## General Disclaimer

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.


## VIRGINLA POLYTECHNIC INSTITUTE \& STATE UNIVERSITY

DEPARTMENTS OF

ENGINEERING SCIENCE AND MECHANICS

AND

## ELECTRICAL ENGINEERING

```
(NASA-CR-148478) CONT ROL OF SPINNING
FLEXIBLE SFACECRAFT BY MODAL SYNTHESIS
Final Technical Report (Virginia Polytechnic unclas
```

CONTROL OF SPINNING FLEXIBLE SPACECRAFT
BY MODAL SYNTHESIS

Final Technical Report on the Grant STABILITY AND CONTROL OF FLEXIBLE SPACECRAFT NASA Research Grant NSG 1109

July 1976

Prepared by
Leonard Meirovitch, Professor of Engineering Science and Mechanics Hugh F. Van Landingham, Associate Professor of Electrical Engineering Hayrani Oz , Graduate Research Assistant in Engineering Science and Mechanics

# LN'EERNATLONAL AS'TRONAU'TCAL FEDEEATTION (I.A.F.) <br> XXVIIth CONGRESS <br> Anahedm, 10-16 October 1976 

76-022

CONTROL OF SPINNING FLEXIBLE
SPACECRAFI BY MODAL SYNTHESIS
L. Meirovitch, H. F. Van Landingham
and H. OZz
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia USA

Publication and distribution rights are reserved by the International Astronatical Federation, 250 Rue Saint-Jacques, 75005 Paris, France

# CONTHOL OV SPINHING FLIXIDLE GIVACBCIUFT BY MODAN. SXNZHESLS 

L. Meirovitch,* I. F. Van Landinghnm** and II. Öz***

Virginin Polyteclaic Inatitute and state Univeraity Hlackburg, Vifginia U.S.A.

## Abreract

A procedure If prearnted for the netiva control of a aptinuing fiexible apacecraft, Such $n$ nynt cia exhliblan gyroncopte effecta. Tho dentan of the concroblet ta brised on modnt decomposition of the syroacople aystem. This modal decoupling procedure leads to a control mechanism laphemented In nodular Corm, wheli ropreaenta a dintinct computaclomal advantafe over the control of the coupled syatem. Dobign procedures are demonatrated for two types of control algorithms, linear and nonlinear. The firbt represents clabsical linear feedback approac: and the second represents an application of on-off control, bath types made feaalble by the modnl decomposition scheme.

## 1. Inlroduction

As spacecraft structures increase in size, weight limitations demand that various substructures be made as light as possible, which in turn requires that they be highly flexible. On the other hand, greater pointing accuracy necessitntes finer attitude control, which can be achieved only through active control of the spacecraft. in controlling a flexible spacecraft, the problem of simulating the flexibility is often critical, as the number of degrees of freedom of the simulation can become so large as to render various mathematical terhinfues unfeasble, of course, quite often proper modelling of the spacecraft can result in a model possessing relatively few degrees of freedom and yet retaining all the essential dynamic elnanacteristics of the system. Even then some truncation may be necessary. In the case of control of nonrotating spacecraft, it is comnon practice to use the system natural modes to decouple the aystem and control only a limited number of lower modes. This procedure can be implemented with relative ease because natural modes of nonrotating structures can be readily computed. Recent advances in the analysis of gyroscopic systems, however, makes a modal approach possible also for rotating spacecraft. Following is a brief literature survey of related work.

In an attempt to control a flexible space booster, Gevarter (Ref. 1) presents a procedure whereby the response can be represented in terms of the rfgld-body modes and the bending modes of the misafle. Jhis approach permits a description of the bystem in terms of cransfer functions for the uncoupled system. When the spacecraft is spinning, or when it possesses spinning parts, the classical modal decomposition is no longer possible because the modal matrix will not diagonalize the gyroacople matrix. Kuo et al (Ref. 2) have presented a techinique for the design of a digital controlier for apfinding flexible spacecraft using a redesign of a prediminary continuors-data control system.

No attempt wan made in hof. 2 to uncouple tho bybm tem equationg. Control of flexible upneecraft by
 but the procedure pronented ta valla maly for nonbyroncopice nyteran. In fact, the mathematical model conaidered, used first in Ref. 4, consibin of thres daks mounted on a flextble shinft and rotating about a common aymetry axin. Such a model doen not exhibit the eyroncopic offect typlal of a spinniug flexible atructura capable of nutation.

Thin paper develops a method for the design of a controller based on madal decompoaition of spinning structures devoloped in Refs. 5 and 6. For high-order systems, this approach offers substantial computational advantages. In the first place, the modal decoupling procedure leads to a control mechanism which can be implemented in modular fors. Moreover, one can use decoupled dynamice to design an observer also. Following decoupling, each con-trol-group is governed by a set of two first-order differantial equations with a skew symmetric matrix of coefficients. These sets of equations can be integrated readily, thus permitting independent control of spacecraft modes. Design procedures are demonstrated for two types of control algorithms, linear and nonlinear. The first represents a classical linear feedback approach in the form of proportional control and the second represents an applicntion of on-off control, both types made feasible by the modal decomposition scheme.

## 2. Kinematical Considerations

Let us consider a general spacecraft consisting of a cential body with an arbitrary number of appendages. The central body will be referred to as the "platform" and it can be rigid or elastic. Quantities pertaining to the platform will be designated by the subscript $P$. The appendages can be of three types: rigid and rotating relative to the platiorm, elastic and nonrotating relative to the platform, and elastic and rotating relative to the platform, Quantities pertaining to the types of appendages listed will be denoted by the subscripts $R, E$, and $\Lambda$, respectively. An example of the first type is a rigid rotor, examples of the second are flexible solar panels or flexible antennas cantilevered from the platform, and an illustration of the third is a flexible rotor. Clearly, there can be more than one appendage of a given type. We shall conldne our discussion to one of each type, however, with a summation implied over appendages of the same type.

To describe the motion of the spacecraft, it will prove convenient to introduce various sets of axes. In the first place, we wisis to identify an inertial system of axes XYZ with the origin at a point: 0 . Then, we shall identify a system of axes $x_{p} y_{p} z_{p}$ with the origin at the center of mass $p$ of

[^0] ancol at the widelormed phatosily, sintlarly, wo
 :she rotar atad with the origin at the mase canter 8 wh the rotor. The motion of an elantic member nonhothang redalive to the phationm can bo deneribed Hy menna of a set $x_{p} y_{p}$ p, athened to the member in nudeformed atate and wath the orgin le at tho potat wo athachent of the aember. In the mane manaer, we can derine a bet of axes $x_{\wedge} y_{\Lambda} z_{\Lambda}$ with the origin
 die robal fag elabtic member when in umbeformod antate. The apacecraft and the various bete of axes tare nlown in Fig. 1 .

The ponition of the poinc $p$ relative to the inpertind space is given by the radius vector Rop Trom 0 to 1 . The rotation of axes $x_{p} y_{p}: 3$ relative to nxen XYZ fa given by the angular velocity vecfor fly. $2 n$ addition, naly polint of the platiorm ican undergo elastic motion relative to $x_{p} y_{p} z_{p}$. foor afmplicity, however, we shall absume that the platform is rigid. The positions of the interconinectine pointa R, $E$, and $A$ relative to $f$ are denoted by the radius vectors RPR, RPE, and RpA, respectively, and the rotations of axes $x_{p} y_{R} z_{R}$ and $x_{A} y_{A} z_{A}$ relative to $x_{p} y^{\prime} z_{p}$ are denoted by the papuliar velocity vectors wr and wh, respecif ely, it follows that the positions of $R, E$, and $A$ relative to 0 are $R_{O p}+R_{P R}, R_{O P}+R_{P E}$, and $R_{O P}+R_{P A}$, respectively. The position of an arbitrary point in the platiform relative to $p$ is given by the radius vector rp. Similarly, the position of an arbitrary point in a apinning rotor relacive to $R$ is given thy In. On the other hand, points in the flexible tappendages $E$ and $A$ are described by $\mathfrak{r}_{\mathrm{E}}+\mathrm{U}_{\mathrm{E}}$ and $r_{A}+y_{A}$, where $\mathrm{r}_{\mathrm{E}}$ and ${\underset{S}{A}}$ are nominal positions of The points when the appendages are undeformed and Lep and un are elastic displacements. It follows that the absolute positions of arbitrary pointe in the various spacecraft members are

$$
\begin{align*}
& \mathrm{H}_{\mathrm{P}}=\mathrm{R}_{\mathrm{OP}}+\mathrm{r}_{\mathrm{P}}  \tag{1a}\\
& \mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{OP}}+\mathrm{R}_{\mathrm{P}_{\mathrm{R}}}+{\underline{r_{R}}}^{\text {R }}  \tag{1b}\\
& \mathrm{R}_{\mathrm{E}}=\underline{\mathrm{K}}_{\mathrm{OP}}+\mathrm{R}_{\mathrm{PE}}+\mathrm{r}_{\mathrm{E}}+\mathrm{U}_{\mathrm{E}} \tag{1c}
\end{align*}
$$

IIt should be pointed out that Rop is generaliy
 $\mathrm{R}_{\mathrm{PE}}$, and $\mathrm{RPP}_{\mathrm{Pa}}$ in terms of components along axes $x_{P} y_{p} z_{1}, y_{R}$ in terms of components along $x_{R} y_{R} z_{R}$,
 $\underline{r}_{\Lambda}+\underline{u}_{\Lambda}$ in terms of components along $x_{A} y_{A} z_{A}$.

