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CONTROL, OF SPINNING FLEXLBLE ﬁVACHCHAFT.ﬂY MODAL SYNIHESLS -

P L

v [1]
L. Malroviteh,* H. F. Van Landinghnm*® and 1. Dzk#%
virginln Polytechinie Inatitute and State Unlversity
Blacksburg, Virginla U.5.A.

Abotract

A pracedure [p preseated for the nctive con-
trol of a spioning llexible apneceralt, Such o
nynton vxhiblin gyroncople effeetn. Tho deaign
of the controllar Iy based on modnl decomposition
af the gyroscople system. This modal decoupling
procedure londs te a control mechanism Implemented
In modular Corm, whleh ropresenta n distipet com-
putacional odvantage over the control of the
coupled system, Doelgn procedurcs are demonstrated
for two types of contvol nlgorithms, linear and
nonlinear, ‘The [irst rvepresents classlcal linear
feedbaek approach and the second represcnts an ap=
plication of on-off control, both types made fea-
slble by the modal decomposition scheme. g

1, Iniroduction ‘

Ao spacecraft structures incresse in size,
welght limitations demand that vacious substruc—
tures be made as light as possible, which in turn
requires that they be highly flexible. On the
other hand, greater pointing accuracy necessltates
finer attitude control, which can be achieved only
through active control of the spacecraft, Iin con-
trolling a f£lexible spacecraft, the problem of si-
mulating the flexibility is often critical, as the
number of degrees of Freedom of the simulation can
become so¢ larpge as to render various mathematiecal
techniques unfeoaslble, Of course, quite often
preper modelliing of the spacecraft can result in
a model possessing relatively fow degrees of free-
dom and yet retainipg all the esaential dynamic
charncteristics of the system, Even then some
truncation may be necessary. In the case of con-
trol of nonrotating spacecraft, it is comnon prac-
tice toc use the system natural wodes to decouple
the system and control only a limited number of
lovet modes. This procedure can be implemented
with relative ease because natural modes of nonro-
tating structures can he readily computed., Recenk
advances din the analysis of pgyroscopic systems,
however, makes o modal appreoach possible also for
rotating spacecraft, Following is a brief litera-
ture survey of related work. |

!

In an attempt to control o flexible space boos-
ter, Gevarter (Ref. 1) presents a procedure where-
by the respense can be represented in terms of the
rigld-body modes and the bending modes of the mis-
pile. This appronch permics 8 description of the
pystem In terms of transfer functions for the un-
coupled system. When the spacecralt is splnning,
or when it possesses spinning parcs, the classical
madal decomposition is no longer peossible because
the modal matrix will not diagonallze the gyro~
seople matrix. HKuo et al (Ref. 2) have presented
a technique for the deaign ol a digltal controller
for spinning [lexible spacecrnft using a redesign
of a preliminary continuovs-data control system.

#pralessor, Department of Engineering Sclence and

I Ho attempt won made in Rel. 2 to uncouple tho ayn-
tem equations, Control of flexible spacecraft by

. modnl nynthasis Ls discussod by Vooleoert (Ref, 3),
but the proeccdure pronented in valld only for non-
gyroncuple nyatems, Iy fact, the wathematienl
model considered, used Civnt in Refl. 4, conoistn
of three dioks mounted on o flexlble shnlt oand ro-
tating about a common symmetry axins. Such a model
doea not exhlbit the gyconcople olfeet typleal of
a spioning {lexible structura capable of nutation,

This paper develops a method for the design of
n controller bnsed on modal decomposition ef spin-
ning structures developed in Refs. 5 and 6. Tor
high~order systems, this approach offers substan~
tial computational advantages. In the first plnce,
the modal decoupling precedure leads to o contrnl
mechaniom whiceh can be implemented in modular form.
Moreover, one can usc decoupled dynamice to design
an observer alsa. Following decoupling, ecaeh con-—
trol-group 1s governcd by a set of two [irst-order
differential equations with a skew symmetric ma=-
trix of coefficlents. These sets of cquations can
be integrated readily, thus permitting {independent
eontrol of spacecraft modes. Design procedures
are demonstrated for two types of control alpeo-
rithms, linear and nonlinear. The first repre-
sents a classical linear feedback appreach in the
form of proportional contrel and the second repre=-
sents an applieation of on-off control, both types
made feasible by the modal decompositlion scheme,

2. Kinematical Considerations

Let us consider a peneral spacecraft consisting
of a centyal body with an arbitrary number of ap-
pendages. The central body will be referred to as
the "platform" and it can be rigid or elastie.
Quantities percaining to the placform will be des-
ignated by the subscript P, The appendages can be
of three types: rigid and rotating relative to
the platform, elastic amd nonrotating relative to
the platform, and elastic and retating relative to
the platform, Quantities pertaining to che types
of appendages listed will be denoted by the sub-
‘seripts R, E, and A, respectively. An example of
‘the first type is a rigld rotor, examples of the
second are flexible solar panels or flexible an-
tennas cantilevered from the platform, and an 11-
lugtration of the third is m flexible rotor. '
Clearly, there con be more than one appendage of
a given type. We shall confine our discussion to
one of each type, however, with o summation implicd
over appendages of the same type.

To deseribe the motion of the spacecraft, it
will prove convenlent to introduce various sets of
axes, In the first place, we wish to identily an
inertial system of axes XYZ with the orvigin at a
point 0. Then, we shall identify a system of axes
xpypzp with the origin at the center of mass P of

Mechanies, Associote Fellow ATAA.
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' e .
ithe plotTorm and colnefding with the prineipal ‘

el of Lhe wdelormd platlorn,  Siallarly, we
tohnll conglder u et ol axes xuypep ottached to
dhe rotor and with the ordplo ot the nmoss eonter R
wl the rotor. The motfon of an elastic menber non-
irotntdng rvelaldve to the platform can bo dencylbod
thy means of a got xpypap attached to the member in
amcleformed astate aed with the origin B ac the polnt
wl attachment of the mewber. ln the wame manner,
swe en deline a got of axes xaypazp Wwith the origin
g A ind colpelding with o glven set of axos Ln
ithe roraking clostie member when in undeformed
istate.  The ppacecvalt and the varlous scts of axes
ire shown In Fig. 1.

