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Abstract: The current work investigates tumor growth control under antiangiogenic targeted
molecular therapy by use of Tensor Product (TP) transformation. During the dynamics of
the tumor growth we have considered that the tumor volume x1(t) is measurable, while due
to the lack of information about the second state x2(t) (the inhibitor level in the serum), we
have developed an appropriate Extended Kalman Filter (EKF) to estimate it. We applied
different quasi Linear Parameter Varying (qLPV) models during the design of the EKF and
the controller. Tensor Product model transformation method completed with Linear Matrix
Inequality based optimization have been applied to design the main controller. The reference
signals were generated by trajectory tracking kind control based on Inverse Dynamic Control
- Proportional Derivate compensator, applied it on the ”simulated” (original) model. We did
not consider any state disturbance. However, we have taken into account sensor noise in
accordance with the properties of the model.
We have found that all of the control goals have been satisfied with the developed control
framework: (i) the tumor volume was lower than 1 mm3 at the end of the therapy; (ii) the
developed models have approached each other with good accuracy; (iii) the totally injected
inhibitor level was physiologically acceptable.

Keywords: Antiangiogenic Targeted Molecular Tumor Therapy, Tensor Model transforma-
tion, Linear Parameter Varying, Linear Matrix Inequality, Parallel Distributed Control

1 Introduction

Targeted Molecular Therapies (TMTs) are advanced tumor therapeutic possibilities
which can be used beside the classical treatments (e.g. chemotherapy, radiotherapy,
etc.). TMT drugs directly inhibit the specific biochemical pathways used by the
different kinds of cancers in order for growing, proliferation and spreading [1, 2].
Hence, by TMTs more personalized treatment can be achieved focusing on the vital
phenomena of the tumor and applying specific drugs [3]. The main benefits of
TMTs are less damaging to the normal cells, causing less side effects, improving
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the efficiency of regular therapies and improving the quality of life of the patients
[2]. Among the several types of TMTs the mostly commonly used ones are the
apoptosis inducers, gene expression inhibitors, signal transmission inhibitors and
anti-angiogenic therapies [3].

Angiogen inhibitors are commonly used in modern medicine by targeting the so-
called pro-angiogen factor, the vascular endothelial growth factor (VEGF) that in-
dicates the endothelial proliferation leading to the formation of new blood vessels.
The tumors produce VEGF in order to get new blood vessels through which they are
able to get the nutrients for further growing. By inhibiting this molecular pathway,
the new blood vessels formation phenomena can be decreased causing the ”starva-
tion” of the tumor [3–5]. The nature of this process is an excellent therapeutic target
to be combined with control engineering methodologies optimizing the drug injec-
tion and therapy outcomes [6]. One of the most commonly used TMT drugs in case
of angiogen inhibition is bevacizumab which is investigated in this study as well as
the parametric identification done by the preparation of the applied model [7].

Similarly to other physiological control applications like diabetes or anesthesia [8–
13] the control of tumor growth is challenging due to several unfavorable effects
that should be taken into account. The nonlinear nature of the process completed
with cross-effects, parameter and model uncertainties and time-delays increases the
difficulty of the problem. Recently, several results appeared in the topic of antian-
giogenic TMT control problem [6, 14–18].

The current work investigates the combined applicability of advanced control method-
ologies. One of the most promising ones is represented by the LPV framework, a
useful technique to apply the well-developed linear control methods on the original
nonlinear model without linearizing it [19]. The TP model transformation repre-
sents another solution that can be combined with LMI based optimization and can
be done on LPV functions as well, making it possible to design TP-LPV-LMI kind
controllers [20]. These kind of controllers have many beneficial properties: the pa-
rameter uncertainties and the nonlinearities can be embedded into the model mak-
ing the designed controller robust against these effects. Furthermore, the control
requirements can be formulated as LMIs, which can be taken into account during
the design procedure in order to guarantee their satisfaction by the control action.

On the other hand, not all of the state variables of given models are available. One
suitable solution to deal with this problem is definitely Kalman-filtering. The Ex-
tended Kalman Filter (EKF) represents an estimator designed for nonlinear systems
that can be used effectively for highly nonlinear as well [21].