The angular velocity vectors of axes $x_{R} y_{R} z_{R}$, $x_{E} y_{E} z_{E}$, and $x_{A} y_{\Lambda} z_{\Lambda}$ relative to the inertial space are
$\dot{\Omega}_{\mathrm{R}}=\Omega_{\mathrm{p}}+\underline{\omega}_{\mathrm{R}}, \Omega_{\mathrm{E}}=\Omega_{\mathrm{p}}, \underline{\underline{n}}_{\mathrm{A}}=\Omega_{\mathrm{P}}+\omega_{\mathrm{A}}$
frespectively. Note that $\Omega_{p}$ in terms of components halong XY\% and wR and uti arc in terms of components lalong $x_{R} y_{R} z_{R}$ and $x_{A} y_{A} z_{A}$, respectively. This permits us to calculate ibsolute velocity vectors for farbitrary points in the various tumbers in the form

$$
\begin{align*}
& y_{\mathrm{P}} \times v_{\mathrm{OP}}+\Omega_{\mathrm{P}} \times \underline{r}_{\mathrm{P}}  \tag{3a}\\
& \underline{v}_{\mathrm{R}}=\underline{v}_{\mathrm{OP}}+\Omega_{\mathrm{P}} \times \underline{R}_{\mathrm{PR}}+\Omega_{\mathrm{R}} \times \underline{r}_{\mathrm{R}} \tag{3b}
\end{align*}
$$

 $\underline{v}_{\Lambda}=\underline{v}_{01}+\underline{Q}_{p} \times \underline{R}_{I_{A}}+\underline{q}_{\Lambda} \times\left(\underline{r}_{\Lambda}+\underline{u}_{\Lambda}\right)+\underline{u}_{\Lambda}$
where if: and $\dot{u}_{4}$ are valocitien of the polita in queation rolative to the moviaj ramen. Wa note once ngain that the variouat terma in Eijs. (3) are In terms of difforent botil of axat,

It whil prove convenient to work with velocity componeata in cerma of member axea. For example, we ahnll express Ip and $\mathrm{yp}_{\mathrm{p}}$ In terms of components aloug axea $x_{p} y_{p}$ api ete, To this and lt is nore natural to work with matile notacion, which nocesaftates the filtroduction of the matrix forn of the vector crose product. Hence, let us define the following akew symetric matrices
$\tilde{n}=\left[\begin{array}{ccc}0 & -\Omega_{z} & \Omega_{y} \\ \Omega_{z} & 0 & -\Omega_{x} \\ -\Omega_{y} & \Omega_{x} & 0\end{array}\right], \dot{r}=\left[\begin{array}{ccc}0 & -r_{z} & r_{y} \\ r_{z} & 0 & -r_{x} \\ -r_{y} & r_{x} & 0\end{array}\right]$

$$
\bar{u}=\left[\begin{array}{ccc}
0 & -u_{z} & u_{y}  \tag{4}\\
u_{z} & 0 & -u_{x} \\
-u_{y} & u_{x} & 0
\end{array}\right]
$$

 $\underline{4} \times$ Q have the matrix counterparts ne; nu. rin, and ů, respectively. In addition, we must introduce the matrices of direction cosines between varlous systeme of axes. For example, the matrix of direction coshes between axes XYZ and axes $\mathrm{Xp}_{\mathrm{P}} \mathrm{z}_{\mathrm{P}}$ wlll be denoted by $L_{O P}$, so that

$$
\left[\begin{array}{lll}
x_{p} & y_{p} & z_{p}
\end{array}\right]^{T}=L_{o p}\left[\begin{array}{lll}
x & y & z \tag{5}
\end{array}\right]
$$

Similarly, the matrix of direction cosines between nxes $x_{p} y_{p} z_{p}$ and axes $x_{R} y_{R} z_{R}$ wil1 be denoted by $L_{p R}$, etc. With this notation, Eqs. (2) can be replaced by

and Eqs. (3) can be replaced by
${\underset{\sim}{p}}=L_{O P} v_{0 P}-\tilde{x}_{p} \Omega_{p}$
$v_{R}=L_{P R} L_{o p} v_{O R}-L_{P R} \tilde{R}_{P R} \Omega_{P}-\tilde{r}_{R} \Omega_{R}$
$\left\{\begin{array}{l}v_{E}=L_{P E} L_{O P}^{v} v_{O P}-L_{P E} \bar{R}_{P E} \Omega_{p}-\left(\tilde{r}_{E}+\tilde{u}_{E}\right) L_{P E} \Omega_{p}+\dot{u}_{E}^{(7)} \\ v_{A}=L_{P A} L_{O P} v_{O P}-L_{P A} \tilde{R}_{P S} \Omega_{R}-\left(\tilde{r}_{A}+\tilde{u}_{A}\right) \Omega_{A}+\dot{u}_{A}\end{array}\right.$

## 3. Kinetic Encrgy, Potential Enorgy and Nonconservative Virtual Work

The kinetic energy of any member can be written in the gencril form

$$
\begin{align*}
T & =\frac{1}{2} \int_{m_{P}} v_{-P}^{T} v_{P} d m_{P}+\frac{1}{2} \int_{m_{R}} v_{R}^{2} v_{R} d m_{R} \\
& +\frac{1}{2} \int_{m_{E}} v_{E}^{T} v_{E} d m_{E}+\frac{1}{2} \int_{m_{\Lambda}} v_{\Lambda}^{T} v_{\Lambda} d m_{\Lambda} \tag{8}
\end{align*}
$$

thastrk tinn. (7), Lhe kinatic enargy becomen

$$
\begin{aligned}
& T=\frac{1}{2} m v_{D P}^{2}+\frac{1}{2} n_{p}^{T} J \Omega_{p}+\frac{1}{2} \omega_{R}^{T} J_{R} \mu_{R}+\frac{1}{2} \omega_{\Lambda}^{T} J_{A} \omega_{A}
\end{aligned}
$$

$$
\begin{aligned}
& -{\underset{Y}{D P}}_{T}^{T} I_{D P}^{T} I_{P A}^{T} \tilde{r}_{A C} \omega_{A}+v_{O P}^{T} L_{O P}^{T}\left(L_{P C}^{T} P_{E}+L_{P A}^{T} P_{A}\right)
\end{aligned}
$$

where in is the total mass of the spacecraft, $v_{0 p}$ is the magnitude of vop, and $J$ is the total inertia matrix of the entive spacecraft in deformed state atout. 7 In terms of components along xpypzp. Noretue:

$$
\begin{align*}
& J_{R}=\int_{m_{R}} \bar{r}_{R}^{T} \ddot{r}_{R} d m_{R}  \tag{10a}\\
& J_{\Lambda}=\int_{\pi_{\Lambda}}\left(\bar{r}_{\Lambda}^{-T}+\vec{u}_{A}^{-T}\right)\left(\tilde{r}_{\Lambda}+\tilde{u}_{\Lambda}\right) d m_{\Lambda} \\
& \tilde{x}_{E G}=\int_{I_{E}}\left(\bar{r}_{E}+\bar{u}_{E}\right) d m_{E} \\
& \tilde{r}_{A G}=\int_{I_{A}}\left(\tilde{r}_{A}+\tilde{u}_{A}\right) d m_{A}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{E}}=\int_{\mathrm{m}_{\mathrm{E}}}\left(\mathrm{r}_{\mathrm{E}}^{\mathrm{T}}+\sim_{\mathrm{u}_{\mathrm{E}}}^{\mathrm{T}}\right) \dot{u}_{\mathrm{F}_{\mathrm{E}}} d m_{E} \\
& \underset{\sim}{h_{\Lambda}}=\int_{m_{\Lambda}}\left(\dot{r}_{\Lambda}^{T}+\tilde{u}_{A}^{T}\right) \dot{u}_{A} d n_{\Lambda}
\end{aligned}
$$

Generally, the potential energy is of two types, mumely, gravitational and elastic. Because of the hfeh altitude of geosynchronous satellites, the affferential gravity offect is negligibly amall, so finat the potential energy will be assumed to be entirely due to flexfblify. We ehall express the potential energy in the form

$$
\begin{equation*}
v=\int_{D_{E}} \hat{V}_{E} d D_{E}+\int_{D_{A}} \hat{V}_{A} d D_{\Lambda} \tag{11}
\end{equation*}
$$

where $\bar{V}_{玉 又}$ mid $\bar{V}_{A}$ are potential energy densities
amoocinted wsth the olnatic oppondigen and Dy: nind BA are the domians of extamaion of thean appeadngea, The denaftion $V_{L}$ and $V_{A}$ dopend on epntial derivan tivas of tho componenta of the elnatic diaplacement vectora in and tus, rampectivaly. Wo alinil not give explicite exprenaloner for $\hat{V}_{f}$ and $\hat{V}_{A}$ at thia point, but raturn to thia aubject in the nest oection.

