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a b s t r a c t 

Due to increasing prevalence of diabetes as well as increasing management costs, the artificial control 

of diabetes is a highly important task. Model-based design allows finding more effective solutions for 

the individual treatment of diabetic patients, but robustness is an important property that can be hardly 

guaranteed by the already developed individualized control algorithms. Modern robust control (known as 

H ∞ 

) theory represents an efficient possibility to solve robustness requirements in a general way based 

on exact mathematical formulation (Linear Matrix Inequalities) combined with knowledge-based exper- 

tise (through real patient data, uncertainty weighting functions can be formulated). When the difference 

between the nominal model and real patient dynamics is bounded and known, this approach becomes 

highly reliable. However, this requirement poses the greatest limitation since a model always represents 

an approximation of the complex physiological process. Consequently, the uncertainty formulation of the 

neglected dynamics becomes crucial as robust methods are very sensitive to them. In order to formulate 

them, large amount of real patient data and medical expertise is needed to cover the different life-style 

scenarios (especially the worst-case ones) that define the control space by the accumulated knowledge. 

On the other hand, H ∞ 

–based methods represent linear control techniques; hence their direct nonlinear 

application is important for a physiological process. The paper presents a roadmap of using modern ro- 

bust control in diabetes focusing on nonlinear model-based interpretation: how the weighting functions 

should be selected based on (knowledge-based) medical expertise, the direct nonlinear applicability of 

the method taking additional advantage of the recently emerged Linear Parameter Varying (LPV) method- 

ology, robust performance investigation and switching control possibilities. During the control character- 

istics discussion, the trade-off between the medical knowledge-based empiricism and exact control engi- 

neering formulation is introduced through different examples computed under MATLAB on real diabetic 

patient data. 

© 2017 The Author. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

.1. Diabetes modeling and control. Artificial pancreas 

Glucose is the primary source of energy of the human body.

he blood glucose level is kept in a narrow range (3.9–6 mmol/L or

0–110 mg/dL) by the complex endocrine system and insulin plays

 key role in this process. When insulin secretion or insulin action

s impaired, diabetes is diagnosed [1] . 

Diabetes is named by the World Health Organization (WHO) as

he “disease of the future”, predicting that the number of diabetic

atients will be doubled from 20 0 0 to 2030 [2] . Recent statistics
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pdated the forecast for the 2010–2030 period, but still a signif-

cant increase of the overall diabetes population is predicted [3] .

onsequently, the treatment of diabetes is of paramount impor-

ance. From engineering point of view, the treatment of diabetes

ellitus can be represented as a control problem to automatically

egulate the glucose-insulin balance. The problem is known as the

rtificial Pancreas (AP) [4] , investigated for type 1 diabetes melli-

us (T1DM), an autoimmune type of diabetes in which the pancre-

tic β-cells are completely destroyed (and, as a result, the treat-

ent requires glucose concentration measurements and subcuta-

eous insulin injections). The AP has three main components [5] : 

• Continuous Glucose Monitors (CGM) for the subcutaneous mea-

surement (with 5 minutes sampling time) of glucose concentra-

tion; 
der the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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• Insulin pumps for the subcutaneous delivery of insulin; 
• Control algorithm that - based on CGM measurements - is able

to determine the necessary insulin dosage to be injected by the

insulin pumps. 

As sophisticated CGM and insulin pumps are available on the

market, the realization of an AP relies on control algorithm aspects

[6–7] . 

The control methods proposed in the literature are mostly

model-based [8] ; hence, an adequate mathematical model of the

human metabolism was needed. Different models appeared over

the last decades, starting with the oversimplified minimal model

[9] ; however, nowadays more complex models are considered for

describing the different compartments (at different levels of the

human body), the nonlinear physiological relation of the glucose-

insulin behavior, but taking the different time delays into ac-

count or including CGM models and subcutaneous insulin deliv-

ery models as well [10–12] . Although different control algorithms

have been proposed in the literature [4–8] , only four main con-

trol strategies reached AP prototype systems: Proportional Inte-

gral Derivative (PID) based controllers [13] , Model Predictive Con-

trol (MPC) [14–17] , run-to-run control [18] , and Fuzzy Logic based

controls [19] . The majority of the mentioned algorithms are able

to achieve nocturnal glucose regulation in an individualized man-

ner. MPC focuses on glucose trend estimations by minimizing the

difference between the predicted blood glucose level estimated in

a given time horizon (due to meal intakes this is usually in the

60–240 minutes interval) and the ideal glucose concentration. The

PID control idea relies on continuously adjusting the insulin in-

jection rate based on the main components of the classical con-

trol theory: proportional (based on real and ideal glucose level dif-

ference), integral (based on glucose trajectory area) and derivative

(based on glucose rate change) components. The fuzzy logic based

control creates a rule-based methodology. Although all the above

mentioned solutions require a considerable amount of expertise

converted into controller design requirements, robustness remains

a challenge in all the mentioned cases that should be separately

treated, discussed and implemented from the individualized con-

trol idea. Most importantly, the worst cases should be detected and

handled; these can be basically translated in avoiding the hypo-

glycemic episodes in case of diabetic patients. This requires a large

amount of measurement data not only to define the boundaries of

the control space, but to supplement the model inaccuracies which

are consequences of the unhandled dynamics and neglected uncer-

tainties. Consequently, the robust control problem can be defined

as a mathematical problem largely depending on the accumulated

expertise gained from the measurements, i.e. a knowledge-based

control system. 

1.2. Modern robust control for T1DM 

Although the available T1DM models are all complex nonlin-

ear systems with slowly changing patient parameters over time,

the controller has to ensure safety and stability under all circum-

stances. This means that robustness should be guaranteed. More-

over, there are various constraints and specifications the controller

must address complicating the design even further. As the above

mentioned control algorithms give individualized solutions leav-

ing robustness a challenge, modern robust control methods seek to

provide safety generalized usability with worst case situations han-

dling guarantees. However, increasing robustness will limit track-

ing properties; hence a robust controller would be inferior to other

model-based methods on the nominal model [20] . 

For this reason, modern robust control, e.g. H ∞ 

robust controller

design can be most effectively used when working with uncertain

linear systems [20] with increasing tendency in medical applica-
ions as well [21] . In particular, the applicability of this methodol-

gy in the T1DM problem has been investigated in [22–24] and the

ethod’s advantages have been highlighted in comparison with

ther control design methods [36–38] . However, a generally ap-

licable method does not exist for nonlinear models, where even

roving stability can be a difficult task, and the problem gets more

omplicated under parameter inaccuracies, uncertainties and un-

odeled dynamics. 