The position of the peint P relative to the in- |

ertinl spoce is glven by the radius vector Rop
sfrom 0 to I'.
fto axes XYZ is pliven by the angular velocity vee-
(tor Qp. In additlon, nay polnt of the placform
lean undergo clastle motion relative to xpyp2p.
{¥or simplicity, however, we shall assume that the
iplatform is rigid.
inecting points R, E, and A relative to P ara de-

jnoted by the radius vectors Bpp, Rpp, and Bpp, res-

ipectively, und the rotations of nxes xpypzp and
xpypzp relacive to xpypzp are denoted by the pugu-
lar veloelty vectors wy and wp, respeeti ely. 1t
ifollowa that the positions of R, E, ind A relative
ito 0 are Ryp + Rpypy Bgp + Rpg,y oaod Rgp ok Rpps res-
pectively. The positien of an arbitrary point in
the platform relative to P is given by the radius
veetor rpe.
point dn a spinning rotor relative to R ig gliven
thy rt- On the other hand, peints in the flexible
appendages E and A ore described by rg + ug and

r, < up, where rp and rp are nominal positiono of
the points when the appendages are undeformed and
up amd vy are elastdc displacements. It follows
that the absolute positions of arbitrary points in
the various spacecraft members are

Rp = Ryp + Ip (1a)
By = Bop By + 1 (1b)
Bp o Bopt Bpp+ Ep ¥ 4p (1)
BAmBop Bt Bt 8y (1d)

i1t should be pointed out that Rgp 18 generally
jplven in terms of inercial components, rp, Bpy,
iRpg. and Rpy in terms of components along axes
‘%pypzp, bp in terms of components along xpypips
|rg *+ up in terms of components alongy xpypzg. aud
T4 + up in torms of components along Xayazae

The anpular velocity vectors of axes KRYRERS
xpypeps and xaypzp ralacdve to the inertial space
are

Bu ey

Tegspectively,

S T L P R N Y (2)

P -k ’ -E

Nete that Iy in terms of components

|nloug Xpypzr and xpyaza, respectively.  Tils per-

Yp = Yopt I X Ip (32)
Yo © Yop + gp ¥ EPR + QR * Ep (3b)

The votation ol uxes Xpypap relaclve

The posltions of the Intercon-

Sdimilarly, the posltion of an arbitrary

along XVZ and wp and wy ore in terms of components

lmits us Lo caleculate absolute weloclty vectors fur
arbitrary points in the various members in the form

— e Beie o Emi si-mm s an

= Yor t B Uy
vhere fp and 0§, are velocicdea of the polnta In
fuestion rolnt?vn to the moving [ramen, We note
"once again that the varlous terms In Fys. (3) are
In terms of difforent sotn of axon.

+ By * (!A + EA) +dy

It will prove convenient to work with veloelty
components o cerms of member saxen. For example,
we shnll cxpress fp and yp In terms of componcuts
slong axew xpypzps ote. To this and Lt 15 more
natiral to work with matyix notation, which necen-

"pitates the fntroduction of the matedx form of the
vector cross product. ience, let us define the
followinpg skew mymmetric matrices

z y z y
im nz o --nx y b= rz 0 ~r,
-my nx 0' —ry r, 0
- , ()
0 -uz uy
u = uz 0 -ux
-uy u, 0

Then the cross products @ x £, @ ¥y, r x @, and
“u ¥ have the matrix counterparts fr, M. 4,
and i, respectively,

iYM * op b By * (lpy b xy by +oyy (3e) |
¥
|

'
(3d)

In additlon, we mugt intro-

_duce the matyices of direction cosines betweep var-

lous systems of axes. For oxample, the matrix of
‘direction cosines between axes XYZ and axes xpypzp
wlll be denoted by Lgp, so that
T
( [xp yp 2p)" = Lo, IR Y 2) (5)

' 8imilarly, the matrix of direction cosines between

inxes ®pyp2p and axes xpypzp Will be denoted by Lpp,

etzo, ith this notation, Eqa. (2) ean be replaced
|
|9 ™ Lpg%p + 9 » B = Lpglpr By = Lpplp +uy (6)

Ennd Eqs. (3} can be replaced by

Yp = LopYop ~ fpp
Yg = Lpglop¥op = LprRerfe - TR%R 7
Vg = LpplopYop = LpgRppfp = (Fpp *+ uptpgly + up

[}
!~A ™ LpalopYor = bpalpalp = (Fy + U8y + Uy

3., Rinetic Enerpy, Poteptial Enorgy and Non-
conservatlve Virtual Work

The kinetic energy of any member can be written
in the genery,l form

1 T 1 T
Te=3 Jm ypypde kg J y_ov_dm

(8)

o
Se——y
1
a<
-
g
o

.
J Yp¥pdrg +
I,

!




liadng e, (7), the kinotic enorgy becomen """'W

%“"fm"‘%ﬁ J 8y +%g§ I @R-f%.i,i Iy

+ s 1y g gk G Yy Iy 00 T [m g by ony
B

*3 Ly\ f T dny - Yop Lo(®y Frg * %

T =

T - T -
+ Jgg Tpg Lpp t Upa Tag o) O

T T LT = r T ,T T
~ ¥op Top 194 Fac %+ Yor Lor(lpe U * Lpa 2

T _lr T - AT T ~
+ B (Rop Jpy Fro Lo * Roa Bpa Tag Ml

T~ T = T ,-T T or T

+ 8 Ry Loy Tao 9y = Opp(Rpglpply + Rpalpsly)
T T T T

= Ly B+ Dpy B) — @ My &

whrra m 48 the total mass of the spacecraft, vpp 18

the magnitude of vop, and J is che total Inertin ma-

trix of the entire spacecraft in deformed state a-
bout P dn terns of compounents along xpypzp. More-.
el I