The potentinl encrgy can be uned to derive tho connervative forcen neting on tho nyntem, ln addition, there can be nonconsarvative forcen present. Such forcen can arise from varlous nources anch as aolar radiation presaure, meteorite impact, etc. Letting ! be tha nonconservative force vector per unit area at a siven point on the burface $S$ of the spacecraft and $\delta\}$ the virtual dis* placenent of that point, the nonconservative virtual work for the entire apacecraft can be written in the form
$\delta W=\int_{S_{p}} f_{F} \cdot \delta R_{p} d S_{p}+\int_{S_{R}} E_{R} \cdot i R_{R} d S_{R}$

$$
\begin{equation*}
+\int_{S_{E}} f_{E} \cdot \delta R_{E} d S_{E}+\int_{S_{\Lambda}} E_{A} \cdot \delta R_{\Lambda} d S_{\Lambda} \tag{12}
\end{equation*}
$$

where $\delta R_{p}, \delta R_{R}, \delta R_{E}$, and $\delta R_{A}$ can be obtained from Eqs. (1). Note that concentrated forces can be treated as diatributed by using spatini delta functions.

The kinctic energy, potential energy, and virtual work can be used in conjunction with Lagrange's equations to derive the system equations of motion. This ayztem of equations is of the hybrid type, 1.e., nome of the equitions arc ordfiary differential equations and the balance are partial differential equations. The first are ansociated with the rigid body motions of the spacecraft whereas the second are associnted whth the elastic dian placements. It will prove most convenient, however, to work with a completely discrete system, which requires the transformation of the partial differential equations into sets of ordinary dif. ferential equations. This will be done in the next section.

## 4. System Discretization

To eliminnte the apatial dependence from the formulation, let us assume that the displacement vectors $U_{E}$ and $U_{A}$ can be written in the form
whore $\psi_{E}$ and $\phi_{A}$ are rectangular matrices of spacedependent admbsable [unctions and $\zeta_{E}$ and $\zeta_{A}$ are time-dependent vectors of generalized coordinates. If $\zeta_{E}$ and $\zeta_{A}$ have dimensions $n_{E}$ and $n_{A}$, then ${ }^{2} E$ and $\phi_{\Lambda}$ are $3 \times n_{E}$ and $3 \times n_{A}$ nitutices, respective1y.

Uaing Eqs. (28), we can write

$$
\begin{align*}
& \int_{m_{A}} \dot{U}_{A}^{T} \dot{u}_{A} d m_{\Lambda}=\dot{\zeta}_{A}^{T} M_{\Lambda} \dot{\xi}_{A} \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
H_{E} \cdot \int_{n_{l} ;} \Phi_{E}^{T} \phi_{E} d m_{E}, H_{\Lambda} * \int_{m_{\Lambda}} \psi_{\Lambda}^{T} \phi_{\Lambda} d m_{\Lambda} \tag{15}
\end{equation*}
$$

are bymetric ponitive defintte matricea of order ( $n_{j}$, and $n_{A}$, rempectively. Horeover, the matrices $J_{1} J_{1}, J_{A}, r_{E G}$, and $r_{A G}$ now depend on $\zeta_{E}$, and $r_{\Lambda}$ inntend of yE ant $\mathrm{u}_{\mathrm{A}}$, Similarly, we have $\mathrm{p}_{\mathrm{E}}{ }^{-}$.
 $1 \ell_{2}($ ) , io that the kinutic energy, itq. (9), can be reignrded as being entirely free of spatial dependence.

Absuming Iinonr elasticity, the spacecraft potentinl energy can be written in the discretized form

$$
\begin{equation*}
v=\frac{1}{2} c_{-F}^{T} K_{E} \zeta_{E}+\frac{1}{2} \zeta_{\Lambda}^{T} \kappa_{\Lambda} \zeta_{\Lambda} \tag{16}
\end{equation*}
$$

where $K_{E}$ and $K_{A}$ are bymmetric positive definite atiffness mintrices of order ne and nA, respectivefy. The matrices $K_{E}$ and $K_{A}$ represent integrale pover the donain $\mathrm{D}_{\mathrm{E}}$ and $\mathrm{D}_{\mathrm{A}}$ of functions involving spatial derivatives of $\mathrm{P}_{\mathrm{E}}$ and $\phi_{A}$, respectively.

The nonconservative virtual work, Eq. (12), can the discretized in a aimilar fashion. We shall not procecd with the discrectantion process at this time, but defer the question for a later section.

## 5. Lagrange's Eqtations of Motion

Let us consfder a disisete (or discretized) sysLem and denote by $g(t)$ the configuration vector of the entire syatem. Then, the systam Lagrangian can be written in the general functional form

$$
\begin{equation*}
\mathbf{L}=T-V=L(\dot{q}, q) \tag{17}
\end{equation*}
$$

where it was assumed ehat $L$ does not depend on Lime explicitly. The system admits equilibria at constant solutions of the equations

$$
\begin{equation*}
\partial L / \partial \underline{q}=0 \tag{1.8}
\end{equation*}
$$

where $2 L / a g$ denotes $n y m b o l i c a l i l y$ a vector with the components $\partial L / \partial \eta_{1}(i=1,2, \ldots, n)$. Without loss of generality, we can assume thot the trivial soplution $g=0$ is a solution of Eq. (18). This is foo because one can always shift the origin of the conifguration space to make it coincide with an equilibrium point.

Expanding about the trivial solution and linearizing, the Lagrangian can be written in the quadratic form

$$
\begin{equation*}
1=\frac{1}{2} \dot{q}^{2} m \dot{q}+q^{T} f \dot{q}+\frac{1}{2} q^{T} k q \tag{19}
\end{equation*}
$$

where $m, f$, and $k$ are constant square matrices of order $n$. Moreover, $m$ and $k$ are symmetric. La|grange's equations of motion can be writton in the symbolic form

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \underline{q}}\right)-\frac{\partial l}{\partial \underline{q}}=\underline{q} \tag{20}
\end{equation*}
$$

where $Q$ is the n-dimensional generalized foree vector, which can be obtained from the virtual work expression

$$
\begin{equation*}
\Delta W=9^{T} \delta g \tag{21}
\end{equation*}
$$

In which $\delta \mathfrak{q}$ La tha peneraliaed virtund dhaplacemotit yector, Lititoducing Eq. (20) into Kq . (19), we obtals the equations of motion

$$
\begin{equation*}
m \ddot{q}+8 \dot{q}+k \underline{q}-q \tag{22}
\end{equation*}
$$

where $g=f^{T}-f$ dn $n$ bkew bymatric matrix of order n. The golution of Eq . (22) zan be obtained in clooed form, an ahown in the next aection.

## 6. Modal Amalyale for the Rebponac

The bolution of Eq. (22) can be obtalned by the modnl amalysis ol Refa. 5 and 6 . To this end, we transform the set of $n$ second-order differential equations, Eqs. (22), into a get of 2n firat-order equations, which resounts to working with the state space inatead of the configuration space.

Hence, let us define the $2 n-d$ menalonal state $V$ Etor $x(t)$ and the associated force vector $X(t)$ as follown:

$$
\begin{equation*}
\underline{x}(t)=\left[\underline{q}^{T}(t) \quad \underline{q}^{T}(t)\right]^{T}, \underset{X}{x}(t)=\left[\underline{Q}^{T}(t) \quad \underline{o}^{T}\right]^{T} \tag{23}
\end{equation*}
$$

where 0 is the $n$-dimensionnl null vector, Moreover, let us introduce the $2 n \times 2 n$ natrices

$$
I=\left[\begin{array}{ccc}
m & 1 & 0  \tag{24}\\
\hdashline 0 & 1 & k
\end{array}\right] \quad, \quad G=\left[\begin{array}{c:c}
g & k \\
\hdashline-k & 0
\end{array}\right]
$$

where we note that $I$ is symetric and $G$ is skew symmetric. This permi 3 ub to raplace Eq. (22) by

$$
\begin{equation*}
I \dot{x}(t)+G \underset{\sim}{x}(t)=X(t) \tag{25}
\end{equation*}
$$

We shall assume that foth $m$ and $k$ are positive defindte, so that $I$ is positive definite,

To obtain a closed-form nolution of Eq. (25), we first consider the eigenvalue problem

$$
\begin{equation*}
\cdot \lambda I \underset{\sim}{x}+G \underset{\sim}{x}=0 \tag{26}
\end{equation*}
$$

The fact that $I$ is positive definite guarantecs that the efgenvalues are pure imaginary complex conjugntes, $\lambda_{r}=1 \omega_{r}, \lambda_{r}=-i \omega_{r}$, and that the associated elgenvector are also complex conjugaticr, $\mathrm{X}_{\mathrm{r}}=\mathrm{y}_{\mathrm{r}}+1 z_{r}, \mathrm{x} \quad-1 z_{r}$. Instead of working with complex quäucs :its, it is shown in Ref. 5 that the efgenvalue ,roblem (26) can be repl ced by the real symmetric eigenvalue problem

$$
\begin{equation*}
\omega_{r}^{2} I y_{r}=K y_{r}, \omega_{r}^{2} I_{-r}=K_{z_{r}}, r=1,2, \ldots, n \tag{27}
\end{equation*}
$$

where $K=G^{T} I^{-1} G$ is not only symmetric but also positive definite, because I is positive definite.