The novelty of the current paper lies on a roadmap of the pos-

ibilities and difficulties implementing an H ∞ 

robust controller for

1DM. For this, one of the reference models of AP researches is

sed [14] , described in Section 2 . Section 3 discusses the con-

roller designing aspects. Using the linear parameter varying (LPV)

ethodology, the nonlinear model is transformed into a linear

ne without approximation (linearization). Hence, the linear H ∞ 

ontrol method could be applied on the original nonlinear T1DM

odel itself. Controllers with different structures and properties

re implemented to show robust structure construction particu-

arities, including the selection of weighting functions, robust per-

ormance investigation or switching control possibilities, consider-

tions that make the problem a knowledge-based controller design

ne. The efficiency of the obtained controllers is tested in Section

 using one of the reference in-silico simulators of the literature,

he University of Cambridge SimEdu simulator version 2.2 [25] ,

oncluding the results in Section 5 . 

. The investigated model 

The 11th order model introduced by [10] at Cambridge, UK, rep-

esents one of the mostly used T1DM model of the literature for

rtificial pancreas researches. Later it was updated by [25] leading

o University of Cambridge SimEdu simulator used in the current

esearch as well. The model can be described by the following dif-

erential equations: 

˙ C (t) = −k a, int C(t) + 

k a, int 

V G 

Q 1 (t) 

˙ 
 1 (t) = −

(
F s 01 

Q 1 (t) + V G 

+ x 1 (t) 

)
Q 1 (t) + k 12 Q 2 (t) 

−R cl max { 0 , Q 1 (t) − R th V G } 
+ EG P 0 max { 0 , 1 − x 3 (t) } + U G (t) − P hy (t) 

˙ 
 2 (t) = x 1 (t) Q 1 (t) − ( k 12 + x 2 (t) ) Q 2 (t) 

˙ x 1 (t) = −k b1 x 1 (t) + S IT k b1 I(t) 

˙ x 2 (t) = −k b2 x 2 (t) + S ID k b2 I(t) 

˙ x 3 (t) = −k b3 x 3 (t) + S IE k b3 I(t) 

˙ I (t) = 

k a 

V I 

S 2 (t) − k e I(t) 

˙ S 2 (t) = −k a S 2 (t) + k a S 1 (t) 

˙ S 1 (t) = −k a S 1 (t) + u (t) (1)

here the state variables are: 

• C ( t ) the glucose concentration in the subcutaneous tissue

[mmol/L]; 
• Q 1 ( t ) and Q 2 ( t ) the masses of glucose in accessible and non-

accessible compartments [mmol]; 
• x 1 ( t ), x 2 ( t ) and x 3 ( t ) remote effect of insulin on glucose distribu-

tion, disposal and endogenous glucose production respectively

[1/min]; 
• I ( t ) insulin concentration in plasma [mU/L]; 
• S 1 ( t ) and S 2 ( t ) insulin masses in the accessible and non-

accessible compartments [mU]. 

The u ( t ) injected insulin flow of rapid-acting insulin [mU/min]

s the input of the system, while the U ( t ) glucose flux from
G 
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he gut [mmol/min], and the Phy ( t ) effect of physical activity

mmol/min] are considered as disturbances. 

The parameters of the model are as follows: 

• k a,int transfer rate constant between the plasma and the subcu-

taneous compartment [1/min]; 
• V G distribution volume of glucose in the accessible compart-

ment [L]; 
• F s 01 parameter of the total non-insulin dependent glucose flux

[mmol/min]; 
• k 12 transfer rate constant from the non-accessible to the acces-

sible compartment [1/min]; 
• R cl renal clearance constant [1/min]; 
• R th glucose threshold [mmol/L]; 
• EGP 0 endogenous glucose production extrapolated to the zero

insulin concentration [mmol/min]; 
• k b1 and k b2 deactivation rate constants [L/(mU · min 

2 )], k b3 de-

activation rate constant for the insulin effect on endogenous

glucose production [L/(mU · min )]; 
• S IT , S ID and S IE insulin sensitivities for transport, distribu-

tion and endogenous glucose production [L/(mU · min )] and

[L/(mU)]; 
• k a insulin absorption rate constant [1/min]; 
• V I volume of distribution of rapid-acting insulin [L]; 
• k e fractional elimination rate from plasma [1/min]. 

Out of these parameters, the following ones are time-varying:

 a,int , F 
s 

01 
, k 12 , EGP 0 , k b 1 , k b 2 , k b 3 , S IT , S ID , S IE , k a and k e [14, 25] . 

The model ( 1 ) could be extended with realistic sensor dynam-

cs; however this will not be addressed in this paper for reasons

f simplicity. CGM will be modeled with additive white noise. The

eason being is that the CGM signal has significant random walk;

herefore, an advanced filter or estimator is needed to provide ac-

urate readings to the controller. This is not the scope of this paper,

ut effective methods can be found in [26, 39] . 

Six parameter sets representing six different virtual patients

ere available by the SimEdu in-silico simulator version 2.2, and

as been used in the paper for controller design and simulation.

imEdu represents one of the reference in-silico simulators in the

rtificial pancreas (AP) researches developed in accordance with

DA regulations [25] . 

. Controller design 

The H ∞ 

control methodology has been established for linear

ystems [20] . As T1DM models are nonlinear, an important issue is

he direct non-linearized applicability in the control scheme taking

he parameter inaccuracies into consideration as well. 

.1. LPV modeling 

There are several ways to handle the nonlinearity of the model.

he classical nonlinear methodology focuses on a differential geo-

etric approach [27] , while a more recent methodology is repre-

ented by linear parameter varying (LPV) systems [28–29] . 

LPV is an acceptable compromise between the model’s com-

lexity and the developed control algorithm, as LPV systems can be

een as an extension of linear time invariant (LTI) systems, where

he relations are considered to be linear, but model parameters are

ssumed to be functions of a time-varying signal [29] : 

˙ x (t) = A (ρ(t)) x (t) + B (ρ(t)) u (t) 

 (t) = C(ρ(t)) x (t) + D (ρ(t)) u (t) (2) 

here: 

 (ρ(t)) = 

m ∏ 

i =1 

ρi (t) A i B (ρ(t)) = 

m ∏ 

i =1 

ρi (t) B i 
(ρ(t)) = 

m ∏ 

i =1 

ρi (t) C i D (ρ(t)) = 

m ∏ 

i =1 

ρi (t) D i (3) 

It can be observed that ( 2 ) is an LTI system in the ρ( t ) schedul-

ng parameters; hence nonlinearity can be hidden and the A, B, C,

 matrices in ( 3 ) should be treated correspondingly during control

esign [29] . 

