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Abstract—The utilization of modern and advanced control
engineering related methods for the control, estimation and
assessment of physiological applications is widespread. It is also
well-known that this engineering apparatus is executed on digital
computers. The current insufficiency of available and accurate
discretized models, especially in case of Diabetes Mellitus (DM),
provides incentive for this research. The researchers typically
approximate the continuous solutions which may not be the best
alternative in many cases, in particular considering numerical
stability and cost-effectiveness. In this paper we performed an
analysis of the available discretization options in order to develop
discrete models with a special focus on the Linear Parameter
Varying (LPV) systems. LPV techniques are very useful frame-
works which allow the application of linear controller, observer
and estimator design. In this study, three LPV discretization and
two Jacobian based discretization methods are introduced and
analyzed to provide a basis for our further investigations in the
topic.

Index Terms—Linear Parameter Varying techniques, Dis-
cretization, Discrete LPV Modeling, Diabetes Mellitus

I. INTRODUCTION

Control Engineering (CE) approaches have inevitable role

regarding physiological, biological and chemical applications.

In the recent years many practical application shown that by in-

volving the latest results of CE into physiological applications

better performance and better management of the treatments

can be achieved [1]–[7].

On the field of biomedical engineering DM receives an ever

growing scientific attention due to the continuously increasing

number of people who are affected. By the newest approx-

imations, there are 425 million people worldwide who live

with DM in 2018, this estimation involves undiagnosed cases

also beside the diagnosed ones [8]. Furthermore, the current

predictions imply that this number will reach 629 million, the

6.65% of the expected world population by 2045 [8].
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This paper focuses on Type 1 Diabetes Mellitus (T1DM).

This is a disorder of the natural blood glucose level regulatory

system. Insulin hormone plays one of the most important

part in the glucose homeostasis. T1DM involves an acute

autoimmune reaction, where the result is the perishing of

insulin producer β-cells [9]. Insulin is the indicator for the

body cells, that the blood glucose level is elevated, and it

ought to facilitate the glucose molecules by making the cell

membrane permeable for them. Patients in such a diabetic

condition are in need of external insulin injection, because

due to the osmotic pressure cells dehydrate, on the long run

energetic collapse can occur. [10], [11]. The control of the

blood glucose level of a diabetic patient is crucial, because

the uncontrolled disease can lead to several negative effect

[8]. Furthermore, the characteristics and quality of the control

is also essential [12].

In case of T1DM the tight glycemic control (TGC) is the key

of good glycemic status. TGC requires frequent BG measure-

ments via finger pricks (manual measurement) or Continuous

Glucose Monitoring System (CGMS) [13]. There are still

many challenges regarding CGMS technology, however. For

example, the sampling frequency is around 5 minutes on basis,

noise and disturbance sensitivity, inaccuracies of available

mathematical models, etc. [2], [5], [14]. State estimation for

control applications is also an important aspect which is not

trivial and the requirements of it determined by the type of

control to be applied [15], [16]. In our previous work, we have

presented the use of LPV methodology regarding the control

of DM [17]–[19].

Both for LPV based state estimation and control the in-

vestigation of possible discretization techniques is necessary.

Through the scaled and discretized models it is possible to

taking into account all requirements coming from the estima-

tors (e.g. Kalman filter), LPV controller and available sensor

technology (sampling time, disturbances, etc.).

The paper is structured as follows. First, we introduce the

models to be investigated. After, the discretization possibili-

ties regarding the presented models are shown. Finally, our

findings are described and we conclude our work.
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II. APPLIED MODELS

A. The Minimal Model

We have investigated the well-known T1DM model of

Bergman in the form presented by [20]. The model has

three state variables: G(t) mg/dL is the blood glucose (BG)

concentration, X(t) 1/min insulin-excitable tissue glucose

uptake activity, I(t) U/mL blood insulin concentration. The

w(t) mg/dL/min is the disturbance input (the glucose intake)

and u(t) U/mL/min is the control input (insulin intake). The

output of the system is the BG concentration G(t) which is

measurable. The p1, p2, p3 and n, are model parameters. In this

study we have applied the following data set: [p1, p2, p3, n] =
[0.028, 0.025, 0.00013, 0.23] based on [20].