The efgenvalues $w_{r}^{2}$ of the problem (27) have multiplicity two. The corresponding eigenvactors are $Y_{r}$ and $Z_{r}$. Because $I$ and $K$ are positive definite, the set of $2 n$ eigenvectors $\mathrm{Yr}_{\mathrm{r}}$ and $\mathrm{z}_{\mathrm{r}}(\mathrm{r}=1,2, \ldots$, n) are orthogonal (with respect to the tatiolx I). They can be normalized so as to batisfy


$$
\begin{equation*}
r, s=1,2, \ldots, n \tag{28}
\end{equation*}
$$

liecaume the net of vectors yrand $z$ in orthonormal (with renpect to the matrix 1), it conatiLuten a batio in a 2 netimenatomal vector nipace. Hence, the blate vector $x(t)$ can be represented na a linent combination of thead elganvectors in the form

$$
\begin{equation*}
x(t)-\sum_{r=1}^{n}\left(r_{r}(t) y_{r}+n_{r}(t\right. \tag{29}
\end{equation*}
$$

where $\xi_{r}(t)$ and $n_{r}(t)$ are generalized coordinates nesociated with the vectora $\mathrm{y}_{r}$ and Zr , reapectively. Introducing Ef, (29) into Eif. (25), multipiying by $\chi_{B}$ and $z_{3}$ in bequence, nad using the orthogonality rolations (28), wo obtaln the independent set of pairs of equations

$$
\begin{align*}
& \dot{\xi}_{r}(t)-\omega_{r} \eta_{r}(t)=Y_{r}(t)  \tag{30}\\
& \dot{\eta}_{r}(t)+\omega_{r} \xi_{r}(t)=z_{r}(t)
\end{align*}
$$

where

$$
\begin{gather*}
X_{r}(t)=Y_{r}^{T} X(t), z_{r}(t)=z_{r}^{T} X(t) \\
r=1,2, \ldots, n \tag{31}
\end{gather*}
$$

are generalized forces associated with the generalized coordinates $\zeta_{r}(t)$ and $\eta_{r}(t)$ respectively.

Equations (30) can be solved for the pair of generalized coordinates $\xi_{r}(t)$ and $\eta_{r}(t)$ Independently of any other pair. Introducing this solution into Eq. (29), we nbtain the complete response

$$
\begin{align*}
& \underset{\sim}{x}(t)=\sum_{r=1}^{n}\left\{\int _ { 0 } ^ { t } \left[\left(y_{r} \underline{y}_{r}^{T}+\underline{z}_{r} z_{r}^{T}\right) \underset{r}{x}(\tau) \cos \omega_{r}(t-r)\right.\right. \\
& \left.+\left(y_{r} z_{r}^{T}-z_{\sim} y_{r}^{T}\right) X(\tau) B i n \omega_{r}(t-\tau)\right] A_{\tau} \\
& +\left(y_{r} y_{r}^{T}+z_{r} r_{r}^{T}\right) \operatorname{Ix}(0) \cos \omega_{r} t \\
& \left.+\left(y_{r} z_{r}^{T}-z_{r} y_{r}^{T}\right) I_{x}(0) \sin \omega_{r} t\right) \tag{32}
\end{align*}
$$

Where $x(0)$ f/s the initinl state vector.
The decoupling procedure can be written in matrix fowm, To this end, let us introduce the $2 n-$ dimensional generalized coordinate vector

$$
\underline{w}=\left[\begin{array}{lllllll}
\xi_{1} & n_{1} & \xi_{2} & n_{2} & \cdots & \sigma_{n} & n_{n} \tag{33}
\end{array}\right]^{T}
$$

as well as the corresponding modal matrix

$$
\mathrm{P}=\left[\begin{array}{lllllll}
\underline{y}_{1} & z_{1} & y_{2} & z_{2} & \cdots & y_{n} & z_{n} \tag{34}
\end{array}\right]
$$

so that Eq. (29) can be written in the compact form

$$
\begin{equation*}
\underset{\sim}{x}=\mathbb{P} \underset{\sim}{x} \tag{35}
\end{equation*}
$$

Moreover, the orthogonality relations can be combined into

$$
\begin{equation*}
\underline{p}^{T} I P=1_{2 n} \tag{36}
\end{equation*}
$$

where ${ }^{2} 2 \mathrm{n}$ is the unit matrix of order 2 n . Premultiplying both sides of Eq. (35) by $\mathrm{p}^{\mathrm{T}} \mathrm{I}$ and using Eq. (36), we conclude that:

$$
\mathrm{w}=\mathrm{p}^{\mathrm{T}} \underset{\underline{x}}{ }
$$

Next, let un define a block dingomil matrix A ab followa:


With this notation, Eqs, (30) and (31) can be written in the compact f . rm

$$
\begin{equation*}
\dot{\underline{v}}=A \underline{w}+i x \tag{39}
\end{equation*}
$$

7. Response of Ui ontrolled System to Impulisive Excitation

Let us consider the case in which aystem (25) is subjected to an impulsive force at time $0+$ while in equilibrium, $x(0)=0$. The forec vector can be written in the forim

$$
\begin{equation*}
\underset{\sim}{x}(t)=\hat{X} \delta(t) \tag{40}
\end{equation*}
$$

where $\hat{X}$ is the magnitude of the impulsive force.
Introducing Eq. (40) Into bolution (49), we obtain

$$
\begin{align*}
\underset{\sim}{x}(t)= & \sum_{r=1}^{n} \int_{0}^{t}\left[\left(y_{r} y_{r}^{T}+z_{r}^{2} z_{r}^{T}\right) \hat{x}_{\sigma} \delta(\tau) \cos \omega_{r}(t-\tau)\right. \\
& \left.+\left(y_{r}^{2} z_{r}^{T}-z_{r}^{z} y_{r}^{T}\right) \hat{x}_{\sim} \delta(\tau) \sin \omega_{r}(t-\tau)\right] d \tau \\
= & \sum_{r=1}^{n}\left[\left(y_{r} y_{r}^{T}+z_{r}^{z} z_{r}^{T}\right) \hat{x}_{\sim} \cos \omega_{r} t\right. \\
& \left.+\left(y_{r} z_{r}^{T}-z_{r} y_{r}^{T}\right) \hat{x}_{s i n} \omega_{r} t\right] \tag{41}
\end{align*}
$$

which shows that the motion of the syatem consists of a auperposition of harmonic motions at the natural frequencies $\omega_{r}$.

The impulaive force $\hat{X} \delta(t)$ can be shown to cause a motion analogous to that caused by an initial excitation. Indeed, iet us introduce Eq. (40) into Eq. (41) and write

$$
\begin{equation*}
I \underline{X}(t)+G \underset{\sim}{x}(t)=\hat{X} \delta(t) \tag{42}
\end{equation*}
$$

Letting the duration of the fmpulae be $\Delta t$ and integrating Eq. (42) with respect to time, we obtain


For small $\Delta t$, the second integral on the left oide of Eq. (43) is negligible, so that
$\lim _{\Delta t \rightarrow 0} I \int_{0}^{\Delta t} \dot{x}(t) d t=I[\underline{x}(0+)-\underset{\sim}{x}(0)]=I \underset{\sim}{x}(0+)=\hat{\underset{\sim}{x}}$
From which we conclude that the impulsive force
producen tha equivaleat $\ln \operatorname{lc} \operatorname{lal}$ exclintion

$$
\begin{equation*}
x(0 r)=I^{-1} \hat{x} \tag{45}
\end{equation*}
$$

It can be enasly varified that if the inftini excitation (45) ia inaerted into B 4 . (32) instend of the forec (40) the result would be the ame.

## 8. Syntem with Proportionnl Contral

Let us assume that the Bystem under considerathon was subjected to an impulsive forco reulting In onclliation according to Eq. (41). Let us further agsume that the response exceeds $n$ given amplitude. Because the oncillation persistes without attenuation, the response must be collsidered unsatisfactory, so that it is deemed necessary to attenuate $i t$ by means of active controls. In this section, we shall use proportional controis and in the next we shall use on-off controls.