«T = .
Jﬂ Im T, Ty dmR o
'R |
, (10a)
T N
a, Jm (rA + uA)(rA + u,)dmy
A
[ ’
Teg ™ JFE (rE + uE)de
(10b)
Ty = Jm (rA “+ uA)dmA
A
oy~ J gy dmg 4oy I iy dmy (10c)
m, N .
~T “T,+
by = Jm (rE + “E)EE dmp
E
(1od)

T I
h Jm (rA + uA)gA dmA

Tenerally, the potential energy is of two types,
nomely, pravitational and clastic. Decause of the :
high altitude of geosynchronous satellites, the
fdifferential graviey effect is negligibly small,
so Lhat the potentinl cnerpy will he assumed to ba
eatiTely due to flexibility. We shall expresa the
potentinl emergy in the form

v=-J 'VELIDE+J v, 4o, Qan
Dy, A

|wheme Vy anid Yy are potential energy densities

r

. B . .
ansocinted with the clastlie oppandages nnd Dy and
B, are the domaing of extonsion of theno appendages,
The denstties Vi nnd Vy depend on spatial deriva-
tives of the components of the elnutic displace-
ment vectors uy and wa, rospectively, We shall
not glve expilele expresslonn [ox Vig and ¥y ot
thin pelnt, but return to thio aubject In the nest
oection. , |

The potentinl energy can be used to derive tho
connervative forecen netinp on the ayntem, 1y od-
dition, there con be nonconnarvative forcen preu-
ent. Such forces can arise from various nources

© such as golar rndiation pressure, meteorite im-

poct, ete. Letting E ba the nonconservative force
veoetor per unit area at a piven polnt on the pur-

. fnce 5 of the spacecrafc and &R the virtual dip-

placement of that point, the nonconservative vir-
tual work for the entire spacecralt con be writ-
ten in the form

&M - IS £+ 8R 45, + JS £ R 45,
r R

4

+ IS EE.GgEdSE 4 JS §A-6§A45A (12>.
E A

where &Rp, 61y, 8%, and &Ry can be obtained from
Eqs. (1§, Hote thnt concentrated forces can be

treated as distributed by using spatinl delta func-
tions,

The kinetic encrgy, potentinl energy, and vir-

' tual work can be used in conjunction with Lagrange's

equationa to derive the system equations of metion.

{ This gy3tem of equations is of the hybrid cype,

i.e., dqome of the equations are ordinary differen-
tial equations and the balance are partinl differ-
entinl equations. The £irst are associnted with
the rigid body motions of the spacecraft whercas
the sacond are asgocinted with the elastic dis-
plocements, It will prove most convenlent, how-
ever, to work with a completely discrete system,
which requires the transformatlon of the parcial
differential equations into sets of erdinary dif-
ferential equations. This will be done in the
next section.

4, System Discrotization

To eliminate the spatinl dependence from the
formulation, let us assume that the displacementc
vectors ug and up can be wriltten in the form

.

u, = 4 s ¢

U " Tgke A T WA
where ¢p and $p are rectangular matrices of space—
dependent admissible [unctions and Lp and £, are
time-dependent vectors of generalized coordinates.
If gy and g, hove dimensions ng and ny, then 4
and "4, are 3 x ng and 3 x ny matrices, respective-

(&)

-1y,

Uning Eqs. (28), we can wrlte

T T .
L U Y Oy B Mg &

[al
=

(24)
+T o T
Jm U S TN

Nt

A




-

- - - N B

.-
viere

T
HH“J Q‘E Q’Ede,HA"I
y,

7]

|

T

m o dmA (15

A

are pymmetric ponitive definlte motrieen of order

m ond g, respectively,  Horecover, the matrices

19y dps JAs Tpgs and mpg now depend on g and g,

jdustead of up and vy, Simllarly, we have pp =

=§’!’.(51»:)- ba - l’(\(f-)\)' b * MplGpgp)s and hyow ha(gs,

14a), no that the kinstle energy, Lg. (9), ean be re-

ipnrded as being entlrely free of spatinl dependence.

!

Assuning linear elasticity, the spacecrnft po-

tentinl energy can be wrltten in the discretized

form

1T 1T,
L IR T TR 7Y 16

where Ky, and Ry are symmetric posltlve definite
stiffness matriees of order np and np, respective-
{1y, The matrices Kp and Kp represent integrals
jover the domain Dy and Dy of functions lnvolving
spatinl derivatives of by and 4y, respectively.

The nonconservative virtual work, Eq. (12), can
be discretized in o gimilar fashion. He shall not
procecd with the discretization process at this
time, but defer the quesrion for a later section.

5. lagranpe's Equations of Motion

Let us consider a discrete (or discretized) sys-
Ltem and denote by g(t) tihe configurntion veector of
the entire system. Then, the system Lograngion
can he written in the genergl fupctional form

LeT-V=L(g,q) (17)
where it was assumed that L does not depend on
time explicitly, The system admits equilibria at
constant solutions of the equations

3L/dg = 0 18

where BL/3qg denotes mymbolically a vector with the
components 8L/dgy (1 = 1,2,...,n). Without loss
of penerality, we can assume that the trivial so-
jilution ¢ = D is a solution of Eq. (18), This is
|#0 because one can always shift the origin of the
configuration spoce to make it colncide with an
equilibrium point.