One approach could be the linearization around stable work-

ng points in the state-space, then creating a polytopic region of

ossible linear models, and using this information to determine

he nominal model and uncertainty weighting functions [23] . The

urrent paper can be considered as a continuation of the article

resented in [23] , in a more rigorous and complex manner. As in

23] only a given scenario was analyzed to present the capability

f LPV-modeling for T1DM control (i.e. for a given parameter set

 robust controller has been designed), here we give a complex

oadmap of the nonlinear robust control design for T1DM, analyz-

ng different parameter possibilities and highlighting the sensitivity

f uncertainty weighting function selection. Based on the gained

nowledge from real patient data collected from insulin pump cen-

ers (clinics and hospitals affiliated to the Hungarian Diabetes As-

ociation and considered the only legal entities in Hungary to work

ith CGMS and insulin pumps) we could formulate the weighting

unctions of the neglected uncertainties of the model. 

Beyond the polytopic representation, the other most widely

sed LPV-modeling approach exploits the affine representation

similar to quasi-Affine LPV) of the nonlinear model [30] . Given a

ounded vector ρ( t ) with bounded time-derivatives, the model can

e treated as a linear model with parameter inaccuracies. For the

odel ( 1 ) all candidates ρ( t ) (named as scheduling parameters)

re given in ( 4 ), being bounded ( 5-6 ) with their time-derivatives

s well [37] . Numerical values were determined analytically and

alidated with Monte-Carlo simulations [37] . 

(t) = 

(
Q 1 (t) 

F s 01 

Q 1 (t)+ V G Q 2 (t) x 1 (t) x 2 (t) 

)T 

(4) 

here: 

min = 

(
Q 1 , min 

F s 01 −�F s 01 

Q 1 , max + V G Q 2 , min x 1 , min x 2 , min 

)T 

(5) 

max = 

(
Q 1 , max 

F s 01 +�F s 01 

Q 1 , min + V G Q 2 , max x 1 , max x 2 , max 

)T 

(6) 

The existence of a qALPV model would make LPV-based control

ossible. From the proposed members of ρ( t ) parameters however

one can be measured; therefore, an LPV-based controller cannot

e implemented directly. Instead, the bounds should be used as

arameter inaccuracies of a linear model leading to two possible

pproaches: 

• Define an uncertain model directly; 
• Create input and output multiplicative uncertainties. 

For the current T1DM model the latter option was chosen eas-

ng the extension of unstructured uncertainties. Furthermore, the

ecision was influenced by the twelve time varying parameters of

he model ( k a,int , F 
s 

01 
, k 12 , EGP 0 , k b 1 , k b 2 , k b 3 , S IT , S ID , S IE , k a and k e

see Section 2 ). 

However, the choice of parameters for the qALPV-like descrip-

ion is not a trivial task. Finding the correct model can greatly re-

uce the burden on the controller, while choosing a wrong config-

ration could lead us to an overly complicated problem, where the

erformance of the controller could be similar to the performance

f a classical control strategy. 

Introducing μi ∈ [0, 1] ( i = 1 , . . . , 4 ) parameters to investi-

ate different configurations, while δi ∈ [0, 1] represent parame-

er inaccuracies, including the changing of scheduling parameter
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Fig. 1. Frequency characteristic of the weighting function W in (s) . 
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candidates, the state-space model of the system is described in

Appendix A in which � reflects the variation of the parameter un-

certainties (a variation of 5% was considered in each case as sug-

gested in [25] ). 

After evaluating all possible scenarios the configuration ( μ1 , μ2 ,

μ3 , μ4 ) = (0, 0, 0, 0) was chosen. This means that state variables

x 1 ( t ) and x 2 ( t ), the remote effect of insulin on glucose distribution

and disposal, are not considered part of ρ( t ), while the switching

effect of the endogenous glucose production ( x 3 ( t )) is considered

as disturbance only. The reasons behind this choice are as follows:

• Although all of Q 1 ( t ), Q 2 ( t ), x 1 ( t ) and x 2 ( t ) states of the model

( 1 ) are bounded, the bounds of Q 1 ( t ) and Q 2 ( t ) only depend

on the performance of the controller. Smaller the glucose level

region the controller can keep, the smaller the parameter in-

accuracy of the model. On the other hand x 1 ( t ) and x 2 ( t ) are

bounded by the amount of injected insulin flow. Higher the

maximal value of the possibly administered insulin, the faster

the controller disturbance compensation. Moreover, to avoid

hypoglycemia, zero insulin flow is a possible scenario as well.

For better control properties, wider limits for the input are

needed, but at the same time the effect of parameter inaccu-

racies will also grow; 
• It can be easily demonstrated that μ1 = 0 will slow the dynam-

ics of Q 1 ( t ) in the nominal model, but at the same time the ef-

fect of the input will be the largest. On the other hand, μ1 = 1

would mean that the insulin concentration has no direct effect

on the plasma glucose levels; 
• The reason behind choosing μ3 = 0 and the effects of insulin on

Q 2 ( t ) is the same with μ1 and Q 1 ( t ) discussed previously; 
• In case of μ2 , choosing Q 1 ( t ) as parameter over x 1 ( t ) will leave

the insulin dynamics having an opposite effect on Q 2 ( t ) (the

rise in I ( t ) would increase the value of Q 2 (t)). Choosing a non-

zero value for μ2 however will lead to complex conjugate pole

pairs in the nominal model, with possibly instable dynamics

depending on the actual value of the ρ( t ) vector; 
• Choosing μ4 = 1 would definitely raise the effect of the injected

insulin on the controller, but the inaccuracy of the model would

also increase. Moreover, the controller has no information on

the fact that the state variable x 3 ( t ) and the endogenous glu-

cose production is connected. 

3.2. Weighting functions 

Weighting functions and unstructured uncertainty blocks rep-

resent effective tools to incorporate our a priori knowledge of

the controlled process into the model that is used for controller

design. Unstructured uncertainty blocks represent linear systems

with bounded norm ( H ∞ 

norm ≤ 1 in this particular case) and un-

known but stable and minimal phase dynamics [20] . Furthermore,

various constraints can be represented with weighting functions,

such as control signal limitations, tracking performance and dis-

turbance rejection. Once a model has been constructed in such

manner, computing the parameters of the corresponding controller

becomes a convex optimization problem. This is definitely one of

the greatest advantages of modern robust controllers and it re-

quires a deep understanding of the process dynamics (in our case

the T1DM) obtained mostly from measurements. In our case, the

gained knowledge and hence, the understanding of the diabetic pa-

tient behavior came from 83 patients’ more than 200 week contin-

uous glucose datasets analyzed throughout the years and collected

from the insulin pump centers of the Hungarian Artificial Pancreas

Working Group created in collaboration with the Hungarian Dia-

betes Association [40–41] . 