The paper is structured as follows: first, the minimal tumor growth model and the
developed qLPV models are introduced. After, the controller design procedure is
detailed including the TP model transformation, the LMI based optimization, the
EKF design and the development of the reference subsystem. Finally, the results of
the numerical simulations are presented, done in MATLAB environment.
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2 Tumor Growth Models

2.1 The Examined Tumor Growth Model

The current study focuses on the minimal tumor growth model [22,23]. This second-
order model includes two state variables: x1(t) [mm3] for the tumor volume and
x2(t) [mg/kg] as the serum inhibitor level:

ẋ1(t) = ax1(t)−bx1(t)x2(t)
ẋ2(t) =−cx2(t)+u(t) . (1)

The control input is represented by the inhibitor intake u(t) [mg/kg/day], while the
output of the model is the x1(t) tumor volume – that is assumed to be measurable.
Three scalar parameters determine the dynamic specificities of the model: a [1/day]
is the tumor growth rate, b [kg/mg/day] is the inhibitor rate and c [1/day] is the
inhibitor clearance rate. During our investigations the following dataset has been
used: [a,b,c]> = [0.27,0.0074, ln(2)/3.9]>. These values are coming from para-
metric identification done on measurements from mice experiments related to C38
colon adenocarcinoma [22].

As a result, the model is a simple mathematical formulation of the phenomena. It
is assumed that by using only antiangiogen inhibitor (e.g. bevacizumab [24]) the
tumor volume can be maintained and decreased. In the lack of inhibitor, the x1(t)
tumor volume grows limitlessly with the dynamics determined by a. The nontrivial
equilibrium of the model can be calculated as follows:

0 = ax1,∞−bx1,∞x2,∞
0 =−cx2,∞ +u∞

, (2)

from which x1,∞ and u∞ becomes:

x2,∞ =
a
b
, (3a)

u∞ =−c
a
b

. (3b)

Hence, x2,∞ and u∞ are independent from x1,∞. It is easy to see that x2(t) = a/b is
needed to keep the tumor volume on a certain level and x2(t)> a/b should be used to
decrease the x1(t). The belonging control signals are u(t)= c ·a/b and u(t)> c ·a/b,
respectively. These requirements have to be taken into account during the controller
design.

It should be noted that a lower limit was applied against the tumor volume in all kind
of models appearing in this study: min(x1(t)) = min(x1,re f (t)) = min(x̂1(t)) = 10−3

mm3 – which is an approximation of the zero level. From the antiangiogenic TMTs
point of view this is reasonable since the goal of these kinds of therapies are usually
not to eliminate (kill) the tumor itself, but to keep its volume under a certain level
[25].
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2.2 The Reference Model

As it will be introduced later, the main goal of the control is to enforce the original
nonlinear model to behave as a given – beneficiary selected – reference model. As
x1(t) can be measured, a simple model was developed with decreasing state trajec-
tory:

x1,nom(t) = e(−ξ ·t) · x1,re f (t0) , (4)

where ξ is a scalar and t represents the time. xre f (t0) is the – known – initial value
of the reference model which can be determined by exact measurement (if x1(t0) =
x1,re f (t0)) or estimation (if x̂1(t0) = x1,re f (t0)). This reference model will be used
for trajectory determination during the controller design.

2.3 qLPV Model Development

In conformity with [26–28], the general state-space form of an LPV model is the
following:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t)
y(t) = C(p(t))x(t)+D(p(t))u(t)

S(p(t)) =
[

A(p(t)) B(p(t))
C(p(t)) D(p(t))

]
(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

) . (5)

The considered vectors and parameter dependent matrices are: x(t) ∈ Rn state vec-
tor, u(t) ∈ Rm input vector, y(t) ∈ Rk output vector, A(p(t)) ∈ Rn×n state matrix,
B(p(t)) ∈Rn×m input matrix, C(p(t)) ∈Rk×n output matrix, D(p(t)) ∈Rk×m feed-
forward matrix and S(p(t)) ∈ R(n+k)×(n+m) system matrix – the latter one is the
so-called LPV function (inasmuch any of the state variables is involved as schedul-
ing variable we call it quasi-LPV (qLPV) model and qLPV function [27]). The
matrices in (5) are dependent from the p(t) ∈ ΩR ∈ RR parameter vector that con-
sists of the so-called scheduling variables pi(t), namely, p(t) = [p1(t) . . . pR(t)]>.
The Ω = [p1,min, p1,max]× [p2,min, p2,max]× . . .× [pR,min, pR,max] ∈RR hypercube – a
subspace of the RR real vector space – is characterized by the extremes of the pi(t).
As it will be seen in the subsequent sections, two different qLPV models have been
developed and applied. In order to avoid any misunderstanding, alternative nota-
tions for the parameter vectors belonging to the qLPV model were used. In case of
Model-I q(t) = q(t) ∈ R1, while for Model-II this is p(t) ∈ R2.
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2.3.1 Model-I