Denoting by $\mathbb{U}$ the control vector, the syatem differential equations of motion can be written In the form

$$
\begin{equation*}
\underline{x} \dot{x}(t)+\operatorname{Cx}(t)=\underline{U}(t) \tag{16}
\end{equation*}
$$

which is subject to the initial conditions $x(0)$. Using the approach of Sce, 6 , we can reduce the simultaneous set (46) to the independent set

$$
\begin{align*}
& \dot{r}_{r}(t)-\omega_{r} y_{r}(t)=Y_{r}(t) \\
& \dot{y}_{r}(t)+\omega_{r} \xi_{r}(t)=Z_{r}(t) \tag{47}
\end{align*}
$$

where

$$
\begin{equation*}
Y_{r}(t)=Y_{r}^{T} U(t), Z_{r}(t)=z_{r}^{T} U(t), r a 1,2, \ldots, n \tag{48}
\end{equation*}
$$

Next, let us assume proportional controls

$$
\begin{gather*}
Y_{r}(t)=-c \xi_{r}(t), Z_{r}(t)=-c \eta_{r}(t), \\
r=1,2, \ldots, n \tag{49}
\end{gather*}
$$

so that Eqs. (47) can be rewritten in the form $\dot{\xi}_{r}(t)-\omega_{r} \eta_{r}(t)+c \xi_{r}(t)=0$
$\dot{\eta}_{r}(t)+\omega_{r} r_{r}(t)+e \eta_{r}(t)=0^{r=1,2, \ldots, n}$
The solution of Eqs. (50), obtained by the Laplace transform method, is

$$
\begin{gather*}
\xi_{r}(t)=e^{-c t}\left[\xi_{r}(0) \cos \omega_{z} t+\eta_{r}(0) \sin \omega_{r} t\right] \\
\eta_{r}(t)=e^{-c t}\left[-r_{r}(0) \sin \omega_{r} t+\eta_{r}(0) \cos \omega_{r} t\right] \\
r=1,2, \ldots, n \tag{51}
\end{gather*}
$$

no that tise response dies out with ilme.
The question reminas as to how the proportlomal control on the decoupled coordlanten $\varepsilon_{0}(t)$ and $n_{r}(t)$ relate to that of the state vector $x(f)$. To thife end, wo multiply iq. (29) by $\mathrm{Y}_{\mathrm{r}}^{1} \mathrm{a}$ and"zit, in requence, congider Eqs. (28) and obtain
$f_{r}(t)=X_{r}^{T} 1 x(t), \eta_{r}(t)=z_{r}^{T} I_{x}(t), r=1,2, \ldots, n$

Combining Equ. (48), (49), and (52), we can write

$$
\begin{aligned}
& Y_{r}(t)=-c \xi_{r}(t)=-c y_{r}^{T} I_{-}(t)={\underset{r}{r}}_{T}^{T}(t)
\end{aligned}
$$

$$
\begin{align*}
& x \sim 1,2, \ldots!n \tag{53}
\end{align*}
$$

from which wo conclude that

$$
\begin{equation*}
\underline{U}(t)=-c I \underset{\sim}{x}(t) \tag{51}
\end{equation*}
$$

or, the control vector $U(t)$ is proportional to the vector $\mathrm{Ix}(\mathrm{t})$.

## 9. Syatem With On-Off Control

Proportional control has one drawback, namely, 1t must operate continuously. A scheme without thin drawback is on-off control. The control law assumes a region of deadband bared on the recognition that within bome tolerance small oseilintions are acceptable.

Let us consider once again the system (46) and the decoupling procedure (47) and (48), but, by contrast, wo assume a control in the form

$$
\begin{equation*}
U=\sum_{g^{n} 1}^{n} \frac{1}{w_{n}} I_{z_{s}} U_{s} \tag{55}
\end{equation*}
$$

where $u_{g}$ is a nonlinear function of $n_{s}$ to $b f_{4}$ specified shortly. Introducing Eq. (55) int:o Eqs. (48) and considertag the orthonormality relations (28), we conclude that

$$
\begin{align*}
& Y_{r}(t)=\sum_{B=1}^{n} \frac{1}{\omega_{B}} y_{V}^{T} I_{\sim B} u_{B}=0  \tag{56}\\
& z_{r}(t)=\sum_{G=1}^{n} \frac{1}{\omega_{B}} z_{V}^{T} I_{\sim B} u_{B}=\frac{1}{\omega_{r}} u_{r}
\end{align*}
$$

no that Eqs. (47) reduce to
$\left\{\begin{array}{ll}\dot{\xi}_{r}(t)-\omega_{r} n_{r}(t) & =0 \\ \dot{n}_{r}(t)+\omega_{r} \zeta_{r}(t)-\frac{1}{1} u_{r}=0\end{array} \quad r=1,2, \ldots, n\right.$
$\left\{\begin{array}{l}\dot{n}_{r}(t)+\omega_{r} r_{r}(t)-\frac{1}{\omega_{r}} u_{r}=0^{r} \\ \text { Next, 1et ug specify that }\end{array}\right\} \begin{aligned} & u_{r}= \begin{cases}-k_{r}, & \eta_{r}>d_{r} \\ 0, & -d_{r} \leq \eta_{r} \leq d_{r} \\ k_{r}, & \eta_{r}<-d_{r}\end{cases} \end{aligned}$
Hence, the tolution of Eqg. (57) must be obtalned separately for the three intervals indicnted above:

1. For $\left|n_{r}\right| \leq d_{r}, u_{r}, n 0$, EqS. (57) reduce to

$$
\begin{align*}
& \dot{\zeta}_{r}(t)-\omega_{r} \eta_{r}(t)=0 \\
& \dot{\eta}_{r}(t)+\omega_{r} \zeta_{r}(t)=0 \tag{59}
\end{align*}
$$

Which can be slown to have the solution

$$
\begin{gather*}
\xi_{r}(t)=\xi_{r}(0) \operatorname{con} \omega_{r} t+\eta_{r}(0) a \ln \omega_{r} t \\
\eta_{r}(t)=-t_{r}(0) \operatorname{ain} \omega_{r} t+\eta_{r}(0) \cot \omega_{r} t \\
r=1,2, \ldots, n \tag{60}
\end{gather*}
$$

11. For $\eta_{r}>d_{r}{ }^{\prime} u_{r}=-k_{r}$, EqB. (57) become

$$
i_{r}(t)-\omega_{\mathbf{r}} n_{r}(t)
$$

$$
\begin{equation*}
\dot{n}_{r}(t)+w_{r} r_{r}(t)+\frac{k_{r}}{w_{r}}=0^{r m 1,2, \ldots, n} \tag{61}
\end{equation*}
$$

which have the bolution
$\xi_{r}(L)=\frac{k_{r}}{\omega_{r}^{2}}+\left[\begin{array}{cc}\xi_{r}(0) & \cdot \frac{k_{r}}{2} \\ r_{r}\end{array}\right] \cos \omega_{r} t+\eta_{r}(0) \ln \omega_{r} t$
$\eta_{r}(t)=-\left[t_{r}(0)+\frac{k_{r}}{\omega_{r}^{2}}\right] \sin \omega_{r} t+\eta_{r}(0) \cos \omega_{r} t$
$r=1,2, \ldots, n$
iil. For $n_{r} \leqslant-d_{r}, u_{r}=k_{r}$ the response is obtained by almply replacing $-k_{r}$ by $+k_{r}$ in Eqs. (62). Hence,
$\xi_{r}(t)=\frac{k_{r}}{\omega_{r}^{2}}+\left[E_{r}(0)-\frac{k_{r}}{\omega_{r}^{2}}\right] \cos \omega_{r} t+\eta_{r}(0)_{\operatorname{Bin}} \omega_{r} t$
$\eta_{r}(t)=-\left[\begin{array}{l}{\left[\xi_{r}(0)-\frac{k_{r}}{\omega_{r}^{2}}\right] \sin \omega_{r} t+\eta_{r}(0) \cos \omega_{r} t} \\ x=1,2, \ldots, n\end{array}, \quad\right.$ (63)
The behavior of the solution, Eqs. (60), (62), and (63), can be dincussed most convenientily in the phase plane $n_{r}$ vs. $\varepsilon_{r}$. From Eqs. (60), we conclude that: if $\sqrt{\mathrm{F}_{\mathrm{r}}^{2}(0)+\eta_{\mathrm{r}}^{2}(0)}<\mathrm{d}_{\mathrm{r}}$, then the trajectories represent circles with the centerb at the origin and with radit $\sqrt{\varepsilon_{\mathrm{r}}^{2}(0)+n_{r}^{2}(0)}$, If the motion is initiated in the region $\eta_{r}>d_{r}$, then from Eqs. (62) we conclude that the trajectories are circlea centered at $\xi_{\mathrm{r}}=-\mathrm{k}_{\mathrm{r}} / \omega_{\mathrm{r}}^{2}$ and with radil $\sqrt{\left[t_{r}(0)+k_{r} / w^{2}\right]^{2}+\pi_{r}^{2}(0)}$. On the other hand, from Eqs. (63) we conclude that the trajectories initiated in the region $n_{r}<d_{r}$ are circles centered at $E_{r}=k_{r} / \omega_{r}^{2}$ and with radii
$\sqrt{\left(\xi_{\mathrm{r}}(0)\right.} \frac{\left.k_{\mathrm{r}} / \omega^{2}\right]^{2}+n_{\mathrm{r}}^{2}(0)}{\text {, }}$ a given motion ini.. Linted at gome point $n_{r}(0)>d_{r}, f_{r}(0)<0$ will follow a circular trajectory until it reaches the Horszontal line $n_{r}{ }^{\square} \mathrm{d}_{\mathrm{r}}$, when the control in reImoved. If at this point $r_{r}$ \& 0 , then the trajecfory wlll tend to move clockwise on a circle centered at the orjgin, which will take the motion back into the region $n_{r}>d_{r}$ causing the control to be netuated ngain. Repetition of chia motion patcern resulte in chatering along the 1 ine $n_{r}$ " $\mathrm{d}_{\mathrm{r}}$. If the trajectory indiated at $\mathrm{n}_{\mathrm{r}}(0)>\mathrm{d}_{\mathrm{r}}$ hites the line $n_{r}=d_{r}$ at a point for whicli $f_{r}>0$, then the motion will continue on a circle with the center at the origin until it reaches $n_{r}=-d_{r}$, so Chat now chatering occurs along the line $\eta_{r}$ : $-d_{r}$. Figure 2 shows these trajectoties along with some other possible cases.