For classical control methods (e.g. PID) and nowadays fre-

quently used modern MPC method, synthesis is relatively easy for
he nominal model. However, when the above mentioned con-

trains, uncertainties and disturbances are present satisfying all of

hem is impossible (e.g. PID controller) or requires solving non-

inear optimization tasks with demanding numerical methods (e.g.

PC). A working controller can be implemented nevertheless, but

afety cannot be guaranteed. 

Using the parameter inaccuracy information and the LPV-model

onstructed above, uncertainty weighting functions can be deter-

ined. There are altogether four of these functions: W in (s), W 1 (2),

 2 (s) and W out (s) . The transfer functions were determined based

n gridding technique and upper approximation of the frequency

esponses obtained, similar to [31] . The results are based on the

ix patients’ simulations of SimEdu in-silico simulator [25] . 

W in (s) represents the uncertainty of the dynamics of the sub-

ystem (denoted as G 1 (s) later) of ( 1 ) consisting of the state vari-

bles S 1 (t), S 2 (t) and I(t) . Its transfer function is presented in ( 7 ),

hile the amplitude spectrum is displayed in Fig. 1 . At smaller fre-

uencies, the uncertainty remains 5.5%, while it rises up to 22% for

requencies larger than 0.1 rad/min [31] . 

 in (s ) = 0 . 055 

101 . 01 s + 1 

25 . 31 s + 1 

(7)

W 1 (s), W 2 (s) represent the uncertainty of x 1 ( t ) Q 1 ( t ) and

 2 ( t ) Q 2 ( t ) output of the subsystem containing state variables x 1 (t),

 2 (t) and x 3 (t) (referred to as G 2 (s) ). This includes the effect of

he changing parameters and the change of the selected schedul-

ng parameters. The chosen transfer functions of these weights are

resented in ( 8 ), while their amplitude spectrum is displayed in

ig. 2 and Fig. 3 . All values were determined by the same grid-

ing technique [31] , except that here both model parameter and

cheduling parameter changes were considered. W 2 (s) is signifi-

antly larger than W 1 (s) since x 2 (t) varies in wider range. Further-

ore, the parameters of W 2 (s) are different for each of the six pa-

ient of SimEdu [25] , while one common W 1 (s) is used. K, T and τ
re parameters . 

 1 (s ) = 0 . 536 

714 s + 1 

624 s + 1 

 2 (s ) = K 

τ s + 1 

T s + 1 

(8)

Finally W out (s) was chosen as presented in ( 9 ) and Fig. 4 . In

he subsystem ( G 1 (s) ) consisting of state variables C(t), Q 1 (t) and

 (t) there are various uncertain parameters, a scheduling variable,
2 



L. Kovács / Knowledge-Based Systems 122 (2017) 199–213 203 

10
−4

10
−3

10
−2

10
−1

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

Frequency [rad/min]

A
m

pl
itu

de

W
1
(s)

Fig. 2. Frequency characteristic of the weighting function W 1 (s) . 

10
−2

10
−1

10
0

10
1

0.75

0.8

0.85

0.9

0.95

1

1.05

Frequency [rad/min]

A
m

pl
itu

de

W
2
(s)

 

 
Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6

Fig. 3. Frequency characteristic of the weighting functions of W 2 (s) . 

10
−3

10
−2

10
−1

10
0

10
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [rad/min]

A
m

pl
itu

de

W
out

(s)

Fig. 4. Frequency characteristic of the weighting function W out (s) . 

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Frequency [rad/min]

A
m

pl
itu

de

W
u
(s)

Fig. 5. Frequency characteristic of the weighting function W u (s) . 

a  

R  

s  

t  

g  

t  

T  

t  

p  

W  

 

t  

m  

m  

l

W

w  

[  

r

 

c  

n  

0

 

a  

c  

F  

v

 

w  

k  

i  

v  

t  

a  

t  

r  

u  

o  
s well as a kind of switching effect because of renal clearance:

 cl max { 0 , Q 1 (t) − R thr V G } . The other switching component repre-

enting endogenous glucose production ( EG P 0 max { 0 , 1 − x 3 (t) } ) is
reated as noise in accordance with what was presented earlier as

ained knowledge about the nominal model. On higher frequencies

he amplitude goes up to one, which represents 100% uncertainty.

his represents the assumption that we have no reliable informa-

ion on the behavior of the system on frequencies close to the sam-

ling frequency; furthermore there might be neglected dynamics.

 out (s ) = 0 . 15 

100 s + 1 

1 5 s + 1 

(9)

The disturbances also require weighting functions. W m 

(s) for

he glucose flux from the gut is created using the meal absorption

odel presented in [25] . Although it is nonlinear in the original

odel, a worst case representation is possible with a second order

inear system: 

 m 

(s ) = 

U G,ceil 

( t max s + 1 ) 
2 

(10) 

here U G,ceil is the maximum glucose flux from the gut

mmol/kg/min], while t max is the time-to-maximum appearance

ate of glucose in the accessible compartment [min]. 

The effect of physical activity does not need an additional

omponent aside from a corresponding input. The measurement

oise has a constant weighting function: W n = 0.5 representing

.5 mmol/L standard deviation of the measurement noise [37] . 

The constraints on the control signal can also be captured with

 weight. It can be either constant with value W u = u −1 
max , or we

an also restrict fast changes with a transfer function presented in

ig. 5 . Limiting the control signal on higher frequencies can pre-

ent rapid oscillations. 

Finally, we have to define the desired tracking performance

ith a weighting function denoted as W p (s) . Using our gained

nowledge in the field [37, 42] , our choice in this particular case

s presented by a first order system given in ( 11 ). The numerical

alues are different for every controller, but the structure remains

he same in a sense that the requirements are different for lower

nd higher frequencies. The former drives the glucose concentra-

ion towards the normoglycemic range, while the latter gives more

elaxed bounds on rapid changes. This is in accordance with the

ncertainty of the model in high-frequency regions. Furthermore,

scillations and hypoglycemic episodes can be reduced at the cost
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Table 1 

Parameters of performance weighting functions. 

Controller T τ K 

Regular (low γ ) 300 9 .6774 0 .031 

Regular (high γ ) 350 7 .7778 0 .045 

Integral (low γ ) 400 40 0 .01 

Integral 300 30 0 .05 

2DoF (low γ ) 400 16 0 .025 

2DoF (high γ ) 300 30 0 .05 

Integral 2DoF (low γ ) 400 40 0 .01 

Integral 2DoF (high γ ) 300 30 0 .05 
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Fig. 6. Example for complete weighting functions of W int (s) and W p (s) . 
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Fig. 7. Frequency characteristic of the weighting functions of W track (s) and W d (s) . 
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of longer hyperglycemic events. 

 p (s ) = K 

τ s + 1 

T s + 1 

(11)

The numerical values for each controller are summarized in

Table 1 . Note that there are two versions for each controller. The

reasons will be explained later in Section 3.3 . 