Expanding about the trivial solutlon and lin-
earizing, the Lagrangian can be written in the
quadratiec form

L= % q7mg + o £q + -%— q"kq (19)

where m, I, and k are constant square matrlces of
order n. Moreover, m and k are symmetric. La- !
granpe's cquations of motlon can be written in the
symholic form

3] Nl dl
dt (3‘) - dq < (20}
[-! -

vhere ) 15 the n-dimensional geuneralized force vec-
tor, which can be obtained from the virtual work
expresslon

G = gTﬁg

e e = waeepea

(21)

]

ih whlcﬁ ﬁg ih'thu ucnu:nilacd vircual dlaplocement
vector. Introducing Eq. (20} fonto Eq. {19), we
obtaln the equations of motlon +
mg + g + kq = Q (2)
wheve ¢ = IT - f 18 a okew symmetric matrix of or-
der n, The solution of Bq. (22) <an be obtained

in clooed form, ns shown in the next secction,

6. Modal Annlysls for the Responna f

The solution of Eq. (22) con be obtnlned by the
modnl analysis ol Refs, 5 and 6. To this end, we
transform the set of n second=-order differential
equations, Eqs., (22), into o set of 2n [irst-cvder

- equations, which /sounts re working wich the state
apace instead of the configuration space,

Hence, let us define the 2Zn-dimensional stata
veztor x(t) and the associated force vector X(t)
as follows: - :

x(t) = () g (o)t , 1o = 197w o1t en

! where 0 is the n-dimensional null vector, Moreover,
let us introduce the 2n x 2n matrices i
m 0 Bk
Ie|-L- N Gﬂ‘--%—- (24)
‘ 0k k0
t

where we note that I is gyumetric aznd G is skew
symmetric. This permi 1 us to replace Eq. (22) by
Ix(E) + Gx(L) = X(r) (25)

We ghall assume that hoth m and k are positive def-
indite, so that I is positive definite,

To obtaln o closed-form solution of Eq. {25),
+we [irst copsider the elpgenvalue problem
|
t "Mzt Gx w0 (26)

The fact that I is positive dellnlte punrantees
that the elgenvalues are pure imaginary complex
conjugntes, A, = dwp, = ~iup, and that the as-
sociated elgenvector: are also complex conjugaten,
%r = yr b dze, % = 1z,. Instead of working
with complex quaucst:es, it is shown in Ref. 5
. that the eigenvalue problem (26) can be repl ced
by the real symmetrie eligenvalue problem

2

2
mrIgr Gl K!r ’ ergr = Kgr e 1,2,,.0,n0 (27)

where K = GT1~}G is not only symmetric but also
positive definite, because I is positive definice.

The eipenvalues m% of the problem (27) have mul-
tiplieity two. The covvesponding cigenvectors are
¥y & zp. Becouse 1 and K are posltive definite,
cﬁe set of 2n elgenvectors yp and zp (r = 1,2,..4,
n) are orthogonal (with respect to the mwatelx 1).
Thay cnon be normalizued sno ap to satisfy

T

y. .1y

T T T
ir'is frlfs - Grs 1 3:155 = E;Iza -0

T T T T .
209, = “¥gbz, w8 g0 ¥ 0y, " g0z, = 0

T8 = 1,2,.0040 (28)
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Beenune the set of vectorn yp ond zp Ln ortho-
normal (with renpeet to the matrix [), it conati-
tuten o boasle Lo o 2n=dimenalonnl vector apace.
tenca, the state vestor x{t) can be represented
ns o Yinear combination of these elgonvectors in
the form 1

n
x(t) = 21 (£.(e)y, + n.(t (29)

e

where Ep(t) and n.(t) arc generalized coordinates
jaspoclated with tﬁe voctors y, smd gp, respee-

| tively. 1ntroducing Eg. (29) into Eq. (25), mul-
Etiplying by y, ond 2y in scquence, and using the
orthogonolity relocions (28}, we obtain the inde-
pendent set of pairs of equations

£ () = wn £y =Y {t)

.r re r r ™= l'zlttl'“ (30)
(L) +w g (8) = 2, (x)

where

(6) = giR(E) 5 2,0 = £I(E)

ra l,2,.00,1 (31)|

are generalized forces assgociated with the gener- !

alized coordinates £.(t) and n.(t) respectively.

Equations (30) can be solved For the pair of
generalized coordinates £p.(t) and n.(t) Indepen-
dently of any other pair. Introduciug this solu-
tion into Eq. (29), we nbtain the complete reas-
ponse

n t
T T
¥(t) = rzl { J (¥ * 2%

2]

Y¥(t)cos w.(t-1}

+ (grgz - 5r¥£)§(1)31n mr(t—T)]dT

T T
+ Yy, + 2.2 )Ix(0)cos u.t

T T
+ (Y2, - 2y )Tx(0)sin w_t) (32)

where %(0) 44 the initial state vector.

The decoupling procedure can be written In ma-
tedx form, To this end, let us introduce the 2n-
dimensional generanlized coordinate vector

E " [El ﬂl 52 ﬂ2 e 5n nn]T (33)

i
!
as well as the corresponding modal matrix {

Poelyy 2y ¥y 2y o ¥y %) (34)

go that Eq, {29) can be written in the compact
form

x = Pu (35)

MHorcover, the orthoponality relations can be com-
bined into

T
PIp = 12n (36)
vhere 1, 15 the unit matrix of order 2?n, Pre-

mulelplying both sides of Eq. (35) by PTI and
using Eq. (36), we conclude that

I

A

v = PT1x (37
Next, let us deline o block diagonnl matrix
A as follows: ]

I _— 7]
Wy i 0 0
-0 Uy 1] w=e 0 0 1
LR P T A PR N (38)
-1 0 :
LO 0 === |y 1] '

With this notatlon, Fgs, (30) and (31) can be
written Iin the compact Farm

we At g (39)

7. Resaponse of Ut ontrolled System to
Impuleive Excltation

Let us conslder the cose in which system (25)
ip subjected to an impulsive force at time O+
while in equilibrium, %(0) = 0. The force vee-
tor can be written in the form |

x(t) %6(1:) (40)

where ¥ is the magnitude of the Impulsive force.
Introducing Eq. (40) into solution {49), we ob-
. tain

5oge S
x(t) = 21 I [(xrzr + Erfr)¥5(1)303 mr(t—r)
=l o

(g 20 = 2,y)6(Dstn u (t=1) dt

T Ty2
= Xi (€3, Yy * 2,2, )%c0m u b
b oL
T T, »
+ (e, ~ 2,0 %ein w t] (41)

which shows that the motion of the syatem consists
of n puperposicion of harmonie motions at the nat-
ural frequencles w..

