to fit nonlinear mixed-effects models

    A theory of effects and resources: adjunction models and polarised calculi

    Get PDF
    We consider the Curry-Howard-Lambek correspondence for effectful computation and resource management, specifically proposing polarised calculi together with presheaf-enriched adjunction models as the starting point for a comprehensive semantic theory relating logical systems, typed calculi, and categorical models in this context. Our thesis is that the combination of effects and resources should be considered orthogonally. Model theoretically, this leads to an understanding of our categorical models from two complementary perspectives: (i) as a linearisation of CBPV (Call-by-Push-Value) adjunction models, and (ii) as an extension of linear/non-linear adjunction models with an adjoint resolution of computational effects. When the linear structure is cartesian and the resource structure is trivial we recover Levy’s notion of CBPV adjunction model, while when the effect structure is trivial we have Benton’s linear/nonlinear adjunction models. Further instances of our model theory include the dialogue categories with a resource modality of Melliès and Tabareau, and the [E]EC ([Enriched] Effect Calculus) models of Egger, Møgelberg and Simpson. Our development substantiates the approach by providing a lifting theorem of linear models into cartesian ones. artesian ones. To each of our categorical models we systematically associate a typed term calculus, each of which corresponds to a variant of the sequent calculi LJ (Intuitionistic Logic) or ILL (Intuitionistic Linear Logic). The adjoint resolution of effects corresponds to polarisation whereby, syntactically, types locally determine a strict or lazy evaluation order and, semantically, the associativity of cuts is relaxed. In particular, our results show that polarisation provides a computational interpretation of CBPV in direct style. Further, we characterise depolarised models: those where the cut is associative, and where the evaluation order is unimportant. We explain possible advantages of this style of calculi for the operational semantics of effects.G. Munch-Maccagnoni was supported by ERC ECSYM; M. Fiore partially so.This is the author accepted manuscript. The final version is available from the Association for Computing Machinery via http://dx.doi.org/10.1145/2837614.283765

    Bivariate copula additive models for location, scale and shape

    Get PDF
    In generalized additive models for location, scale and shape (GAMLSS), the response distribution is not restricted to belong to the exponential family and all the model’s parameters can be made dependent on additive predictors that allow for several types of covariate effects (such as linear, non-linear, random and spatial effects). In many empirical situations, however, modeling simultaneously two or more responses conditional on some covariates can be of considerable relevance. The scope of GAMLSS is extended by introducing bivariate copula models with continuous margins for the GAMLSS class. The proposed computational tool permits the copula dependence and marginal distribution parameters to be estimated simultaneously, and each parameter to be modeled using an additive predictor. Simultaneous parameter estimation is achieved within a penalized likelihood framework using a trust region algorithm with integrated automatic multiple smoothing parameter selection. The introduced approach allows for straightforward inclusion of potentially any parametric marginal distribution and copula function. The models can be easily used via the copulaReg() function in the R package SemiParBIVProbit. The proposal is illustrated through two case studies and simulated data

    Relational Parametricity for Computational Effects

    Get PDF
    According to Strachey, a polymorphic program is parametric if it applies a uniform algorithm independently of the type instantiations at which it is applied. The notion of relational parametricity, introduced by Reynolds, is one possible mathematical formulation of this idea. Relational parametricity provides a powerful tool for establishing data abstraction properties, proving equivalences of datatypes, and establishing equalities of programs. Such properties have been well studied in a pure functional setting. Many programs, however, exhibit computational effects, and are not accounted for by the standard theory of relational parametricity. In this paper, we develop a foundational framework for extending the notion of relational parametricity to programming languages with effects.Comment: 31 pages, appears in Logical Methods in Computer Scienc
    • …
    corecore