We have selected the q(t) = x1(t) as scheduling variable from (1) which leads to the
following qLPV model:

ẋ(t) = AI(q(t))x(t)+BIu(t)
y(t) = CIx(t)

SI(q(t)) =
[

AI(q(t)) BI
CI DI

]
=

a −bq(t) 0
0 −c 1
1 0 0

 , (6)

where the I subscript is related to Model-I. In this case, BI = B and CI = C are
equal to each other due to the lack of specific transformation – we only pointed
out one state variable. The selected range for q(t)is{10−3, . . . ,5×105}. The lower
boundary is related to the aforementioned limitation against the tumor volume. The
upper boundary is in conformity with our previous investigations [6]. Model-I was
developed to support the EKF design and application as it will be introduced later.

2.3.2 Model-II

In order to apply state feedback kind controller without reference compensation,
a corresponding qLPV model is necessary. The difference based control oriented
qLPV models can be a solution for this issue [29]. In this case, the deviation between
the states of the model to be controlled and from the states of a given reference
system should be modeled, namely, the dynamics of the ”state error”. For the actual
problem this means: ∆x1(t)= x1(t)−x1,re f (t), ∆x2(t)= x2(t)−x2,re f (t) and ∆u(t)=
u(t)−ure f (t). By this transformation the control goal is transformed as well: instead
of reaching a certain value by the state variables the new control goal becomes
– reaching zero level by the states over time. Hence, ∆x(t) = [∆x1(t),∆x2(t)]>,
∆x(t)→ 0, t → ∞. In case of a state feedback kind controller this can be obtained,
if we use the ∆r = 02×1 reference signal and the ∆x(t) is compared to this zero
reference. The derivation of the transformed differential equations is the following:

∆ẋ1(t) = ẋ1(t)− ẋ1,re f (t) = ax1(t)−bx1(t)x2(t)
−
(
ax1,re f (t)−bx1,re f (t)x2,re f (t)

)
=

a∆x1(t)−bx1(t)x2(t)−bx1,re f (t)x2,re f (t)+0 =
a∆x1(t)−bx1(t)x2(t)−bx1,re f (t)x2,re f (t)

+bx1(t)x2,re f (t)−bx1(t)x2,re f (t) =
(a−bx2,re f (t))∆x1(t)−bx1(t)∆x2(t)

∆ẋ2(t) = ẋ2(t)− ẋ2,re f (t) =−cx2(t)+u(t)−
(
− cx2(t)+u(t)

)
=

−c∆x2(t)+∆u(t)

. (7)
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The state-space form of (7) will be the following:

∆ẋ(t) = AII(p(t))∆x(t)+BII∆u(t)
∆y(t) = CII∆x(t)

SII(p(t)) =
[

AII(p(t)) BII
CII 0

]
=

a−bp1(t) −bp2(t) 0
0 −c 1
1 0 0

 . (8)

The selected scheduling variables have been p1(t)= x2,re f (t)∈{a/b+10−3, . . . ,104}
and p2(t) = x1(t) ∈ {10−3, . . . ,5×105} at which p(t) = [p1(t), p2(t)]>. If the goal
is to keep the tumor’s level on a certain value, x2 = a/b should be reached via
u = c · a/b. Consequently, we have approached the a/b by a/b+ 10−3 in order
to increase the numerical stability, further, to keep the controllability of Model-II.
p1,max = 104 is considered the maximum value which may occur [6], while p2,min
and p2,max are the same as in case of q discussed in Model-I.