Ġ(t) = −(p1 +X(t))G(t) + p1GB + w(t). (1a)

Ẋ(t) = −p2X(t) + p3[I(t)− IB ]. (1b)

İ(t) = −n[I(t)− IB ] + u(t). (1c)

B. LPV Modeling in General

In the following the continuous and discrete state-space

LPV (LPV-SS) model description – in a general manner –

are presented.

Definition 1. Continuous-Time LPV-SS Model [21], [22].

The continuous time LPV-SS model (CT-LPV) can be

described by the following differential equations (without

considering separated disturbance input):

ẋc(t) =
Ac(pc(t))xc(t) +Bc(pc(t))uc(t) +Ec(pc(t))dc(t)

,

(2a)
yc(t) =

Cc(pc(t))xc(t) +Dc(pc(t))uc(t) +D2,c(pc(t))dc(t)
,

(2b)

where Ac(pc(t)) ∈ R
n×n, Bc(pc(t)) ∈ R

n×m, Ec(pc(t)) ∈
R

n×z , Cc(pc(t)) ∈ R
k×n, Dc(pc(t)) ∈ R

k×m and

D2,c(pc(t)) ∈ R
k×z are the pc(t) dependent system-,

input-, disturbance-, output-, input-coupling- and disturbance-

coupling matrices, respectively and xc(t) ∈ R
n is the state

vector. The uc(t) ∈ R
m is the input vector, while dc(t) ∈ R

z

is the disturbance vector. The pc(t) = [p1,c(t) . . . pR,c(t)] pa-

rameter vector consists of the so-called scheduling parameters

pi,c(t). pc(t) ∈ ΩR ∈ R
R is an R dimensional real vector

within the Ω = [p1,c,min, p1,c,max] × [p2,c,min, p2,c,max] ×
. . . × [pR,c,min, pR,c,max] ∈ R

R hyperplane inward the R
R

real vector space. If any of the states is selected as scheduling

variable, the given LPV model becomes a quasi-LPV (qLPV)

model [21], [22].

By assuming an ideal zero-order hold (ZOH) device, pc(t),
uc(t) and dc(t) are constant within each sampling interval. In

this case the continuous system can be written as:

ẋc(t) =
Ac(pc(kTd))xc(t) +Bc(pc(kTd))uc(kTd)+

Ec(pc(kTd))dc(kTd)
, (3a)

yc(t) =
Cc(pc(kTd)))xc(t) +Dc(pc(kTd))uc(kTd)+

D2,c(pc(kTd))dc(kTd)
, (3b)

where k is the discrete step and Td is the sampling time.

Definition 2. Discrete-Time LPV-SS Model [21], [22].

The discrete time LPV-SS model (CT-LPV) can be de-

scribed by the following difference equations:

xd(k + 1) =
Ad(pd(k))xd(k) +Bd(pd(k))ud(k)+

Ed(pd(k))dd(k)
, (4a)

yd(k) =
Cd(pd(k))xd(k) +Dd(pd(k))ud(k)+

D2,d(pd(k))dd(k)
, (4b)

where the matrices and vectors are the discrete time equiva-

lents of the continuous time counterparts and k is the sampling

time instance.

C. Investigated LPV Model

Due to our aim is to provide appropriate discrete time LPV

models for our further research, we have developed a qLPV

model form of (1a)-(1c).

Because the G(t) variable is the nonlinearity causing term,

we have selected it as scheduling parameter, namely, p(t) =
p(t) = G(t) from (1a). This is the most straightforward way

to represent the system in qLPV form.

The (1a)-(1c) contain the p1 GB , −p3 IB and n IB constant

terms. These are needed to be handled as ”input signals” from

the qLPV system point of view. Since these are constant terms,

it does not matter whether we represent them in the B or in

the E matrix. However, our aim is to apply them for controller

and estimator design in the future. Hence, it is more suitable if

these terms are part of the E matrix – beside the disturbance

input. Thus, the d(t) = [1 1 1w(t)]�.