As an example, choosing 0.5 for low frequencies means that the

residual tracking error should be lower than 2 mmol/L even in the

most extreme case. 

In classical control theory PID control or controllers containing

an integrator can effectively eliminate residual error, which is a

useful property when dealing with uncertain systems. However, in

H ∞ 

, control performance weighting functions cannot contain inte-

grator, for it has infinitely large H ∞ 

norm, but we can make it part

of the model in a different manner (as shown later in Fig. 10 and

Fig. 12 ). In this case, the additional W int (s) component could be de-

fined with a transfer function given in ( 12 ), determined on the re-

sponses of the SimEdu virtual simulator [25] . The output of W int (s)

must be made available for measurement. The series of this ele-

ment with the performance weight function W p (s) can result in an

amplitude spectrum similar to the illustration presented in Fig. 6 .

 int (s ) = 

10 0 0 s + 1 

10 0 0 s 
(12)

Furthermore, a two degree of freedom (2DoF) control structure

is also possible. In order to achieve this, we require a reference

system W track (s) . Instead of following a reference signal directly,

the aim was to match the behavior of the controlled system to

the reference system. In case of a classical 2DoF control the con-

troller consists of a feed-forward and feedback component, where
he former acts as a filter of the reference signal. Since the refer-

nce signal in this case is constant, the feed-forward component is

ot needed. 

However, we do require an adequate estimation of the distur-

ances affecting the model, for which the reference model re-

ponds with desired behavior. Hence, the controller in the 2DoF

odel will provide an estimation of the output of W m 

(s) with

stimation error constrained by weighting function W d (s) . Only the

eal disturbance was considered, since this has the most signifi-

ant impact on the blood glucose levels among the processes that

lways elevate the glucose concentration. Endogenous glucose pro-

uction is assumed to change rapidly because of the switching ef-

ect; hence, it is difficult to observe in these settings. The trans-

er functions of W track (s) and W d (s) are presented in ( 13 ) and dis-

layed on Fig. 7 and determined on simulations of SimEdu’s re-

ponses (based on all the responses an upperbound function was

etermined empirically). Note that the output of W m 

(s) is divided

y U G before entering W d (s) . 

 track (s ) = 

76500 s 

30 0 0 s 2 + 310 s + 1 

W d (s ) = 0 . 75 

2 . 86 s + 1 

215 s + 1 

(13)

.3. Controller structure 

The controller structures for regular controller, integral control,

DoF control and 2DoF with integrator are presented on Fig. 8 in-

luding all the uncertainty weighting functions determined above.

he components with solid line are common for all types and

he weighting functions described above. In case of 2DoF control,

he elements drawn with dashed line should be also taking into

ccount, including the tracking performance weighting function

 p (s) , the W d (s) for output estimation of W m 

(s) and the reference

ystem W track (s) . Dotted line marks the parts that belong to inte-

ral control ( W int (s) and a separate tracking performance function

 p (s) ), as opposed to the semi-dotted elements that are present

nly in the absence of the integrator. 

The components W in (s), W 1 (s), W 2 (s), W out (s), W m 

(s), W n (s),

 u (s), W p (s), W int (s), W d (s) and W track (s) were introduced previ-

usly. G 1 (s), G 2 (s) and G 3 (s) stand for the subsystems described

hen the uncertainty weighting functions were presented. The

ontroller provides the injected insulin control signal u(t) and es-

imated disturbance ˆ d (t) in the 2DoF case. The disturbances are
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Fig. 8. Considered structures of the H ∞ controllers. 
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he ingested meal d(t) , effect of physical activity phy (t), sensor

oise n(t) , and the disturbance resulting from endogenous glucose

roduction EGP(t). z e ( t ) and z u ( t ) are outputs of the performance

eighting functions, while z d1 ( t ) and z d2 ( t ) keep the disturbance

stimation in check. y ( t ) is the measured output of the system. 

Note that the reference signal cannot be found in Fig. 8 . The

eason is that the reference signal is constant, and no constant

nput of the model has significance when designing a linear dy-

amic system. The offset caused by the reference signal, or other

lements of the model is compensated by the integrator if present,

therwise an additional constant input is needed. 

An additional safety feature has been included in all controllers.

henever the measured blood glucose concentration reaches a

ertain lower limit (4.5 mmol/L), the control signal will be set as

ero. This is a frequently used method in recent insulin pumps

voiding or reducing certain hypoglycemic episodes. The controller

ould be tuned to avoid these episodes without using this feature,

f the uncertainty of the model would not be this high. However,

he reason of high uncertainty used in this paper was to iterate

n the possibilities in modern robust controller design, giving a

oadmap of it. 

The controllers were implemented using Robust Control Tool-

ox of MATLAB 2009b. 
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The current case study highlights the difficulties in order to as-

ure robust performance (RP), i.e. an H ∞ 

norm smaller than one

or the transfer matrix of the closed loop system. This can only

e satisfied by defining weak tracking performance, inadequate to

eep the plasma glucose concentration of the patient in the nor-

oglycemic range. 

Therefore, two different versions were considered for each con-

roller: one where RP is met and one where only robust stability

RS) is assured. The latter has stricter performance specifications,

hich are not met, but closed loop stability is still ensured. (Need-

ess to say, a true solution would reduce the uncertainties of the

ystem, but this cannot be done with a linear controller.) 

One very important feature of this control strategy is that no in-

ormation regarding the occurrence and size of meals is provided,
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Fig. 11. Weighting functions of W 2 (s) in switching controller. 
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unlike many other methods found in the literature. This certainly

leaves a great burden on the controller, but makes it significantly

less dependent from the compliance of the patient and approaches

better the real life situation of a diabetic patient. 

3.4. Switching control 

A more effective approach can take into consideration the

"switching" nature of the model. Endogenous glucose production

( EGP ) and renal clearance ( R cl ) represent linear dependencies in

certain working points, and non-existent in others. Treating each

case separately four different models can be defined requiring four

different controllers. Each model has slightly different dynamics,

but individually they impose less burden on the respective con-

trollers. Furthermore, based on the blood glucose levels more mod-

els can be defined, similar to [32] . The six considered models are: 
• No EGP(t) and Q 1 ( t ) ∈ [4.5 · V G , 5.5 · V G ] (no renal clearance); 
• EGP(t) is active, Q 1 ( t ) ∈ [4.5 · V G , 5.5 · V G ] (no renal clearance);
• No EGP(t) and Q 1 ( t ) ∈ (5.5 · V G , R th V G ] (no renal clearance); 
• EGP(t) is active, Q 1 ( t ) ∈ (5.5 · V G , R th V G ] (no renal clearance); 
• No EGP(t) and Q 1 ( t ) > R th V G (renal clearance active); 
• EGP(t) is active, Q 1 ( t ) > R th V G (renal clearance active). 