3 Control Design

3.1 TP Model Transformation and Control

By TP model transformation it was possible to convert the qLPV function into con-
vex polytopic TP model form. The resulting TP model is able to describe the initial
qLPV function and through the original nonlinear system with given accuracy. The
usability of this tool has been proven several times for highly nonlinear systems
(e.g. [20, 30–33]), what the physiological systems are in general [34]. Applying the
TP model transformation on the qLPV function of (5), the following finite element
convex polytopic TP model is obtained:(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
S(p(t)) = S

R
�
r=1

wr(pr(t)) = S ×r w(p(t))
. (9)

The core tensor S ∈ RI1×I2×...×IR×(n+k)×(n+m) consists of the Si1,i2,...,iR LTI ver-
tices. The wr(pr(t)) weighting vector function consists of the wr,ir(pr(t)) (ir =
1...IR) continuous convex weighting functions. The convexity is held, if ∀r, i, pr(t) :

wr,ir(pr(t)) ∈ [0,1] and ∀r, pr(t) :
Ir

∑
i=1

wr,ir(pr(t)) = 1.

Different kinds of convex hulls can be applied during the TP model transformation.
In this study the Minimal Volume Simplex (MVS) convex hull was considered that
allows the use of the smallest convex hull inside Ω [35]. However, the TP model
approximating the original model inside the Ω hypercube with certain accuracy de-
pends on the applied sampling resolution in Ω [36]. The practical realization of the
TP model transformation can be found in [20, 31, 36, 37].
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In case of general state-feedback control, the control signal can be generated in the
LPV case as follows [20, 27, 30, 31]:

u(t) =−G(p(t))x(t) , (10)

if the case is r(t) = 0n×1 – which is in conformity with (8) and the used Model-II. In
(10), the G(p(t))∈Rm×n is the parameter dependent controller gain. Consequently,
the polytopic convex TP controller becomes:

G(p(t)) = G
R
�
r=1

wr(pr(t)) = G ×r w(p(t)) . (11)

As a result, the G feedback tensor consisting by Gi1,i2,...,iR feedback gain matrices
belongs to the given Si1,i2,...,iR LTI systems. The wr(pr(t)) convex weighting func-
tions are the same as in (7). Further derivations, explanations and case studies can be
found in [32,35,36,38]. The TP model transformation has been successfully adopted
and applied in many technical fields thanks to the continuous improvements in the
recent times. New approaches have appeared regarding the computational improve-
ments related to TP model transformation [39, 40]. The latest research explored
that the LMI based controller design methods are sensitive to the applied convex
hulls. Hence, the selection of the applicable convex hull manipulation and the con-
vex hull candidate with respect to the LMI based controller design methods is a
critical aspect [31,41–43]. Effective convex hull manipulation techniques are intro-
duced in [35, 44, 45]. The application of the TP model based control can be found
both in physical control systems [46–59] and it was applied in case of physiological
controls as well [60–66]. Many other important control approaches regarding the
TP model transformation have been elaborated in [56, 67–74]

3.2 Linear Matrix Inequality based Optimization

In accordance with Lyapunov’s direct method, an ẋ(t) = Ax(t) system is stable
if there exists a V (x) = x>Px positive definite quadratic Lyapunov function and
the V̇ (x) = x>(A>P+PA)x is negative definite, namely, A>P+PA < 0 and P =
P> > 0 [20, 75]. The ẋ(t) = A(p(t))x(t)+B(p(t))u(t) is the system equation of a

general, polytopic system, where the [A(p(t)) B(p(t))] =
R

∑
r=1

wr(p)[Ar Br] are the

polytopic vertices and wr(p) is the belonging convex weighting function [20]. By
utilizing the V (x(t))= x>Px= x>X−1x Lyapunov function, the controller candidate
becomes [36]:

u(t) = M(p(t))X−1x(t) =
J

∑
j=1

w j(p)M jX−1x(t) . (12)

By realizing the derivative of the Lyapunov function, the following term appears,
where ”Sym” acronym means symmetric:

V̇ (x(t)) = x>(t)X−1 ·Sym
(
A(p)X+B(p)M(p)

)
·X−1x>(t) , (13)
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The symmetric term can be described by using the polytopic weighting functions as
follows:

Sym
(
A(p)X+B(p)M(p)

)
=

R

∑
i=1

R

∑
j=1

wi(p)w j(p)Sym
(
AiX+BiM j

)
< 0 . (14)

The S(p(t)) = Co(S1,S2, . . . ,SR) and G(p(t)) = Co(G1,G2, . . . ,GR) are polytopic
structures – the ”Co” acronym means convex combination. In this study, we have
applied Parallel Distributed Compensation (PDC) type control. This is possible if
the same w(p(t)) weighting functions are used (to describe the polytopic qLPV
system and the controller) citeBaranyi:2013. As a result, LMI optimization can be
used in order to design a quadratically stabilizing PDC for continuous polytopic
systems [75]:

X > 0,
−XA>i −AiX+M>i B>i +BiMi > 0,
−XA>i −AiX−XA>j −A jX+M>j B>i +BiM j +M>i B>j +B jMi ≥ 0,
i < j ≤ R s.t. ∀p(t) : wi(p(t))w j(p(t)) = 0,

(15)

where Xn×n is a positive definite and symmetric matrix, Mm×n
i is the supplementary

matrix and wi and w j are general polytopic weighting functions, respectively.