The impulsive force X&(t) can be shown to
.cause a motion analoyous to that caused by an ini-
« tial exeitacien, Imdeed, let us introduce Eq.
E(ho) into Eq. (41) and write

Ix(t) + Ox(t) = X&(c) (42)
Letting the duratien of the impulse be At ond
integrating Eq. (42) with respect to time, wo ob=-
tain -
At At .~ (ht .
1 J x(t)dt + G J w(e)de = X J s(t)dt = b
o o

o
(43)

For small At, the second integral on the left !
oide of BEq. (43) is negligible, so that !

At "

lim I J x(£)dt = L[%(0+) ~ x(0)] » I¥(0F) = ¥
At o

(44)

From which we conelude that the impulsive force




B N

ploducLﬂ the equivalent inivlel excltatlon

xtop = 171x (45)
1t can be eanlly verified that 1f the {nitinl ex-
eitatfon (45) in Insected Into By, (32) instend
of the foree (40) the result would be the some,

B, System with Proportionnl Control

Let us nsgume that the aysatem under conaidera-

in omefllation according tn Eq. (41). Let us
further ossume that the response excecds n given
amplitude.
out attenuation, the response must be considered
unsatisfactory, so that it Is deemed necessary to
attenuate it by means of active controls. In this
scction, we ghall use proportionnl controls and

in the next we shall use op-off controls,

Denoting by U the control veector, the system
differcntial equations of motion can be written
in the form

1x(t) + Gx{t) = U(t) (46)
which is subject to the initinl conditione %(0).
Using the approach of Seec. 6, we can reduce the
simultancous set (46) to the independent sct

EL(8) - .y (8)

P =¥ (0)

{47)

. re 1,2,,.041
y t) + w £ (c) = 2.(t)

where

Y(8) = yH(E) , 2 (6) = 2L0CE), x = 1,2,..0m

(48)
Hext, let us agsume propertional controls
Y {£) = —eg (£} , Z (t) = -en.(t} ,
rel,2,,..,0 (49)

8o thot Eqs. (47) ean be revritten in the form

£.(8) = o_n (£) + g (6) = 0

\ r=1,2,,,.,0n (50)
ne(t) + w ik (€) + en (£) =0

The solution of Eqs, (50), obtained by the La-
place trans{orm method, is

-y « o Gt .
gr(L) c [£r(0)cna w_t + nr(G)sin M;L]

"r(L) " c-cnl—ﬁr(o)nin w b+ nr(O)cos mrt]
re1,2,,..,0 (51)

o thot the response dies out wlth time,

control on the decoupled coordinates £.(L) and

Ithds end, we multiply Eq. {(29) by !r and” arl, in
sequence, consider Eqs. {28) and obtain

L (L) = i 1x(t), n, {£) =z Ix(L), re 1,2,000,n
L__ (52)

t{on was subjected to an impulsive force reoultlng

Becouse the oseillation peralsts with-

The guestion remains as to how the proportlonal

ing{t) relate to that of the state vector x(t). To

*
T U S e FIE I T TR —

Combining Equ. (hﬂ). (&9). and (Jz). we ean erLc
¥.(6) =~ (t) = '°Zr15(t) - grgtt)

e e — ——

T T
2, (L) = ~cnr<t) ~ez, Ix(e) = 2 U(L)
¥ e Ly2,000n (53)

from which wo conclude that

E

ue) = —elx(e) (54) '

or, the control vector U(ct} is proportional to
the vector Ix(t). £

9, System with On-0f{ Control

Proportional econtrol has one drawback, namely,
it must operate coptinuoualy., A scheme without
this drowbnek is on-off contrel. The control law
" nssumes a reoglon of deadbond bared ou the rocopg~

nition that within some tolerance small oscllin=-
Itions are acceptable, !

’ Let up consider once again the system {46)
\nnd the decoupling procedure (A7) and (48), but,
' by contrask, wo asuume a control In the form

. n
‘ Z (55)
where ug 15 a nonlincar function of ng to ben
specifiecd shortly. Introducing Eq. (55) into

Eqs. (48) and considering the orthonormalicy re-

| lations (28), we conclude that

E[I—-‘

n
Y (e) = Z = yr 2 0
gal ¥

LT oo
el R XCH

Z(t)
r =l "B r

b
P S
w_r

so that Bgs. (A7) reduce to

£.(£) = w.n (E) =0

T = 1,2,.0:0 (57

r t

RUUE SN
n_ (t) + wrtr{L) - ]
T
Next, let ug specify that the functiom u,. is
glven explicitly by

|
i
|
|

g-kr ' n > dy
Y I 0 v =d s 2dy (58)
}

kr ! N < -dr

llence, tha solutlen of Hqs., (57) must be obtained
’scparntcly for the three intervals indicated above:

i. For |"r| j-dr' u, " 0, Egs. (57) reduce to !