Unfortunately the state variables that could be used to perform

he switching cannot be measured, only estimated. The structure of

he nominal model and the controllers are the same as previously,

xcept that EGP(t) is not a disturbance anymore, but part of the

ystem. This calls for an additional uncertainty weighting function

 3 (s) given in ( 14 ), which incorporates the parameter changes of

 b3 and S IE ( Fig. 9 ). Similarly to W 1 (s) and W 2 (s) the parameters of

 3 (s) were determined by gridding technique [31] . 

 3 (s ) = 0 . 0627 

17 . 7904 s + 1 

11 . 468 s + 1 

(14)
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Table 2 

Parameters of performance weighting functions for switching controllers. 

Controller T τ K 

Regular (4.5 < Q1(t)/V G ≤ 5.5) (low γ ) 300 37.5 0.04 

Regular (5.5 < Q1(t)/V G ≤ R th ) (low γ ) 300 50 0.03 

Regular ( R th < Q1(t)/V G ) (low γ ) 300 33.33 0.045 

Regular (4.5 < Q1(t)/V G ≤ 5.5) (high γ ) 300 6 0.05 

Regular (5.5 < Q1(t)/V G ) (high γ ) 300 5 0.06 

Integral (low γ ) 400 40 0.01 

Integral (4.5 < Q1(t)/V G ≤ 5.5) (high γ ) 300 30 0.05 

Integral (5.5 < Q1(t)/V G ≤ R th ) (high γ ) 300 25 0.06 

Integral ( R th < Q1(t)/V G ) (high γ ) 300 21.43 0.07 

2DoF (4.5 < Q1(t)/V G ≤ 5.5) (low γ ) 300 9.375 0.032 

2DoF (5.5 < Q1(t)/V G ≤ R th ) (low γ ) 300 10 0.03 

2DoF ( R th < Q1(t)/V G ) (low γ ) 300 8.57 0.035 

2DoF (high γ ) 300 12 0.05 

Integral 2DoF (4.5 < Q1(t)/V G ≤ 5.5) (low γ ) 300 30 0.01 

Integral 2DoF (5.5 < Q1(t)/V G ≤ R th ) (low γ ) 400 40 0.01 

Integral ( R th < Q1(t)/V G ) 2DoF (low γ ) 300 12 0.025 

Integral 2DoF (4.5 < Q1(t)/V G ≤ 5.5) (high γ ) 300 30 0.05 

Integral 2DoF (5.5 < Q1(t)/V G ≤ R th ) (high γ ) 300 7.5 0.04 

Integral 2DoF ( R th < Q1(t)/V G ) (high γ ) 300 23.077 0.065 
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By the mentioned considerations on switching, the uncertainty

ill be reduced for certain components of the model. Furthermore

ifferent weighting functions can be defined for different working

oints and also for different patients. W 1 (s) differs depending on

he value of Q 1 (t) resulting in three different weights given as fol-

ows ( Fig. 10 ). 

 1 ( s | 4 . 5 < Q 1 ( t ) V G ≤ 5 . 5 ) = 0 . 15 

714 . 286 s + 1 

51 5 . 724 s + 1 

(1 5)

 1 ( s | 5 . 5 < Q 1 ( t ) V G ≤ R th ) = 0 . 41 

714 . 286 s + 1 

608 . 415 s + 1 

(16) 

 1 ( s | R th < Q 1 ( t ) V G ) = 0 . 103 

714 . 286 s + 1 

464 . 28 s + 1 

(17) 

Based on the remarks given at W 2 (t) selection, i.e. the param-

ters of W 2 (s) are different for each of the six patient of SimEdu

see Eq. (8) and Fig. 3 ), for every switching case a corresponding

requency evaluation of W 2 (t) is required ( Fig. 11 ). 

On the other hand, based on ( 9 ), the W out (s) weighting function

epresents smaller uncertainty on lower frequencies ( Fig. 12 ). 

 out (s ) = 0 . 02 

2 . 05 s + 1 

100 s + 1 

(18) 

Three mostly different performance weighting function were

etermined for every controller depending on the value of Q 1 (t) .

he controllers could further be tuned by defining different W p for
u(t)

zu(t)

d(t)

phy(t)

d̂(t)

−
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Fig. 13. Considered structures of th
very working point. The parameters are summarized in Table 2 .

he time constant ( T ) is selected on the model property (only in

ase of integral control is used a higher time due to meal absorp-

ion), K and τ are results of the weighting functions selected. 

Similarly to the non-switching case, two different versions have

een implemented for each type of controllers: one where RP is

atisfied and one where only RS is true. The structures of all four

witching controllers are presented in Fig. 13 (similar to Fig. 8 , just

hat here the uncertainty weighting function W 3 (s) is included in

ddition for the endogenous glucose production part), where the

ine-style of the different elements is the same as in the non-

witching case. The components with solid line are common for

ll types. In case of 2DoF control, the elements drawn with dashed

ine should be also taken into account. Dotted line marks the parts

hat belong to integral control, as opposed to the semi-dotted ele-

ents that are present only in the absence of the integrator. 

All six controllers were implemented and ran in parallel. The

ontrol signal will be the weighted sum of all controller outputs.

he weights are determined using sigmoid functions to avoid rapid

hanges in the signal during switching. For a controller that is valid

hen Q 1 ( t ) ∈ [ Q 

1 ,i 
, Q 1 ,i ] and x 3 ( t ) ∈ [ x 3 ,i , x 3 ,i ] the weight ˜ w i will be

etermined as follows: 

 i = 

1 

1 + exp 

(
M 

(
Q 

1 ,i 
− Q 1 ( t ) 

)) 1 

1 + exp 

(
M 

(
Q 1 ( t ) − Q 1 ,i 

))
zd,2(t)

zd,1(t)

− −
n(t)

ze(t)

y(t) y(t)

ze(t)
Wout Δ

Wtrack

Wn

Wp

Wint Wp

e switching H ∞ controllers. 
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Fig. 14. Control variability grid analysis for controllers without switching (low γ ). 

Fig. 15. Control variability grid analysis for controllers without switching (high γ ). 
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Fig. 16. Simulation over time for non-switching H ∞ controller (low γ ). “Measured” repr

system, while “reference” is for the output of the reference system W track . 
× 1 

1 + exp 

(
M 

(
x 3 ,i − x 3 ( t ) 

)) 1 

1 + exp ( M ( x 3 ,i − x 3 ( t ) ) ) 
(19)

˜ 
 i = 

w i 

6 ∑ 

j=1 

w j 

(20)

The control signal is considered zero when the lower threshold

f the measured glucose concentration (4.5 mmol/L) is reached. 