To prevont chattartan, ona may wiah to dalay the thme no that the controla are renoved when the trajectorien are dialde the dendband fatioval.
 In tho nolutions (62) and (63). Figure 2 blinws in dablied line the aybtem behavior for a time delay corresponding to a phasa lag of $10^{\circ}$.

The on-off controd witil dendband and time delay correaponding to a decoupled mode ia llluatrated in the block dingram ahown in Fig. 3 .

It ohould be polnted out that the nove amolyals, including the phase plane representation of the motion, would not have been possible without the decoupiling procedure.

## 10. Reconstruction of the State Voctor from Availabla Outputa

Regarding the control ad an external axcitation and using the amalogy with Eq. (41), the equations of motion of a controlled spacecraft subjected to external excitation can be written in the form

$$
\begin{equation*}
\underline{\sim} \dot{\sim}+G \underset{\sim}{x}=\underset{\sim}{x}+\underset{\sim}{u} \tag{64}
\end{equation*}
$$

Unlike the force vector $X$, lowever, which depends on time alone, the control vector $\mathbb{U}$ depends specificnily on the state varinbles. "In sec. 9, we atudied two cases, namoly, that in whech $\underset{U}{ }$ is a innear function of the state vector and that in which $\mathbb{y}$ is n nonlinear function. Because now the Input to the system is $X+U$ Instead of $X$, the decoupled equations of motion can be wricten in the symbolic form

$$
\begin{equation*}
\dot{\underline{w}}=\Lambda \underline{w}+p^{T}(\underline{x}+\underline{U}) \tag{65}
\end{equation*}
$$

The above control is predicated upon the knowledge of the atate vector $x(t)$. Quite of ten, however, the state vector is"not completely known, so that a method for its estimation in highly desirable. Such a method uses notiher dynamical system known as an obsarver.

The discussion of the observer can be convenientiy prosented in terms of the uncoupled aystem. Let $\dot{w}_{m}$ denote a vector of mensurements correspondIng to the time derivative of the uncoupled state vector $w$. The object is to construct an observer capable of yielding a good estimate of the atate vector. Such nin observer should be a dynamical system resembing the dynamical system (65) and should depend both on the fuput $\underset{X}{+} \underline{y}$ and the tneasurement $\dot{w}_{\text {m }}$. In general the measuremente need not be the complete set of states. The observer appronch ean easily be extended to finclude the effect of mensurement errors thereby resulting in a Eilter approncli. Hence, J.et un consfier an observer described by the following vector differential equation

$$
\begin{equation*}
\dot{\hat{w}}=\Lambda_{0} \dot{\underline{w}}+B_{0} \dot{w}_{m}+N_{0} p^{T}(\underline{x}+\underline{v}) \tag{GG}
\end{equation*}
$$

where $\hat{v}$ denotes the observer-constructed atente vector and $\Lambda_{0}, B_{0}$, and $N_{0}$ ara block-dingonaj. maltrices to be determined so that the observer exhilita the desired behavior. Morcover, the mensurements vecter $\dot{w}_{\mathrm{m}}$ is related to the atate vector $w$ by

$$
\begin{equation*}
\dot{\underline{w}}_{\mathrm{m}}=\mathrm{c}_{\mathrm{o}} \dot{\underline{v}} \tag{67}
\end{equation*}
$$

iwhire do lis nemeratly arectangular matirlx which
 devicet. Introduchag Eiqu. (65) and (67) Into By. (66) and bubtracting tha rauit from kq. (65), we obtalth

$$
\begin{align*}
\dot{\underline{y}}-\dot{\hat{y}} & =\left(1-H_{0} c_{0}\right) \Lambda_{u}-\Lambda_{0} \hat{u}+\left(1-c_{0} \Pi_{0}\right. \\
& \left.-N_{0}\right) p^{?}(\underline{x}+\underline{U}) \tag{68}
\end{align*}
$$

where 1 in the fientity matrix. Lecting the man trices $n_{0},{ }_{0}$, and $N_{0}$ antinfy the equatsinn

$$
\begin{equation*}
\left(1-C_{0} H_{0}\right) \Lambda \cdots \Lambda_{0}, 1-C_{0} B_{0}=H_{0} \tag{69}
\end{equation*}
$$

Eq. (G8) reduces to

$$
\begin{equation*}
\dot{\underline{v}}-\dot{\hat{w}}-\Lambda_{0}(\underline{w}-\hat{\underline{w}}) \tag{70}
\end{equation*}
$$

The observer dynmics is aimulated in Fig. 4.
Next, let us introduce the notation

$$
\begin{equation*}
\underset{\underline{c}}{\underline{s}}(t)=\underline{w}(t)-\hat{w} \tag{71}
\end{equation*}
$$

where $c(t)$ is known as the entimation error, 1.c., the difference between the actual atate vector and the reconstructed state voctor. Introducing Eq. (71) into Eq. (70), we obtain

$$
\dot{c}(t)=\Lambda_{0} \underline{F}(t)
$$

no that if the efgenvalues of $N_{0}$ have negative real parts, the error decays with time. There are no apparent restrictions on the efgenvalues of $A_{0}$ until measurement errors are taken into account: Typically, the eigenvalues of $A_{0}$ would be "Caster" than the system eigenvalues by a factor of 5 to 10 .

Gencrally, one tiooses the matrix $\beta_{0}$ bo that: the matrix $A_{0}$ lane the deaired edgenvalues. In particular, $\mathrm{l}_{0}$ is chonen as a block diagonal matrix. We recall that the matrix $A$ is itself block-diagonal, as can be seen from Eq. (38).

Next, let us nafume tiat gome componenta of the atate vector $x(t)$ have been measured by means of on-board sensors, such as rate gyros, accelerometers, etc. Denoting the mensured state vector rate by $\dot{x}_{i \mathrm{~m}}(\mathrm{t})$, where

$$
\begin{equation*}
\dot{x}_{m}(t)=\left[\ddot{q}_{m}^{T}(t) \quad \dot{q}_{m}^{T}(t)\right]^{T} \tag{73}
\end{equation*}
$$

we can use Eq. (37) and w.fte

$$
\begin{equation*}
\dot{w}_{m}(t)=r^{T} \dot{x}_{m}(t) \tag{74}
\end{equation*}
$$

Assuming for simplicity that $\mathrm{c}_{0}$ fo the identity matrix, which imples complete observability, and introduchug Eqs. (69) and (74) Into Eq. (66), we ohtasn the observer equation

$$
\begin{equation*}
\dot{\hat{w}}=\Lambda_{0} \hat{\underline{w}}+B_{0}{ }^{p^{T}} \dot{x}_{\mathcal{N}_{m}}+\left(1-B_{0}\right) p^{T}(\underline{X}+\underline{U}) \tag{75}
\end{equation*}
$$

The matrix $\|_{0}$ can be chosen so that the matrix $\Lambda_{0}$ is the diagonal, l.e.,

I. to hlows inmediately that
$\left[1-s_{0}=\Lambda_{0} A^{-1}=\right.$ block-ding $\left[\begin{array}{cc}0 & \alpha_{r} / \omega_{r} \\ B_{r} / \omega_{r} & 0\end{array}\right]$
$\mu_{0}=$ block-dAug $\left[\begin{array}{cc}1 & a_{r} / \omega_{r} \\ -\beta_{r} / \omega_{r} & 1\end{array}\right]$
(77b)