£.(t) - un (£) =0

re 1,2,.,.yn {59) .

n,.(t) + mrtr(t) » 0

which ean be shown to have the solution




r
Er(t) - Er(o)con u e + nr(O)uln .t

n(e) = -Cr(ﬂ)uln w b+ nr(O)uou Wt
r=- 1.2.‘...n (60)

ii. For n, > dr‘ u, = -kr. Eqa. (57} become

Er(t) - mrnr(t) =0
. kr r o= 1|2|o| N (61)
n () +w g (L) +——=0

T

which have the solution

k k
LS [T
zr(L) " mz + gr(o) 7 |cos w b+ nr(O)sln w.t

k

I

nr(t) a - cr(o) + mz sin w,t + nr(O)coa Wt
T

r=1,2,...,n (62)

i11. For n, < -dr. u, = kr the response is ol=

tained by simply replacing ~ky by 4ky in

Eqs. (62)., {ence,
ke kr
Er(t) iy + F,':(D) - =5 |cos wrt‘. + nr(D)ain wrt
w; wy

k.
“r(t) - - EI(O) - —% sin w t o+ nr(O)cos w_t

&
I

T = 1,2,00.,0 (63)

The behavier of the solution, Eqs. {60), (62),
and (63}, can be discussed mest conveniently in
the phase plane n. vs. &y, From Eqs, (60), we

lconclude that 1f vEL(0) + np(0} < dg, then the
trajectories represent circles with the centers

|at the oripin and wich radil Vg, (0) + nE(O). If

I the motion is initiated in the reglon n. > d., then

jfrom Egqs. (62) we conclude that the traj]ectories

larc clrelesn centered at ¢ = -kr/m% and with radii

Jigr(o) + kr/wzlz + n%(o). On the other hand,

| from Egqs. (63) we conclude that the trajectories
ipitinted in the roglon np < dp are circles cen-
tered at Ep = kp/ul and with radii

!/IC[-(O) kr/mzlz + n%(ﬂ) . A given meotion ini-
Itiated at somu point np(0) > dp, £p(0) < 0 will
!follow a circular trajectory until it reaches tha
ilorizantal line n, = d., when the control is re-
imoved. 1f at this point £ < 0, then the trajec-
ftory will tend to move clockwise on a eircle cen-
terod at the origin, which will take the motion
back inte the region np > dp causing the control
to be nctuated ngain, Repetitlon of this wotion
!anturn results in chattering along the line n,. =
idp. 10 the trajectory Inltiated at np(0) > dp
hits the line n. = 4y ac a polnt for which £,. > 0,
then the motion will continue on o cirvele with the

]ccntcr at the eripin until lt reaches n, = 'dr’ 80

that now chattering oceurs along the line n,. =
fdp. Flgure 2 shows these trajectories along with

Lpomc other possible cascs.

To brcvunt chattaring, ono mny wish to dolay
the time wo that the controls are removed whien
the trajectorien are iuslde the deadband Interval,
This Lo equivalent to introducing o phaso nople
in the sodutiona (62) and (63). Flgure 2 shows in
daslied Line iha system bhehavior [or a time delay
corrcaponding to a phaao lag of 10°, i
The oen-off control witly deadband and tima de-
lay correaponding to n decoupled mode 1ip illuatruted
in the block dingram shown in Fig. 3.

It ohould bLe polnted out that the above analy-
slp, {neluding the phase plane representntion of
! the motion, would not have been possible without
;Lha decoupling procodure, ;

10, Reconstruction of the State Vector
from Available Qutputs

Regarding the control ns an external excitntion
and using the annlepy with Eq. (41), the cquations
.of motion of a controlled spncecraft subjected to
external excitation con be wrltten in the form

1

Ix+ Cx = X+ U (64)
-Unlike the force vector ¥, however, which depends
~on time alope, the contrpl vector U depends spe-
cifically on the state varinbles, In Secec. 9, we
studied two easas, nomely, that in wlileh U is &
lincar functioa of the state vector and that in
-which U is a nonlinear function, Becnuse now the
input to the system is X + U instead of X, the
decoupled cquations of motion can be written in
the symbolic form

v Ay LX) (65)

The above control is predicated upon the knowl-
edpge of the state vector x(t). Quite often, how-
'eyer, the state vecktor ls"not completely known,

6o that a method for its estimation s highly de-
-glrable. Such a methoed uses anothier dynamical
- system known as an obsarver,

The discussion of the chserver can be conven-
iently presented in terms of the uncoupled system.
Let wy denote o vector of measurements correspond-
Ing teo the time derdivative of the uncoupled state
vector w. The objeet is to construct an observer

- capable of ylelding a good estimate of the stalke

. vector. Such an observer should be a dynamical

" system resembling the dynomical system (65) and
should depend both on the input X + U and the

Emuasuremcnt ﬁm. In gencral the mensurements neecd
not be the complete set of states. The observer

_approach can casily be extended to Include the
effect ol measurcment errors thercby resulting In

o {ilter approach. Hence, let us congslder an ob-
scrver described by the following vector differen-
tial equatlon |

- . . T

: W Aog + Hogm + NOP (X + U} {66)

;whcro‘u denotes the observer-constructed stnte

‘vector and Ag, By, and Ny are block-dingonal ma-~

I trices to be determined so that the observer cx-

ihihltn the desired brhavior. Horeover, the mea-

_Buraments vecter ém is reloted to the stace vee-
tor v by

v = Cow (673




Ly
;\Jlll'l't‘ n 1o penerully o veetongular molrlx whiteh E
dependdn on Lhe chavacterioticn ol thwe meiomeing
deviecn,  Introduclog Eqs. (65) and (67) Inte

Ly, {66) ond mubtracting the result from Eq. (65),
wo obtaln

[
* L]

v w s (L= nCydAu = Mgy + (1 - Colty

-

l'l‘ ‘
- NPT + 1) 63|

vhere 1 So the fdentity matrix. Letting the mae
tricon Ao. By, ond No untisfy the equatians

(1 - COBO)A " AO sy 1= cO“O u Ho {69)
Eq. (68) veduces to
G- ) (70)
The observer dynomics is simulaced in Flg. 4, '
Next, let us introduce the notation
eCE) = yle) - v ),

where c{t) 1s known as the gstimntion error, 1.0..'
the dlfference between the actual state vector and
the reconstructed stnte voctor. lncreduecing Eq.
(71) into Eq. (70), we obtain

g(e) = Agg(t) (72),
|
no that if the eigenvalucs of Ay have negative real
parts, the error decays with time, There are no
apparent restrictions on the eigenvalues of Ay un-
til weasurement errors are taken into account,
Typically, the eigenvalues of Ay would be "faster"
thon the system cipgenvalues by a factor of 5 to 10.
1
Generally, one «looses the matrixz By B0 that
the matrix A, has the dasired cigenvalues, In par-
ticular, lg QH chosen as a block diagonal matrix.
He recall that the matrix A is itself block-diapo-
nal, 88 can be seen from Eq. (38). I

Next, let us nssame tuat some components of the
state vector %{t) have been measured by means of
on-board sensots, such ag race gyros, occelecom-
etors, etc, Denoting the mensured state vector
rate by gm(t), vhere

% (6) = (G 4T (73)
we con use Eq. (17) and w-ite i
o () = TTIg (e) (74).