Compared to the non-switching case, smaller γ values could

e achieved for the same performance functions. On the other

and, the synthesis could become numerically badly conditioned

hen faster tracking properties have been enforced. Furthermore,

he poles of the controller could grow too high, resulting in slow

imulations. Consequently, balanced model reduction was neces-

ary [20] . 

. Simulation results 

Altogether eight different controllers were implemented and

ested using the University of Cambridge Simulator educational

ersion 2.2 (SimEdu) [25] . 

In case of integral control RP was not possible to be achieved

ith merely reducing the weighting of the tracking performance,

nd not even RS could be ensured in certain cases. Results include

assive hypoglycemic episodes during simulation, which suggests

hat unless the uncertainty is reduced, or additional information is

ade available regarding the disturbances (e.g. meal intake), inte-

ral control is not favorable for H ∞ 

control of this model. However,

or H 2 or L 1 control the idea might be more effective [20] . PID con-

rol is extensively researched for the AP problem [8, 13] , therefore
30 36 42 48
]

troller
 

measured
real

30 36 42 48

roller
 

30 36 42 48
 70

 83

 95

108

120

R
ef

er
en

ce
 s

ig
na

l [
m

g/
dL

]

measured
real
reference

esents the signal measured by the CGM sensor, “real” stands for the output of the 



L. Kovács / Knowledge-Based Systems 122 (2017) 199–213 209 

 0  6 12 18 24 30 36 42 48

50

100

150

200

250

300

350

400

time [h]

G
lu

co
se

 c
on

ce
nt

ra
tio

n 
[m

g/
dL

]

Regular controller

 

 
measured
real

 0  6 12 18 24 30 36 42 48

100

200

300

400

G
lu

co
se

 c
on

ce
nt

ra
tio

n 
[m

g/
dL

]

2DoF  controller

 

 

 0  6 12 18 24 30 36 42 48
 70

 83

 95

108

120

R
ef

er
en

ce
 s

ig
na

l [
m

g/
dL

]

measured
real
reference

Fig. 17. Simulation over time for non-switching H ∞ controller (high γ ). “Measured” represents the signal measured by the CGM sensor, “real” stands for the output of the 

system, while “reference” is for the output of the reference system W track . 

Fig. 18. Control variability grid analysis for switching controllers (low γ ). 

Fig. 19. Control variability grid analysis for switching controllers (high γ ). 

Table 3 

Summary of meal intake simulation parameters. 

Meal type Chance of occurrence Amount (g CHO) Time 

Breakfast 100% 50 – 90 g 6 :00 – 10:00 

Snack 1 50% 10 – 50 g 8 :00 – 11:00 

Lunch 100% 60 – 120 g 11 :00 – 15:00 

Snack 2 50% 10 – 30 g 15 :00 – 18:00 

Dinner 100% 35 – 95 g 18 :00 – 22:00 

Snack 3 50% 10 – 20 g 22 :00 – 24:00 

e  

r

 

a  

d  

t  

s  

c  

1  

t  

w  

e  

t  

t

 

v  
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s  
xtending the controller with an integrator could be considered for

obust methods as well. 

Six virtual patients of the SimEdu in-silico simulator were used

nd 100 simulations were conducted for each patient with ran-

omized initial states, parameter change, meal and physical ac-

ivity profile. Uniform distribution was used in all cases. Table 3

ummarizes the parameters of meal intakes. Physical activity oc-

ured 50% of the time starting between 9:0 0–12:0 0 and lasting for

–4 hours. It can be seen from Table 3 that based on the rela-

ively wide ranges of meal intake possibilities (simulating in this

ay the uncertain carbohydrate (CHO) estimation of the patients)

ven exterme meal intakes (400 g CHO) can occur. Moreover, by

he uncertain time intervals the idea was to deal with the uncer-

ain registration of the meal periods as well. 

For all simulations a complete 48 hours simulation time inter-

al was considered. The simulation results were evaluated based

n the international standards of control variability grid analysis

CVGA) [33] and are presented below. 

Figs. 14–17 shows the analysis for the switching and non-

witching cases separating the case when only RP (low γ ) or when
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Fig. 20. Simulation over time for switching H ∞ controller (low γ ). “Measured” represents the signal measured by the CGM sensor, “real” stands for the output of the system, 

while “reference” is for the output of the reference system W track . 
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only RS (high γ ) is satisfied. Instead of mmol/L the results are pre-

sented in the more widely used mg/dL format, for easier compari-

son. 

Fig. 14 reflects the non-switching robust control results. It can

be seen that taking the uncertain meal intake or time recording

into account, for scenarios presented in Table 3 efficient and gen-

erally robust control cannot be achieved. 

This result clearly presents the pros and cons of modern ro-

bust control methodology. Only guaranteeing RP does not mean

that one could obtain a suitable controller. It is true that the con-

troller achieved is generally applicable, but in a physiologically un-

acceptable range: big oscillations with big number of hypo- and

hyperglycemic episodes that endanger diabetic patients’ life. 

This remark is true for focusing on RS as well ( Fig. 15 ). More-

over, results in Fig. 15 demonstrate illustratively that RS is “below”

in quality requirements than RP. Simulations over time are exem-

plified by Figs. 16 and 17 for both (RP and RS) cases. 

In conclusion, it can be mentioned that for an individualized

/ personalized control (MPC or other methods used in the liter-

ature [13–19] ) discussion is needed to adapt the problem on the

given patient’s characteristics, which however is not robust enough

(it cannot handle Table 3 scenarios); hence, the two approaches

should be combined. In other words, an adequate choice for the AP

problem could be envisaged using a hierarchical control structure

(not the scope of the current paper): individualized control solu-

tion adapted to the patient’s physiology placed in a robust control

framework to guarantee RP even for the worst cases. 

By the switching control scheme ( Fig. 18 ) the above mentioned

remarks are true as well, but a qualitatively increased performance

can be observed. RP is better matched with the physiological ex-

pectations due to the different working regimes where the con-

 

roller is able to satisfy more adequately the physiological require-

ents. Results are still not the best, but due to the considered un-

ertain and extreme scenarios of Table 3 most of the hypoglycemic

vents (most dangerous for T1DM patients) can be avoided, while

emaining ones are only moderate. 

Regarding hyperglycemia, a considerable drop in CVGA from the

esults presented in Figs. 14 and 15 can be observed. Moreover,

ue to the high meal intake scenarios it is expected to have high

lucose levels for T1DM patients. However, a hierarchical control

tructure mentioned above could better tune the results. Focusing

nly on RS ( Fig. 19 ) the same remarks can be concluded as in the

on-switching cases: although RS can be guaranteed, without sat-

sfying the nominal performance requirements (in our case mini-

izing hypoglycemia) the control quality is worse. 