By considering the aforementioned conditions and using the

LPV principle the following qLPV state-space representation

can be written:

ẋ(t) = A(p(t))x(t) +Bu(t) +Ed(t) , (5a)

y(t) = Cx(t) +Du(t) +D2d(t) , (5b)

A(p(t)) =

⎡
⎣
−p1 −G(t) 0
0 −p2 p3
0 0 −n

⎤
⎦ ,

B =

⎡
⎣
0
0
1

⎤
⎦ , E =

⎡
⎣
p1 GB 0 0 1

0 −p3 IB 0 0
0 0 n IB 0

⎤
⎦ ,

C =
[
1 0 0

]
, D =

[
0 0 0

]
,

(5c)

where the constant terms are represented in E.
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III. DISCRETIZATION PROCEDURES

We intended to provide a full picture about the available

discretization techniques, how they can be applied regard-

ing the given cases. Hence, we investigated the ”classical”

methods as well (Jacobian based discretization), not just the

LPV discretization opportunities. In this way, the comparison

between them became possible.

A. Complete LPV-SS discretization

In this case, the CT-LPV system as it is described by (3) is

transformed by using the LTI assumption of complete signal

evolution approach sampling with ZOH [21]. The method

results an approximating DT-LPV system in the form of (4)

with given approximation error. The transformation is step-by-

step described by (6a)–(6d) in accordance with [23], [24].

Ad(pd(k)) = e(Ac(pc(kTd))Td) , (6a)

Bd(pd(k)) =
A−1

c (pc(kTd)(e
(Ac(pc(kTd))Td) − I)Bc(pc(kTd))

, (6b)

Ed(pd(k)) =
A−1

c (pc(kTd)(e
(Ac(pc(kTd))Td) − I)Ec(pc(kTd))

, (6c)

Cd(pd(k)) = Cc(pc(kTd)) , (6d)

Dd(pd(k)) = Dc(pc(kTd)) , (6e)

D2,d(pd(k)) = D2,c(pc(kTd)) . (6f)

B. Rectangular LPV-SS discretization

The rectangular method can be derived from the first order

forward Euler’s method [23]–[25].

Ad(pd(k)) = I+ TdAc(pc(kTd)) , (7a)

Bd(pd(k)) = TdBc(pc(kTd)) , (7b)

Ed(pd(k)) = TdEc(pc(kTd)) , (7c)

Cd(pd(k)) = Cc(pc(kTd)) , (7d)

Dd(pd(k)) = Dc(pc(kTd)) , (7e)

D2,d(pd(k)) = D2,c(pc(kTd)) , (7f)

C. Adams-Bashforth LPV-SS discretization

From the family of multi-step methods, the Adams-

Bashforth discretization can be implemented due to the ne-

cessity of fixed step size. Below, the general form of the three

step method given, which results in a 9th order system [23],

[24], [26]:

Ad(pd(k)) =⎡
⎣
I+ 23Td

12 Ac(pc(kTd)) − 16Td

12 I 5Td

12 I
Ac(pc(kTd)) 0 0

0 I 0

⎤
⎦ , (8a)

Bd(pd(k)) =[
23Td

12 B�c (pc(kTd)) B�c (pc(kTd)) 0
]� , (8b)

Ed(pd(k)) =[
23Td

12 E�c (pc(kTd)) E�c (pc(kTd)) 0
]� , (8c)

Cd(pd(k)) =
[
Cc(pc(kTd)) 0 0

]
, (8d)

Dd(pd(k)) = Dc(pc(kTd)) , (8e)

D2,d(pd(k)) = D2,c(pc(kTd)) , (8f)

x′d(k) =
[
x�d f |�(k−1)Td

f |�(k−2)Td

]�
. (8g)

where x′d is the altered state matrix, in which the f vectors

corresponds to the original continuous system equations.

D. Complete Jacobian Linearized-SS Discretization

With the Jacobian-matrix, a linear approximation has been

acquired around the current step, and the system discretized by

the complete method mentioned before (6a)–(6d) [23], [24].