Introducing the notation

$$
\begin{equation*}
\dot{g}=p_{0} \mathrm{r}^{\mathrm{T}} \dot{x}_{-1}+\left(1-\mathrm{B}_{0}\right) \mathrm{p}^{\mathrm{T}}(\underline{x}+\underline{y}) \tag{78}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{q}=\left(\hat{Q}_{r, 1} \hat{q}_{n 1} \cdots \hat{Q}_{r r} \hat{Q}_{n r} \cdots \hat{Q}_{r, n} \hat{Q}_{n n}\right)^{T} \tag{79}
\end{equation*}
$$

and comadering Eq. (76), Eq. (75) enn be written in the rorm

$$
\begin{align*}
& \dot{\hat{r}}_{r}=a_{r}{\hat{f_{r}}}+\hat{\theta}_{r r} \\
& \hat{n}_{r}=\beta_{r} \hat{\eta}_{r}+\hat{Q}_{\eta r} r=1,2, \ldots, n \tag{80}
\end{align*}
$$

which has the general solution

$\hat{\eta}_{r}(t)=\hat{\eta}_{r}(0) e^{\beta r t}+\int_{0}^{t} e^{\beta r(t-\tau)} \hat{Q}_{\eta r}(\tau) d \tau$

$$
\begin{equation*}
r=1,2, \ldots, n \tag{81}
\end{equation*}
$$

Choobing $a_{r}$ and $B_{r}(r=1,2, \ldots, n)$ an complex numbern with negative real parts, we conclude fron Eq. (72) that the error $\mathrm{c}(\mathrm{t})$ reduces to zero with time, to that the decoupled obsorver atate vector $\hat{w}$ can be used to determine the behavior of the decoupled aystem state vector $\mathbb{G}$. Note that to obtain the actunl observer state vector we can write

$$
\begin{equation*}
\hat{x}(t)=\hat{p} \underline{\hat{w}}(t) \tag{82}
\end{equation*}
$$

The vector $\hat{Q}$ conslate of one part due to the mensured atate vector and external disturbances another part due to the control

$$
\begin{equation*}
\hat{Q}=\hat{Q}_{x}+\hat{g}_{u} \tag{83}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{Q}_{x}=B_{0} r^{T} I \dot{\underline{G}}_{m}+\left(1-B_{0}\right) r^{T} \underline{X}  \tag{84}\\
& \hat{Q}_{u}=\left(1-B_{0}\right) r^{T} \underline{U}
\end{align*}
$$

Hence, the clabsical beparation principle is illustrated in that the oberver can be used to actualiy control the system. If $\hat{\mathrm{Q}}_{4}$ is taken to shou| late the proportiomal control of Sec, 8 or the onoff control of Sec. 9, then the actual control vector is obtained from the becond of Eqs. (84) In the form

$$
\begin{equation*}
\underset{\sim}{U}=\operatorname{IP}\left(1-B_{0}\right)^{-1} \hat{g}_{u} \tag{85}
\end{equation*}
$$

where
$\left(1-B_{0}\right)^{-1}=$ block-ding $\left[\begin{array}{cc}0 & \omega_{r} / \beta_{r} \\ -\omega_{r} / a_{r} & 0\end{array}\right]$

## 11. Control of a Spiming Floxible Spacecraft

Before proceedlag with the derivation of Lagrange's equations of motion it will prove con-

 felreular orbit around the enrth mod that the conter of nata of abe matellite colnedide with the fonter of nama $P$ of the plat forn for all practical
 known. Moreover, we diball ansume that there are inn membera rotathog relative to the platiform and d that there are two edaste panels atenched to tha phatorm. Thene pandin are aymetrice with reapect
 If follown that all quantition with bubacripte of $i$ nud $A$ can be fgared in the kinotic energy Eq. (9). lin nddition, we havo

$$
\begin{equation*}
m_{B R} \tilde{R}_{P S}=\dot{r}_{E G}=0, p_{E}=0 \tag{87}
\end{equation*}
$$

Considering the above nasumptiona, an well na tqa. (14), and ignoring constant terms, Eqg. (9) reducen to
$T=\frac{1}{2} \Omega_{P}^{T} J \Omega_{P}+\frac{1}{2} \dot{r}_{2}^{T} N_{E} \dot{\Sigma}_{E}-\Omega_{P}^{T} L_{P E}^{T} S_{Q}$
Next, let un assume that in equillbrium the iplatiform axes $x_{p} y_{p} z_{p}$ rotate relative to the inertial epace XYZ wich the undform angular velocity in about $z_{p}$, where $z_{p}$, 10 paraliel to $z$. Then, if We consider a bet of auxlliary axes xplypizp rom tatiag relative to the inertinl space with the angular velocity $\Omega$ about $z p$, where $z, 1$ p pralled to $\%$, and if we denote the anf 42 ar velocity of axes $x_{p} y_{p} z_{p}$ ralative to $x_{p} y_{p} \cdot \boldsymbol{r}_{2,1}$ by wp, then the fangular velocity of the platform axes $x_{p} y_{p}$ ? $p_{p}$ rela|tive to the inertial space can be written in the 1 form

$$
\begin{equation*}
\Omega_{p}=n_{\underline{p}}+\omega_{p} \tag{89}
\end{equation*}
$$

Where \& is the vector of direction cosines between axis $z_{p}$, and ayes $x_{p} y_{p} z_{p}$. Assuming that axes $x_{p} y_{p}$ $z_{p}$ arc obtained from axes $x_{p}, y_{p}, z_{p}$, by means of then rotations $y_{2}$ about $y_{p}, 0_{1}$ about $x_{2}$, and $\theta_{3}$ bhout $z_{p}$, in that order, then
$\underline{\ell}=\left[\mathrm{sO}_{1} \mathrm{BO}_{3}-\mathrm{CO}_{1} \mathrm{EO} \mathrm{C}_{2} \mathrm{CO} 3 \quad \mathrm{BO}_{1} \mathrm{CO}_{3}+\mathrm{CO}_{1} \mathrm{BO}_{2}^{\mathrm{BO}} 3 \quad \mathrm{CO}_{1} \mathrm{CO}\right]^{\mathrm{T}}$
and
$\operatorname{ur}_{\mathrm{p}}=\left[\begin{array}{ccc}\mathrm{co}_{3} & \mathrm{co}_{1} \mathrm{~s} 0_{3} & 0 \\ -\mathrm{s0}_{3} & \mathrm{co}_{1} \mathrm{co}_{3} & 0 \\ 0 & -\mathrm{st} & 1\end{array}\right]\left[\begin{array}{l}\dot{0}_{1} \\ \dot{0}_{2} \\ \dot{\theta}_{3}\end{array}\right]$
where $s 0_{1}=\sin \theta_{1}, \cos =\cos \theta_{1}(1=1,2,3)$.
Representing the elabtic diaplacementa of the pancls as followis:

$$
\begin{equation*}
u_{E}=0, v_{E}=\phi_{1} r_{1}, w_{E}=\phi_{2} s_{2}+\phi_{3} r_{3} \tag{92}
\end{equation*}
$$

where of is: the firse in-plane mode, $\$ 2$ ta the ffest our-of-plane mode, and 43 la the first tornlonal mode about $x_{E}$, Introduc Ling EqS. (89)-(92) into Eq. (B8), and linearlaing, we obtain

$$
T=\frac{1}{2} n^{2}\left[(B-C) 0_{1}^{2}+(\Lambda-c) 0_{2}^{2}-2 a 0_{1} \zeta_{3}+2 b 0_{2} r_{2}\right.
$$

where $A_{1} \mathrm{~B}, \mathrm{C}$ are tho momente of Lnertia of the entiro undeformed apneecraft nbout nxen $x_{p}, y_{p}, z_{p}$, roapactilvaly, and

$$
\begin{equation*}
n=\int_{m_{E}} x_{E^{\phi}} L^{d m_{E}}, b=\int_{m_{E}} x_{E^{\phi} 2^{d m}}^{E} \tag{94}
\end{equation*}
$$

$$
a \cdot \int_{m_{E}} y_{E} \phi^{d m_{E}}, m_{i} \cdot \int_{m_{E}} \phi_{1}^{2} d m_{E}, 1=1,2,3
$$

In terms of the modea indicated by Equ. (92), the potential energy is

$$
\begin{equation*}
v=\frac{1}{2} \sum_{i=1}^{3} m_{i} \Lambda_{i}^{2} \zeta_{i}^{2} \tag{95}
\end{equation*}
$$

where $\Lambda_{1}$ ( $1=1,2,3$ ) aro the mitural frequencien of the pandi ausocinted with the moden $\phi_{1}(1 \times 1$, 2,3).

The nonconacrvative virtual work can be written in terms of the genoralized forcea and virtual displacemente as follows:

$$
\begin{equation*}
\delta W=\sum_{i=1}^{3}\left(F_{01} \delta 0_{1}+E_{r_{1}} \delta r_{1}\right) \tag{96}
\end{equation*}
$$

where $F_{01}$ and $F_{61}(1=1,2,3)$ are the generalized forees.