In accordance with [36, 75], the control gain is calculated as follows: Mi = GiX,
thus, Gi = MiX−1. As the level of injectable inhibitor level is limited – in conjunc-
tion with the physiological reality – an LMI constraint was applied on the control
input to avoid the unrealistically high injections from the drug.

min
X,M

µ

X≥ I,[
X M>
M µ2I

]
≥ 0

. (16)

By using (16), the ‖u(t)‖2 ≤ µ at t ≥ 0 can be guaranteed. This is true if x(0)
lies in the polytope, which needs that ‖x(t0)‖2 ≤ 1, as it is stated in [76]. We have
considered the Model-II from (8) during the controller design via LMI optimization.
Due to the constraint on p1,min, the rank(C (AII(p(t)),BII)) = n = 2 ∀p(t), namely,
the controllability property of Model-II can be kept in the Ω parameter domain.

3.3 Extended Kalman Filter Design

The use of mixed continuous/discrete EKF is quite common regard to physiological
applications, as the process to be estimated is continuous, however, the measure-
ments are performed by discrete sensors [21, 77, 78]. During the EKF design we
have applied the Model-I qLPV model. The assumed sampling time was considered
T = 1 day in accordance with the model properties of (1).

Hence, the general system description regard to the EKF becomes [21]:

ẋ(t) = f (x(t),u(t))+w(t), w(t)∼N (0,Q(t))
yk = h(xk)+vk, vk ∼N (0,Rk)

, (17)
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where f = AI(p(t))x(t)+BIu(t) is the system equation from (6) and xk = x(tk).
The w(t) represents the continuous disturbance, while vk is the discrete noise sig-
nal. The h is the discrete sensor model and is equal to h = CIxk from (6) since the
discretization does not modify the output model in this case.

Due to the properties of the original model no system disturbance was considered.
From the design point of view that means Q(t) = 0n×n. However, we assumed mod-
erate measurement noise: Rk = σ2 = 502. The applied σ variance was arbitrarily
selected – to be reasonable compared to the magnitude of the output.

The considered initial conditions have considered the followings: x̂0|0 = E
[
x(t0)

]
and P0|0 = Var

[
x(t0)

]
. The prediction phase of the mixed EKF is to solve the fol-

lowing differential equations with respect to Model-I:

˙̂x(t) = f (x̂(t),u(t),q(t))
Ṗ(t) = F(t)P(t)+P(t)F>(t)+Q(t)

, (18)

where x̂(tk−1) = x̂k−1|k−1, P(tk−1) = Pk−1|k−1 and F(t) =
∂ f
∂x

∣∣∣∣∣
x̂,u

. The obtained

results are applied in the updating phase of the EKF as follows: x̂k|k−1 = x̂(tk) and
Pk|k−1 = P(tk).

Consequently, the so-called Kalman gain is calculated as the first part of the updat-
ing phase:

Kk = Pk|k−1H>k (HkPk|k−1H>k +Rk)
−1 . (19)

here, the Hk =
∂h
∂x

∣∣∣∣∣
x̂k|k−1

. Finally, the last step of the EKF design and operation is the

correction of the prediction with respect to the measurement by using the calculated
Kalman gain:

x̂k|k = x̂k|k−1 +Kk(yk−h
(
x̂k|k−1))

Pk|k = (I−KkHk)Pk|k−1
, (20)

at which I is an identity matrix.

3.4 Design of the Reference Trajectories

In order to design the ure f (t) and the reference state trajectories xre f (t), the so-
called inverse dynamics compensation was applied (a widely used tool in robotics),
and completed with proportional-derivative (IDC-PD) compensator [8, 79, 80].