Ad(k) = e(Aj(kTd))Td) , (9a)

Bd(k) = A−1
j (kTd)(e

(Aj(kTd)Td) − I)Bj(kTd) , (9b)

Ed(k) = A−1
j (kTd)(e

(Aj(kTd)Td) − I)Ej(kTd) , (9c)

Cd(k) = Cj(kTd) , (9d)

Dd(k) = Dj(kTd) , (9e)

D2,d(k) = D2,j(kTd) , (9f)

where Aj(kTd), Bj(kTd), Ej(kTd), Cj(kTd), Dj(kTd) and

D2,j(kTd) are the Jacobian form of the above defined matri-

ces.

E. Jacobian Linearized Recursive Discretization

In this method the state matrices are not specified, because

they were calculated according to the complete method (6a)–

(6d) given in [23], [24]. The current values are calculated in

each time step from the initial values, by calculating the total

effect of the inputs up to the given point.

xd(k) =

Ad(k)
kx(0) +

k−1∑
i=0

(
Ad(k)

k−i−1
(
Bd(k)ud(i)+

Ed(k)dd(i)
)) , (10a)

yd(k) = Cdxd(k) +Ddud(k) +D2,ddd(k). (10b)
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IV. RESULTS

In this paper we do not aim to characterize the discretization

error caused by the LPV discretization procedures in Sec. III.

We have investigated only the applicability of them in case

of the given highly non-linear and rapidly varying glucose-

insulin model. The further investigation in this regard will be

the part of our future work.

It should be noted that we have used the MATLAB 2017b

environment for the developments.

In order to validate the discretized systems we have applied

the inbuilt ode45() function of the MATLAB [27] in which we

realized the original model described by Eqs. 1a-1c. This sys-

tem was applied as reference system during the investigations

to which all of the developed discretized systems have been

compared. The ode45() is a suitable nonstiff solver solving

nonlinear ordinary differential equations (ODEs) on a variable

basis [27].

Since the investigated DM model has impulse like inputs,

the functions had to be solved for every minutes indepen-

dently. This results a quasi discrete reference model. The

quantitative comparisons have been made by applying 2-norm

error between the state variables of the system in all cases,

namely, ‖xODE45
(t) − xDiscretized Systems(kT )‖, where the

xDiscretized Systems(kT ) were the realized DT-LPV sys-

tems (LPVComplete, LPVRectangular, LPVAdams−Bashforth,

LPVComplete) and the DT-SS systems based on Jacobians

(Jacobian Linearized-SS and Jacobian Linearized Recursive

Discretization). The states of the discretized systems were hold

for the applied T in each step in order to approximate the orig-

inal continous system. As we compared all of the discretized

systems to the reference system we got a picture about how

the discretized systems related to each other indirectly.

The following initial values have been applied: x(t0) =
[G(0), X(0), I(0)]� = [115, 0, 15]�.

For testing purposes a realistic manual glucose and insulin

administration scheme have been developed [28]. The glucose

input consists of 500 g carbohydrate, divided into five smaller

boluses. The insulin injections introduced with a five minute

delay. Therefore, the inputs defined as follows: w(ti) =
[65, 25, 75, 25, 60] g in each ti = [30, 250, 500, 800, 1200]
min and u(tj) = [15, 5, 17, 5, 14] mU/min in each tj =
[35, 255, 505, 805, 1205] min.

The basal levels of the three state variable have been

chosen to be: xB = [GB , XB , IB ]
� = [85, 0, 15]�. From

physiological point of view basal levels correspond to the

fasting conditions, from mathematical point of view the basal

levels are the equilibrium points of the isolated system [29],

[30].

Sampling time T was chosen to be T = 5 min due to

the current blood glucose concentration measuring devices are

capable of providing data at similar frequencies [5], [13] –

with one exception. During our investigations it became clear

that the Adams-Bashforth method was not able to provide

acceptable outcome with T = 5. In accordance with our

examinations we applied T = 2 min as the highest sampling

time in this case. Thus, it’s practical applicability strongly

depends on the available sensor technology.

