141 research outputs found

    Linear parameter varying (LPV) based robust control of type-I diabetes driven for real patient data

    Get PDF
    Due to increasing prevalence of diabetes as well as increasing management costs, the artificial control of diabetes is a highly important task. Model-based design allows finding more effective solutions for the individual treatment of diabetic patients, but robustness is an important property that can be hardly guaranteed by the already developed individualized control algorithms. Modern robust control (known as H∞) theory represents an efficient possibility to solve robustness requirements in a general way based on exact mathematical formulation (Linear Matrix Inequalities) combined with knowledge-based expertise (through real patient data, uncertainty weighting functions can be formulated). When the difference between the nominal model and real patient dynamics is bounded and known, this approach becomes highly reliable. However, this requirement poses the greatest limitation since a model always represents an approximation of the complex physiological process. Consequently, the uncertainty formulation of the neglected dynamics becomes crucial as robust methods are very sensitive to them. In order to formulate them, large amount of real patient data and medical expertise is needed to cover the different life-style scenarios (especially the worst-case ones) that define the control space by the accumulated knowledge. On the other hand, H∞–based methods represent linear control techniques; hence their direct nonlinear application is important for a physiological process. The paper presents a roadmap of using modern robust control in diabetes focusing on nonlinear model-based interpretation: how the weighting functions should be selected based on (knowledge-based) medical expertise, the direct nonlinear applicability of the method taking additional advantage of the recently emerged Linear Parameter Varying (LPV) methodology, robust performance investigation and switching control possibilities. During the control characteristics discussion, the trade-off between the medical knowledge-based empiricism and exact control engineering formulation is introduced through different examples computed under MATLAB on real diabetic patient data

    Discrete LPV Modeling of Diabetes Mellitus for Control Purposes

    Get PDF

    A hybrid automata approach for monitoring the patient in the loop in artificial pancreas systems

    Get PDF
    The use of automated insulin delivery systems has become a reality for people with type 1 diabetes (T1D), with several hybrid systems already on the market. One of the particularities of this technology is that the patient is in the loop. People with T1D are the plant to control and also a plant operator, because they may have to provide information to the control loop. The most immediate information provided by patients that affects performance and safety are the announcement of meals and exercise. Therefore, to ensure safety and performance, the human factor impact needs to be addressed by designing fault monitoring strategies. In this paper, a monitoring system is developed to diagnose potential patient modes and faults. The monitoring system is based on the residual generation of a bank of observers. To that aim, a linear parameter varying (LPV) polytopic representation of the system is adopted and a bank of Kalman filters is designed using linear matrix inequalities (LMI). The system uncertainty is propagated using a zonotopic-set representation, which allows determining confidence bounds for each of the observer outputs and residuals. For the detection of modes, a hybrid automaton model is generated and diagnosis is performed by interpreting the events and transitions within the automaton. The developed system is tested in simulation, showing the potential benefits of using the proposed approach for artificial pancreas systems.Peer ReviewedPostprint (published version

    Robust fractional order PI control for cardiac output stabilisation

    Get PDF
    Drug regulatory paradigms are dependent on the hemodynamic system as it serves to distribute and clear the drug in/from the body. While focusing on the objective of the drug paradigm at hand, it is important to maintain stable hemodynamic variables. In this work, a biomedical application requiring robust control properties has been used to illustrate the potential of an autotuning method, referred to as the fractional order robust autotuner. The method is an extension of a previously presented autotuning principle and produces controllers which are robust to system gain variations. The feature of automatic tuning of controller parameters can be of great use for data-driven adaptation during intra-patient variability conditions. Fractional order PI/PD controllers are generalizations of the well-known PI/PD controllers that exhibit an extra parameter usually used to enhance the robustness of the closed loop system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Receding Horizon Control of Type 1 Diabetes Mellitus by Using Nonlinear Programming

    Get PDF
    Receding Horizon Controllers are one of the mostly used advanced control solutions in the industry. By utilizing their possibilities we are able to predict the possible future behavior of our system; moreover, we are able to intervene in its operation as well. In this paper we have investigated the possibilities of the design of a Receding Horizon Controller by using Nonlinear Programming. We have applied the developed solution in order to control Type 1 Diabetes Mellitus. The nonlinear optimization task was solved by the Generalized Reduced Gradient method. In order to investigate the performance of our solution two scenarios were examined. In the first scenario, we applied “soft” disturbance—namely, smaller amount of external carbohydrate—in order to be sure that the proposed method operates well and the solution that appeared through optimization is acceptable. In the second scenario, we have used “unfavorable” disturbance signal—a highly oscillating external excitation with cyclic peaks. We have found that the performance of the realized controller was satisfactory and it was able to keep the blood glucose level in the desired healthy range—by considering the restrictions for the usable control action

    Data-Driven Robust Control for a Closed-Loop Artificial Pancreas

    Get PDF

    Tumor Growth Control by TP-LPV-LMI Based Controller

    Get PDF

    Anesthesiologist in the loop and predictive algorithm to maintain hypnosis while mimicking surgical disturbance

    Get PDF
    Many regulatory loops in drug delivery systems for depth of anesthesia optimization problem consider only the effect of the controller output on the patient pharmacokinetic and pharmacodynamic response. In reality, these drug assist devices are over-ruled by the anesthesiologist for setpoint changes, bolus intake and additional disturbances from the surgical team. Additionally, inter-patient variability imposes variations in the dynamic response and often intra-patient variability is also present. This paper introduces for the first time in literature a study on the effect of both controller and anesthesiologist in the loop for hypnosis regulation. Among the many control loops, model based predictive control is closest to mimic the anticipatory action of the anesthesiologist in real life and can actively deal with issues as time lags, delays, constraints, etc. This control algorithm is here combined with the action of the anesthesiologist. A disturbance signal to mimic surgical excitation has been introduced and a database of 25 patients has been derived from clinical insight. The results given in this paper reveal the antagonist effect in closed loop of the intervention from the anaesthesiologist when additional bolus intake is present. This observation explains induced dynamics in the closed loop observed in clinical trials and may be used as a starting point for next step in developing tools for improved assistance in clinical care. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Data-Driven Robust Control for Type 1 Diabetes Under Meal and Exercise Uncertainties

    Get PDF
    We present a fully closed-loop design for an artificial pancreas (AP) which regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction (e.g. in the form of meal announcements) with the patient. A major obstacle to achieving closed-loop insulin control is the uncertainty in those aspects of a patient's daily behavior that significantly affect blood glucose, especially in relation to meals and physical activity. To handle such uncertainties, we develop a data-driven robust model-predictive control framework, where we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These sets are then used in the controller and state estimator to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of this approach, without explicit meal announcements, to support high carbohydrate disturbances and to regulate glucose levels in large clusters of virtual patients learned from population-wide survey data.Comment: Extended version of paper accepted at the 15th International Conference on Computational Methods in Systems Biolog
    corecore