In case of the IDC-PD compensator the first step is to determine the direct con-
nection between the control signal and the controlled variable in order to map the
control effect via the model; moreover, to determine the order of the control. In the
current case, the u(t) directly affects the ẍ1(t) according to (1). Thus, it is possible
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to define a suitable description for ẍ1(t) – in our case (4) has applied. The next step
is to elaborate the second derivative of (4):

x1,nom(t) = e(−ξ ·t) · x1,re f (t0)
ẋ1,nom(t) =−ξ e(−ξ ·t) · x1,re f (t0)
ẍ1,nom(t) = (−ξ )2e(−ξ ·t) · x1,re f (t0)

. (21)

As a result, the general second order compensator can be written [80]:

F(z̈nom(t)− z̈(t))+FD(żnom(t)− ż(t))+FP(znom(t)− z(t)) , (22)

where F is the weighting parameter of the second derivative of the error function,
FD is the derivative weighting parameter of the first derivative of the error function,
FP is the proportional weighting parameter of the the error function, znom(t) is the
desired nominal state trajectory and z(t) is the state variable to be controlled.

As the idea is to characterize the reference system, (1) is used to describe it:

ẋ1,re f (t) = ax1,re f (t)−bx1,re f (t)x2,re f (t)
ẋ2,re f (t) =−cx2,re f (t)+ure f (t)

. (23)

Here the original system is considered as an exactly known and valid one. Naturally,
different reference systems can be used that are able to describe the connection
between the control signal and the variable to be controlled.

As the trajectory tracking is needed for x1,re f (t), the next step is to elaborate (22)
for the current problem:

ẍ1,re f (t) = aẋ1,re f (t)−bẋ1,re f (t)ẋ2,re f (t) =
aẋ1,re f (t)−bẋ1,re f (t)(−cx2,re f (t)+ure f (t))

(24)

It is assumed that F = 1, which is a generally used consideration in the literature
[79, 80]:

ë(t)+FDė(t)+FPe(t) = 0

(ẍ1,nom(t)− ẍ1,re f (t))+FD(ẋ1,nom(t)− ẋ1,re f (t))+FP(x1,nom(t)− x1,re f (t)) = 0(
ẍ1,nom(t)−

(
aẋ1,re f (t)−bẋ1,re f (t)(−cx2,re f (t)+ure f (t))

))
+

FD(ẋ1,nom(t)− ẋ1,re f (t))+FP(x1,nom(t)− x1,re f (t)) = 0

ure f (t) =
ẍ1,nom(t)−aẋ1,re f (t)+bẋ1,re f (t)cx2,re f (t)

−bẋ1,re f (t)
+

FD(ẋ1,nom(t)− ẋ1,re f (t))+FP(x1,nom(t)− x1,re f (t))
−bẋ1,re f (t)

.

(25)

We have considered a constraint for (22) taken from the assumption on p1,min and
the limitation of the model described in (1) as detailed above (decreasing the tumor
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volume, and keeping the controllability and numerical stability).

ure f (t) =

{
c · (a/b+10−3) if ure f (t)≤ c · (a/b+10−3)

(25) otherwise
. (26)

To sum up, by using ure f (t) from (26) as the input of (23), the x1,re f (t) has similar
behavior than x1,nom(t) from (21) – which leads to a smooth reference trajectory
to be followed by the volume of the tumor as it is enforced by the TP-LPV-LMI
controller via the control framework.

3.5 Final Control Structure

The final control structure is built up from two systems as it can be seen on Figure
1. The reference subsystem is responsible to generate the reference trajectories to
be followed by the states of the original system via the control framework. It has
to be pointed out that the ure f (t) design method and the reference model applied
in the reference subsystem can be arbitrarily selected. The main limitation is that
the ure f (t) realization should consider the constraints against the reference control
signal described above and the applied reference model has to provide a close-to-
accurate description about the connection between ure f (t) and xre f (t).

Figure 1
Structure of the control loop.

The control framework enforces that x(t) = xre f (t), t → ∞. This is the same as
∆r = x−xre f = 0. Due to the fact that x2(t) cannot be measured, it is provided by
the EKF during the operation and x̂2(t) is used for the difference generation.

– 111 –
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4 Results of the Numerical Simulation

The realization of the control framework was done in the MATLAB framework
using the forward method of Euler: dx(t0)/dt ≈ (x(t0 + T )− x(t0))/T , where T
represents the sampling time.