Agsuning for simplicity that G Is the ldentity
rmatrix, which implies complete observablility, and
jintrodueing Eqs. (69) and (74) into Eq. (66), we
obtadn the observer equation

. y T T
W Agw o BPTIx ok (1 - BORI(K 4+ U) (75)

The matrix By can be chosen so that the matrix
Ag 16 the dinpomal, L.ec.,

by = diug[ul Bl sev a B, ove.m B ) (76)

re n 'n
1 iovlows dmmediacely that

~1 0 -ur!mr
1- BO ™ AOA = bhlock=-diag Br!”r 0 (77a)

J

[rrm ae e b e e - [ Y )

- 1 urlur
By = block-dlag l. () |
~Bele, L \
Introducing tho notation l
- T, * T
Q = ByP Ik, + (0 - BT (X + U) (78)
whera ' |
- " rs » " " - T
9 - [qﬁl in bew ch an LN} Qan Qn“] (79)

' and connldering Eq. (76), Eq. (78) ean be written
in the form

"o +

¥ rEr

O

(24
r e L2000, (80)

+

Syn Iy
LD >

-
i r " ﬂrnr ne

" which bas the general solutlon

}
! L .

! oF TG (o)
? 0 b i

() « B @0 4

. . t e
nr(t) - nr(O)oBrt + J c“r(L-t)Qnr(r)dr
0

r=- 1|2,..-.n (81)
Chooslng ap and B, (r = 1,2,,.,,n) 08 complex
numbers with nepatlive real parts, we cenclude from
Eq. (72) that the error c(t) reduces to sero wiLh
time, so that the decoupled obsorver state vector
w can be used Lo determine the behavior of the de-

coupled aysten state vector y. HNote that to ob-
tain the actunl obscrver stote vector we can write
-~ »~
$(8) = Pu(t) (82)
The vector 6 consists of one parl due to the
measured gtote vector and exterpal disturbances
. another part due to the control
| A A .
J o
Q=g+, (83)

where

~ T.* T

Q =BT Ix + {1 ~B)PX

l X 0 -m 0 - (84)
g, = @ - By

~U

llence, the clasaical geparation prineciple is illus
trated in that the observer can be used to actual-
' ly control the system, If Q, is taken to simu-
| late the proportionanl controel of Scc., 8 or the on-
off control of Sec. 9, then the actual eentrol
vector ig obtoined from the second of Eqs. (B4) In
- the form

y = 121 - 3", (85)

whoro l

- 0 w B
(L ~ 3)"1 = block-ding rr
'mr/“r 0

1L.

(86)

Control of n Spinning Flexible Spoacecraft

Befora proceeding with the derivation of La=-
Lgrapge’s equations of wotlen it will prove con-_. .
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QVpnlvnt to hilent Iy the nyslen peneralized coorw
|diuntes.  Annuming that the nntedlte maves In o
jelrcular orbiz areund the earth sod thot the cen-
jter of masn of Lhe satelllte colngldes with the
feenter of manp P of the platform for oll practical
purposen, Lhe yeetor vop con be connidered na bolug
“known. Horeover, wo shall assume that there are
pnn members rotatlng velative to the platform and
pthat there are two elpstie panels attnched to the
.platform,  These pancln are symmetrle with respect
Fro thie potnt P oapd thele notlon o antinymmecric,
i1t follown that all quantitios with subseripte R
ipnd A can be dgnored In the kincele onergy Eq. (9),
1in nddition, we hava

! MRy = Fpg = 0 4 P % O (a7)
ICnnujdcrlun the above assumptions, as well as Uqs.
(14}, oand ipgnoring constant terms, Eqs, (9) reduces
to *

' 1T  NE I T,T
iT =5 d B+ TR My G - Op Lo By (aaﬂ
| Hext, let uo assume that in equilibrlum the
iplatform axes xpypzp rotate relative to the iner-
{tinl spaec XY¥Z with the uniform angular veloclly

it about zp, where zp 1o parallel to Z. Then, L€

|we eonsider o sob of auxlliary axes Apryprap) ro=
jtating relative to the inertinl space with the an-
|gular velocity f# about zpr, where zyr I8 pnrallel
Ite %, and if we denote thu anystiar veloelty of

| axes XKpypzp ralacive te Xxplyp 7.4 by wp, then the
fangular veloeity of the platform axes Xpypzp rela-

| tive to the inertial space can be written in the
form l

R = 0L+ uy (o)

where & is the vector of dircction cosines between
axis zpr and axes XpYpip. Aspuming that axes Apyp
z, ore obtained from axes Xpiyprzp) by means of
then rotations dy obout Yps 01 about xgp, ond 03
'ubout Zpy in that order, then

L= [501503—c01502203 50,c0,7c0,60,80, cochZ]T
(90)
and
_c03 n01303 0 61
U * ~504 cﬂlt:OJ 0 62 ’ ('9-1-)
0 -s0; 18,

lwhere 604 = sin 85, c0y = cos 04 (1 = 1,2,3},
|

Reprenenting the elastlc displocements of the
panels ag follows:

gt 0w Vg T ATy s W T by T dgty (02),

pwliere ¢1 ds the Tlryc in-plane mode, ¢p io the
i[ivat our-of=plane mode, and ¢3 ig the flrst tor-
iplonal mode about %, Introducing Eqs. (89)-(92)

into Eq. (8B), and Iincarizlng, we obtain

I T S TR
T w3 AL~ C)0F + (A ~ €07 200153-}'21)02!;2.