Figure 1 shows the result of the simulation of the reference

and discretized systems by using the complete LPV-SS dis-

cretization in accordance with III-A. It is clearly visible that

the Complete LPV-SS model is able to approach the reference

system with good accuracy. The norm based error shows that

higher difference occurs when the systems changing due to

the intakes. However, the state errors decay fast.

Figure 1. Comparison of the reference and complete DT-LPV systems.

Figure 2 presents the comparison of the rectangular DT-LPV

system (III-B) and the original system during operation. The

results are similar to the previous case. The amplitude of the

state errors are bigger, however, they decay faster compared

to the complete DT-LPV model. We have found that the state

error – in general – increased rapidly by using T > 5 minutes,

thus the use of higher sampling time is not recommended. The

potential instability can be seen on Fig. 2 as well. After the

injection of each bolus, the insulin concentration deviated in

negative direction.

Figure 3 shows the comparison of the DT-LPV system

provided by the Adams-Bashforth method (III-C) and the

original system during operation. That was the only method

in which we have not been able to apply the determined

T = 5 sampling time (instead T = 2 was used) – as we

mentioned above. It is clearly visible that this method provided

the highest state errors and its inaccuracy was at the border of

acceptability. As we found, the method is not able to handle

the fast changes (around the intakes) at all. However, in case

of ”slower” systems it may be applicable. We could not apply

T > 5 due to instability.
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Figure 2. Comparison of the reference and the rectangular DT-LPV models.

Figure 3. Comparison of the reference model and the DT-LPV model provided
by the Adams-Basforth LPV-SS discretization.

Figure 4 shows the comparison of the discrete system

(according to III-D) and the original system during operation.

It can be seen that the highest state error is at the G(t) due

to the nonlinearity – other states of the reference system are

approached by the discrete system with good accuracy. We

have found, that the stability of this opportunity is good and

even T = 10 can be applied without critical issues in accuracy

and numerical stability.

Figure 4. Comparison of the reference model and the discretized model (by
using Jacobian linearization and complete discretization).

Figure 5 shows the comparison of the discrete system

provided by the Jacobian recursive method (III-E) and the

original system during operation. The key difference between

the recursive and the complete method is that in case of the

recursive method the states are calculated from the initial

values in each step. The accuracy of the discrete model is

similar as in the previous case – the reasons are similar as

well. Although, the state errors are bigger in general and the

discrete model provided unexpected behavior at the beginning

of the simulations (initial deviations).

The numerical assessment can be found in Table I, where

the Root Mean Square Errors (RMSE) based metric [31] has

been applied to assess the quantitative differences between the

systems during operation.

Table I
RMSE ERRORS

Systems RMSEG RMSEX RMSEI

ODE45/Complete 0.739 1.722 0.327
ODE45/Rectangular 1.321 5.676 0.921
ODE45/Adams-Bashforth 6.167 7.141 1.560
ODE45/Jacobian, Complete 4.292 1.722 0.327
ODE45/Jacobian, Recursive 5.065 2.042 0.384

As it can be seen both in the Figs 1–5 and in Table I the

complete method provided the most accurate results both in

case of the LPV and the Jacobian based cases. Hence, the use

of this method is recommended in the further researches as a

basis to design discrete LPV controllers or discrete estimators

(eg. Kalman filter).
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Figure 5. Comparison of the reference model and the discretized model (by
using Jacobian linearization and recursive discretization).

V. CONCLUSION AND FURTHER WORK

In this paper we have analyzed the discretization opportu-

nities of a well-known DM model with a special focus on the

LPV (qlPV) techniques.

We have found that the best DT-LPV model and discrete

Jacobian based models have been provided by the complete

method – which were proven by the RMSE based error

assessment as well.

In our future work we will use the developed DT-LPV

model (provided by the complete LPV-SS discretization algo-

rithm) to develop DT-LPV controllers and advanced Kalman-

filters (e.g. extended or unscented Kalman-filter on LPV basis).
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