In accordance with the model properties we did not consider state disturbance nei-
ther at the EKF design nor at simulations. Therefore, we assumed that d ≡ 0. How-
ever, we assumed the presence of limited measurement noise with normal distribu-
tion: v(t) ∼ N (0,502) mm3. We have taken into account this specificity during
the EKF design and prepared the control framework for this action – moreover, the
measurement noise only prevailed in x̂1(t). By using the EKF, the noise appeared in
the u(t) – however, in an oppressed way.

A summary of the applied circumstances can be seen in Table 2. Since x1(t) have
been considered as measurable, we assumed that x1(t0) is available. On the other
hand, x2(t0) = 0 represents that there is no inhibitor in the serum before the begin-
ning of the therapy. The initial state variables of the EKF were selected by con-
sidering the previously mentioned facts: x1(t) is known and x2(t0) is zero. We
have applied x̂1(t0) = 30100 mm3 taking into account that there is a measurement
noise from the beginning of the simulation. However, we have applied x2,re f (t0) =
a/b+ 10−3 coming from the aforementioned fact in regards to p1,min. Figure 2.

Table 1
Important indicators of the numerical simulations.

Notation Value Description
T 1 day Sampling time

Osampling [199,199]>
Sampling resolution of the TP
model transformation in the Ω

x(t0) [30000,0]> Initial values – original system
x̂(t0) [30100,0]> Initial values – EKF
xre f (t0) [30100,36.4875]> Initial values – reference system
x(t f inal) [0.2949,43.9637]> Final values – original system
x̂(t f inal) [19.0057,43.9637]> Final values – EKF
xre f (t f inal) [0.3655,43.9547]> Final values – reference system
u(t f inal) 8.618 mg/kg/day Final value – realized control input
v(t) ∼N (0, 502) mm3 Measurement noise function

presents the variation of the state variables x(t) belonging to the original system
(upper part), while the middle and lower sub-figures represent the output y(t). The
x(t) varies in accordance with the control law. At the beginning, the controller
rapidly intervenes into the process and decreases the x1(t) under a certain level and
later it enforces the system to approach the trajectories of the reference system. The
middle figure shows the output y(t) from day 0 to day 60. It demonstrates that the
magnitude of the output is too high compared to the v(t) and the measurement noise
cannot be recognized on the signal. On the other hand, the lower figure presents the
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output from day 60 to day 200 (end of the therapy). The effect of the noise is clearly
visible in this case due to the comparable magnitudes of y(t) and v(t).
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Figure 2
Trajectories of the states and the output of the original nonlinear system.
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Figure 3
Trajectories of the state variables.
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The EKF approached the original model with high precision (Figure 3). The aim of
the control, namely, x1(t f inal)< 1 mm3 has been satisfied since, x1(t f inal) = 0.2949
mm3.

Figure 4. shows the discrepancies between the states of the models. The initial state
error between the original model and the EKF is x(t0)− x̂(t0) = [−100,0]>. As we
mentioned, the measurement noise only reflects in the first state – in the output –
of the EKF. The error rate can be measured by applying the two norm metric on
the distance: ‖X1− X̂1‖2 = 353.4982 mm3, X1 = [x1(t0),x1(t1), . . . ,x1(t f inal)] and
X̂1 = [x̂1(t0), x̂1(t1), . . . , x̂1(t f inal)]. The obtained state error is small compared to oc-
curred magnitudes of the tumor volumes. The EKF behaves as an optimal estimator
from the second state point’s of view since system disturbances has not been taken
into consideration and sensor noise only reflects in the first state: ‖X2− X̂2‖2 = 0
mg/kg, X2 = [x2(t0),x2(t1), . . . ,x2(t f inal)] and X̂2 = [x̂2(t0), x̂2(t1), . . . , x̂2(t f inal)].

Both the original model and the EKF have approached the states of the reference
model with acceptable error rate within acceptable time horizon of the therapy.
More precisely, the difference between x1(t), x̂1(t) and x1,re f (t) was inside a range
of 100 mm3 after day 77 and continuously decreased until day 200. The deviation
between x2(t), x̂2(t) and x2,re f (t) was inside a range of 1 mg/kg after day 33 and
continuously decreased until day 200.

Due to the small state error between the original and EKF states, the xre f (t)−
x̂(t) characterizes the xre f (t)− x(t) as well. Therefore, we only presented here
the xre f (t)− x̂(t). It is clearly visible that x̂(t) appropriately approaches xre f (t)
over time. The state errors converge to zero, although the xre f (t f inal)− x̂(t f inal) =
[−18.6403,−0.0096]> due to the applied disturbance.
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Deviations between the states of the models.