Langrange's equations of motion can be written In the general form

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{O}_{1}}\right)-\frac{\partial L}{\partial 0_{1}}=F_{01} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\zeta}_{1}}\right)-\frac{\partial L}{\partial \zeta_{1}}=F_{\zeta 1} \tag{97}
\end{align*}
$$

From the third of Eqg. (97), we obaerve that if $F_{03}=0$, then $\theta_{3}$ is an ignorable coordinnte, so that

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{\theta}_{3}}=c \dot{\theta}_{3}+n \dot{C}_{1}=\beta \sim \text { const } \tag{98}
\end{equation*}
$$

Hence, Introducing

$$
\begin{equation*}
\dot{o}_{3}=\frac{\beta-n \dot{r}_{1}}{c} \tag{99}
\end{equation*}
$$

into the kinctic energy, we obtinin

$$
T=\frac{1}{2} n^{2} l(B-C) 0_{1}^{2}+(A-C) 0_{2}^{2}-2 \mathrm{e} \theta_{1} \zeta_{3}+2 b 0_{2} \zeta_{2}
$$

$$
\left.+m_{1} r_{1}^{2}\right]+\Omega\left(-A \dot{0}_{1} \theta_{2}+(B-c) \dot{o}_{2} \theta_{1}-b\left(\dot{0}_{1} r_{2}+\theta_{1} \dot{\zeta}_{2}\right)\right.
$$

$$
\left.-\mathrm{c} \dot{\theta}_{2} r_{3}\right]+\frac{1}{2}\left(\Lambda \dot{0}_{1}^{2}+B \dot{\theta}_{2}^{2}\right)+\frac{1}{2}\left(\left(m_{1}-\frac{n^{2}}{2 \mathrm{C}}\right) \dot{r}_{1}^{2}\right.
$$

$$
\begin{align*}
& \left.+m_{1}^{\dot{r}} \dot{D}_{1}^{2}\right]+0\left[-\lambda \dot{O}_{1} O_{2}+(1)-c\right) \dot{o}_{2} O_{2}-b \dot{o}_{2} c_{2} \\
& \left.-\pi \dot{t}_{3} \dot{\zeta}_{3}-b O_{1} \dot{C}_{2}\right)+\frac{1}{2}\left(\lambda \dot{0}_{1}^{2}+n \dot{O}_{2}^{2}+c \dot{0}_{3}^{2}\right)+\frac{1}{2}\left(m_{1} \dot{L}_{1}^{2}\right. \\
& \left.+\mathrm{at}_{2} \dot{\dot{b}}_{2}^{2}+\mathrm{m}_{3} \dot{\dot{L}}_{3}^{2}\right)-6 \dot{0}_{2} \dot{\zeta}_{2}+{ }_{n} \dot{0}_{3} \dot{\zeta}_{1}+\mathrm{o} \mathrm{\dot{0}}_{1} \dot{\zeta}_{3} \tag{93}
\end{align*}
$$

$$
\begin{equation*}
\left.+m_{2} \dot{x}_{2}^{2}+m_{3} \dot{b}_{3}^{2}\right]=\operatorname{lio}_{2} \dot{\varphi}_{2}+\dot{o}_{1} \dot{\zeta}_{3} \tag{100}
\end{equation*}
$$

Hext, let lif introduce the configuration vector

$$
q=\left[\begin{array}{lllll}
0_{1} & 0_{2} & \zeta_{1} & \square & b_{j} \tag{101}
\end{array}\right]^{T}
$$

and the anmociated nonconnervative forea vector

$$
\begin{equation*}
9 \sim\left\{F_{01} F_{02} F_{r, 1} F_{52} F_{53}\right)^{T} \tag{102}
\end{equation*}
$$

Then Lafirarge's equations, Eq. (20), nabumod the form (22). In which
$n=\left[\begin{array}{cccccc}A & 0 & 0 & 0 & 0 \\ 0 & B & 0 & -b & 0 \\ 0 & 0 & m_{1} & \cdots \frac{n^{2}}{2 c} & 0 & 0 \\ 0 & -b & 0 & m_{2} & 0 \\ 0 & 0 & 0 & 0 & m_{3}\end{array}\right]$
$8=\Omega\left[\begin{array}{ccccc}0 & C-\Lambda-B & 0 & 0 & 0 \\ -(\tilde{-}-\Lambda-B) & 0 & 0 & 0 & -0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0\end{array}\right]$
$k=n^{2}\left[\begin{array}{ccccc}c-B & 0 & 0 & 0 & a \\ 0 & c-\Lambda & 0 & -b & 0 \\ 0 & 0 & m_{1}\left(\Lambda_{1}^{\star 2}-1\right) & 0 & 0 \\ 0 & -b & 0 & m_{2} \Lambda_{2}^{\star 2} & 0 \\ 0 & 0 & 0 & 0 & m_{3} A_{3}^{\star 2}\end{array}\right]$
where $\Lambda_{1}^{k}=\Lambda_{1} / \Omega(1=1,2,3)$,
We observe that the equation for the coordinate $r_{1}$ Is fudependent of the other onen, so that 1 ths nolution can be obtained independently. For simplicity of computer programming, however, we choose not to treat $\zeta_{1}$ separately but ne part of the formulation (103).

The solution of Eq. (22) with and without controla and with $n$, $b$, and $k$ an given by Eiqg. (103) Collors the patitern established in Secs. 6-10.

The above formulation was used to determine the retponae of a spacecraft with the following paramm etera:

$$
\begin{aligned}
& \Lambda=1,000 \mathrm{~kg} \mathrm{~m}^{2}, \quad \mathrm{~B}=6,000 \mathrm{~kg} \mathrm{~m}^{2} \\
& \mathrm{c}=8,000 \mathrm{~kg} \mathrm{~m}^{2}, \quad \Omega=0,6 \mathrm{rad} \mathrm{~g}^{-1}
\end{aligned}
$$

The pancla were modelled by the finite element method. The first natural frequencien for inplane, out-of-plane, and torsional vibration are
$\Lambda_{1}=0.0647$ rnd $\Lambda_{3}=0.0227^{-1} \Lambda_{2}=0.1743$ rad $n^{-1}$
Simulationa ware mado of the nyatea reaponne fort 1) uncontrolled apneceraft, 2) proportional control, 3) on-off control with doadbond. Figuren 40, 4b, $5 n, 513$, and $6 n$, 66 ahow typlenl computer plotn for
 for the threo enaea, reapectively. Tho initial conditiona and the various control parametora weres

$$
\begin{aligned}
& 0_{1}(0)=0_{2}(0)=10^{-4} \mathrm{rad}_{1} \zeta_{1}(0)=\zeta_{2}(0)=\zeta_{3}(0) \\
& =10^{-4} \mathrm{~m}, \quad c \times 0.1 \mathrm{n}^{-1} \\
& d_{1}=d_{2}=10^{-3}, d_{3_{2}}=d_{4}=d_{5}=10^{-4} \\
& k_{1}=2 \times 10^{-3} \omega_{2}^{2} v^{2}, k_{2}=2 \times 10^{-3} \omega_{2}^{2} s^{-2} \\
& \begin{array}{llll}
k_{3} & 10^{m / 4} & \omega_{3}^{2} n^{-2} \\
k_{5}=10^{-4} & \omega_{5}^{2} & k_{4}^{-2}
\end{array} 0^{-10^{-4}} \omega_{4}^{2} \mathrm{~s}^{-2},
\end{aligned}
$$

Thi Inclunion of Fipa. $4,5,6$ in merely to whow typleal resulte, the resulta ate not meant te ruprenent oplimal control. Indeed, tho on-off control renalita could be greatly improvad by a reduc. tion of the dend band conatante.

## 12. Concluplonn

Thie papar develops a modal. procedtre for the control of a llaxible spocecraft exhibiting gyonscopic behnvior, Control vin decoupling has diatinct computational advantages over control of the coupled byatem, particularly fre large order bybtemn, as it permits the use of methods of solution fenerally absociated with second-order bybtems, Deaign procedures are demonatrated for two types of control algoritims, proportional control and onoff control with dand band.

## Referencen

1. Gevartar, W. B., "Basie Relations for Control of Flexible Velifcien", AIAA Journal, VoL. 8, No. 4, 1y70, pp. 666-672.
2. Kıo, B. C., Seltrer, S. M., Singh, G., and Yackel, R. A., "Deaign of n Digitnl Controller for Spinaing Floxible Spacecraft", Journnl of Spacecralt aud Rockets, Vol. 11, No. 8, 1974, pp. 584-588.
3. Poelaert, D. H. L., " $\Lambda$ Guidelinc for the Analy sis of a Nonrigid-Spicectalt Control System", ESA/ASE Scianlific and Tochnical Review, Vol. 1, 1975, pp. 203-218.
4. Porcelli, G., "Attitude Control of Flexlble Space Vehicles", AlAA Journol, Vol. 10 , No. 6, 1972, pp. 807-812.
5. Nelrovitch, l., "A New Method of Solution of the Efgenvalue Problem Cor Gyroacopic Syatems", AIAA Journal, Vol. 12, No, 10, 1974, pp. 133713/2.
6. Nelroviteh, l., "A Nodal Analysis for the kesponse of Linear Gyroscopic Systems", Journal of Appllod Mechanieg, Vol. 42, No. 2, 1975, pp. 446-450.


Hig. 1 The Flexible Spacecraft


Fig. 2 Typical Renponec for an Uncoupled Single-Mode Nonlinear Control


Fig. 3 General Control Syatem Structure


Fig. 4 Uncontrolled System Regponee


Fig. 5 System Response with Prop 1 Ional Control


[^0]:    AProfessor, Department of Engineering Science and Mchanicb, Associate Fellow AIM.
    **Absoclate Professor, Department of Electrical Enginecring.
    ***Graduate Rescarch Assistant, Department of Engineering Science and Mechanles.
    This work was supported in part by NASA Rescarch Grant NSG-1109 sponsored by the Structures and Lynamics Division, Langley Research Center.