In the switching cases, simulations over time are exemplified by

igs. 20 and 21 again for both (RP and RS) cases. In case of 2DOF

ontrol, the reference signal is also displayed. 

Table 4 summarizes the simulation results for all the eight con-

idered controller structures. 

Analyzing these results, the following remarks can be made: 

• The controllers achieved are not ideal ones, but they are able

to prove their robust characteristics. With the extreme scenar-

ios considered they guaranteed RP (or RS). In this way, a hier-

archical control solution with individualized control adapted to

the patient’s physiology placed in a robust control framework

to guarantee RP even in the worst cases can be a real alterna-

tive for the AP problem. 
• For higher γ values, when only RS is met, blood glucose lev-

els usually do not go as high when RP is satisfied. However,

this comes at the cost of higher possibility for hypoglycemic

episodes. 2DoF control can slightly shorten the duration of hy-
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Fig. 21. Simulation over time for switching H ∞ controller (high γ ). “Measured” represents the signal measured by the CGM sensor, “real” stands for the output of the system, 

while “reference” is for the output of the reference system W track . 

Table 4 

Summary of simulation results for all controller types. 

Controller Hypo < 4 mmol/L Norm 4–6 mmol/L Mild hyper 6–7.8 mmol/L Hyper 6–11.1 mmol/L Severe hyper > 11.1 mmol/L 

without switching 

Regular (low γ ) 6 .68% 25 .98% 10 .11% 26 .67% 40 .66% 

Regular (high γ ) 13 .40% 28 .34% 12 .51% 30 .03% 28 .23% 

2DoF (low γ ) 3 .13% 23 .24% 9 .01% 23 .00% 50 .63% 

2DoF (high γ ) 10 .75% 26 .93% 11 .87% 30 .42% 31 .90% 

with switching 

Regular (low γ ) 5 .35% 27 .02% 8 .14% 24 .45% 43 .17% 

Regular (high γ ) 11 .39% 28 .83% 9 .13% 26 .46% 33 .33% 

2DoF (low γ ) 4 .59% 25 .49% 6 .78% 21 .28% 48 .64% 

2DoF (high γ ) 10 .41% 28 .33% 8 .32% 25 .14% 36 .13% 
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poglycemic episodes. It might be more favorable to provide dis-

turbance estimation with a more capable tool, e.g.: Kalman fil-

ters or their extensions on sigma-point filtering [39, 42] . 
• Switching control could considerably improve the results by

defining different working regimes where the controller could

focus only on the given regimes’ particularities. In this con-

text we have designed the corresponding controller used in our

robust control framework. Results were presented in [37] and

Fig. 22 illustrates a simulation result of the system, where the

shortcomings presented in the above roadmap were avoided. 

. Conclusions and further research directions 

In this case study, the implementation of H ∞ 

controllers were

nvestigated for the widely known and used T1DM model pub-

ished in [10] and later updated in [25] . From the nonlinear model

 nominal linear system was constructed with weighting functions

epresenting the nonlinearity and parameter inaccuracies gained
rom expertise collected from real diabetic patient measurements

r simulations of the validated SimEdu virtual simulator [25] . Us-

ng this configuration, regular, integral, 2DOF and integral 2DOF

 ∞ 

robust controllers were implemented; both for switching and

on-switching case. Simulations were conducted using 6 virtual

atient data. 

The study intended to show the possible issues appearing in

 ∞ 

controller design for this particular artificial pancreas prob-

em. The exact mathematical formulation of modern robust tech-

ique was combined with the empirical (knowledge-based) exper-

ise gained from medical practice. The most practical issues have

een addresses and results have been tested for extreme scenar-

os (high meal intakes and uncertain time recording). Switching

ontrol possibilities have been presented. Beside the robust control

esign roadmap given in the paper, the advantage of the research

rom control engineering point of view is to present the sensitiv-

ty of uncertainty weighting function selection, demonstrating that
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Fig. 22. Simulation over time for switching H ∞ controller (low γ ). “Measured” rep- 

resents the signal measured by the CGM sensor, “real” stands for the output of the 

system. 
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without given expertise (in this case medical knowledge) not only

robust, but even unstable solution can be achieved. From clinical

point of view the clear advantage is that once a robust controller

is designed, there is no need to be redesigned on different patients

or treatment scenarios; however, several medical data are needed

increasing the knowledge required to achieve the robustness prop-

erty. 

Future research will focus on solving the H ∞ 

controller design

on the investigated model using LPV modeling methodology, but

also extended to a generalized LPV approach of Tensor Product

model transformation [43–44] . Since the scheduling parameters

cannot be measured directly, accurate estimation is needed and

the resulting error must be considered and incorporated into the

nominal model formulation [45–49] . Furthermore, H 2 and L 1 ro-

bust controllers can be implemented and compared with the ones

presented in this paper. Hybrid controllers satisfying multiple con-

straints or hierarchical control structure combining individualized

control strategies with modern robust methods are an option as

well. Practical issues, such as sensor dynamics, errors and insulin

pump failures should also be addressed together with other opti-

mization methods e.g. [34–35, 42] . As a final remark it is impor-

tant to mention that the aim of modern robust control is not to

compete with individualized methodologies (like MPC), but to effi-

ciently extend them giving extra safety guarantees. 
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Appendix A 

The state-space representation of the T1DM model using the

switching control and scheduling parameter combinations. 

A 1 , 1 = −k a, int − δ1 �k a, int 

A 1 , 2 = 

k a, int 

V 

+ δ2 

�k a, int 

V 
G G 
 2 , 2 = −ρ4 , max + ρ4 , min 
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μ1 − ( ρ2 , max + ρ2 , min ) 
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− R cl 
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E G P 0 + �E G P 0 
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E G P 0 + �E G P 0 
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 3 , 2 = 
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( 1 − μ2 ) 

 3 , 5 = − ( ρ3 , max + ρ3 , min ) 
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( 1 − μ3 ) − δ10 
( ρ3 , max + ρ3 , min ) 
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( 1 − μ3 )

 4 , 4 = −k b1 − δ11 �k b1 

 4 , 7 = S IT k b1 + δ12 ( �S IT k b1 + S IT �k b1 + �S IT �k b1 ) 

 5 , 5 = −k b2 − δ13 �k b2 

 5 , 7 = S ID k b2 + δ14 ( �S ID k b2 + S ID �k b2 + �S ID �k b2 ) 

 6 , 6 = −k b3 − δ15 �k b3 

 6 , 7 = S IE k b3 + δ16 ( �S IE k b3 + S IE �k b3 + �S IE �k b3 ) 

 7 , 7 = −k e − δ17 �k e 
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