– 114 –



Acta Polytechnica Hungarica Vol. 15, No. 3, 2018

The comparison of the control signals can be seen in Figure 5. The upper subfigure
belongs to the ure f (t) and it presents that the reference control signal varies accord-
ingly based on the above defined constraints. What can be pointed out is the flat
region from 2 – 5 days that is the consequence of the constraint on x2,re f (t) com-
ing from the already described model property: if we want to decrease the tumor
volume, we need that x2,re f (t)> a/b which requires that ure f (t)> c ·a/b.

There is the higher peak in u(t) at the beginning which decreases to zero. This
immediate action is a consequence of the applied state-feedback kind control due to
the initial state discrepancy between x2,re f (t0) and x̂2(t0). The ure f (t)− u(t) < 0.4
mg/kg/h, t > 20. Small oscillations can be seen in u(t) due to the effect of the EKF.

The calculation of the totally injected inhibitor is quite easy based on Euler’s for-

ward method. The IDC-PD compensator has calculated with a
120

∑
t=0

ure f (t) · T =

1567.7 mg/kg, beside, the
120

∑
t=0

u(t) · T = 1600.7 mg/kg generated by the TP-LPV-

LMI controller over the simulated time horizon, while
120

∑
t=0

(
|ure f (t)−u(t)|

)
= 163.9821

mg/kg was the obtained difference within the time frame of the therapy.
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The reference and realized control signals.

Conclusions
The study details our latest achievements in regards to the control of tumor growth
through antiangiogen therapy. Two qLPV models have been developed based on the
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Levente Kovács et al. Tensor Product Model Transformation based Parallel Distributed Control of Tumor Growth

original nonlinear model. The Model-I has been applied during the EKF design and
operation. The Model-II was used in order to design the difference based TP-LPV-
LMI controller. A reference model has been also developed to describe the behavior
of the first state – this was used during the reference trajectory generation.

The controller design was a complex procedure. First, we have applied TP model
transformation on the Model-II. After, the control goals have been formalized by
using LMIs. The procedure resulted the convex weighting functions and the con-
troller vertices which built up the TP-LPV-LMI controller. We have developed a
reference subsystem, as well based on IDC-PD kind compensator with the purpose
of generation of the reference state variables and reference control input.

The developed control framework was tested on numerical simulations scenarios.
We have found that the system performed well and all of the control goals have
been satisfied. Not just the tumor volume was decreased under a certain level, but
the original nonlinear model was enforced to behave as the reference model as well.

In the future we plan to analyze the performance of the developed solutions in case
of state disturbances. Moreover, we will investigate other reference signal possibil-
ities as well.
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[26] O. Sename, P. Gáspár, and J. Bokor. Robust control and linear parameter
varying approaches, application to vehicle dynamics. volume 437 of Lecture
Notes in Control and Information Sciences. Springer-Verlag, Berlin, 2013.

[27] A.P. White, G. Zhu, and J. Choi. Linear Parameter Varying Control for Engi-
neering Applicaitons. Springer, London, 1st edition, 2013.

[28] C. Briat. Linear parameter-varying and time-delay systems. Analysis, Obser-
vation, Filtering & Control, 3, 2014.

[29] Gy. Eigner. Closed-Loop Control of Physiological Systems. PhD thesis, Ap-
plied Informatics and Applied Mathemathics Doctoral School, Óbuda Univer-
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Notations and Abbreviations

Table 2
General Phrases.

Abbreviation Meaning
LTI Linear Time Invariant
LTV Linear Time Variant
LPV Linear Parameter Varying
qLPV quasi LPV
TP model Tensor Product model
LMI Linear Matrix Inequality
MVS Minimal Volume Simplex
SVD Singular Value Decomposition
HOSVD Higher-Order SVD
EKF Extended Kalman Filter
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Table 3
Mathematical terms.

Notation Meaning
a,b, ... scalars
a,b, . . . vector
A,B, . . . matrices
ai,bi, . . . ith row vector of A,B, . . . matrices
ai, j,bi, j, . . . jth elements of the ai,bi, . . . row vectors
A ,B, . . . tensors

S
N
�

n=1
Wn multiple tensor products,

e.g. S ×1 W1 . . .×N WN
R,C, . . . mathematical sets
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