- .2 ‘
+my) + R[=Ad 0, 4+ (8 - €)8,0, - bi,z, .
. 1,02 .02 a2 L. 2
= ohygs = b0 8] o (A0 + ndy + €Oy + Glmdy
3
t
(93)
wheva Ay B, C are the mowents of Lnertin of the

entire undeformed apncocralt nbout axen Xpe yp» 2ps
ronpuctivoly, and

'?. ‘2 [ . . P
b eyhy + mata) = W00y 1 8058, + 008y

i

I
A= !m xuéldmE y b= ]m xB¢2de )
(4 E

(94)

2
s J Ypdgdmg » my » I im0 L= 1,240
My m

In terms of the modes indicated by Lqo. (92), the
potentinl encrgy is

3
1 2.2 '
ves | omATe (95)
2 .5 L .
where Ay (L = 1,2,3) are the natural frequencloa
of the pancl ossocinted with the moden ¢y (L = 1,
2,3).

The noncopaervative virtual work can be written

in terms of tho gencralized forees and virtual dip-
placemente as follows:

‘ 3
Ioew= § e, 60, 4 F  65) (96)
i g Vor T e B

"where Foy and Frg (1 = 1,2,3) are the gencralized

forees.

Logrange's equations of motion can be written
in the general form

l g—.&.-ﬂ"—.,p
dt BOL 01

1 30
1 1=1,2,3 37)
1]
' d_f{aLy a8t
T (a' ) oz, " Fuu
by

! From the third of Eqs., (97}, we cbmerve that 1f
_F?3 = 0, then @3 is an ignorable coordinate, so
thnt

12 5t nEl w § = const

ek (98)
i 303 |
, Hence, Introducing
B - n&l 1
0y = —5—= . (99)

1
linto the kinetic ecnecpy, we obtnin '

' 1 .2 2 2
j:'r -3 0B ~ c)o1 + (A - c)o2 - Zcoch + 2h02:2

2 -l . . .
1 + mlﬁl] + n[-AUlﬁz + (B~ 0)0201 - b(Ulcz + 0152)
2

. 1 |2 .2 _l- - ﬂ.... ¥
- cﬂzrzal + 2(!\01 + noz) +3 [(ml zc)r.

2 :
i
! )




ro . B L B I R T Sy
2 2 + | +
+ Ryt + ny 3] - hﬂzcz } nolca (100)‘

vext, lot us fntroduce the confipuratlon vector

(101}

7= 10y 0y 1y 0 gyl

and the associaced nonconnervative force vector

: w ow T '
9 ¥y ¥op Foy Frp Frpl (102)
Then Lagrange's cquations, Bq. (20), assumos the
form (22), In which

i
l

.

>
=
o
o

O B 0 b 0

ﬂz
T 0 0

@ o 0 0 m

=

[=]

" 0 ceA-B O d}
“(&~A=B) 0 O D -e

£=0 0 o 0 0 © (103)
0 0 D 0 O
L 0 c 0 0 O]
c- 0 0 1] a
0 C=A 4] =1 0
2 *2
k=010 0 m(A-1) O 0
*2
0 ~b 0 mzﬂz 0
k)
L-q Q 0 0 msﬂs_

where A} = Ap/8 (4 = 1,2,3),

He obscrve that the equation for the coordinate
is dndependent of the other ones, so that 1ts

| solution can be obtained independently, For sim-
jplicity of cowputer programming, however, we choose
‘not to treat &y separately buc as part of the for-
‘mulation (103}. *

The solution of Eq. (22} with and without con-
trols and with m, ,, and k an glven by Eqs. (103}
' folleres the patturn established in Seces. 6-10,

The above [formulation was used to determine the ,
response of 8 spacecralt with the following param= -
oters:

B = 6,000 kg m

A = 1,000 kg m2,
fl= 0,6 rad s~1

C = 8,000 ky m2,

i The panels were modelled by the finite clement
inethod. The first natural freqeuencles for in-
plane, out-of-planc, and torsional vibration nre

Tpy s 0.0647 rad oL, &, = 0.1742 rod o7, !

Ay = 0,0227 Fad o™ i

Simulntions wore mado of the nyntem reaponne fori

1} uncontrolled spacecralt, 2) proportional control,
3) on-off control with deadbamd, Flgures 4o, 4,
3n, Sb, and 6a, 6b phow typlenl computor plotn for
the nutation anglo 03 onid the out=-oaf=plane mode 43

| for the threo ¢nnen, respectlvely. The inicinl
conditlons and the vnriouu control paramotars weret

| 01(0) - 02(0) - 1074 ' rad, £1(0) » £,(0) = 53(0)

| w20m, ecwxo1nt
" - -3 - =i
' dl d2 103 i 432 dh ds = 10 1 2
i kl « 2 x 107 i B, k " 2 %x 10 Uy 8
ky = 107 ms 7k, 204 w572,
| g v 2074 o2 07 t

Th. inelunion of Flga. 4, 5, 6 Ln merely to nhow
‘typleal vesulis, The results nre nobt meant Lo ro-
precent optimal control., Indeed, the op-off con-
‘trol resuwlte could be greatly Improved by a reduc-
tlon of the dend band copgtonts.

12, Conclusionn

| Thie paper develops a modal procedure Lor the
'conurol of n [loxible spacecraft exhibiting pyvo-
scopic behnvior, Contvol via decoupling has din-
‘tinct computational advantages over control eof the
couplcd system, porticularly frc large ordar sys-
Itcmu. o Lt permits the use of methods of selutlon
ipenerally associnted with seeond-order systems,
Deaign procedures are demonstrated for two Lypes
of control algorltpms, proportional control and on-
'of£ control with dead band.

b
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